基坑监测方案

合集下载

基坑监测技术方案

基坑监测技术方案

基坑监测技术方案基坑是建筑施工过程中不可避免的工程险情之一,如何有效地进行监测,发现隐患,及时调整措施,保障工程的安全性?本文将介绍基坑监测技术方案。

一、基坑监测的目的基坑是指在建筑工程中开挖的地面或地下空间,用于建筑施工或其他用途。

基坑开挖过程中,常常会涉及到地下水、岩土结构等问题,可能引发其它安全问题。

因此,进行基坑监测可以明确工程的变化及时调整建设措施,并确保工程的质量和安全。

二、常见的基坑监测技术方案1.测量法测量法采用传统的测量方法,利用仪器对基坑的各种数据进行测量。

通过对基坑周边的某些关键点(如墙体上相对位移、水平位移、沉降量等)的观测,得到基坑的变形量,及时掌握基坑的变化情况。

2.遥感技术遥感技术是通过卫星图像等技术,对建筑工程的状况进行监测。

它可以依靠大数据和软件分析技术,使用多层次、多角度监测手段,综合分析监测对象,实现全方位的建筑工程监测。

3.无人机监测技术无人机技术的应用可以在工程施工过程中实现对基坑的实时监测。

通过高清摄像头拍摄和即时传输,实现对基坑地形及其周边环境的监测,及时掌握基坑的变化,并调整施工措施。

4.传感器监测技术传感器监测技术是一种新型的监测方法,需要安装传感器模块在监测对象,例如挖掘机、混凝土泵车等,可以动态的监测设备的状态变化,通过收集基坑周边各种数据,实现基坑变化的高精度、高效率监测。

