完全平方公式(含答案)
完全平方公式专项练习50题(有答案)
完整平方公式专项演习常识点:完整平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.1.完整平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、可否应用完整平方法的剖断①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号雷同. 即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项演习:1.(a +2b )22.(3a -5)2 3..(-2m -3n )24. (a 2-1)2-(a 2+1)23.(-2a +5b )2 6.(-21ab 2-32c )27.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.3、(x -2y )(x +2y )-(x +2y )2 17.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简.再求值:(x +2y )(x -2y )(x 2-4y 2),个中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41.22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.a +b =7,ab =10,求a 2+b 2,(a -b )2的值.2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值. ()5,3a b ab -==求2()a b +与223()a b +的值.6,4a b a b +=-=求ab 与22a b +的值.224,4a b a b +=+=求22a b 的值.6,4a b ab +==,求22223a b a b ab ++的值.32. 已知222450x y x y +--+=,求21(1)2x xy --的值.16x x -=,求221x x +的值. 34.试解释不管x,y 取何值,代数式226415x y x y ++-+的值老是正数.2+n 2-6m+10n+34=0,求m+n 的值 0136422=+-++y x y x ,y x 、都是有理数,求y x 的值.37.已知 2()16,4,a b ab +==求a 2+b 2的值.38.要使x 2-6x +a 成为形如(x -b )2的完整平方法,则a,b 的值为若干?39.假如x +x 1=8,且x>x 1,求x -x1 的值. 40. 已知m 2+21m =14 求(m +m 1)2的值. (a+b+c+d)242.证实:(m-9)2-(m+5)2是28的倍数,个中m 为整数.(提醒:只要将原式化简后各项均能被28整除)(1-x ²)(1-y ²)-4xy44.求证:对于随意率性天然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除. 45.试证代数式 (2x+3)(3x+2)-6x(x+3)+5x+16的值与x 的值无关.46.(x+2)2-(x+1)(x-1),47.[]x y y x y x y x 25)3)(()2(22÷--+-+,个中21,2=-=y x 48.)2)(2(2))(2()2(2b a b a b a b a b a +--+--+,个中2,21-==b a .49. (2a -3b)(3b +2a)-(a -2b )2,个中:a=-2,b=350.有如许一道题,盘算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,个中x=2006,y=2007;某同窗把“y=2007”错抄成“y=2070”但他的盘算成果是准确的,请答复这是怎么回事?试解释来由.51.已知三角形 ABC 的三边长分离为a,b,c 且a,b,c 知足等式22223()()a b c a b c ++=++,请解释该三角形是什么三角形?。
(完整版)完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2. 12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或(a-b)2或(-a-b)2或(-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a2+2ab+b2或a2-2ab+b2-a2-2ab-b2或-a2+2ab-b2专项练习:1.(a+2b)22.(3a-5)23..(-2m-3n)24.(a2-1)2-(a2+1)25.(-2a+5b)26.(-12ab2-c)2 237.(x-2y)(x2-4y2)(x+2y)8.(2a+3)2+(3a-2)29.(a-2b+3c-1)(a+2b-3c-1);10.(s-2t)(-s-2t)-(s-2t)2;11.(t-3)2(t+3)2(t2+9)2.12.972;13.20022;14.992-98×100;15.49×51-2499.16.(x-2y)(x+2y)-(x+2y)217.(a+b+c)(a+b-c)18.(2a+1)2-(1-2a)219.(3x-y)2-(2x+y)2+5x(y-x)20.先化简。
