【免费下载】matlab数学实验练习题
matlab数学实验复习题(有标准答案)
复习题1、写出32、i nv(A)表示A的逆矩阵;3、在命令窗口健入clc,4、在命令窗口健入clea5、在命令窗口健入6、x=-1:0.2:17、det(A)表示计算A的行列式的值;8、三种插值方法:拉格朗日多项式插值,分段线性插值,三次样条插值。
9、若A=123456789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则fliplr (A)=321654987⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A-3=210123456--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A .^2=149162536496481⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦tril(A)=100450789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ tri u(A,-1)=123456089⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦diag(A )=100050009⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A(:,2),=258A(3,:)=36910、nor mcd f(1,1,2)=0.5%正态分布mu=1,s igm a=2,x =1处的概率e45(@f,[a,b ],x0),中参数的涵义是@fun 是求解方程的函数M 文件,[a,b ]是输入向量即自变量的范围a 为初值,x0为函数的初值,t 为输出指定的[a,b],x 为函数值15、写出下列命令的功能:te xt (1,2,‘y=s in(x)’hold on 16fun ction 开头;17,4)3,4)21、设x 是一向量,则)的功能是作出将X十等分的直方图 22、interp 1([1,2,3],[3,4,5],2.5)Ans=4.523、建立一阶微分方程组⎩⎨⎧+='-='y x t y y x t x 34)(3)(2的函数M 文件。
(做不出来) 二、写出运行结果:1、>>ey e(3,4)=1000010000102、>>s ize([1,2,3])=1;33、设b=ro und (unifrnd(-5,5,1,4)),则=3 5 2 -5 >>[x,m]=min(b);x =-5;m=4,[x,n ]=sort(b )-5 2 3 54 3 1 2mea n(b)=1.25,m edian(b)=2.5,range(b)=104、向量b如上题,则>>an y(b),all(b<2),all(b<6)Ans =1 0 15、>>[5 6;7 8]>[7 8;5 6]=00116、若1234B ⎡⎤=⎢⎥⎣⎦,则 7、>>diag(d iag (B ))=10048、>>[4:-2:1].*[-1,6]=-4 129、>>acos(0.5),a tan(1)ans =1.6598ans=。
matlab数学实验练习题
Matlab 数学实验实验一 插值与拟合实验内容:预备知识:编制计算拉格朗日插值的M 文件。
1. 选择一些函数,在n 个节点上(n 不要太大,如5 ~ 11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m 要适中,如50~100)。
通过数值和图形输出,将三种插值结果与精确值进行比较。
适当增加n ,再做比较,由此作初步分析。
下列函数任选一种。
(1)、 ;20,sin π≤≤=x x y (2)、;11,)1(2/12≤≤--=x x y (3)、;22,c o s10≤≤-=x x y(4)、22),exp(2≤≤--=x x y2.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为)(0)()(t eV V V t v ---=,其中0V 是电容器的初始电压,τ是充电常数。
试由下面一组t ,V 数据确定0V 和τ。
实验二 常微分方程数值解试验实验目的:1. 用MATLAB 软件求解微分方程,掌握Euler 方法和龙格-库塔方法;2. 掌握用微分方程模型解决简化的实际问题。
实验内容:实验三地图问题1.下图是一个国家的地图,为了计算出它的国土面积,首先对地图作如下测量:以由西向东方向为x轴,由南到北方向为y轴,选择方便的原点,并将从最西边界点到最东边界点在x轴上的区间适当地划分为若干段,在每个分点的y方向测出南边界点和北边界点的y坐标y1和y2,这样就得到了表中的数据(单位mm)。
根据地图的比例我们知道18mm相当于40km,试由测量数据计算该国土的近似面积,并与它的精确值41288km2比较。
实验四狼追兔问题狼猎兔问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。
当一个兔子正在它的洞穴南面60码处觅食时,一只恶狼出现在兔子正东的100码处。
当两只动物同时发现对方以后,兔子奔向自己的洞穴,狼以快于兔子一倍的速度紧追兔子不放。
狼在追赶过程中所形成的轨迹就是追击曲线。
Matlab实验及答案-推荐下载
ans =
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
matlab考试题目及答案
matlab考试题目及答案1. 题目:编写一个MATLAB函数,实现计算并返回一个向量中所有元素的平方和。
答案:以下是一个简单的MATLAB函数,用于计算并返回一个向量中所有元素的平方和。
```matlabfunction sumOfSquares = calculateSumOfSquares(vector)sumOfSquares = sum(vector.^2);end```2. 题目:给定一个3x3的矩阵A,使用MATLAB编写代码,求出矩阵A 的转置。
答案:可以通过简单的转置操作来求得矩阵A的转置。
```matlabA = [1 2 3; 4 5 6; 7 8 9];A_transpose = A';```3. 题目:编写一个MATLAB脚本,实现对一个二维数组进行排序,并返回排序后的数组。
答案:以下是一个MATLAB脚本,用于对一个二维数组进行排序,并返回排序后的数组。
```matlabfunction sortedArray = sort2DArray(array)sortedArray = sort(array(:));end```4. 题目:给定一个向量x,使用MATLAB编写代码,计算并返回向量x的元素个数。
答案:可以通过内置函数`numel`来计算向量x的元素个数。
```matlabx = [1, 2, 3, 4, 5];numElements = numel(x);```5. 题目:编写一个MATLAB函数,实现计算并返回两个向量元素的点积。
答案:以下是一个简单的MATLAB函数,用于计算两个向量的点积。
```matlabfunction dotProduct = calculateDotProduct(vector1, vector2)dotProduct = dot(vector1, vector2);end```6. 题目:给定一个矩阵B,使用MATLAB编写代码,求出矩阵B的行列式。
(完整版)MATLAB)课后实验答案[1]
(完整版)MATLAB)课后实验答案[1]实验⼀ MATLAB 运算基础1. 先求下列表达式的值,然后显⽰MATLAB ⼯作空间的使⽤情况并保存全部变量。
(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +??=?- (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--L (4) 2242011122123t t z t t t t t ?≤=-≤,其中t =0:0.5:2.5 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建⽴⼀个字符串向量,删除其中的⼤写字母。
解:(1) 结果:(2). 建⽴⼀个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验⼆ MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S=?,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对⾓阵,试通过数值计算验证2 2E R RS A O S +??=。
解: M ⽂件如下;5. 下⾯是⼀个线性⽅程组:1231112340.951110.673450.52111456x x x ??=???(1) 求⽅程的解。
(2) 将⽅程右边向量元素b 3改为0.53再求解,并⽐较b 3的变化和解的相对变化。
(3) 计算系数矩阵A 的条件数并分析结论。
解: M ⽂件如下:123d4e56g9实验三选择结构程序设计1. 求分段函数的值。
2226035605231x x x x y x x x x x x x ?+-<≠-?=-+≤<≠≠??--?且且及其他⽤if 语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值。
解:M ⽂件如下:2. 输⼊⼀个百分制成绩,要求输出成绩等级A、B、C、D、E。