三、基坑监测技术方案的实现实现基坑监测技术方案需要从以下几个方面入手:1.规划设计方案,提前设计好基坑监测方案,明确监测的目标与方法。

2.确定监测方法与工具。

根据基坑的不同情况(地质条件、基坑的大小、开挖深度及周边环境等因素)选择合适的监测方法和工具。

3.安装好相应的仪器设备。

无论是传感器、测量设备、还是遥感技术,都需要进行相应的设备安装工作,将其定位到合适的位置。

4.监测数据的采集和处理。

通过设备采集到的数据,进行分类、整理、分析和处理,并将处理后的数据反馈给项目监理方、工程负责人和建设方等相关人员,以调整工程进展和方案。

基坑监测方案

基坑监测方案

基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。

为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。

本文将就基坑监测方案进行详细介绍。

二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。

监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。

2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。

3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。

4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。

三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。

本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。

(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。

(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。

(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。

2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。

(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。

四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。

基坑工程现场监测方案

基坑工程现场监测方案

基坑工程现场监测方案一、前言基坑工程是指在承载土体的工程基础体系周围凿挖一定的深度和宽度,以满足地下空间利用要求的一种工程。

其施工过程中可能存在土体塑性变形、地下水位变化、地下管线和建筑物变形等多种风险,因此需要对其现场进行全面的监测,及时掌握施工情况,保障工程顺利进行。

二、监测目标基坑工程的监测目标主要包括以下几个方面:1、土体变形监测:监测基坑周边土体的沉降变形情况,及时发现并控制土体的变形,防止地质灾害发生。

2、地下水位监测:监测基坑周边地下水位的变化情况,控制基坑内的地下水位在合理范围内,避免基坑水灾发生。

3、地下管线监测:监测基坑周边地下管线的变形情况,控制地下管线的变形,防止对施工安全造成影响。

4、建筑物变形监测:监测基坑周边建筑物的倾斜、裂缝等变形情况,确保周边建筑物的安全。

5、施工工艺参数监测:监测基坑支护结构的变形、应力、变形等参数,保障支护结构的稳定性。

三、监测方案1、土体变形监测:采用全站仪、GPS、精度水准仪等仪器对基坑周边土体进行定点观测,记录土体的沉降、水平位移、倾斜等信息,检测变形情况。

对于变形较大的地点,可采用测量点云技术,实时监测土体的三维形变情况。

2、地下水位监测:利用水位计、压力计对基坑周边的不同深度和位置进行地下水位的监测,并且建立水位监测井,实时监测地下水位的变化情况。

同时,采用地下水位自动监测系统,可以实时监测并记录地下水位的变化。

3、地下管线监测:采用地下管线监测仪器对基坑周边的地下管线进行监测,记录管线的变形、位移等信息,及时发现问题并采取相应的措施。

4、建筑物变形监测:采用倾斜仪、位移监测仪等仪器对基坑周边的建筑物进行倾斜、位移等变形情况的监测,确保建筑物的安全。

5、施工工艺参数监测:采用应力应变计、变形仪器、位移传感器等仪器对基坑支护结构进行监测,记录支护结构的变形、位移、应力等参数,及时掌握支护结构的稳定性。

四、监测频次1、土体变形监测:根据基坑的深度和地质条件,制定不同监测频次,一般情况下,每日至少监测一次,夜间施工时,应加强监测频次。

基坑工程监测检测方案

基坑工程监测检测方案

基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。

在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。

本文将针对基坑工程的监测检测方案进行详细的介绍。

二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。

三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。

可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。

2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。

可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。

3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。

可以采用应变计、位移计等仪器进行实时监测。

4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。

可以通过长期监测和数据分析,掌握地下水位的变化规律。

5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。

可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。

四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。

这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。

2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。

可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。

3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。

可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。

基坑工程监测技术方案

基坑工程监测技术方案

基坑工程监测技术方案一、前言基坑工程是指为了建设地下结构或地下工程而在地面上开挖出的深坑,如地下车库、地下商场、地下室等。

在基坑工程施工过程中,要保证施工过程稳定安全,必须对基坑周边的地下水位、基坑变形、邻近建筑物或地下管线等进行严密监测。

基坑工程中的监测技术在施工和使用阶段起到至关重要的作用。

本文就基坑工程监测技术方案进行讨论。

二、基坑工程监测内容基坑工程监测内容主要包括以下几个方面:1. 地下水位监测:考虑到基坑周围地下水的波动对基坑稳定性的影响,需对周边地下水位进行监测,掌握地下水位的变化范围和趋势。

