考研复习题典型环节伯德图

合集下载

考研复习题典型环节伯德图

考研复习题典型环节伯德图
大环节的频率特性为:
其幅频特性是:
对数幅频特性为:
放大环节的对数幅频特性如图5-11所示,它是一条与角 频率ω无关且平行于横轴的直线,其纵坐标为20lgK。 当有n个放大环节串联时,即:
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
由图5-19可看出,振荡 环节的对数幅频特性在 转折频率 附近产生 谐振峰值,这是该环节 固有振荡性能在频率特 性上的反映。前面已经 分析过,谐振频率ωr 和谐振峰Mr分别为:
振荡环节对数幅频率特性图
其中 称为振荡环节的无阻尼(ξ=0)自 然振荡频率,它也是渐近线的转折频率。由式(581)可知,当阻尼比ξ愈小谐振频率ωr愈接近无阻 尼自然振荡频率ωn,当ξ=0时,ωr=ωn
当有n个积分环节串联时,即: 其对数幅频特性为: 相频特性是一条与ω无关, 值为-n×900 且与ω轴平行 的直线。两个积分环节串联 的Bode图如图5-13所示。
是一条斜率为-n×20dB/dec, 且在ω=1(弧度/秒)处过零 分贝线(ω轴)的直线。
图5-13 两个积分环节串联的Bode图
三惯性环节 惯性环节的频率特性是: 其对数幅频特性是: 用两条直线近似描述惯性环节的对数幅频特性, 即在 的低频段时, ,与零分贝线重合; 在 的高频段时 是一条斜率为 -20(dB/dec.)的直线。 两条直线在 处相交, 称为转折频率,由这两 条直线构成的折线称为对数幅频特性的渐近线。如图514所示。
二积分环节
积分环节的频率特性是: 其幅频特性为: 对数幅频特性是:

,则有: (5-68)
可见,其对数幅频特性是一条 在ω=1(弧度/秒)处穿过零分贝 线(ω轴),且以每增加十倍频率 降低20分贝的速度(-20dB/dec) 变化的直线。 积分环节的相频特性是:

第五章5_2 Bode图 自动控制原理 浙江大学考研资料

第五章5_2 Bode图 自动控制原理 浙江大学考研资料
ω 1 2 8 10 decades decades decades 20 80 100
5
Bode plots (Logarithmic plots )
Bode图(对数坐标图)
Bode图(对数频率特性曲线): 对数频率特性曲线由对数幅频曲线和对数相频曲线组成 对数频率特性曲线的横坐标:按logω分度,单位为弧度/秒(rad/s) 对数幅频曲线的纵坐标:按LmG(jω)=20log|G(jω)|线性分度,单位是分贝 对数相频曲线的纵坐标:按Φ(ω)线性分度,单位为度
Lm j 20 log j 20 log
dB
Angle 90º jω
对数幅频曲线为一条斜线,其斜率为 6dB/octave 或者 20dB/decade. 相角恒等于 +90º.
-90º (jω)-1
ω
10
Bode plots (Logarithmic plots )
2 1 1 1 2 Lm 1 j 2 j Lm Lm n 1 jT1 1 jT2 n
1
(1+j (1 jωT1)-1 (1 (1+j jωT2)-1
1
Angle 1/T1 -90º -180º
17
1/T2 ω
2 1 1 1 2 Angle1 j 2 j Angle Angle n 1 jT1 1 jT2 n
Wintersweet
2
Bode plots (Logarithmic plots )
Bode图(对数坐标图)
对数坐标图的优点 1) 将乘积和除法的数学操作转化为加法和减法; 2) 传递函数的获取大多采用图表法,而不是分析法; 3) 半对数坐标扩展了低频段 首先运用直线近似的方法来获得系统的近似特性,然后修正直线, 提高精度. 对数坐标图 足够多的数据 极坐标图

