人教版八年级数学下册19.2.1正比例函数的概念课件

合集下载

初中数学 人教版八年级数学下册19.2.1 正比例函数 课件

初中数学 人教版八年级数学下册19.2.1   正比例函数  课件

y=3x
x
1 23
2.画函数 y = 3 x 的图象
2
解:选取两点(0,0) , (1, 3 )
y
2
4
过这两点画直线,
3
2
就是函数y= 3 x 的图象
2
1
x
-2 -1 0 1 2 3 4
-1
-2
-3 -4
y=
3 2
x
-5
1. 正比例函数y=(m-1)x的图象经过一、三象限, 则m的取值范围是( B ) A. m=1 B. m>1 C. m<1 D. m≥1
y
y=2x
5
4
3
2
1
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
y 2x
观察
y y=2x
45
3 2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
y 2x
比较上面两个函数的图象的相同点与不同点,考虑 两个函数的变化规律.
结论:两图象都是经过原点的 直线 ,函数 y 2x
5
知识点一:正比例函数的定义
新知探究
(1)京沪高铁列车全程运行时间约需 1 318÷300≈4.4 (h).
(2)京沪高铁列车的行程y是运行时间t的函数,函数解析 式为y=300t(0≤t≤4.4) (3)京沪高铁列车从北京南站出发2.5 h的行程,是当t=2. 5时函数 y=300t的值,即
y=300×2.5=750 (km). 这时列车尚未到达距始发站1 100 km的南京南站.
16

人教版《正比例函数》PPT完美课件

人教版《正比例函数》PPT完美课件
人教版 · 数学· 八年级(下)
第19章 一次函数 19.2.1 正比例函数 第2课时 正比例函数的图象和性质
学习目标
1.会画正比例函数的图象。 2.能根据正比例函数图象的规律探究正比例函数的 性质。
回顾旧知
正比例函数 一般地,形如 y=kx(k 是常数,k≠0) 的函数,叫做正比例函数,其中 k 叫做比例系数.
∵点Q(-m,m+3)在这个函数图象上,∴m+3=(-2)×(-m),解得m=3
4 些点连接起来,得到一条经过原 思考 画正比例函数的图象时,怎样画最简单?为什么?
13.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是(
)
k>2
D.
x … -1.5 -1 -0.5 0 0.5 1 1.5 … y … 6 4 2 0 -2 -4 -6 …
y=-4x y
9
4
1 -4-3-2-1O 1 2 3 4
x
如图,在直角坐标系中描出表中 x 和 y 的值对应坐标的点,将这 些点连接起来,得到一条经过原 点和第二、第四象限的直线,它 就是函数 y=-4x 的函数图象.
巩固新知
1. 正比例函数 y = (k-2)x 的图象如图所示,则 k 的取值范围
是( D ).Leabharlann yk-2<0
经过第二、第四象限
O
x
A. k>0
B. k<0
C. k>2
D. k<2
7.已知在正比例函数y=(k-1)x的图象中,y随x的增大而减小,则k的取值范围是(
)
(1)正比例函数必须满足两个条件:①比例系数k是常数,且k≠0.

19.2.1正比例函数(课件)-2023—-2024学年人教版数学八年级下册

19.2.1正比例函数(课件)-2023—-2024学年人教版数学八年级下册




2

7.9
0.5
ቤተ መጻሕፍቲ ባይዱ

−2



= 7.9
ℎ = 0.5
= −2
这些函数
解析式有
什么共同
点?
常数与自变量的乘积的形式
函数=常数×自变量
=
·



一般地,形如 = (是常数, ≠ 0)的函数,叫做正比例函数,

其中叫做比例系数.
想一想,为什么 ≠ ?
=0·
=0

正比例函数解析式的一般式:
(是常数, ≠ 0)
=
是自变量且它的指数是1
正比例函数解析式 = ( ≠ 0)的结构特征:
①是常数, ≠ 0
②自变量的指数是1,取值范围是一切实数;
③与是乘积的形式;
④若 = ,则与成正比例;
若与成正比例,则 = .
正比例函数(1)
问题1:下列问题中,变量之间的对应关系可用怎样的函数表示?
(1)圆的周长随半径的变化而变化?
r
l
=
(2)铁的密度是7.9g/3 , 铁块的质量m(单位:g)随它的体
积 (单位: 3 )的变化而变化.
= .
(3)每个练习本的厚度为0.5,一些练习本摞在一起的总厚
1.已知与 − 3成正比例,且当 = 2时, = −5.
(1)求与之间的函数关系式;
(2)当 = 3时, 的值;
2
(3)当 = 时, 的值.
3
2.自编一道正比例函数的题目与同学们交流.