matlab数学软件实验测试题
数学软件实验测试题Matlab作业电子版姓名:**学号:**一、选择语句和循环语句编程1. 用if 语句实现以下的计算,其中,a b 的值从键盘输入。
2lg cos cos ,52sin ln ,219,14x b ax b x x a y a b b x x e x ⎧+-≤<-⎪⎪=++-≤<⎨⎪⎪+≤<⎩请计算当1,2a b 时,==5,2,3x y 时的的值=--2. 当n 取50时,求1111416644n +++++L L代码如下:1.function y=f(x,a,b)if(x>=-2&x<1)y=a*sin(b)+log(abs(b+a/x)); else if ( -5<=x&x<-2)y=a*x^2+b*cos(x); else if(1<=x&x<=4)y=9^(log10(x))+exp(cos(b)); end end end 2. function y=f(n)y=0; for i=1:n y=y+1/i.^4; end二、函数和调用函数22(,)(1,1)(2,2)(3,3)(100,100)f a b a b y f f f f =+=+++1. 已知,求的值。
L (,)f a b y 要求:定义为函数,利用循环语句求。
代码如下:1. function m=f(a,b)m1=0;m2=0; for a=1:100 for b=1:100 m2=m2+b*b endm1=m1+m2+a*a; end三、画图和拟合1. 已知1cos(4),2sin(2)1,11y x y x y x ==⋅-≤≤,完成下列操作:(1)在同一坐标系下用不同的颜色和线型绘制两条曲线。
(2)以子图形式绘制两条曲线。
(以一行两列形式绘图) 2. 已知函数f (x )在[1,101]区间上10个整数采样点的函数值如实验表1所示:实验表1 10个采样点的函数值 x1112131415161718191101f(x) 0 1.041 1.322 1.491 1.612 1.707 1.785 1.851 1.908 1.959 2.004先利用10个采样点利用plot函数绘制f(x),在同一坐标系下利用4次拟合多项式绘制出f(x)的近似曲线p(x),并利用4次拟合多项式求出平p(75)和p(111)。
matlab数学实验复习题(有答案)
复习题1、写出3个常用的绘图函数命令2、inv (A )表示A 的逆矩阵;3、在命令窗口健入clc4、在命令窗口健入clear 5、在命令窗口健入6、x=-1:0.2:17、det (A )表示计算A 的行列式的值;8、三种插值方法:拉格朗日多项式插值,分段线性插值,三次样条插值。
9、若A=123456789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则fliplr (A )=321654987⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A-3=210123456--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A .^2=149162536496481⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦tril (A )=100450789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦triu (A ,-1)=123456089⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦diag (A )=100050009⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A(:,2),=258A(3,:)=369 10、normcdf (1,1,2)=0.5%正态分布mu=1,sigma=2,x=1处的概率[t,x]=ode45(@f,[a,b],x0),中参数的涵义是@fun 是求解方程的函数M 文件,[a,b]是输入向量即自变量的范围a 为初值,x0为函数的初值,t 为输function 开头;17、二种数值积分的库函数名为:quad;quadl43,421、设x )的功能是作出将X 十等分的直方图 22、interp1([1,2,3],[3,4,5],2.5) Ans=4.523、建立一阶微分方程组⎩⎨⎧+='-='yx t y y x t x 34)(3)(2的函数M 文件。
(做不出来)二、写出运行结果:1、>>eye(3,4)=1000010000102、>>size([1,2,3])=1;33、设b=round (unifrnd (-5,5,1,4)),则=3 5 2 -5 >>[x,m]=min(b);x=-5;m=4 ,[x,n]=sort(b) -5 2 3 5 4 3 1 2mean(b)=1.25,median (b )=2.5,range (b )=10 4、向量b 如上题,则>>any(b),all(b<2),all(b<6) Ans=1 0 15、>>[5 6;7 8]>[7 8;5 6]=00116、若1234B ⎡⎤=⎢⎥⎣⎦,则 7、>>diag(diag(B))=10048、>>[4:-2:1].*[-1,6]=-4 12 9、>>acos(0.5),atan(1) ans=1.047197551196598 ans=0.785398163397448 10、>>norm([1,2,3]) Ans=3.74165738677394111、>>length ([1,3,-1])=312、>>x=0:0.4:2;plot(x,2*x,’k*’)13、>>zeros(3,1);ans=14、>>ones(3)=111111111,vander([2,3,5])=421931255116、>>floor(1:0.3:3)=1 1 1 12 2 218、>>subplot(2,2,1); fplot('sin',[0,2*pi]);subplot(2,2,2);plot([1,2,-1]);>>x=linspace(0,6*pi);subplot(2,2,3);plot3(cos(x),sin(x),x);>>subplot(2,2,4);polar(x,5*sin(4*x/3));19、>>t=linespace(0,2,11)0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.020、>>[a,b]=binostat(15,0.2)a=3 b=2.4>>y1=binopdf(5,10,0.7)=0.1029,y2=binocdf(5,10,0.7)=0.150321、>>log10([1,10,100])=[0 1 2]22、>>p=1;for k=2:3:9 p=p*k;end;p p=8023、>>s=0;for k=2:3:9 s=s+k;end;s s=1524、('^3exp(2*)3');(,1)=--+f inline x x feval fAns=3.864725、>>a1=norminv(0.6,3,4)a1=4.013426、>>unifinv(0.4,1,5),unifpdf(0.4,1,5),unifpdf(2,1,5)Ans=2.6 0 0.2527、>>A=[0 1-1;2 1 0;1-1 1];0 1 -11 -1 1>>A([1,3],:)1 -1 10 1 -1A([3,1],:)=1 -1 10 1 -1>>A(2,:)=2 1 0>>-2*A(1,:)= 0 -2 228、>>quad(‘sin(x)’,0,pi/2)=1.000029、>>trapz([3,4,6],[1,2,3])=6.500030、>> int('x-sin(x)',0,1)Ans=cos(1) - 1/231、>>round(3:0.4:5),ceil(3:0.4:5);floor(3:0.4:5)3 34 45 53 3 34 4 5>>limit(1+1/(3*x)^x,inf)=1>>diff(sin(3*x)+x^3,2)=6*x-9*sin(3*x)>>taylor(exp(3*x),5,1):命令输入: y=taylor(exp(3*x),x,1,'Order',5)Ans=exp(3) + 3*exp(3)*(x - 1) + (9*exp(3)*(x - 1)^2)/2 + (9*exp(3)*(x - 1)^3)/2 + (27*exp(3)*(x - 1)^4)/8>>a1=mod(15,4),b1=rem(15,4)=3,3>>a2=mod(-15,-4),b2=rem(-15,-4)=-3,-3>>a3=mod(15,-4),b3=rem(15,-4)=-1,-3>>a4=mod(-15,4),b4=rem(-15,4)=1,-334、>>x=binornd(20,0.4,2,4)8 7 10 810 7 9 12>>sign(x),1 1 1 11 1 1 1>>y=-poissrnd(8,2,4)-16 -10 8 -7-7 -8 -6 -9>>sign(y)-1 -1 -1 -1-1 -1 -1 -135、>>[a1,b1]=binostat(20,0.4) a1=8 b1=4.8 >>[a2,b2]=poisstat(8)ans=8,8>>[a3,b3]=chi2stat(15)ans=[15 30]36、运行M文件:chi2fign=5;a=0.9;xa=chi2inv(a,n);x=0:0.1:15;y=chi2pdf(x,n);plot(x,y,'b');hold on;xf=0:0.1:xa;yf=chi2pdf(xf,n);fill([xf,xa],[yf,0],'g');text(xa*1.01,0.005,num2str(xa));text(2.5,0.05,'alpha=0.9','fontsize',20); text(9,0.09,'X~{\chi}^2(4)','fontsize',16);37、>>t=linspace(0,2*pi);>>polar(t,3*t,’g*’)38、>>quadl(’exp(2*x).