尼奎斯特图 伯德图

尼奎斯特图 伯德图

1.比例环节比例环节的传递函数为G(s)=K所以比例环节的频率特性为G(j ω)=K 十j0=0j Ke其幅相频率特性曲线如图5-2所示。

其中幅值M(ω) =K 。

相位移φ(ω)=00。

并且都与ω无关,它表示输出为输入的K 倍,且相位相同。

图5—2 比例环节幅相频率特性曲线2.积分环节积分环节的传递函数为G(s)=s1所以积分环节的频率特性为21101)(πωωωωjejj j G -=-==其幅相频率特性曲线如图5—3所示,它是整个负虚轴,且当ω→∞时,趋向原点0,显然积分环节是一个相位滞后环节[因为φ(ω)=-900],每当信号通过一个积分环节,相位将滞后900。

图5—3 积分环节幅相频率特性曲线3.微分环节微分环节的传递函数为G(s)=s所以微分环节的频率特性为20)(πωωωωjej j j G =+==其幅相频率特性曲线如图5—4所示。

是整个正虚轴,恰好与积分环节的特性相反。

其幅值变化与ω成正比:M(ω)=ω,当ω=0时, M(ω)也为零,当ω→∞时,M(ω)也→∞。

微分环节是一个相位超前环节[φ(ω)=+900]。

系统中每增加一个微分环节将使相位超前900。

图5-4 微分环节幅相频率特性曲线4.一阶惯性环节一阶惯性环节的传递函数为11)(+=Ts s G所以一阶惯性环节的频率特性为222211111)(ωωωωωT T jT jT j G +-+=+=幅频特性和相频特性为ωωφωωT tg T M 122)(11)(--=+=由式(5—16)直接可得实频特性和虚频特性为22221)(11)(ωωωωωT T I T R +-=+=并满足下面的圆的方程22221)(21)(⎪⎭⎫ ⎝⎛=+⎥⎦⎤⎢⎣⎡-ωωI R 圆心为⎪⎭⎫⎝⎛0,21,半径为21。

当ω从0→∞时,M(ω)从l →0;φ(ω)从00→-900,因此,一阶惯性环节的频率特性位于直角坐标图的第四象限,且为一半圆,如图5—5所示。

完整版bode图习题解析

完整版bode图习题解析

(?
?
?
2?? T arctan 1 ? ? 2T 2
?
1 )
T
(? ?
1) T
在低频段,? 很小,φ(ω)约等于0,高频段,? 很大, φ(ω) =-? ,转折频率处,
?
??n
?
1 ,
T
?
(?
n
)
?
?
?
2
Elemental Bode Diagrams
20
Mdb
0
-20
-40
-60 10-1
100
-20
-40
p
p
p
1
2
3
1
2
4 6 8 10 20 40 60 80 100
1倍频程 1倍频程
1倍频程 1倍频程
10倍频程
10倍频程
10倍频程
(a)
1
2
3
4
5
6
7
(b)
频率特性
G( j? ) ? K
二.典型环节的 Bode图
1. 放大环节 L(? )
20lgK
对数幅频特性
0
0.1
1
L(? ) ? 20lg A(? ) ? 20lg K ?(? )
10
20
1? s
0
1
1?1 2s
1
-20
s
-40
10 -2
10 -1
10 0
10 1
10 2
Example
Step 4: graphically add all element magnitude.
40
M db
10
20

5-3 频域:伯德图

5-3   频域:伯德图

而相频

5 ( ) arctg

2
将以上各环节幅频和相频绘出后, 分别相加 即得出系统的开环对数幅频和相频
27
28
29
30
31
三、最小相位系统
1. 定义: 在系统的开环传递函数中,没有位于S右半平 面的 零点和极点,且没有纯时间延迟环节的系统为 最小相位系统,反之为非最小相位系统。 七种典型环节组成的系统必为最小相位系统。 2. 最小相位系统特征: a.在n≥m且幅频特性相同的情况下,最小相位 系统的相角变化范围最小。 这里n和m分别表示传递函数分母和分子多项式 的阶次。
4
相频与ω无关,值为-90°且平行于横轴的直线。
L ( )
20 0 0.1
( )
20
1
10