高斯(数学王子)说:“数学是科学之王”;

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)
用数形结合的思想方法,通过画图观察,概括 正比 例函数的图象特征及性质.
y =2x
6
4
y= 1 x
2
3
-5
O
-2
5
x
三.类比学习
当k<0 时,正比例函数的图象特征及 性质又怎样呢?
请各小组画出函数y =-3x 和y =-1.5x 的 图象,进行小组合作研究.
总结提升
y=kx (k是常数,k≠0)的图象是一条经过 原点的直线
函数 大致图象 经过的象限 从左 y随x的 向右 增大而
y=kx k>0
第三、一象限 上升 增大
y=kx k<0
第二、四象限 下降 减小
现在,我们有画正比例函数图象的简便 画法了吗?
四.正比例函数的性质
正比例函数的图象都是经过原点的一条直线 (1)当k>0时,函数y=kx的图象经过三、一象限
从左到右上升,即函数y随x的增大而增大 (2)当k<0时,函数y=kx的图象经过二、四象限,
点(0, 0 )与点( 1,-3 ), y随x的增大 而 减小 。 3.下列图象哪个可能是函数y=-1.2x的图象( B)
A
B
C
D
你一定行!
4.请用两点画出直线 y 4x 的图象。
5.若点 (-1,m),(2,n)都在直线y=-4x上, 试比较m,n的大小
你一定行!
五、知识回顾 谈谈本节课你的收获。
六、分层作业
必做题:P120第一、二题。 选做题:若点 (-1,a),(2,b)都在 直线y=kx上,试比较a,b的大小
课件说明
本课是在上一节课学习正比例函数概念的基础上,进 一步研究其图象及其性质.
学习目标: 1.会画正比例函数的图象; 2.能根据正比例函数的图象和表达式 y =k(k≠0)

人教版八年级数学下册《正比例函数》课件

人教版八年级数学下册《正比例函数》课件

(4)途经祈福广场时,我发现广场的 二次函数 中心是一个圆形的阴阳鱼图案,如果半 径为x ,那么它的面积s= x2 其中s是x 的正比例函数( × )

(5)途经祈福广场时,我发现广场的 中心是一个圆形的阴阳鱼图案,如果半 径为x ,那么它的面积s= x2 其中s是 x2的正比例函数( √ )

恭喜你获得最美好的祝福:
快 乐 每 一 天 , 幸 福 每 一 刻
恭喜你获得最美好的祝福:
成功相伴! 快乐无边!
巅峰对决 若y=(k+3)x|k|-2是y关于x的正比例函 数,试求k的值.
登临至巅
• 登临至巅
蒙山卧龙松
美景如画
惊叹世人的杰作
更折服于自然的伟大
正比例函数
指数函数 一次函数 对数函数
反比例函数
二次函数
函 数
19.2.1正比例函数
青蛙嘴的总数目y= x , 眼的总数目z = 2x , 腿的总数目m= 4x 。
一、认识正比例函数
y=x y=2x y=4x 上面的三个函数具备什么特点呢?
常量与自变量乘积的形式 • 定义:一般地,形如y=kx(k是常数 ,k≠0)的函数,叫做正比例函数,其 中k叫做比例系数。 温馨提示 1:k是常数,k ≠ 0 2:x的次数是 1 次
二、理解正比例函数
1、在景点入口处,我发现检 票速度一定时,检票时间t 越长,通过的客流量P越大 ,因此,客流量 P是 检票时间 t 的正比例函数。
• 2、刚进入景区,就远远 看到观光缆 车在匀速的运行着,很显然运送时间 t越长,运送游客量w就越多,因此, 运送游客量w是运送时间t 的正比例函 数。
3、移步换景,仰视整个蒙山景区:林海花潮,飞瀑流 水,奇峰耸立,层峦叠翠,看到飞流直下的瀑布,我想 如果瀑布单位时间的流量一定,时间t越长,总流水量m 就越大,因此, 总流水量m 是 时间t 的正比例函数