*log(3*x)’,1,3)ans =398.635239、x0=0:2*pi/6:2*pi;y0=sin(x0).*cos(x0);x=[linspace(0,2*pi,100)];y=sin(x).*cos(x);y1=spline(x0,y0,x);[x;y;y1]'plot(x,y,'k',x,y1,'b-')注:此处省略100组数据40、>>A=round(unifrnd(0,100,3,3));>>[L,U]=lu(A)L =0.9897 0.4699 1.0000 0.1649 1.0000 0 1.0000 0 0 U =97.0000 80.0000 92.0000 0 35.8041 26.8247 0 0 -89.656841、a=sparse([1 3 3],[2 3 5],[1 2 3],4,5);s=full(a) s =0 1 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 0 三、编程1、 分别用矩形公式、梯形公式、辛普森公式、Gauss-Lobatto 公式及随机模拟方法计算数值积分/230sin 2x e xdx π⎰,并与符号运算计算的结果进行比较。
数学实验(matlab版)过程考试试卷及答案完整版
试绘出三种产品产量与季度的三维垂直方向条形图(分组式). >> x=[8,8,9;11,7,8;12,6,9;10,6,10]; bar3(x,'group') 图形如下:
2/2
第一题:编程计算下面问题, x 值由键≥ 1 y = x 2 , −1 ≤ x < 1 2 x − 1, x < −1
>> x=input('输入 x:'); if x>=1 y=x^2+1; end if x<-1 y=x^2-1; end if x>=-1&x<1 y=x^2; end y 输入 x:5 y= 26 第二题:某人做一种材料的伸缩实验,t 为温度(℃),L 为长度(mm),实验数据见下表 t 20 25 30 35 40 L 81 82.3 84 86.8 89
f = x 4 − xy + y 2 ,求
>> syms x y
∂f ∂ 3 f , ∂x ∂y 3
1/1
f=x^4-x*y+y^2; dx=diff(f,x,1) dy3=diff(f,y,3) dx = 4*x^3-y dy3 = 0 第四题:某厂生产三种产品,某年四季度的产量如下 A 产品产量 笫一季度 笫二季度 笫三季度 笫四季度 8 11 12 10 B 产品产量 8 7 6 6 C 产品产量 9 8 9 10
用二阶拟合法,求 L 与 t 的表达式.要求:1.编程;2.写出 L 与 t 的关系式. >> t=[20,25,30,35,40]; L=[81,82.3,84,86.5,89]; k=polyfit(t,L,2) k= 0.0091 -0.1446 80.2114 L=0.0091 t^2 —0.1446t+ 80.2114 第三题:求微分与积分(编程)
MATLAB数学实验第二版课后练习题含答案
MATLAB数学实验第二版课后练习题含答案课后练习题MATLAB数学实验第二版的课后练习题如下:第一章课后练习题1.编写MATLAB程序,计算并输出下列公式的结果:y = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}其中,x, $\\mu$, $\\sigma$ 分别由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');mu=input('请输入 mu 的值:');sigma=input('请输入 sigma 的值:');y=1/sqrt(2*pi*sigma^2) *exp(-(x-mu)^2/ (2*sigma^2));fprintf('y = %.2f\', y);2.编写MATLAB程序,求解下列方程的解:4x + y = 11\\\\x + 2y = 7答案如下:A= [4,1;1,2];B= [11;7];X=inv(A) *B;fprintf('x = %.2f, y = %.2f\', X(1), X(2));第二章课后练习题1.编写MATLAB程序,计算下列多项式的值:P(x) = x^4 - 2x^3 + 3x^2 - x + 1其中,x 由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');y=x^4-2*x^3+3*x^2-x+1;fprintf('P(%.2f) = %.2f\', x, y);2.编写MATLAB程序,绘制下列函数的图像:f(x) = \\begin{cases} x + 1, & x < 0 \\\\ x^2, & 0 \\leq x < 1 \\\\ 2x - 1, & x \\geq 1 \\end{cases}答案如下:x=-2:0.01:2;y1=x+1;y2=x.^2.* ((x>=0) & (x<1));y3=2*x-1;plot(x,y1,x,y2,x,y3);legend('y1 = x + 1','y2 = x^2','y3 = 2x - 1');总结本文提供了《MATLAB数学实验第二版》的部分课后练习题及其答案。
MATLAB数学实验100例题解(修订版)
一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧.初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势. 解:程序代码:>> x=linspace(0,2*pi,600); t=sin(x)./(cos(x)+eps);plot(x,t);title('tan(x)');axis ([0,2*pi,-50,50]); 图象:程序代码:>> x=linspace(0,2*pi,100); ct=cos(x)./(sin(x)+eps);plot(x,ct);title('cot(x)');axis ([0,2*pi,-50,50]); 图象:4在区间]1,1[-画出函数xy 1sin =的图形. 解:程序代码:>> x=linspace(-1,1,10000);y=sin(1./x); plot(x,y);axis([-1,1,-2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>> t=linspace(0,2*pi,100);plot(cos(t).*cos(5*t),sin(t).*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:>> t=0:0.01:2*pi; r=exp(t/10);polar(log(t+eps),log(r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形. 解:程序代码:>> x=linspace(-100,100,10000); y=sign(x); plot(x,y);axis([-100 100 -2 2]);函数性质的研究12研究函数)3(log 3)(35x e x x f x -++=在区间]2,2[-上图形的特征. 解:程序代码:>> x=linspace(-2,2,10000);y=x.^5+3*exp(x)+log(3-x)/log(3); plot(x,y); 图象:实验2 极限与连续(基础实验)实验目的 通过计算与作图, 从直观上揭示极限的本质,加深对极限概念的理解. 掌握用 Matlab 画散点图, 以及计算极限的方法. 深入理解函数连续的概念,熟悉几种间断点的图形 特征,理解闭区间上连续函数的几个重要性质.作散点图14分别画出坐标为)10,,2,1(),4,(),,(3222 =+i i i i i i 的散点图, 并画出折线图. 解:散点图程序代码: >> i=1:10; plot(i,i.^2,'.')或:>> x=1:10;y=x.^2;for i=1:10;plot(x(i),y(i),'r')hold onend折线图程序代码:>> i=1:10;plot(i,i.^2,'-x')程序代码:>> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'.')>> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'-x')数列极限的概念16通过动画观察当∞→n 时数列21n a n =的变化趋势.解:程序代码: >> n=1:100; an=(n.^2); n=1:100; an=1./(n.^2); n=1:100; an=1./(n.^2); for i=1:100plot(n(1:i),an(1:i)),axis([0,100,0,1])pause(0.1) %在这个for 循环内每画一个点就暂停0.1s 因此有动画效果 end 图象:函数的极限18在区间]4,4[-上作出函数xx xx x f --=339)(的图形, 并研究 )(lim x f x ∞→ 和 ).