0 90
0.1
1
10

5
3. 微分环节
G jω jω
微分环节是积分环节的倒数,它们的曲 线斜率和相位移也正好相差一个负号。
L ( )
20
0
20
0.1 20
1
10

( )
ω tg
1 T 2ω2
即二阶微分环节的幅频和相频特性分别与振荡 环节的相应特性是关于横轴对称。此时,其对 数幅频特性的高频渐近线的斜率为+40dB/dec 1 而相频由0°(对应ω=0)经90° ω ω T ,最 后趋于180°(ω→∞)。
n
19
L( )
40 20
90
0
0.1
1
10

6
4. 惯性环节
惯性环节的幅频特性为
1 Gjω 1 jω T

典型环节的Bode图

典型环节的Bode图

控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。

否则就是非最小相位系统。

对数幅频特性与相频特性之间存在确定的对应关系。

对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。

也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。

非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。

对响应要求快的系统,不宜采用非最小相位元件。

Tf函数用来建立实部或复数传递函数模型或将状态方程、或零级增益模型转化成传递函数形式。

sys = tf(num,den)命令可以建立一个传递函数,其中分子和分母分别为num和den。

输出sys 是储存传递函数数据的传递函数目标。

单输入单输出情况下,num和den是s的递减幂级数构成的实数或复数行向量。

这两个向量并不要求维数相同。

如h = tf([1 0],1)就明确定义了纯导数形式h(s)=s。

若要构建多输入多输出传递函数,要分别定义每一个单输入单输出系统的端口的分子与分母。

2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。

典型环节的伯特图

典型环节的伯特图

3
5.1频率特性及其表示法 5.1.1 频率特性的基本概念
频率特性又称频率响应,它是系统(或元件)对不同频 率正弦输入信号的响应特性。
2 1.5 1
2 5 4 3
0.5 0 -0.5 -1
线性系统
1 0 -1 -2 -3
-1.5 -2
-4
0
0.5
1
1.5
2
2.5
3
-5
0
0.5
1
1.5
2
2.5
3
输出的振幅和相位一般均不同于输入量, 且随着输入信号频率的变化而变化

ห้องสมุดไป่ตู้s
微分 方程
p
d p dt
传递 函数
系统
频率 特性
s j
13
5.1.2 频率特性的表示法
(1)对数坐标图 (Bode diagram or logarithmic plot) (2)极坐标图 (Polar plot) (3)对数幅相图 (Log-magnitude versus phase plot) 对数幅频特性 对数频率 特性曲线 相频特性 纵坐标均按线性分度 横坐标是角速率 按 lg 分度 10倍频程,用dec
23
Asymptote 渐近线
0 -5
Corner frequency
Bode Diagram of G(jw )=1/(jw T+1) T=0.1
Asymptote 渐近线
Magnitude (dB)
-10 -15 -20 -25 0
精确曲线
Exact curve
Phase (deg)
精确曲线
-45
一阶因子 (1 jT ) 1

如何绘制伯德图

如何绘制伯德图

低频高频渐近线的交点为:20log K 20log K 20logT ,得:
T 1,o
1 T
,称为转折频率或交换频率。
T可uesd以ay,用Mar这ch 3两1, 2段020渐近线近似的表示惯性环节的对数幅频特性。 4
惯性环节的Bode图
10 渐近线
0
-10
20dB / Dec
-20

-45°
T T T 20T 10T 5T
112 2T T T
5 10 20 TTT
一阶微分环节的波德图
惯性环节的波德图
Tuesday, March 31, 2020
17
二阶微分环节的频率特性
③ 二阶微分环节: G(s) T 2s2 2Ts 1
幅频和相频特性为:
A()
(1
T
2
2
)2
(2T
)2,
(
)
tg 1
第三节 典型环节的频率特性 之一 波德图
Tuesday, March 31, 2020
1
比例环节的bode图
二、典型环节的波德图
⒈ 比例环节:G(s) K, (K 0),G( j) K 幅频特性:A() K;相频特性:() 0
L() / dB
20log K
20log K
20log K
()
频率特性分别为:
G( j) j G( j) 1 jT G( j) 1 T 2 2 j2T
Tuesday, March 31, 2020
14
纯微分环节的波德图
① 纯微分: A( )
L( )(dB)
20
L( ) 20 log A( ) 20 log