《正比例函数》课件优秀(完整版)1

《正比例函数》课件优秀(完整版)1
列式表示下列问题中y与x的函数关系,并指出它是不是正比例函数.
呢? (4)冷冻一个0°C的物体,使它每
(3)每个练习本的厚度为, 小结 :
((52) )y认=真-4x观+察3;自变从量和函常量数运用关什么系运算看符号,连接关起来键的?是这些比常量例可以系取哪数些值k?,比例系数k一确定,
(3)一个长方体的长为2cm,宽为,高为xcm ,体积为ycm3.
(2) (单;位:cm)随练习本的本数n的
(3)y=2x2 ;
变化而变化. (1)正方形的边长为xcm,周长为ycm.
(3)每个练习本的厚度为, (4)y2=4x;
h0.5n 从方程角度看,如果三个量x、y、k中已知其中两个量,则一定可以求出第三个量.
函数关系式是常量与自变量的乘积. 如果y=kx+k-3,是y关于x的正比例函数,则k=__________. 如果y=(k-1)x,是y关于x的正比例函数,则k满足________________.
• 问题探究:在 l 2πr 、 m7.8V 、h0.5n 和 T2t 中 :
(1)以上对应关系都是函数关系吗?其变量和常量 分别是什么?进一步指出谁是自变量,谁是函数?
(2)认真观察自变量和常量运用什么运算符号连接 起来的?这些常量可以取哪些值?
(3)这几个函数表达式有何共同特征?请你用语言 加以描述.
随(冷3)冻每时个间练t(习单本位的:厚m度in为),的变化而变
列必(y=式须33)x表 知y是示道=2比正下两x2比列个例;例问变系函题量数数中x、yk与y一的x的一确函对定数对,关应系值正,即比并可例指确出定函它k数.是就不是确正定比;例函必数须.知道两个变量x、y的一对对应值即可确定k.
4.从方程角度看: 随冷冻时间t(单位:min)的变化而变

人教版初中数学《正比例函数》PPT全文课件

人教版初中数学《正比例函数》PPT全文课件
习本摞在一起的总厚度 h(单位:cm)随这 些练习本的本数n的变化而变化.
解:h = 0.5n .
人教版初中数学《正比例函数》上课 实用课 件(PPT 优秀课 件)
人教版初中数学《正比例函数》上课 实用课 件(PPT 优秀课 件)
(4)冷冻一个0℃的物体,使它每分下降 2℃,物体的温度T(单位:℃)随冷冻 时间t(单位:分)的变化而变化.
(2)铁的密度为7.8g/ cm3 ,铁块的质量 m(单位:g)随它的体积V(单位:cm3)的 大小变化而变化.
解:m =7.8 V .
人教版初中数学《正比例函数》上课 实用课 件(PPT 优秀课 件)
人教版初中数学《正比例函数》上课 实用课 件(PPT 优秀课 件)
(3)每个练习本的厚度为0.5 cm,一些练
解:T = -2t .
人教版初中数学《正比例函数》上课 实用课 件(PPT 优秀课 件)
人教版初中数学《正比例函数》上课 实用课 件(PPT 优秀课 件)
找出它们的共同点
(1)( l=2πr ) (3)(h= 0.5n )
(2)( m=7.8 V ) (4)(T=-2 t )
共同点:正如y=200x一样,上述函数都是 常量与自变量的乘积的形式。
解:y=300t(0 t 4.6)
(3)京沪高铁列车从北京南站出发2.5h后,是 否已经过了距始发站1100km的南京南站?
解:300×2.5=750 (km) 因为750<1100,所以京沪高铁列车从 北京南站出发2.5h后,还没经过了距始 发站1100km的南京南站。
人教版初中数学《正比例函数》上课 实用课 件(PPT 优秀课 件)
5. 已知y-3与x成正比例,当x=2时,y=7 ,求y与x之间的函数解析式. 解:设y-3=kx,