2. 基坑变形监测:基坑挖掘深度增加时,土体受到变形应力的影响,从而引起土体变形。

因此,需要监测基坑边坡的位移和变形情况。

3. 周边建筑物和地下管线监测:基坑开挖对周边建筑物和地下管线会产生影响,需监测周边建筑物和地下管线变化情况。

以上监测内容对基坑工程的施工和使用阶段都至关重要。

三、基坑工程监测技术方案1. 地下水位监测技术方案地下水位监测一般采用水位计或压力传感器进行监测。

监测点分布需覆盖基坑周边,监测频率一般为每日至每周。

监测数据通过无线传输至监测中心,并及时进行分析与处理。

在发现异常情况时,及时采取相应措施。

2. 基坑变形监测技术方案基坑变形监测可采用全站仪、测斜仪等设备进行监测。

设立监测点布设需均匀,以获取较为准确的数据。

监测频率根据施工情况和地质条件而定,一般监测频率为每日至每周。

监测数据传输至监测中心,并进行实时监测和分析。

3. 周边建筑物和地下管线监测技术方案周边建筑物和地下管线监测可采用全站仪、测斜仪等设备进行监测。

设立监测点分布需合理,监测频率一般为每周至每月。

监测数据传输至监测中心,并进行分析和处理。

四、基坑工程监测数据分析与应用监测数据的分析和应用是基坑工程的关键环节。

监测数据的实时分析可以预警和预防基坑工程中可能出现的安全隐患,从而采取相应的控制措施。

1. 地下水位监测数据分析与应用地下水位监测数据的分析可以帮助预测地下水位的变化趋势,及时发现地下水位异常变动的可能性。

基坑工程监测方案完整版

基坑工程监测方案完整版

基坑工程监测方案完整版一:(详细版)基坑工程监测方案完整版一、前言本旨在规划基坑工程的监测方案,确保施工过程中的安全和质量。

本方案详细介绍了监测的目的、内容、方法及具体实施步骤,以供参考。

二、监测目的基坑工程的监测目的是为了及时掌握基坑工程施工过程中的变形和破坏情况,预测和评估可能带来的风险,并采取相应的措施以确保工程的顺利进行。

三、监测内容1. 地面沉降监测地面沉降监测旨在记录基坑周围地面的垂直位移情况,以评估基坑开挖对周边建造物和地下管线的影响。

2. 基坑顶部水平位移监测基坑顶部水平位移监测旨在记录基坑各个部位的水平位移情况,以评估基坑结构的稳定性。

3. 地下水位监测地下水位监测旨在记录基坑周围地下水位的变化情况,以评估基坑排水系统的效果。

4. 基坑支护结构变形监测基坑支护结构变形监测旨在记录基坑支护结构的变形情况,以评估支护结构的稳定性。

五、实施步骤1. 建立监测点根据监测内容确定监测点的位置,并进行标记和记录。

2. 部署监测仪器根据监测内容选择合适的监测仪器,并按照要求进行部署和安装。

3. 数据采集和处理定期对监测仪器进行数据采集,并对数据进行处理和分析,监测报告。

4. 监测报告及时反馈及时将监测报告反馈给相关责任方,并提供相应的建议和措施。

六、附件本所涉及附件如下:1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》:指中华人民共和国建造领域的专门法律法规。

2.《施工安全管理条例》:指中华人民共和国施工领域的专门法律法规。

二:(简洁版)基坑工程监测方案完整版一、前言本为基坑工程监测方案,旨在确保工程施工过程的安全和质量。

详细介绍了监测的目的、内容、方法及实施步骤。

二、监测目的基坑工程监测的目的是为了及时掌握工程变形和破坏情况,预测风险并采取措施,确保工程顺利进行。

三、监测内容1. 地面沉降监测2. 基坑顶部水平位移监测3. 地下水位监测4. 基坑支护结构变形监测五、实施步骤1. 建立监测点2. 部署监测仪器3. 数据采集和处理4. 监测报告及时反馈六、附件1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》2.《施工安全管理条例》。

基坑监测方案

基坑监测方案

基坑监测方案基坑监测是在建筑施工阶段对基坑周边土体和工程结构进行实时监测和评估的重要工作。

本文将介绍一个基坑监测方案,其中包括监测目的、监测内容、监测方法和监测频率等方面的内容。

一、监测目的基坑监测的主要目的是确保施工过程中的安全性和稳定性,及时发现并预防潜在的安全风险。

具体的目的如下:1. 评估基坑围护结构的稳定性,判断是否存在下沉或倾斜等问题;2. 监测基坑周边土体的变形情况,了解土体的工程性质和变化趋势;3. 检测地下水位的变化,控制水位对基坑的影响;4. 监测基坑开挖工序中的土方量,确保施工进度的正常进行。