再求值:(x+2y)(x-2y)(x2-4y2),其中x=2,y=-1.21.解关于x的方程:(x+1111)2-(x-)(x+)=. 444422.已知x-y=9,x·y=5,求x2+y2的值.23.已知a(a-1)+(b-a2a2+b2)=-7,求-ab的值.224.已知a+b=7,ab=10,求a2+b2,(a-b)2的值.325.已知2a-b=5,ab=,求4a2+b2-1的值.226.已知(a+b)2=9,(a-b)2=5,求a2+b2,ab的值.a2+b227.已知(a+b)2=16,ab=4,求与(a-b)2的值。
(完整版)完全平方公式专项练习题有答案
完全平方公式专项练习 知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )27.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式(人教版)(含答案) (1)
完全平方公式(人教版)一、单选题(共15道,每道6分)1.(x+2)²=r²+( )x+4,括号中的数为( )A.2B.-2C.4D.-4答案:C解题思路:试题难度:三颗星知识点:完全平方公式2.计算(3x-y)²的结果为( )A.9x²-37y+y2B.9x²-6y-y²C.9x2-6<y+y²D.9x²+6y-y²答案:C 解题思路:原式=(3x)²-2 ·3x:y+y²-9x²-6xy+y²故选C.试题难度:三颗星知识点:完全平方公式3.计算的结果为().答案:B解题思路:故选B.C试题难度:三颗星知识点:完全平方公式(首项为负)4.计算(-ab-c)²的结果为()A.a²g²-2abc+c²B.a²g²-abc+c²C.a²g²+c²D.a²B²+2xbc+c2答案:D解题思路:试题难度:三颗星知识点:完全平方公式(首项为负)5.计算(-a+2b)²-46²的结果为()A.a²-4abB.d²-2abC.a²-4ab-8b²D.d²+4ab答案:A解题思路:试题难度:三颗星知识点:完全平方公式(首项为负)6.计算199²的结果为( )A.27501B.29501C.39601D.49501答案:C解题思路:试题难度:三颗星知识点:完全平方公式的应用7.计算(a-2b+c)2的结果为()A.a²+4b²+c²-4ab+4ac-2bcB.a²+4B²+c²-4ab+2ac-4bcC.a²-4B²+c²+2acD.a²+2b²+c²-2ab+2ac-4bc答案:B解题思路:试题难度:三颗星知识点:完全平方公式8.若,则k的值为()A.6B.-6C.±6D.36答案:C解题思路:观察式子特征,先把等式左边用完全平方公式展开,然后和等式右边的式子对比确定字母&的值.(所以k²=36,又因为6²=36,(-6)²=36,所以=土6. 故选C . 试题难度:三颗星知识点:完全平方公式9.若(xm+3m)²=m²-6mm+91²,则*的值为()A.1B.- 1C.-2D.±1答案:B解题思路:试题难度:三颗星知识点:完全平方公式10.若(4m-n)²=a²m²-8mn+n2,则a的值为()A.4B.-4C.±4D.16答案:C解题思路:试题难度:三颗星知识点:完全平方公式11.若(2x-5p》-4x¹-m+25p²,则m的值为()A.20B.10C.-20D.±20答案:A解题思路:试题难度:三颗星知识点:完全平方公式12.若(3x-w)-9x²+12y+4p²,则*的值为()A.2B.-2C.-4D.±2答案:B解题思路:试题难度:三颗星知识点:完全平方公式13.若(x-yj²=(x+p)²+1d,则M为( )A.2nB.-2x′C.4yD.-4xy答案:D解题思路:观察式子特征,先把等式左边和等式右边的完全平方式用完全平方公式展开,然后求出M.(x-y)²=x²-2xy+y2,(x+y)²=x²+2xy+y².:x²-2xy+y²=x²+2xy+y²+M-2x³=2xy+M-M=4xyM=-4y故选D . 试题难度:三颗星知识点:完全平方公式14.若4a²+b²=(2a-b)²+M,则M为( )A.2abB.±2abC.4abD.±4ab答案:C解题思路:试题难度:三颗星知识点:完全平方公式15.若x+y=4,xy=-3,则(x-y)' 的值为( )A.28B.22C.16D.4答案:A解题思路:试题难度:三颗星知识点:完全平方公式的应用。
完全平方公式及答案精编版
完全平方公式及答案 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-完全平方公式(一)知识点:1.完全平方公式:=+2)(b a ;=-2)(b a 2.特点:左边:右边:例1:(1)2)2(y x - (2)2)32(b a - (3)2)21(b a +- (4))32)(23(x y y x -- 变式:1、判断正误:对的画“√”,错的画“×”.(1)(a+b)2=a 2+b 2;( ) (2)(a-b)2=a 2-b 2;( )(3)(a+b)2=(-a-b)2;( ) (4)(a-b)2=(b-a)2.