(lim 1x f x →解:作出函数x x x x x f --=339)(在区间]4,4[-上的图形 >> x=-4:0.01:4;y=(x.^3-9*x)./(x.^3-x+eps); plot(x,y)从图上看,()f x 在x →1与x →∞时极限为0两个重要极限 20计算极限⎪⎭⎫⎝⎛+→x x x x x sin 11sin lim )1(0 x x e x 2lim )2(+∞→30sin tan lim )3(xx x x -→ x x x 0lim )4(+→ x xx ln cot ln lim )5(0+→ x x x ln lim )6(20+→ xx x x x x sin cos sin lim)7(20-→ 125523lim)8(323+++-∞→x x x x x x x x e e x x x sin 2lim )9(0----→ xx x x cos 110sin lim )10(-→⎪⎭⎫ ⎝⎛ 解:(1)>> limit(x*sin(1/x)+1/x*sin(x))ans =1(2) >> limit(x^2/exp(x),inf) ans = 0(3) >> limit((tan(x)-sin(8))/x^3) ans =NaN(4) >> limit(x^x,x,0,'right') ans =1(5) >> limit(log(cot(x))/log(x),x,0,'right') ans =-1(6) >> limit(x^2*log(x),x,0,'right') ans =016(7) >> limit((sin(x)-x.*cos(x))./(x.^2.*sin(x)),x,0) ans =1/3(8) >> limit((3*x.^3-2*x.^2+5)/(5*x.^3+2*+1),x,inf) ans =3/5(9) >> limit((exp(x)-exp(-x)-2*x)./(x-sin(x))) ans =2(10) >> limit((sin(x)/x).^(1/(1-cos(x)))) ans =exp(-1/3)实验3 导数(基础实验)实验目的 深入理解导数与微分的概念, 导数的几何意义. 掌握用Matlab 求导数与高 阶导数的方法. 深入理解和掌握求隐函数的导数, 以及求由参数方程定义的函数的导数的方法. 导数概念与导数的几何意义22作函数71232)(23+-+=x x x x f 的图形和在1-=x 处的切线. 解:作函数71232)(23+-+=x x x x f 的图形程序代码: >> syms x;>> y=2*x^3+3*x^2-12*x+7; >> diff(y) ans =6*x^2+6*x-12 >> syms x;y=2*x^3+3*x^2-12*x+7; >> f=diff(y) f =6*x^2+6*x-12 >> x=-1;f1=6*x^2+6*x-12 f1 = -12>> f2=2*x^3+3*x^2-12*x+7 f2 = 20>> x=linspace(-10,10,1000);y1=2*x.^3+3*x.^2-12*x+7; y2=-12*(x+1)+20; plot(x,y1,'r',x,y2,'g')求函数的导数与微分24求函数bx ax x f cos sin )(=的一阶导数. 并求.1⎪⎭⎫⎝⎛+'b a f解:求函数bx ax x f cos sin )(=的一阶导数程序代码: >> syms a b x y;y= sin(a*x)*cos(b*x); D1=diff(y,x,1) 答案:D1 =cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b求.1⎪⎭⎫ ⎝⎛+'b a f程序代码:>> x=1/(a+b); %直接输入表达式直接带入 >> cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b 答案:ans =cos(a/(a+b))*a*cos(b/(a+b))-sin(a/(a+b))*sin(b/(a+b))*b 拉格朗日中值定理26对函数),2)(1()(--=x x x x f 观察罗尔定理的几何意义. (1) 画出)(x f y =与)(x f '的图形, 并求出1x 与.2x 解:程序代码:>> syms x;f=x*(x-1)*(x-2); f1=diff(f) f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1) >> solve(f1) ans =1+1/3*3^(1/2) 1-1/3*3^(1/2)>> x=linspace(-10,10,1000); y1=x.*(x-1).*(x-2);y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1); plot(x,y1,x,y2)(2)画出)(x f y =及其在点))(,(11x f x 与))(,(22x f x 处的切线.程序代码:>> syms x; >> f=x*(x-1)*(x-2); >> f1=diff(f) f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1) %本题意在讨论罗尔定理首先回忆一下罗尔定理 >> solve(f1) %(a,b )连续;[a,b]可导;f(a)=f(b)=0;存在ƞ ans = %使得f ’(ƞ)=01+1/3*3^(1/2) %程序就要先求出f (x )的零点 1-1/3*3^(1/2) %再画出f ’(a)f ’(b)的切线 >> x=linspace(-3,3,1000); >> y1=x.*(x-1).*(x-2);>> y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1); >> plot(x,y1,x,y2) >> hold on>> x=1+1/3*3^(1/2); >> yx1=x*(x-1)*(x-2) yx1 =-0.3849>> x=1-1/3*3^(1/2);>> yx2=x*(x-1)*(x-2) yx2 =0.3849x=linspace(-3,3,1000); yx1 =-0.3849*x.^0; yx2 =0.3849*x.^0; plot(x,yx1,x,yx2)28求下列函数的导数: (1) 31+=x e y ; 解:程序代码:>> syms x y; y=exp((x+1)^3); D1=diff(y,1) 答案:D1 =3*(x+1)^2*exp((x+1)^3)(2) )]42ln[tan(π+=x y ;解:程序代码:>> syms x;y=log(tan(x/2+pi/4)); D1=diff(y,1) 答案:D1 =(1/2+1/2*tan(1/2*x+1/4*pi)^2)/tan(1/2*x+1/4*pi)(3) x x y sin ln cot 212+=;解:程序代码:>> syms x;y=1/2*(cot(x))^2+log(sin(x)); D1=diff(y,1) 答案:D1 =cot(x)*(-1-cot(x)^2)+cos(x)/sin(x) (4) xy 2arctan21=. 解:程序代码:>> syms x;>> y=sqrt(2)*atan(sqrt(2)/x); >> D1=diff(y,1) 答案:D1 =-2/x^2/(1+2/x^2)一元函数积分学与空间图形的画法实验4 一元函数积分学(基础实验)实验目的 掌握用Matlab 计算不定积分与定积分的方法. 通过作图和观察, 深入理解定积分的概念和思想方法. 初步了解定积分的近似计算方法. 理解变上限积分的概念. 提高应用 定积分解决各种问题的能力.不定积分计算30求.)1(532⎰-dx x x解:程序代码:>> syms x y;>> y=x^2*(1-x^3)^5; >> R=int(y,x) 答案:R =-1/18*x^18+1/3*x^15-5/6*x^12+10/9*x^9-5/6*x^6+1/3*x^332求.arctan 2⎰xdx x 解:程序代码:>> syms x y;>> y=x^2*atan(x); >> R=int(y,x) 答案:R =1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1)定积分计算34 求.)(102⎰-dx x x解:程序代码:>> syms x y; >> y=x-x^2;>> R=int(y,x,0,1) 答案: R =1/6变上限积分 36 画出变上限函数⎰x dt t t 02sin 及其导函数的图形.解:程序代码:>> syms x y t; >> y=t*sin(t^2); >> R=int(y,x,0,x) 答案:R =t*sin(t^2)*x 再求导函数 程序代码:>> DR=diff(R,x,1) 答案:DR =t*sin(t^2)实验5 空间图形的画法(基础实验)实验目的 掌握用Matlab 绘制空间曲面和曲线的方法. 熟悉常用空间曲线和空间曲面 的图形特征,通过作图和观察, 提高空间想像能力. 深入理解二次曲面方程及其图形.一般二元函数作图38作出函数2214y x z ++=的图形.解:程序代码:>> x=linspace(-5,5,500);[x,y]=meshgrid( %mesh 和meshgrid 是生成网格的命令 z=4./(1+x.^2+y.