二、监测内容基坑监测的内容主要包括以下几个方面:1. 基坑围护结构的变形监测:通过安装位移传感器等监测设备,实时监测基坑围护结构的下沉、倾斜和变形情况。

2. 基坑周边土体的变形监测:通过土壤应变计、浸润计等监测设备,监测土体的应变、变形和稳定性。

3. 地下水位的监测:通过水位监测井和水位传感器等设备,监测地下水位的变化情况,及时采取控制措施。

4. 土方量的测量:通过挖掘机上的土重计等设备,实时测量基坑开挖工序中的土方量,掌握施工进度。

三、监测方法基坑监测可以利用传统的实地测量与现代化的自动化监测相结合的方式进行。

具体的监测方法如下:1. 传统实地测量:包括使用测量仪器进行位移测量、水位测量和土方量测量等。

2. 自动化监测:采用自动化仪器和传感器进行监测,通过数据采集和传输系统实现远程实时监测。

四、监测频率基坑监测的频率需要根据具体施工情况和工程要求来确定。

一般情况下,应进行定期监测和临时监测相结合的方式,根据实际情况进行调整。

1. 定期监测:按照工程进度和要求,每隔一定时间进行监测,如每周、每月或每季度进行一次。

2. 临时监测:在施工过程中,发现异常情况或关键节点时,及时进行监测,以确保施工的安全进行。

总结:基坑监测方案是基坑工程的重要组成部分,能够帮助工程人员及时了解工程的安全状况和土体变化情况,为施工过程提供科学的依据和指导。

基坑监测监控方案

基坑监测监控方案

基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。

通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。

一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。

基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。

2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。

混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。

此后可每周观测一次至回填土完工。

3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。

4、当有危险事故征兆时,应连续监测。

二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。

2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。

4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。

基坑监测方案

基坑监测方案

基坑监测方案基坑监测方案随着城市建设的不断发展,基坑开挖成为了常见的施工工程。

然而,基坑开挖工程往往涉及到大量的土方开挖和支护工作,如果不加以科学合理的监测和控制,很容易引起地质灾害和安全事故。

因此,制定一套科学可行的基坑监测方案至关重要。

基坑监测方案应包括以下几个方面的内容:1. 目标:明确监测的目标是保障施工安全、防止地质灾害,还是为了科学研究和数据采集。

2. 监测内容:明确监测的内容,包括基坑变形、沉降、地下水位、地下水压力以及周围建筑物的变形等等。

3. 监测方法:采用合适的监测方法和仪器设备进行监测,如测量仪器、振动计、裂缝计、岩土仪器等。

并针对监测内容选择具体的监测项目和参数。

4. 监测时间和频率:明确监测的时间和频率,一般来说,基坑的监测应从施工前开始,并根据施工的不同阶段进行监测,如开挖阶段、支护阶段、回填阶段等。

5. 监测数据处理和分析:监测数据的处理和分析对于及时发现问题和预测趋势非常重要。

可以通过建立数据库,进行数据收集、整理和分析,包括数据的可视化表达,如图表、曲线等。

6. 预警和应急措施:针对监测数据的异常情况,制定相应的预警机制和应急措施,如超过安全阈值时的报警、紧急停工等。

7. 监测报告和沟通交流:定期编写监测报告,对监测结果进行总结和评价,并及时与相关方进行交流和沟通,包括建设单位、设计院、监理单位等。

最后,制定基坑监测方案还需要考虑到地质情况、工程规模、施工条件等因素,确保监测方案的可行性和有效性。

同时在实施过程中要不断对方案进行修正和完善,以适应实际工程的需求。

基坑监测方案的制定和实施,可以为基坑工程的安全施工和可持续发展提供重要依据和技术支持。

基坑监测技术方案

基坑监测技术方案

基坑监测技术方案1.监测目标:基坑监测技术方案的首要目标是对基坑周围环境、土体变形、地下水位等进行全面监测,以确保基坑施工过程中所处位置的稳定性和可靠性。

2.监测手段:(1)GPS监测:利用全球定位系统(GPS)技术,对基坑及周围环境的位置进行准确的测量。

通过与基准点相连,可以监测基坑位置是否发生变化。

(2)建筑物监测:利用激光测距仪、倾斜仪等设备,对周围建筑物的变形和位移进行实时监测,以避免施工活动对建筑物造成不可逆的损坏。

(3)地下水位监测:通过设置水位观测井,利用水位传感器测量地下水位的变化情况,及时掌握基坑附近地下水的动态变化,并采取相应的措施。

(4)地面沉降监测:通过安装变形传感器,测量地面的沉降情况,及时发现和解决可能导致严重后果的地面沉降问题。

(5)土体应力监测:通过安装应力应变传感器,对基坑周围土体的应力情况进行实时监测,以及时采取支护措施。

3.监测频率和方式:(1)预施工监测:在基坑施工前进行一次全面的预施工监测,确定施工前的各种数据,作为后续施工的参考依据。

(2)施工过程监测:在基坑施工过程中,周期性地对基坑及周围的环境进行监测,频率根据工程的大小和特点而定,以及时掌握施工过程中的变化情况。

(3)施工结束后监测:施工完成后,对基坑及周围环境进行最后一次全面监测,评估工程施工的效果和影响以及后续治理等工作。

4.监测数据处理和分析:监测到的数据需要进行处理和分析,以判断是否出现危险情况。

可以使用数据处理软件和数学模型来辅助分析,对数据进行图形展示、数据统计和挖掘,以辅助决策和预测。

5.信息报告和预警机制:基于监测数据的分析结果,及时编制监测报告,对施工过程中出现的问题进行详细描述,并提出改进建议和预警措施。

报告内容包括监测数据的整理和分析、监测过程中出现的问题和解决方案等。

综上所述,基坑监测技术方案是确保基坑施工安全和质量的重要手段,通过多种监测手段对基坑及周围环境的变化进行实时监测和分析处理,并及时采取相应的措施,以确保基坑施工过程的安全可靠性。