典型环节的Bode图

典型环节的Bode图

控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。

否则就是非最小相位系统。

对数幅频特性与相频特性之间存在确定的对应关系。

对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。

也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。

非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。

对响应要求快的系统,不宜采用非最小相位元件。

Tf函数用来建立实部或复数传递函数模型或将状态方程、或零级增益模型转化成传递函数形式。

sys = tf(num,den)命令可以建立一个传递函数,其中分子和分母分别为num和den。

输出sys 是储存传递函数数据的传递函数目标。

单输入单输出情况下,num和den是s的递减幂级数构成的实数或复数行向量。

这两个向量并不要求维数相同。

如h = tf([1 0],1)就明确定义了纯导数形式h(s)=s。

若要构建多输入多输出传递函数,要分别定义每一个单输入单输出系统的端口的分子与分母。

2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。

如何绘制伯德图

如何绘制伯德图

2 20 log
A( )
20 log
K
40
K 10
20log K 20log ,
20
当K 1时, 1, L() 0;
20 40
()
1 10 100 K 1
10,L() 20 可见斜率为-20dB/dec 当K 0时, 1, L() 20 log K;
1 10 100
T
2
可见,相角的变化范围从0~180度。
Wednesday, May 29, 2024
17
二阶微分环节的波德图
( )(deg)
180°
1.0
150° 0.7
120° 90°
0.5 0.3 0.2
60° 0.1
30°

L( )(dB)
40dB / Dec
L( ) 20
(dB)
比例环节的bode图
二、典型环节的波德图
⒈ 比例环节:G(s) K, (K 0),G( j) K 幅频特性:A() K;相频特性:() 0
L() / dB
20log K
20log K
20log K
()
180
K 1
K 1 log
0 K 1
对数幅频特性:
0
L() 20lg K 0
0
K 0 log
相频特性:
() K 0
180
Wednesday, May 29, 2024
K 1 K 1 0 K 1
1
积分环节的Bode图
⒉ 积分环节的频率特性:G(s) K
s
频率特性:
G( j )
K
j
K
K
e2

频率响应分析法(2)典型环节的频率特性与伯德图的绘制

频率响应分析法(2)典型环节的频率特性与伯德图的绘制

传递函数
积分环节
频率特性 幅频特性 对数幅频特性
理想微分环节
2. 典型环节的频率特性
(2)惯性2环.热节模和型一阶微分环节
惯性环节
一阶微分环节
传递函数
惯性环节的频率特性
倒数关系
幅频特性
相频特性
2. 典型环节的频率特性
(2)惯2性.热环模节型和一阶微分环节
惯性环节的极坐标图
一阶微分环节
2. 典型环节的频率特性
(2)惯性2.热环节模和型一阶微分环节
惯性环节
传递函数 频率特性
幅频特性
对数幅频特性
一阶微分环节
2. 典型环节的频率特性
(3)振荡2.环热节模和型二阶微分环节
振荡环节
传递函数
二阶微分环节
振荡环节的频率特性
对数幅频
L() 20lg
(1
2 n2
)2

(2
n
)2
转折频率
倒数关系
相频特性
实际的对数幅频和相频曲线
2. 典型环节的频率特性
(3)振荡2.环热节模和型二阶微分环节
振荡环节的对数相频曲线
极坐标图
振荡环节的相频曲线图 振荡环节的极坐标图
2. 典型环节的频率特性
(3)振荡2.环热节模和型二阶微分环节
二阶微分环节,与积分和微分环节,一阶微分和惯性环节相类似,二阶微分环节的 频率特性是振荡的逆频率特性
最小相位的典型环节有那些?(第二章) 比例环节、积分环节、惯性环节、振荡环节、理想微分环节、 一/二阶微分环节,
非最小相位:时滞环节
2. 典型环节的频率特性
(1)比2例.热环模节型
a)传递函数 b)频率特性 幅频特性