^2); %先命令出一个x 向量组,再生二位网格 mesh(x,y,z); %用meshgrid 再用mesh 命令出各个点的高 xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')40作出函数)94cos(22y x z +=的图形. 解:程序代码:>> x=-10:0.1:10;[x,y]=meshgrid(x);z=cos(4*x.^2+9*y.^2); mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')讨论:坐标轴选取范围不同时,图形差异很大,对本题尤为明显,如右图为坐标轴[-1,1]二次曲面42作出单叶双曲面1941222=-+z y x 的图形.(曲面的参数方程为 ,tan 3,cos sec 2,sin sec u z v u y v u x === (.20,2/2/πππ≤≤<<-v u ))解:程序代码:>> v=0:pi/100:2*pi; >> u=-pi/2:pi/100:pi/2; >> [U,V]=meshgrid(u,v); >> x=sec(U).*sin(V); >> y=2*sec(U).*cos(V); >> z=3*tan(U); >> surf(x,y,z)44 可以证明: 函数xy z =的图形是双曲抛物面. 在区域22,22≤≤-≤≤-y x 上作出它的图形.解:程序代码:>> x=-2:0.01:2;[x,y]=meshgrid(x); >> z=x.*y;>> mesh(x,y,z);46 画出参数曲面]2,001.0[],4,0[)5/2/ln(tan cos sin sin sin cos ∈∈⎪⎩⎪⎨⎧++===v u u v v z vu y v u x π 的图形.解:程序代码:>> v=0.001:0.001:2;>> u=0:pi/100:4*pi;>> [U,V]=meshgrid(u,v); >> x=cos(U).*sin(V); >> y=sin(U).*sin(V);>> z=cos(V)+log(tan(V/2)+U/5); >> mesh(x,y,z);空间曲线48 作出空间曲线)60(2,sin ,cos π≤≤===t t z t t y t t x 的图形. 解:程序代码:>> syms t;ezplot3(t*cos(t),t*sin(t),2*t,[0,6*pi])-1010-100100xx = t cos(t), y = t sin(t), z = 2 tz50绘制参数曲线 ⎪⎪⎩⎪⎪⎨⎧=+==t z t y t x arctan 211cos 2的图形.解:程序代码:>> t=-2*pi:pi/100:2*pi;x=cos(t).*cos(t);y=1./(1+2*t);z=atan(t); plot3(x,y,z);grid;xlabel('x'),ylabel('y'),zlabel('z')xyz多元函数微积分实验6 多元函数微分学(基础实验)实验目的 掌握利用Matlab 计算多元函数偏导数和全微分的方法, 掌握计算二元函数极值和条件极值的方法. 理解和掌握曲面的切平面的作法. 通过作图和观察, 理解二元 函数的性质、方向导数、梯度和等高线的概念.求多元函数的偏导数与全微分52设),(cos )sin(2xy xy z +=求.,,,222yx z x z y z x z ∂∂∂∂∂∂∂∂∂ 解:程序代码:>> syms x y;S=sin(x*y)+(cos(x*y))^2; D1=diff(S,'x',1); D2=diff(S,'y',1); D3=diff(S,'x',2);D4=diff(S,'y',2); %这是错误的! D1,D2,D3,D4答案: D1 = cos(x*y)*y-2*cos(x*y)*sin(x*y)*yD2 = cos(x*y)*x-2*cos(x*y)*sin(x*y)*xD3 =-sin(x*y)*y^2+2*sin(x*y)^2*y^2-2*cos(x*y)^2*y^2 D4 = -sin(x*y)*x^2+2*sin(x*y)^2*x^2-2*cos(x*y)^2*x^2实验7 多元函数积分学(基础实验)实验目的掌握用Matlab 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.计算重积分54计算,2dxdy xy D⎰⎰ 其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.解:程序代码:>> syms x y;int(int(x*y^2,x,2-y,sqrt(y)),y,1,2) 答案:ans =193/120 重积分的应用56求旋转抛物面224y x z --=在Oxy 平面上部的面积.S 解:程序代码:>> int(2*pi*r,r,0,2) 答案: ans =4*pi无穷级数与微分方程实验8 无穷级数(基础实验) 实验目的观察无穷级数部分和的变化趋势,进一步理解级数的审敛法以及幂级数部分和对函数的 逼近. 掌握用Matlab 求无穷级数的和, 求幂级数的收敛域, 展开函数为幂级数以及展 开周期函数为傅里叶级数的方法.数项级数58(1) 观察级数∑∞=121n n的部分和序列的变化趋势.解:程序代码:for i=1:100 s=0; for n=1:i s=s+1/n^2; endplot(i,s,'.');hold on; end(2) 观察级数∑∞=11n n 的部分和序列的变化趋势.>> for i=1:100 s=0; for n=1:i s=s+1/n; endplot(i,s,'.'); hold on; end60 求∑∞=++123841n n n 的值. 解:程序代码:>> syms n;score=symsum(1/(4*n^2+8*n+3),1,inf) %这个用法我比较不熟悉,记一下 答案: score =1/6函数的幂级数展开62求x arctan 的5阶泰勒展开式. >> syms x;>> T5=taylor(atan(x),6) 答案:T5 =x-1/3*x^3+1/5*x^5实验9 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用 Matlab 求微分方程及方程组解的常用命令和方法.求解微分方程64求微分方程 22x xe xy y -=+'的通解. 解:程序代码:>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %还记得solve 命令吗?格式solve (‘’) 答案:y = %将可以解一元多次方程而且不用写出等号(1/2*x^2+C1)*exp(-x^2) %本例用于解微分方程,需要声明什么是变量66求微分方程x e y y y x 2cos 52=+'-''的通解. 解:程序代码:>> y=dsolve('D2y-2*Dy+5*y=exp(x)*cos(2*x)','x') %二次倒数‘D2y ’ 答案: y =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/4*exp(x)*sin(2*x)*x68求微分方程组⎪⎪⎩⎪⎨⎧=--=++02y x dtdy ey x dt dx t 在初始条件0,100====t t y x 下的特解.解:程序代码: %你还别说我真不会接微分方程组>> [x,y]=dsolve('Dx+x+2*y-exp(t)','Dy-x-y','x(0)=1','y(0)=0','t') 答案: x = cos(t)y = 1/2*sin(t)-1/2*cos(t)+1/2*exp(t)70求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 解:程序代码:>> syms x yy=dsolve('Dy-2*y/(x+1)-(x+1)^(5/2)','x') 答案:y =(2/3*(x+1)^(3/2)+C1)*(x+1)^2 做积分曲线 由>> syms x yx=linspace(-5,5,100); C=input('请输入C 的值:'); y=(2/3*(x+1).^(3/2)+C).*(x+1).^2; plot(x,y)例如对应有: 请输入C 的值:2 请输入C 的值:20矩阵运算与方程组求解实验10 行列式与矩阵实验目的掌握矩阵的输入方法. 掌握利用Matlab 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式.矩阵A 的转置函数Transpose[A]72 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛411365243271的转置. 解:程序代码:>> A=[1,7,2;3,4,2;5,6,3;1,1,4]; >> Sove=A' 答案:Sove =1 3 5 1 7 4 6 12 234 矩阵线性运算 73设,291724,624543⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=B A 求.24,A B B A -+ 解:程序代码:>> A=[3,4,5;4,2,6]; B=[4,2,7;1,9,2]; S1=A+B S2=4*B-2*A 答案:S1 =7 6 12 5 11 8 S2 =10 0 18 -4 32 -474设,148530291724,36242543⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=mb ma 求矩阵ma 与mb 的乘积. 