基坑监测方案

基坑监测方案

基坑监测方案随着城市化进程的加快,高层建筑、地铁、隧道等大型工程项目的兴建日益频繁,而这些工程往往需要进行基坑开挖。

然而,基坑开挖常常伴随着各种风险和安全隐患,因此,基坑监测方案的制定和实施显得尤为重要。

一、背景介绍基坑监测方案是指在基坑开挖过程中,通过科学、有效的监测手段和技术手段对基坑周边环境进行实时监测,以便及时发现并预防可能出现的安全问题。

一旦出现问题,可以及时采取相应的措施进行处理。

二、监测目标基坑监测方案的首要目标是确保工程施工期间的安全。

具体来说,监测目标可以包括但不限于以下几个方面:1. 土壤变形监测:监测基坑周围土壤的变形情况,包括沉降、位移、开裂等情况。

这对于评估基坑对周边土壤的影响以及判断土壤的稳定性至关重要。

2. 地下水位监测:监测基坑周边地下水位的变化,以确保基坑附近的地下水不会对施工工艺造成不利影响,并及时采取防水措施。

3. 结构物安全监测:如果基坑周围存在重要的地下管线、建筑物等结构物,应通过监测确保这些结构物不会受到基坑开挖的影响,以防止发生事故。

4. 监测装置及设备工作情况监测:保证监测装置及设备在运行过程中的稳定性和准确性,及时发现并修复故障,确保监测结果的可靠性。

三、监测方法与技术为了实现基坑监测的目标,需要采用合适的监测方法和技术手段。

常见的基坑监测方法包括但不限于:1. 立体测量法:通过安装精密测量仪器,如全站仪、激光测距仪等,对周围土壤和结构物进行立体坐标测量和监测,以获得精确的数据。

2. 岩土力学试验:通过采取取样、试验等方式,对周边土壤进行力学性质的测试,以评估土壤的工程性质和稳定性,为基坑开挖提供科学依据。

3. 遥感监测:利用卫星遥感技术,通过遥感影像和数据,对基坑周边的地形、水位等进行监测和分析,以快速获取准确的监测信息。

四、监测方案执行制定基坑监测方案后,需要按照方案执行,监测工作才能发挥最大的效果。

执行过程中应注意以下几个方面:1. 安装合适的监测装置:根据监测目标和技术要求,选择和安装适当的监测装置,如测斜仪、应变计、电测仪等。

基坑支护工程监测方案

基坑支护工程监测方案

基坑支护工程监测方案一、基坑支护工程监测方案1.监测目的(1)监测基坑开挖过程中的变形情况,及时发现并处理可能存在的变形加剧或者失稳的情况。

(2)监测基坑支护结构的施工质量,及时发现并处理支护结构的裂缝、位移等问题。

(3)监测基坑开挖和支护过程中的地下水位变化情况,确保地下水位对支护结构的影响在合理范围内。

(4)监测基坑支护工程对周边建筑物、管线等的影响,确保不会对周边环境造成负面影响。

2.监测内容(1)基坑开挖过程的变形监测,包括土体沉降、支护结构位移、裂缝变化等情况。

(2)基坑支护结构施工过程的监测,包括混凝土浇筑质量、支护结构内力变化、裂缝情况等。

(3)地下水位监测,主要是为了了解地下水位的变化情况,及时调整排水和抗渗措施。

(4)周边建筑物、管线等的影响监测,主要是为了了解基坑支护工程对周边环境的影响情况。