典型环节的Bode图

典型环节的Bode图

控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。

否则就是非最小相位系统。

对数幅频特性与相频特性之间存在确定的对应关系。

对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。

也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。

非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。

对响应要求快的系统,不宜采用非最小相位元件。

2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) hold on结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。

K>1时,20lgK>0dB;K<1时,20lgK<0dB。

2.2 惯性环节(低通滤波特性)传递函数:1()1G ssτ=+频率特性:()()()jG j A eϕωωω=对数幅频特性:21()20lg1()Lωτω=+对数相频特性:()arctanϕωτω=-绘制1()10.1G ss=+的Bode图程序段:num=[0 1]; den=[0.1 1];H=tf(num,den);bode(H)margin(H)hold on结论:惯性环节的对数幅频特性可以用在1ωτ=处相交于0分贝的两条渐近直线来近似表示:当1ωτ时,是一条0分贝的直线;当1ωτ时,是一条斜率为-20dB/dec的直线。

伯德图练习题[整理]

伯德图练习题[整理]

一、设最小相位系统的开环幅频特性曲线(渐近线)如图所示,试确定系统的开环传递函数,求出系统的相角裕量,说明系统的稳定性。

/s/s(a)解:①由开环幅频特性写传递函数。

根据低频段的斜率为-20dB/dec ,传递函数有1阶积分环节。

根据转折频率和斜率的变化,传递函数有2个惯性环节,故可得,)1)(1()(210++=s T s T s Ks G②求时间常数。

25.01111===ωT 1.0101122===ωT③求K 。

由题图5.0=ω时,dB 20lg20=ωK, 10l 20lg20g K=ω10=ωK, 55.010=⨯=K系统的开环传递函数为, )11.0)(12(5)(0++=s s s s G/s/s求穿越频率, 20)5.0log (log 40=-c ω, 205.0log40=cω,58.1=c ω相角裕量为,00058.8)58.11.0arctan()58.12arctan(90)(180=⨯⨯=Φ+=--c ωγ故系统稳定。

(b)解:①由开环幅频特性写传递函数。

根据低频段的斜率为0dB/dec ,传递函数没有积分环节。

根据转折频率和斜率的变化,传递函数有2个惯性环节,故可得,)1)(1()(210++=s T s T Ks G②求时间常数。

5.021111===ωT 0125.0801122===ωT③求K 。

由题图系统的低频段有,dB 20lg 20=K , 10=K系统的开环传递函数为, )10125.0)(15.0(10)(0++=s s s G穿越频率为,20=c ω相角裕量为,0067.81)200125.0arctan()205.0arctan(180=⨯⨯=--γ故系统稳定。

(c)解:①由开环幅频特性写传递函数。

根据低频段的斜率为-40dB/dec ,传递函数有2阶积分环节。

根据转折频率和斜率的变化,传递函数有惯性环节和比例微分环节,故可得,)1()1()(2210++=s T s s T k s G (4.24)②求时间常数。

伯德图练习题

伯德图练习题

一、设最小相位系统的开环幅频特性曲线(渐近线)如图所示,试确定系统的开环传递函数,求出系统的相角裕量,说明系统的稳定性。

L( ) dB40-2020-400dB0.1(a)0.5110rad/ s-20-60L( )dB4020-20800dB121020100rad/s -20-40(b)精选文库L( )dB40-4020-200dB0.11-40rad / s(c)-20L( )dB40-2020-400dB100.11 2.5rad / s-20(a)解:①由开环幅频特性写传递函数。