解:程序代码:>> ma=[3,4,5,2;4,2,6,3];>> mb=[4,2,7;1,9,2;0,3,5;8,4,1];>> Sove=ma*mb答案:Sove =32 65 5642 56 65矩阵的乘法运算 75设,101,530291724⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A 求AB 与,A B T 并求.3A解:程序代码:>> A=[4 2 7;1 9 2;0 3 5];B=[1;0;1];>> AB=A*BAB =1135>> BTA=B'*ABTA =4 5 12>> A3=A^3A3 =119 660 555141 932 44454 477 260求方阵的逆76 设,5123641033252312⎪⎪⎪⎪⎪⎭⎫⎝⎛=A 求.1-A解:程序代码:>> A=[2,1,3,2;5,2,3,3;0,1,4,6;3,2,1,5];Y=inv(A)答案:Y =-1.7500 1.3125 0.5000 -0.68755.5000 -3.6250 -2.0000 2.37500.5000 -0.1250 0.0000 -0.1250-1.2500 0.6875 0.5000 -0.312577 设,221331317230,5121435133124403⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=B A 求.1B A -解:程序代码:>> A=[3 0 4 4 ;2 1 3 3 ;1 5 3 4;1 2 1 5]; B=[0 3 2 ;7 1 3;1 3 3 ;1 2 2];Solve=A'*B %这一步和题目要求不符,应是Solve=inv(A)*B答案:Solve =16 16 1714 20 2225 26 2830 37 3978 解方程组⎪⎩⎪⎨⎧-=-+=+-=++.2442,63,723z y x z y x z y x解:程序代码:>> A=[3 2 1;1 -1 3;2 4 -4]; b=[7 6 -2];>> A\b' %也可以用inv (A )*b ’表达答案:ans =1.00001.00002.0000求方阵的行列式79 求行列式 .3351110243152113------=D 解:程序代码:>> A=[3,1,-1,2;-5,1,3,-4;2,0,1,-1;1,-5,3,-3];D=det(A)答案:D =4080求.11111111111122222222d d d d c cc c b bb b a a a a D ++++= 解:程序代码:>> syms a b c d;D=[a^2+1/a^2 a 1/a 1;b^2+1/b^2 b 1/b 1;c^2+1/c^2 c 1/c 1;d^2+1/d^2 d 1/d 1];det(D)答案:ans =-(-c*d^2*b^3+c^2*d*b^3-c^3*d^2*a+c^3*d*a^2*b^4+c*d^2*a^3-c^3*d^2*a*b^4-c^2*d*a^3-c*d^2*b^3*a^4+c^2*d*b^3*a^4+c^3*d^2*b*a^4-c^3*d*b^2*a^4-c^2*d^3*b*a^4+c*d^3*b^2*a^4+c*d ^2*a^3*b^4-c^2*d*a^3*b^4+c^3*d^2*b-c^3*d*b^2-c^2*d^3*b+c*d^3*b^2+c^3*d*a^2+c^2*d^3*a-c *d^3*a^2-b*d^2*a^3+b^2*d*a^3+b^3*d^2*a-b^3*d*a^2-b^2*d^3*a+b*d^3*a^2+b*c^2*a^3-b^2*c*a ^3-b^3*c^2*a+b^3*c*a^2+b^2*c^3*a-b*c^3*a^2+c^2*d^3*a*b^4-c*d^3*a^2*b^4-b*d^2*a^3*c^4+b ^2*d*a^3*c^4+b^3*d^2*a*c^4-b^3*d*a^2*c^4-b^2*d^3*a*c^4+b*d^3*a^2*c^4+b*c^2*a^3*d^4-b^2*c*a^3*d^4-b^3*c^2*a*d^4+b^3*c*a^2*d^4+b^2*c^3*a*d^4-b*c^3*a^2*d^4)/a^2/c^2/d^2/b^281 计算范德蒙行列式.1111145444342413534333231252423222154321x x x x x x x x x x x x x x x x x x x x解:程序代码:>> syms x1 x2 x3 x4 x5;>> A=[1,1,1,1,1;x1,x2,x3,x4,x5;x1^2,x2^2,x3^2,x4^2,x5^2;x1^3,x2^3,x3^3,x4^3,x5^3;x1^4,x2^4,x3^4,x4^4,x5^4];>> DC=det(A);>> DS=simple(DC)答案:DS =(-x5+x4)*(x3-x5)*(x3-x4)*(-x5+x2)*(x2-x4)*(x2-x3)*(-x5+x1)*(x1-x4)*(x1-x3)*(x1-x2)82 设矩阵 ,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=A 求.),(|,|3A A tr A解:程序代码:>> A=[3,7,2,6,-4;7,9,4,2,0;11,5,-6,9,3;2,7,-8,3,7;5,7,9,0,-6];>> D=det(A),T=trace(A),A3=A^3答案:D =11592T =3A3=726 2062 944 294 -3581848 3150 26 1516 2281713 2218 31 1006 4041743 984 -451 1222 384801 2666 477 745 -125向量的内积83 求向量}3,2,1{=u 与}0,1,1{-=v 的内积.解:程序代码:>> u=[1 2 3];v=[1 -1 0];solve=dot(u,v)答案:solve =-184设,001001⎪⎪⎪⎭⎫ ⎝⎛=λλλA 求.10A 一般地?=k A (k 是正整数).解:程序代码:>> syms r;>> A=[r,1,0;0,r,1;0,0,r];>> A^10答案:ans =[ r^10, 10*r^9, 45*r^8][ 0, r^10, 10*r^9][ 0, 0, r^10]85.求⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++a a a aa 1111111111111111111111111的逆. 解:程序代码:>> syms aA=[1+a,1,1,1,1;1,1+a,1,1,1;1,1,1+a,1,1;1,1,1,1+a,1;1,1,1,1,1+a];solve=inv(A)答案:solve =[ 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5)][ -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5)] 实验11 矩阵的秩与向量组的极大无关组实验目的 学习利用Matlab 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 求矩阵的秩86 设,815073*********⎪⎪⎪⎭⎫⎝⎛-------=M 求矩阵M 的秩.解:程序代码:>> M=[3,2,-1,-3,-2;2,-1,3,1,-3;7,0,5,-1,-8];R=rank(M)答案:R=2向量组的秩87求向量组)0,3,0,2(),2,5,4,0(),1,1,2,1(231=--=-=ααα的秩.解:程序代码:>> A=[1,2,-1,1;0,-4,5,-2;2,0,3,0];R=rank(A)答案:R =288向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关?解:由>> A=[1 1 2 3;1 -1 1 1;1 3 4 5;3 1 5 7];rank(A)ans = 3即rank(A)=3 小于阶数489向量组)3,1,1(),2,1,3(),7,2,2(321=-==ααα是否线性相关?解:由>> A3=[2,2,7;3,-1,2;1,1,3];R=rank(A3)得 R = 3即rank(A3)=3 等于阶数3故向量组线性无关。
数学实验练习题杨振华(MATLAB)
注意:在下面的题目中m 为你的学号的后3位(1-9班)或4位(10班以上).第一次练习题1.求解下列各题: 1)30sin lim x mx mx x->- 2)(4)cos ,1000.0=x mx y e y 求 3)21/20mx e dx ⎰(求近似值,可以先用inline 定义被积函数,然后用quad 命令)4)4224x dx m x+⎰ 50x =展开(最高次幂为8). 2.对矩阵21102041A m -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,分别求逆矩阵,特征值,特征向量,行列式,并求矩阵,P D (D 是对角矩阵),使得1A PDP -=。
3.已知21(),()2f x e x μσ=--分别在下列条件下画出)(x f 的图形: (1)/600m σ=,μ分别为0,1,1-(在同一坐标系上作图);(2)0μ=,σ分别为1,2,4,/100m (在同一坐标系上作图).4.画 (1)sin 020cos 02100x u t t y u t u t z m ⎧⎪=≤≤⎪=⎨≤≤⎪⎪=⎩(2) sin()03,03z mxy x y =≤≤≤≤(3)sin()(/100cos )02cos()(/100cos )02sin x t m u t y t m u u z u ππ=+⎧≤≤⎪=+⎨≤≤⎪=⎩的图(第4题只要写出程序).5.对于方程50.10200m x x --=,先画出左边的函数在合适的区间上的图形,借助于软件中的方程求根的命令求出所有的实根,找出函数的单调区间,结合高等数学的知识说明函数为什么在这些区间上是单调的,以及该方程确实只有你求出的这些实根。