【人教版】八年级数学下册课件-19.2.1 正比例函数

【人教版】八年级数学下册课件-19.2.1 正比例函数

描点(在直角坐标系中描出
y
表格中数对对应的点);
y=-1.5x
连表线格(连中的接点直很角多坐,标可系以中选的
3 2
点),如取图几.个有代表性的作图。
1
用同样的方法,我们可以 得到y=-4x的图象,如图.
-2 -1 O 1 2 x -1 -2
状元成才路
y=-1.5x
x … -3 -2 -1 0 1 2 3 …
根据题意画图,如下,当k>0时,A( 6,6),
此 A得’k时=(S-6k△,A.3因O6B),=此此12k=×时±6kS△×A.36O=B=12,12 ×解(得-k=6k6
3
k
.当k<0时,
2
)×6=12,解
2
2
状元成才路
错因分析:解题时忽略了k值的正负 情况,导致漏解.在解答此类型的题目时, 要根据题目条件画出图形,分类讨论.
因为两点确定一条直线,所以可用两点法画 正比例函数y=kx(k是常数,k≠0)的图象.一般地, 过 原 点 与 点 (1,k)(k≠0)的 直 线 , 即 正 比 例 函 数 y=kx(k是常数,k≠0)的图象.
状元成才路
知识点 3 正比例函数解析式的确定
例3 已知正比例函数y=kx经过点(-1,2), 求这个正比例函数的解析式.
状元成才路
19.2 一次函数
19.2.1 正比例函数
R·八年级数学下册
状元成才路
新课导入
两个变量x,y成正比例, 且 比 例 系 数 是 k(k ≠ 0) , 你 能 写出y与x的关系式吗?
状元成才路
学习目标
(1) 知 道 什 么 样 的 函 数 是 正 比 例 函 数 , 能 根 据正比例函数的定义确定字母系数的值.

最新人教版初中八年级下册数学【第十九章一次函数 19.2.1 正比例函数】教学课件

最新人教版初中八年级下册数学【第十九章一次函数 19.2.1 正比例函数】教学课件

回答
按道理来说,只要落在函数图象上的任意两点都能确定这条直线.但是为了便捷,我们一般选用原点 (0,0),另一个点可以选择在坐标系中容易标记的.
y1x 3
x …0 3… y …0 1…
y 6
5
4
3
y1x
2
3
1
–4 –3 –2 –1 O –1 –2 –3 –4 –5 –6
1 2 3 4 5x
回答
自变量的取值范围一旦不是全体实数,那函数图象就不是整一条直线,我们就要根据自变量的取值范 围来确定函数图象了.
解:(1)因为函数图象经过一、三象限;
y
所以3a-6>0
解得 a>2
Ox
1.已知正比例函数y=(3a-6)x. (2)当a为何值时,该函数图象经过点(2,6);
解:(2) 函数图象经过点(2,6) 即当x=2时,y=6, 因此6=2(3a-6) 解得a=3
1.已知正比例函数y=(3a-6)x.
(3)图象上有两点(1,y1),(-2,y2),且y1<y2 ,求a的取值范围.
方法一:图象法
y
从图象观察可得,
y2
y随x的增大而减小
所以3a-6<0
1
-2
O
y1
解得 a<2
方法二:代数法 点(1,y1),(-2,y2)在函数图象上 所以y1=3a-6,y2=-2(3a-6)
x
又因为y1<y2 所以3a-6<-2(3a-6)
解得 a<2
2.一个长方体的长为2cm,宽为1.5cm,高为xcm, 体积为ycm3. (1)求体积y与高x之间的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象.

人教版八年级数学课件《正比例函数(第1课时)》

人教版八年级数学课件《正比例函数(第1课时)》

探究新知
考点 2 利用待定系数法求正比例函数的解析式
若正比例函数的自变量x等于-4时,函数y的值等于2.
(1)求正比例函数的解析式;
(2)求当x=6时,函数y的值.
解:(1)设正比例函数解析式是 y=kx,