3.监测方法(1)基坑开挖过程的变形监测,可以采用测量仪器进行实时监测,如全站仪、测斜仪、倾角仪等。

(2)基坑支护结构施工过程的监测,可以采用超声波检测仪、裂缝位移计等仪器进行实时监测。

(3)地下水位监测,可以采用水位计进行实时监测。

(4)周边建筑物、管线等的影响监测,可以采用激光测距仪、地震波等仪器进行实时监测。

4.监测频率(1)基坑开挖过程的变形监测,每天至少进行一次监测,发现异常情况要及时处理。

(2)基坑支护结构施工过程的监测,根据施工进度和情况进行不定期监测,发现问题及时处理。

(3)地下水位监测,每天至少进行一次监测,根据地下水位变化情况适时调整排水和抗渗措施。

(4)周边建筑物、管线等的影响监测,根据实际情况进行不定期监测,及时发现问题并处理。

二、监测结果处理1.监测结果的处理(1)基坑开挖过程的变形监测结果要及时分析,如发现异常情况要立即停止开挖,并做好防护措施。

(2)基坑支护结构施工过程的监测结果要及时分析,如发现支护结构存在问题要及时调整施工方案,并进行补救措施。

(3)地下水位监测结果要及时分析,根据地下水位变化情况适时调整排水和抗渗措施。

基坑监测方案范文

基坑监测方案范文

基坑监测方案范文一、背景与目的基坑工程是城市建设中不可或缺的一环,然而基坑工程中存在着一定的风险,如土层不稳、地下水位变化等,这些因素都可能导致基坑工程的安全隐患。

因此,为了确保基坑工程的施工安全,需要制定一套完善的基坑监测方案,及时发现并处理潜在的风险。

二、监测内容和方法1.土层稳定性监测:采用地面测斜仪对基坑周边土层的变形进行监测,以及使用倾斜计对基坑周边建筑物的倾斜情况进行监测。

如果发现土层发生变形或建筑物倾斜超出了允许范围,需要及时采取措施加固土层或修复建筑物。

2.地下水位监测:通过在基坑内安装水位计观测地下水位的变化,监测地下水位是否超过了设计要求的安全范围。

如若超出,需要采取相应的排水措施,控制地下水的涌入。

3.基坑周边环境监测:包括监测附近地表的沉降情况、环境噪声、震动等因素对基坑工程的影响。

通过这些监测指标的评估,能够及时发现异常情况并提出合理的解决方案。

4.施工过程监测:对基坑的开挖、土方填筑、支护结构施工等各个环节进行实时监测,以便及时调整施工方案、减少风险发生的可能性。

三、监测设备和技术1.地面测斜仪:地面测斜仪是一种通过测量地面上各个点的变形量来判断土层稳定性的仪器。

它能够实时监测土层的变形情况,并通过数据分析给出预警。

2.倾斜计:倾斜计能够测量基坑周边建筑物的倾斜情况,以及墙体的变形情况。

通过倾斜计的监测,能够及时发现墙体的变形情况,并采取相应的修复措施。

3.水位计:水位计是监测地下水位变化的主要设备,通过实时测量地下水位的高低来判断基坑周边的地下水变化情况。

4.环境监测仪器:包括沉降监测仪、噪声监测仪、震动监测仪等,用于监测基坑周边环境的变化情况。

四、监测频率与执行机构1.土层稳定性监测:根据施工进度和土层情况的变化,每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。