最后写出你做此题的体会.第二次练习题判断迭代收敛速度的程序x0=1;stopc=1;eps=10^(-8);a=1;c=1;b=2*c;d=a;k=0;f=inline('(a*x+b)/(c*x+d)');kmax=100;while stopc>eps&k<kmaxk=k+1x0=f(a,b,c,d,x0)stopc=abs(x0^2-2);end1.设 ,131211p p p n nx ++++= }{n x 是否收敛?若收敛,其值为多少?精确到8位有效数字。
matlab数学实验考试题及答案
matlab数学实验考试题及答案一、选择题(每题2分,共10分)1. MATLAB中用于生成0到1之间均匀分布的随机数的函数是?A. randB. randiC. randnD. randperm答案:A2. 下列哪个命令可以计算矩阵的行列式?A. detB. rankC. eigD. inv答案:A3. MATLAB中用于求解线性方程组的命令是?A. solveB. linsolveC. fsolveD. ode45答案:A4. 在MATLAB中,如何创建一个3x3的单位矩阵?A. eye(3)B. ones(3)C. zeros(3)D. identity(3)答案:A5. MATLAB中用于绘制二维图形的函数是?A. plotB. surfC. meshD. contour答案:A二、填空题(每题3分,共15分)1. MATLAB中,使用________函数可以计算矩阵的迹。
答案:trace2. 若要在MATLAB中创建一个从1到10的向量,可以使用________函数。
答案:1:103. MATLAB中,使用________函数可以计算矩阵的特征值。
答案:eig4. 若要在MATLAB中绘制一个正弦波,可以使用________函数。
答案:sin5. MATLAB中,使用________函数可以计算矩阵的逆。
答案:inv三、简答题(每题10分,共20分)1. 描述MATLAB中如何使用循环结构来计算并打印1到100之间所有奇数的和。
答案:可以使用for循环结构,初始化一个变量sum为0,然后遍历1到100之间的每个数,使用模运算符判断是否为奇数,如果是,则将其加到sum上,最后打印sum的值。
2. 简述MATLAB中如何使用条件语句来检查一个数是否为素数,并打印出所有小于100的素数。
答案:可以使用for循环遍历2到99之间的每个数,对于每个数,使用一个while循环检查它是否有除1和它本身之外的因数,如果没有,则使用if语句判断该数是否为素数,如果是,则打印该数。
MATLAB全部实验及答案
MATLAB全部实验及答案MATLAB全部实验及答案实验一、MATLAB基本操作实验内容及步骤4、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B 与A.*B?A*B就是线代里面的矩阵相乘A.*B是对应位置的元素相乘(3)设a=10,b=20;求i=a/b=0.5与j=a\b=2?(4)设a=[1 -2 3;4 5 -4;5 -6 7]请设计出程序,分别找出小于0的矩阵元素及其位置(单下标、全下标的形式),并将其单下标转换成全下标。
clear,clca=[1 -2 3;4 5 -4;5 -6 7];[x,y]=find(a<0);c=[];for i=1:length(x)c(i,1)=a(x(i),y(i));c(i,2)=x(i);c(i,3)=y(i);c(i,4)=(y(i)-1)*size(a,2)+x(i);endc(5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?前面那个是虚数矩阵,后面那个出错(6)请写出完成下列计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?a^2= 22 16 1625 26 2326 24 28a.^2=1 4 99 16 425 4 9(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X( : ) 转化为列向量(8)使用三元组方法,创建下列稀疏矩阵2 0 8 00 0 0 10 4 0 06 0 0 0方法一:clear,clcdata=[2 8 1 4 6];ir=[1 1 2 3 4 ];jc=[1 3 4 2 1];s=sparse(ir,jc,data,4,4);full(s)方法二:不用三元组法clear,clca=zeros(4,4);a(1,[1,3])=[2,8];a(2,4)=1;a(3,2)=4;a(4,1)=6;a(9)写出下列指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A>> D = A.^B5、已知+?=-334sin 234πt e y t 若需要计算t ∈[-1,1],取间隔为0.01,试计算出相对应的y 值。
数学实验matlab练习题
2015-2016数学实验练习题一、选择题1.清除Matlab工作空间(wordspace)变量的命令是( B )A. clcB. clearC. clf2. 清除当前屏幕上显示的所有内容,但不清除工作空间中的数据的命令是( A )A. clcB. clearC. clf3. 用来清除图形的命令( C )A. clcB. clearC. clf4. 在MATLAB程序中,使命令行不显示运算结果的符号是( A )A. ;B. %C. #D. &5. 在MATLAB程序中,可以将某行表示为注释行的符号是( B )A. ;B. %C. #D. &6.在循环结构中跳出循环,执行循环后面代码的命令为 ( B )A. returnB. breakC. continueD. Keyboard7.在循环结构中跳出循环,但继续下次循环的命令为( C )A. returnB. breakC. continueD. Keyboard8. MATLAB中用于声明全局变量的关键字是 ( C )A. infB. symsC. globalD. function9. 用户可以通过下面哪项获得指令的使用说明( A )A. helpB. loadC. demoD. lookfor10.在MATLAB命令窗口中键入命令S=zoros(3);可生成一个三行三列的零矩阵,如果省略了变量名S,MATLAB表现计算结果将用下面的哪一变量名做缺省变量名( A )A. ans;B. pi;C. NaN;D. Eps.11. 9/0的结果是( B )A. NAN;B. Inf;C. eps;D. 012.在MATLAB中程序或语句的执行结果都可以用不同格式显示,将数据结果显示为分数形式,用下面哪一条命令语句( D )A. format long;B. format long e;C. format bank;D. fromat rat13. 下列MATLAB命令中是构造1行3列的(-1,1)均匀分布随机矩阵的命令的是( D )A. randn(1,3);B. rand(1,3);C. ones(3);D. 以上都不对14. 产生四维元素都为1矩阵的语句为( A )A. ones(4)B. eye(4)C. zeros(4)D. rand(4)15. 用round 函数对数组[ ]取整,结果为 ( C )A. [2 6 3 8]B. [2 6 4 8]C. [2 6 4 9]D. [3 7 4 9]16. y=dsolve(‘Dy=1/(1+x^2)-2*y^2’,’y(0)=0’,’x ’); ezplot(y)的功能是( A )A. 求微分方程特解并绘图;B. 解代数方程;C. 求定积分;D.求微分方程通解.17. MATLAB 命令roots([1,0,0,-1])的功能是 ( D )A. 产生向量[1,0,0,1];B. 求方程310x +=的根;C. 求多项式31x -的值;D. 求方程310x -=的根。
数学实验(matlab)样题及参考解答
东华大学高等数学实验试题A考试时间:90分钟(附参考解答)班级 学号 姓名 得分 上机考试说明:1. 开考前可将准备程序拷到硬盘, 开考后不允许用移动盘,也不允许上网;2. 领座考生试卷不同,开卷,可利用自己备用的书和其他资料,但不允许讨论,也不允许借用其他考生的书和资料。
3. 解答(指令行,答案等)全部用笔写在考卷上。
一、 计算题(70分)要求:写出M 函数(如果需要的话)、MATLAB 指令和计算结果。
1. 解线性方程组⎪⎪⎩⎪⎪⎨⎧-=+=+--=-+=-+14235231543421431321x x x x x x x x x x x 并求系数矩阵的行列式。
指令行:A=[5 1 –1 0;1 0 3 –1;-1 –1 0 5;0 0 2 4];b=[1;2;3;-1]; x=A\b,d=det(A) 结果:x 1=1.4, x 2= -5.9, x 3=0.1, x 4= -0.3. 行列式=70.2. 设 f(x,y) = 4 sin (x 3y),求 3,22==∂∂∂y x y x f 。
指令行:syms x y; f=diff(4*sin(x^3*y),x); f=diff(f,y); f=subs(f,x,2); f=subs(f,y,3)结果:1063.63. 求方程 3x 4+4x 3-20x+5 = 0 的所有解。