( )2、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-93、下列计算正确的是( )A 、9124)32(22--=-x x x B 、424)22(222y xy x y x ++=+ C 、22))((b a b a b a -=--- C 、22244)2(y xy x y x +-=--4、(a+3b)2-(3a+b)2计算的结果是( ). A.8(a-b)2 B.8(a+b)2 C.8b 2-8a 2 D.8a 2-8b 25、(1)2)21(y x - (2)2)3(b a --(3)2)212(+-a (4)2)(z y x +- 例2:(1)(3a+2b)2-(3a-2b)2 (2)(x 2+x+6)(x 2-x+6) (3)(a+b+c+d)2 变式 :(1))4)(2)(2(22y x y x y x --+ (2)22)321()321(b a b a +- (3)22)2()2)(2()1(++-+-+x x x x 其中x=-2(4)化简求值:22)2()2()2)(12(+---+-x x x x ,其中23-=x 例2;(1)如果x 2+kx+81是一个完全平方式,那么k 的值是( ).A.9B.-9C.9或-9D.18或-18(2)2216y mxy x ++是完全平方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 完全平方公式
知识点 1 完全平方公式
1.填空:(1)(x +2)2=x 2+2·________·________+________2
=__________; (2)(2a -3b )2
=________2
+________+________2
=__________. 2.下列计算正确的有( )
①(a +b )2
=a 2
+b 2
; ②(a -b )2
=a 2
-b 2
; ③(a +2b )2
=a 2
+2ab +2b 2
; ④(-2m -3n )2
=(2m +3n )2
. A .1个 B .2个 C .3个 D .4个
3.若x 2
+16x +m 是完全平方式,则m 的值是( ) A .4 B .16 C .32 D .64
4.计算:(1)(2x +y )2
=______________; (2)⎝ ⎛⎭
⎪⎫12x -2y 2
=______________; (3)(-2x +3y )2=______________; (4)(-2m -5n )2
=______________.
5.计算:(1)(x +y )2-x (2y -x ); (2)计算:(a +1)(a -1)-(a -2)2
;
(3)(x +y -3)2
.
知识点 2 完全平方公式的几何意义
6.利用如图8-5-3①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图8-5-3②所示的图形,则根据图②的面积关系能验证的恒等式为( )
图8-5-3
A .(a -b )2+4ab =(a +b )2
B .(a -b )(a +b )=a 2-b 2
C .(a +b )2=a 2+2ab +b 2
D .(a -b )2=a 2-2ab +b 2
知识点 3 利用完全平方公式进行简便计算
7.计算:3012
=________.
8.用简便方法计算:20182-4036×2019+20192
.
知识点 4 与完全平方公式有关的化简求值问题
9.(1)[2018·宁波]先化简,再求值:(x -1)2
+x (3-x ),其中x =-12.
(2)已知代数式(x -2y )2
-(x -y )(x +y )-2y 2
.
①当x =1,y =3时,求代数式的值;
②当4x =3y 时求代数式的值.
10.若x 2
+kx +64是某个整式的平方,则k 的值是( )
A .8
B .-8
C .±8
D .±16
11.若等式x 2+ax +19=(x -5)2
-b 成立,则a +b 的值为( )
A .16
B .-16
C .4
D .-4
12.如图8-5-4,从边长为(a +4)cm 的正方形纸中剪去一个边长为(a +1)cm 的小正方形(a >0),剩余部分沿虚线剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )
图8-5-4
A .(2a 2+5a )cm 2
B .(3a +15)cm 2
C .(6a +9)cm 2
D .(6a +15)cm 2
13.若xy =12,(x -3y )2=25,则(x +3y )2
的值为( )
A .196
B .169
C .156
D .144
14.已知(x -1)2=ax 2
+bx +c ,则a +b +c 的值为________.
15.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪
⎪⎪
⎪⎪a
b c d ,定义
⎪⎪⎪⎪⎪⎪
a b c
d =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪
⎪⎪
x +1 1-x 1-x x +1=8,则x =________. 16.用两种方法计算:(12x -2y )2-(12
x +2y )2
.
17.阅读下列材料并解答后面的问题:利用完全平方公式(a ±b )2
=a 2
±2ab +b 2
,通过配方可对a 2
+b 2
进行适当的变
形,如a 2+b 2=(a +b )2-2ab 或a 2+b 2=(a -b )2+2ab .从而使某些问题得到解决.例:已知a +b =5,ab =3,求a 2
+b 2
的值.