根据低频段的斜率为- 20dB/dec,传递函数有 1 阶积分环节。

根据转折频率和斜率的变化,传递函数有 2 个惯性环节,故可得,KG0 (s)s(T1 s 1)(T2 s1)T111211②求时间常数。

0.5T20.11210③求 K。

由题图0.5 时, 20lg K20dB ,20lgK20l g10K10,K100.5 5系统的开环传递函数为,G0( s)51)(0.1s 1)s(2s求穿越频率,40(log c log 0.5)20 ,40 log c20 ,c 1.58精选文库相角裕量为,1800( c)900- arctan(2 1.58)- arctan(0.1 1.58) 8.580故系统稳定。

(b) 解:①由开环幅频特性写传递函数。

根据低频段的斜率为0dB/dec,传递函数没有积分环节。

根据转折频率和斜率的变化,传递函数有 2 个惯性环节,故可得,G0 (s)K(T1s1)(T2s1)②求时间常数。

110.5T211T120.01251280③求 K。

由题图系统的低频段有, 20 lg K20dB ,K 10系统的开环传递函数为,G0 (s)10(0.5s1)(0.0125s1)穿越频率为,c20相角裕量为,1800- arctan(0.5 20)- arctan(0.0125 20) 81.670故系统稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二阶微分环节的频率特性是: 其对数幅频特性是:
相频特性是:
二阶微分环节与振荡节 的Bode图关于ω轴对称 ,如图5-21。渐近线的 转折频率为,相角变化 范围是00至+1800。 二阶微分环节的Bode图
七不稳定环节
不稳定环节的频率特性是:
其对数幅频特性和相频特性分别为:
不稳定惯性环节的Bode图
二积分环节
积分环节的频率特性是: 其幅频特性为: 对数幅频特性是:

,则有: (5-68)
可见,其对数幅频特性是一条 在ω=1(弧度/秒)处穿过零分贝 线(ω轴),且以每增加十倍频率 降低20分贝的速度(-20dB/dec) 变化的直线。 积分环节的相频特性是:
(5-69)
是一条与ω无关,值为-900 且平行于ω轴的直线。积分环 节的对数幅频特性和相频特性 如图5-12所示。
振荡环节的相频特性是:
除上面三种特殊情况外,振荡环节相频特性还是 阻尼比ξ的函数,随阻尼比ξ变化,相频特性在转折 频率 附近的变化速率也发生变化,阻尼比ξ越小, 变化速率越大,反之愈小。但这种变化不影响整个相 频特性的大致形状。不同阻尼比ξ的相频特性如图520 所示。
振荡环节对数相频特性图
六二阶微分环节
一放大环节(比例环节)
放大环节的频率特性为:
其幅频特性是:
对数幅频特性为:
放大环节的对数幅频特性如图5-11所示,它是一条与角 频率ω无关且平行于横轴的直线,其纵坐标为20lgK。 当有n个放大环节串联时,即:
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
典型环节伯德图
伯德图又叫对数频率特性曲线,是将幅频特性和相 频特性分别绘制在两个不同的坐标平面上,前者叫对数 幅频特性,后者叫对数相频特性。 两个坐标平面横轴(ω轴)用对数分度,对数幅频特性 的纵轴用线性分度,它表示幅值的分贝数, 即L(ω)=20lg|G(jω)|(dB);对数相频特性的纵轴也是线 性分度,它表示相角的度数,即φ(ω)=∠G(jω)(度)。 通常将这两个图形上下放臵(幅频特性在上,相频特 性在下),且将纵轴对齐,便于求出同一频率的幅值和相 角的大小,同时为求取系统相角裕度带来方便。
一阶微分环节的相频特性 如图5-16 所示,相角变化 范围是00至900,转折频率 1/T处的相角为450。
图5-16 一阶微分环节的Bode图
比较图5-16和5-14,可知 ,一阶微分环节与惯性环 节的对数幅频特性和相频 特性是以横轴(ω轴)为 对称的。
五振荡环节 振荡环节的频率特性是: 其对数幅频特性为:
惯性环节的相频特性为:源自对应的相频特性曲线如图5-14所 示。它是一条由 至 范围内变 化的反正切函数曲线,且以 和 的交点为斜对称.
四一阶微分环节
一阶微分环节频率特性为:
其对数幅频特性是:
一阶微分环节的对数幅频特性如图5-16所示, 渐近线的转折频率为 ,转折频率处渐近特性与精 确特性的误差为 ,其误差均为正分贝数 ,误差范围与惯性环节类似。 相频特性是: 当 时,
很明显,距离转折频率 愈远 , 愈能满 足近似条件,用渐近线表示 对数幅频特性的精度就愈高 ;反之,距离转折频率愈近 ,渐近线的误差愈大。 等 于转折频率 时,误差最大 ,最大误差为:
时的误差是:
时的误差是: 误差曲线对称于转折频率 , 如图5-15所示。由图5-15可知,惯 性环节渐近线特性与精确特性的误 差主要在交接频率 上下十倍频 程范围内。转折频率十倍频以上的 误差极小,可忽略。经过修正后的 精确对数幅频特性如图5-14所示。
(5-79)
(5-80)
渐近线的第一段折线与零分贝线(ω轴)重合,对应 的频率范围是0至 ;第二段折线的起点在 处,是一条 斜率为-40(dB/dec)的直线,对应的频率范围是 至∞ 。两段折线构成振荡环节对数幅频特性的渐近线,它们的 转折频率为 。对数幅频特性曲线的渐近线如图5-17所 示。
渐近线与精确对数幅频特性曲线的误差分析如下:
当有n个积分环节串联时,即: 其对数幅频特性为: 相频特性是一条与ω无关, 值为-n×900 且与ω轴平行 的直线。两个积分环节串联 的Bode图如图5-13所示。
是一条斜率为-n×20dB/dec, 且在ω=1(弧度/秒)处过零 分贝线(ω轴)的直线。
图5-13 两个积分环节串联的Bode图
三惯性环节 惯性环节的频率特性是: 其对数幅频特性是: 用两条直线近似描述惯性环节的对数幅频特性, 即在 的低频段时, ,与零分贝线重合; 在 的高频段时 是一条斜率为 -20(dB/dec.)的直线。 两条直线在 处相交, 称为转折频率,由这两 条直线构成的折线称为对数幅频特性的渐近线。如图514所示。
当 时, ,它是阻尼比 ξ的函数;当ξ=1时为-6(dB); 当ξ=0.5时为0(dB); 当ξ=0.25时为+6(dB);误差曲线如图5-18所示。
图5-17 振荡环节渐进线对数幅频特性
图5-18 振荡环节对数幅频特性误差修正曲线
由图知,振荡环节的误差可正可负,它们是阻尼比 ξ的函数,且以 的转折频率为对称,距离转折频率 愈远误差愈小。通常大于(或小于)十倍转折频率时, 误差可忽略不计。经过修正后的对数幅频特性曲线如图 5-19所示。
滞后环节的Bode图
由图5-19可看出,振荡 环节的对数幅频特性在 转折频率 附近产生 谐振峰值,这是该环节 固有振荡性能在频率特 性上的反映。前面已经 分析过,谐振频率ωr 和谐振峰Mr分别为:
振荡环节对数幅频率特性图
其中 称为振荡环节的无阻尼(ξ=0)自 然振荡频率,它也是渐近线的转折频率。由式(581)可知,当阻尼比ξ愈小谐振频率ωr愈接近无阻 尼自然振荡频率ωn,当ξ=0时,ωr=ωn
其对数幅频特性与惯性环节相同;相频特性与惯性环 节相比是以 为对称,相角的变化范围是 至 。Bode如图5-22所示
八滞后环节
滞后环节的频率特性是: 其对数幅频特性和相频特性分别为:
滞后环节伯德图如图5-23 所示。其对数幅频特性与 ω无关,是一条与ω轴重 合的零分贝线。滞后相角 由式(5-92)计算,分别 与滞后时间常数τ和角频 率ω成正比。
相关文档
最新文档