2.地下水位监测:根据地下水位变化的情况,每日或每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。

基坑监测方案

基坑监测方案

基坑监测方案一、工程概述本次基坑工程位于具体地点,周边环境较为复杂,有相邻建筑物、道路、地下管线等情况。

基坑开挖深度为具体深度,面积约为具体面积。

二、监测目的1、及时掌握基坑围护结构和周边环境的变形及受力情况,确保施工安全。

2、为优化设计和施工方案提供依据,实现信息化施工。

3、对可能发生的危险情况进行预警,提前采取防范措施。

三、监测内容1、围护结构水平位移监测在围护结构顶部设置监测点,采用全站仪或经纬仪进行观测,监测其水平位移变化情况。

2、围护结构竖向位移监测使用水准仪对围护结构顶部的监测点进行竖向位移观测。

3、深层水平位移监测在围护结构内埋设测斜管,通过测斜仪测量深层水平位移。

4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。

5、地下水位监测在基坑周边设置水位观测井,使用水位计测量地下水位的变化。

6、周边建筑物沉降及倾斜监测在周边建筑物上设置沉降观测点和倾斜观测点,分别采用水准仪和全站仪进行观测。

7、周边道路及地下管线沉降监测在道路和地下管线上设置监测点,使用水准仪进行沉降观测。

四、监测点布置1、围护结构水平位移和竖向位移监测点沿基坑周边每隔具体间距布置一个监测点。

2、深层水平位移监测点在基坑的关键部位,如阳角、阴角等,每隔具体间距布置一个测斜管。

3、支撑轴力监测点选择受力较大的支撑构件,每隔具体间距布置一个轴力计。

4、地下水位监测点在基坑周边每隔具体间距布置一个水位观测井。

5、周边建筑物沉降及倾斜监测点在建筑物的四角、大转角处及沿外墙每具体间距布置一个沉降观测点,倾斜观测点布置在建筑物的顶部和底部。

6、周边道路及地下管线沉降监测点根据道路和地下管线的走向,每隔具体间距布置一个监测点。

五、监测频率1、基坑开挖期间,每天监测 1 次。

2、底板浇筑完成后,每 2-3 天监测 1 次。

3、主体结构施工期间,每周监测 1-2 次。

4、当监测数据变化较大或遇暴雨等恶劣天气时,应加密监测频率。

六、监测报警值1、围护结构水平位移和竖向位移报警值累计位移达到具体数值或单日位移达到具体数值。

基坑工程的监测方案

基坑工程的监测方案

基坑工程的监测方案一、前言随着城市建设规模的扩大以及土地资源的有限性,挖掘深度较大的基坑工程越来越多地出现在城市规划中。

基坑工程的安全稳定性直接影响到周边建筑、道路和地下管线等设施的安全。

因此,在基坑工程施工过程中,进行全面、及时、有效的监测尤为重要。

基坑工程的监测旨在实时掌握基坑周边地下和地表的变化情况,为施工过程中出现的问题提供可靠的依据,保障基坑结构的安全稳定。

本文旨在就基坑工程监测方案进行深入探讨,为工程监测提供可行的技术方案。

二、基坑工程监测的目的1. 掌握基坑周边地下和地表变化情况,对监测结果进行实时分析。

2. 提前发现基坑支护结构的变形和破坏情况,及时采取有效的措施进行补救。

3. 为基坑工程施工提供技术支撑和参考,确保工程施工安全、稳定。

4. 提供基坑工程施工监测数据支持,为基坑工程验收提供科学依据。

三、基坑工程监测的内容1. 地表沉降监测:主要监测基坑工程周边地表的沉降情况,以及是否存在沉降过快或过大的情况。