解:a 2+b 2=(a +b )2-2ab =52
-2×3=19. 解决问题:
(1)已知a +1a =6,则a 2
+1a
2=________;
(2)已知a -b =2,ab =3,分别求a 2+b 2,a 4+b 4
的值.
18.如图8-5-5所示,已知AB =a ,P 是线段AB 上一点,分别以AP ,BP 为边作正方形. (1)设AP =x ,求两个正方形的面积之和S ; (2)当AP 分别为13a 和1
2
a 时,比较S 的大小.
图8-5-5
完全平方公式答案
【详解详析】
1.(1)x 2 2 x 2
+4x +4
(2)(2a ) (-2·2a ·3b ) (3b ) 4a 2
-12ab +9b 2
2.A
3.D [解析] x 2+16x +m =x 2
+2×8x +m .
∵x 2+16x +m 是完全平方式,∴m =82
=64.
4.(1)4x 2+4xy +y 2
(2)14
x 2-2xy +4y 2
(3)4x 2
-12xy +9y 2
(4)4m 2+20mn +25n 2
5.解:(1)原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2
.
(2)原式=a 2
-1-(a 2
-4a +4)
=a 2-1-a 2
+4a -4 =4a -5.
(3)(x +y -3)2
=(x +y )2-2(x +y )×3+32
=x 2+2xy +y 2
-6x -6y +9.
6.A [解析] ∵大正方形的边长为(a +b ),∴大正方形的面积为(a +b )2
.1个小正方形的面积加上4个长方形
的面积和为(a -b )2+4ab ,∴(a -b )2+4ab =(a +b )2
.
7.90601 [解析] 3012=(300+1)2=3002
+2×300+1=90601.
8.解: 原式=20182-2×2018×2019+20192=(2018-2019)2
=1.
9.解:(1)原式=x 2-2x +1+3x -x 2
=x +1.
当x =-12时,原式=-12+1=1
2
.
(2)原式=x 2
-4xy +4y 2
-(x 2
-y 2
)-2y 2
=x 2-4xy +4y 2-x 2+y 2-2y 2
=-4xy +3y 2
.
①当x =1,y =3时,原式=-4×1×3+3×32
=-12+27=15; ②当4x =3y 时,原式=-y (4x -3y )=0.
10.D [解析] 由完全平方公式的特点可知,当k =±16时,x 2
+kx +64是某个整式的平方.故选D.
11.D [解析] 由已知,得x 2+ax +19=(x -5)2-b =x 2
-10x +25-b ,可得a =-10,b =6,则a +b =-10+6=-4.故选D.
12.D
13.B [解析] (x +3y )2=(x -3y )2
+12xy =25+12×12=169.故选B.
14.0 [解析] 将x =1代入(x -1)2=ax 2+bx +c ,得(1-1)2
=a +b +c ,则a +b +
c =0.
15.2 [解析] 依题意,得(x +1)2
-(1-x )2
=(x 2
+2x +1)-(1-2x +x 2
)=4x =8, ∴x =2.
16.解:方法一:原式=(14x 2+4y 2-2xy )-(14x 2+4y 2
+2xy )=-4xy .
方法二:原式=(12x -2y +12x +2y )(12x -2y -1
2
x -2y )=x ·(-4y )=-4xy .
17.解:(1)a 2
+1a 2=(a +1a )2-2·a ·1a
=62-2=34.
(2)a 2+b 2=(a -b )2+2ab =22
+2×3=10;
a 4+
b 4=(a 2+b 2)2-2a 2b 2=102-2×32=100-18=82.
18.解:(1)S =AP 2+BP 2=x 2+(a -x )2=x 2+a 2-2ax +x 2=2x 2-2ax +a 2
.
(2)当AP =1
3
a 时,
S =⎝ ⎛⎭⎪⎫13a 2
+⎝ ⎛⎭⎪⎫23a 2
=1
9a 2+49a 2=59a 2;
当AP =12a 时,S =⎝ ⎛⎭⎪⎫12a 2+⎝ ⎛⎭⎪⎫12a 2=12a 2.
因为59a 2>12a 2,所以当AP =1
2a 时,S 更小.。