指令行:roots([3 4 0 –20 5])结果:-1.5003 - 1.5470i, -1.5003 + 1.5470i, 1.4134, 0.25394. 使用两种方法求积分dx e x 210221-⎰π的近似值。
方法一:指令行:syms x; s=int(1/sqrt(2*pi)*exp(-x^2/2),0,1); vpa(s,5)结果:0.34135方法二:指令行:x=0:0.01:1; y=1/sqrt(2*pi)*exp(-x.^2/2);trapz(x,y)结果:0.3413方法三:M 函数ex4fun.mfunction f=ex4fun(x)f=1/sqrt(2*pi)*exp(-x.^2/2);指令行:s=quadl(@ex4fun,0,1)结果:0.34135. 求函数 f(x,y) = 3x 2+10y 2+3xy-3x +2y 在原点附近的一个极小值点和极小值。
matlab与数学实验的考试试题
matlab与数学实验的考试试题一、单项选择题(每题2分,共10分)1. MATLAB的全称是什么?A. Matrix LaboratoryB. Microprocessor Application ToolC. Microsoft Advanced Technology ToolD. Microprocessor Application Technology2. 在MATLAB中,以下哪个命令用于绘制函数f(x)=x^2在闭区间[0,1]上的图像?A. plot(0:1, 0:1)B. plot(0:0.01:1, 0:0.01:1)C. plot(0:1, 0:1:1)D. plot(0:0.01:1, 0.^2)3. 以下哪个MATLAB命令用于求解线性方程组?A. solveB. linsolveC. equationD. linear4. 在MATLAB中,用于生成一个3x3单位矩阵的命令是什么?A. eye(3)B. unit(3)C. identity(3)D. I(3)5. 如果变量x和y在MATLAB中分别表示为x = [1 2 3; 4 5 6] 和 y= [1; 2; 3],那么表达式x * y的结果是什么?A. [5; 15; 29]B. [14; 32; 50]C. [7; 15; 23]D. [3; 6; 9]二、简答题(每题5分,共20分)1. 简述MATLAB在数学实验中的作用和重要性。
2. 解释MATLAB中向量和矩阵的区别,并给出创建它们的基本命令。
3. 在MATLAB中,如何使用for循环生成一个从1到100的奇数向量?4. 描述在MATLAB中使用函数文件的过程,包括如何定义和调用函数。
三、编程题(每题10分,共30分)1. 编写一个MATLAB函数,该函数接受一个向量作为输入,并返回向量中所有元素的和。
```matlabfunction S = sumVector(V)% 请在此处编写代码end```2. 编写一个MATLAB脚本,该脚本生成一个5x5的随机矩阵,并计算其行列式。
MATLAB实验练习题目
MATLAB 软件使用1、特点:易学、适用范围广、功能强、开放性强、网络资源丰富;2、MA TLAB 界面介绍:命令窗Command Window ,…;3、初学者的入门演示:demo 命令;4、在线帮助命令:help 命令;1、数值计算功能【例1】计算23)]47(212[÷-⨯+的值。
(1)在MATLAB 指令窗中输入:(12+2*(7-4))/3^2 【例2】计算51)3.0sin(2+=πy 的值。
y1=2*sin(0.3*pi)/(1+sqrt(5)) 2、求导数diff(S,v) —— 求表达式S 对变量v 的一阶导数。
diff(S,v,n) —— 求表达式S 对变量v 的n 阶导数。
例:(a)、键入:A=sym('[1/(1+a),(b+x)/cos(x);1,exp(x^2)]'); diff(A,'x')得 ans = [ 0, 1/cos(x)+(b+x)/cos(x)^2*sin(x)][ 0, 2*x*exp(x^2)](b)、求sin(x)+e x 的三阶导数,键入命令:diff('sin(x)+x*exp(x)',3)得ans = -cos(x)+3*exp(x)+x*exp(x)(c)、求S 的二阶混合偏导数,其中: S = [x*sin(y), x^n+y] [1/x/y, exp(i*x*y)]则先对x 再对y 的混合偏导数。
可键入命令: S=sym('[x*sin(y),x^n+y;1/x/y,exp(i*x*y)]'); dsdxdy=diff(diff(S,'x'),'y')得dsdxdy =[ cos(y), 0][ 1/x^2/y^2, i*exp(i*x*y)-y*x*exp(i*x*y)](d)、求y=(lnx)x 的导数,可键入命令:syms x; p=(log(x))^x; p1=diff(p,'x') 得p1 = log(x)^x*(log(log(x))+1/log(x))(e)、求y=xf(x 2)的导数,可键入命令:p='x*f(x^2)'; p1=diff(p,'x') 得p1 = f(x^2)+2*x^2*D(f)(x^2)(f)、求xy=e x+y 的导数,可键入命令:p='x*y(x)-exp(x+y(x))';p1=diff(p,'x')得p1 = y(x)+x*diff(y(x),x)-(1+diff(y(x),x))*exp(x+y(x))3、求极限limit(P) ——表达式P中自变量趋于零时的极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)、 y sin x,0 x 2 ; (2)、 y (1 x 2 )1/ 2 ,1 x 1; (3)、 y cos10 x,2 x 2; (4)、 y exp(x2 ),2 x 2
2.用电压 V=10 伏的电池给电容器充电,电容器上 t 时刻的电压为
根据地图的比例我们知道 18mm 相当于 40km,试由测量数据计算该国 土的近似面积,并与它的精确值 41288km2 比较。
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
v(t)
V
(V
V0
一组 t,V 数据确定V0 和 。
t/s
0.5
)e
(
1
t
)
,其中
2
V0
是电容器的初始电压,
3
v/V 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63
实验二 常微分方程数值解试验
实验目的: 1. 用 MATLAB 软件求解微分方程,掌握 Euler 方法和龙格-库塔方法; 2. 掌握用微分方程模型解决简化的实际问题。 实验内容:
4
5
是充电常数。试由下面
7
9
华北电力大学 matlab 数学实验讲义
实验三 地图问题 1. 下图是一个国家的地图,为了计算出它的国土面积,首先对地图作如下测量:
以由西向东方向为 x 轴,由南到北方向为 y 轴,选择方便的原点,并将从最 西边界点到最东边界点在 x 轴上的区间适当地划分为若干段,在每个分点的 y 方向测出南边界点和北边界点的 y 坐标 y1 和 y2,这样就得到了表中的数 据(单位 mm)。
Matlab 数学实验
实验一 插值与拟合
实验内容: 预备知识:编制计算拉格朗日插值的 M 文件。 1. 选择一些函数,在 n 个节点上(n 不要太大,如 5 ~ 11)用拉格朗日、分段 线性、三次样条三种插值方法,计算 m 个插值点的函数值(m 要适中,如 50~100)。通过数值和图形输出,将三种插值结果与精确值进行比较。适当增加 n,再做比较,由此作初步分析。下列函数任选一种。
表一: 投资项目所需资金及预计一年后所得利润 (单位:万元)
项目编
号
A1
A2
A3
A4
投资额 6700 6600 4850 5500 5800 4200 4600 4500
预计利
1139 1056 727.5 1265 1160 714 1840 1575 润
上限 34000 27000 30000 22000 30000 23000 25000 23000
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
请帮助该公司解决以下问题:
1、1、就表一提供的数据,试问应该选取哪些项目进行投资,使得第一年所得
利润最大?
2、2、在具体对这些项目投资时,实际还会出现项目之间相互影响等情况。公
司在咨询了有关专家后,得到如下可靠信息:
1) 1)
如果同时对第 1 个和第 3 个项目投资,它们的预计利润分别为
1005 万元和 1018. 5 万元;
2
x 96 10 10 106. 111. 11 123. 136. 14 14 15 15 15
145 5 85 5 26078
y 43 37 33 28 32 65 55 54 52 50 66 66 68
1
y 12 12 12 121 121 12 116 83 81 82 86 85 68
21 4 1
华北电力大学 matlab 数学实验讲义
x 7. 10. 13. 17. 34. 40. 44. 48 56 61 68. 76. 80. 91
05 0 5 0 5 5
y 44 45 47 50 50 38 30 30 34 36 34 41 45 46
1
y 44 59 70 72 93 100 110 11 11 11 118 116 118 11
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。