把 x =-4, y =2 代入上式,得2 = -4k, 代
解得 k 1 ,
2
∴所求的正比例函数解析式是
解:根据题意得:k+1≠0且k-1=0, 解得:k=1.
提示:函数解析式可转化为y=kx(k是常数,k ≠0)
的形式.
巩固练习
求出下列各题中字母的值.
(1)如果y=(k-1)x,是y关于x的正比例函数,则k 满足_____k_≠__1. (2)如果y=kxk-1,是y关于x的正比例函数,则 k=_____2__. (3)如果y=3x+k-4,是y关于x的正比例函数,则 k=____4____.
拓广探索题
已知y-3与x成正比例,并且x=4时,y=7,求y与x
之间的函数关系式.
解:依题意,设y-3与x之间的函数关系式为y-
3=kx, ∵x=4时,y=7, ∴7-3=4k,解得k=1. ∴y-3=x,即y=x+3.
课堂小结
正比例函数的 概念及应用
形式:y=kx (k≠0)
求正比例函数的解 析式
探究新知
知识点 2 利用正比例函数解决实际问题 2011年开始运营的京沪高速铁路全长1318千米.设列车的 平均速度为300千米每小时.考虑以下问题: (1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时 (保留一位小数)?
(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间
有何数量关系? (3)从北京南站出发2.5小时后,是否已过了距始发站1100千米 的南京南站?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) y 3x;
(3)y x ; 2
(5)y π Hale Waihona Puke ;是,3 是, 12
是,π
(2) y 2x 1; 不是
(4) y 2 ; x
不是
(6) y 3x. 是, 3
试一试
2.回答下列问题: (1)若y=(m-1)x是正比例函数,m取值范围是 m≠1 ; (2)当n =1 时,y=2xn是正比例函数; (3)当k =0 时,y=3x+k是正比例函数.
m-2≠0, ∴ m=-2.
|m|-1=1,
(2)若 y
(m -1)x m2 -1 是正比例函数,则m= -1 ;
m-1≠0, ∴ m=-1.
m2-1=0,
例2 若正比例函数的自变量x等于-4时,函数y的
值等于2.
(1)求正比例函数的解析式;
(2)求当x=6时函数y的值.
解:(1)设正比例函数解析式是 y=kx,
解(:1)y=5×15x÷100,

. y是x的正比例函数.
(2)当x=220 时,
.
答:该汽车行驶220 km所需油费是165元.
做一做
列式表示下列问题中y与x的函数关系,并指出哪 些是正比例函数. (1)正方形的边长为xcm,周长为ycm. y=4x 是正比例函数 (2)某人一年内的月平均收入为x元,他这年(12 个月)的总收入为y元. y=12x 是正比例函数 (3)一个长方体的长为2cm,宽为1.5cm,高为 xcm ,体积为ycm3. y=3x 是正比例函数
别说出哪些是函数、常量和自变量. 这些函数解析式
函数解析式 函数 常量 自变量 有什么共同点?
l =2πr m =7.8V h = 0.5n T = -2t
l 2,π r m 7.8 V h 0.5 n T -2 t
这些函数解析式都 是常数与自变量的 乘积的形式!
函数=常数×自变量
y= k
x
知识要点
(3)若y=2(x-1)+2,则y是x的正比例函数( √ ) (4)若y=(2+k2)x,则y是x的正比例函数( √ )
注意:(1)中k可能为0; (4)中2+k2>0,故y是x的正比例函数.
3.填空 (1)如果y=(k-1)x,是y关于x的正比例函数, 则k满足__k_≠_1___. (2)如果y=kxk-1,是y关于x的正比例函数, 则k=__2__. (3)如果y=3x+k-4,是y关于x的正比例函数, 则k=___4__.
一般地,形如y=kx(k是常数,k≠0)的函数,
叫做正比例函数,其中k叫做比例系数.
正比例函数一般 形式
比例系数 y = k x (k≠0的常数)
注: 正比例函数y=kx(k≠0) 自变量
思考
的结构特征
①k≠0
为什么强调k是常数, k≠0呢?
②x的次数是1
试一试
1.判断下列函数解析式是否是正比例函数? 如果是,指出其比例系数是多少?
(2)m 7.8V
(3)每个练习本的厚度为0.5cm, 一些练习本摞在一起的总厚度h (单位:cm)随练习本的本数n的 变化而变化.
(3)h=0.5n (4)冷冻一个0℃的物体,使它每 分钟下降2℃,物体温度T(单位:
℃)随冷冻时间t(单位:min) 的变化而变化.
(4)T=-2t
问题2 认真观察以上出现的四个函数解析式,分
y=x y=2x
y=4x y=x
讲授新课
一 正比例函数的概念
问题1 下列问题中,变量之间的 对应关系是函数关系吗?如果是, 请写出函数解析式:
(1)圆的周长l 随半径r的变化 而变化.(1)l 2πr
(2)铁的密度为7.8g/cm3,铁块的 质量m(单位:g)随它的体积V (单位:cm3)的变化而变化.

把 x =-4, y =2 代入上式,得 2 = -4k, 代
解得
k=
-
1 2

求 x
∴所求的正比例函数解析式是 y= - 2 ; 写
(2)当 x=6 时, y = -3.
待定系数法
做一做
已知y与x成正比例,当x等于3时,y等于-1.则当 x=6时,y的值为 -2 .
二 正比例函数的简单应用
问题3 2011年开始运营的京沪高速铁路全长1318千米. 设列车的平均速度为300千米每小时.考虑以下问题: (1)乘高铁,从始发站北京南站到终点站上海站, 约需多少小时(保留一位小数)? (2)京沪高铁的行程y(单位:千米)与时间t(单 位:时)之间有何数量关系? (3)从北京南站出发2.5小时后,是否已过了距始发 站1100千米的南京南站?
(1)乘京沪高速列车,从始发站北京南站到终点站海虹 桥站,约需要多少小时(结果保留小数点后一位)? 1318÷300≈4.4(小时)
(2)京沪高铁列车的行程y(单位:千米)与运行 时间t(单位:时)之间有何数量关系?
y=300t(0≤t≤4.4)
(3)京沪高铁列车从北京南站出发2.5小时后,是否 已经过了距始发站1 100 千米的南京站?
(4)若 y (m 2)xm23 是关于x的正比例函数, m= -2 .
4.已知y-3与x成正比例,并且x=4时,y=7,求 y与x之间的函数关系式. 解:依题意,设y-3与x之间的函数关系式为y-3=kx, ∵x=4时,y=7,∴7-3=4k,解得k=1. ∴y-3=x,即y=x+3.
5.有一块10公顷的成熟麦田,用一台收割速度为 0.5公顷每小时的小麦收割机来收割. (1)求收割的面积y(单位:公顷)与收割时间 x(单位:时)之间的函数关系式; (2)求收割完这块麦田需用的时间.
解:(1)y=0.5x; (2)把y=10代入y=0.5x中,得10=0.5x. 解得x=20,即收割完这块麦田需要20小时.
课堂小结
形式:y=kx(k≠0) 1.设
正比例函 数的概念
2.代 求正比例函数的解析式
3.求
4.写 利用正比例函数解决
简单的实际问题
感谢聆听
人民教育出版社
精品教学课件
授课教师:
学校:
第十九章 一次函数
19.2.1 正比例函数
第1课时 正比例函数的概念
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.理解正比例函数的概念;
2.会求正比例函数的解析式,能利用正比例函数解
决简单的实际问题.(重点、难点)
导入新课
情景引入
如果设蛤蟆的数量为x,y分别表示蛤蟆嘴的数量, 眼睛的数量,腿的数量,扑通声,你能列出相应的 函数解析式吗?
y=300×2.5=750(千米), 这时列车尚未 到 达 距 始 发 站 1 100千米的南京站.
例3 已知某种小汽车的耗油量是每100km耗油15L. 所使用的汽油为5元/ L .
(1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间的函数关系式,并指出y是x的什么函数; (2)计算该汽车行驶220 km所需油费是多少?
典例精析
例1 已知函数 y=(m-1) xm2 是正比例函数,求m的值.
解:∵函数y (m 1)xm2是正比例函数,
∴ m-1≠0, 即 m≠1,
m2=1,
m=±1,
∴ m=-1.
函数解析式可转化为y=kx 函数是正比例函数 (k是常数,k ≠0)的形式.
变式训练
(1)若 y = (m - 2)x |m| 1 是正比例函数,则m= -2 ;
当堂练习
1.下列函数关系中,属于正比例函数关系的是( B ) A.圆的面积S与它的半径r B.行驶速度不变时,行驶路程s与时间t C.正方形的面积S与边长a D.工作总量(看作“1” )一定,工作效率w与工作 时间t
2.下列说法正确的打“√”,错误的打“×”.
(1)若y=kx,则y是x的正比例函数( ×) (2)若y=2x2,则y是x的正比例函数( ×)
相关文档
最新文档