2. 基坑支护结构变形监测:监测基坑支护结构的变形情况,如钢支撑的变形、混凝土墙体的变形等。

3. 地下水位监测:监测地下水位的变化情况,以及是否存在地下水涌现的情况。

4. 基坑周边建筑、道路和地下管线的变形监测:监测周边建筑、道路和地下管线的变形情况,以及是否受到基坑工程影响。

5. 地下管线位移监测:监测地下管线的位移情况,确保基坑施工对地下管线没有破坏或影响。

四、基坑工程监测的方法1. 地表沉降监测方法:采用测量仪器进行地表沉降监测,如激光水准仪、全站仪等,通过定点观测的方式,对地表沉降情况进行实时监测。

2. 基坑支护结构变形监测方法:采用位移传感器和应变传感器进行基坑支护结构的变形监测,如应变片、拉线式位移计等,通过布设在支撑结构上的传感器,实时监测支撑结构的变形情况。

3. 地下水位监测方法:采用水位计和井内观测仪器进行地下水位监测,如浮子式水位计、井内水准仪等,通过在井内布设测量仪器,实时监测地下水位的变化情况。

基坑工程内力监测方案

基坑工程内力监测方案

基坑工程内力监测方案一、基坑工程内力监测的意义在基坑工程施工过程中,由于土壤的支护结构和周围环境的影响,基坑工程的内力状况会发生变化,可能会出现土体变形、墙壁倾斜、水平位移等情况。

因此,基坑工程内力监测的意义在于及时发现基坑工程的内力变化趋势,为施工方提供及时的反馈信息,采取相应的措施,以保证基坑工程的稳定性和安全性。

二、基坑工程内力监测方案的内容1. 监测对象基坑工程内力监测的对象主要包括土体变形、墙壁倾斜、水平位移等情况。

其中,土体变形主要指土体的沉降、变形和收缩,墙壁倾斜主要是指各种支护结构的倾斜情况,水平位移主要是指基坑工程周围环境的水平位移情况。

2. 监测方法基坑工程内力监测的方法主要包括传统测量方法和现代监测技术两种。

传统测量方法主要包括测量孔、水准测量、定位测量等;现代监测技术主要包括全站仪监测、GPS监测、遥感监测等。

3. 监测频率基坑工程内力监测的频率主要根据基坑工程的施工进度和环境变化情况确定。

一般情况下,基坑工程内力监测的频率为每天一次或者每周一次。

4. 监测技术基坑工程内力监测的技术主要包括传感器技术、数据采集技术和数据处理技术。

其中,传感器技术主要是通过安装传感器来监测土体变形、墙壁倾斜、水平位移等情况;数据采集技术主要是通过数据采集设备来采集监测数据;数据处理技术主要是通过计算机软件来处理监测数据。

5. 监测报告基坑工程内力监测的报告主要包括监测数据、监测结果和监测建议三部分。

其中,监测数据主要是监测设备采集到的监测数据;监测结果主要是基于监测数据得出的基坑工程内力情况;监测建议主要是根据监测结果提出的相应建议。

三、基坑工程内力监测方案的实施步骤1. 制定监测计划首先,需要根据基坑工程的实际情况制定监测计划,确定监测的对象、方法、频率、技术和报告内容等。

2. 安装监测设备其次,需要安装监测设备,包括传感器、数据采集设备和数据处理设备等,确保监测设备的正常运行。

3. 进行监测然后,需要进行监测工作,采集监测数据,及时发现基坑工程的内力变化趋势。

基坑监测技术方案

基坑监测技术方案

基坑监测技术方案一、简介基坑在工程建设中扮演着重要的角色,然而,基坑带来的地质灾害和安全隐患也不可忽视。

为了确保基坑施工的安全性和稳定性,监测技术成为必不可少的环节。

本文将介绍基坑监测技术的方案,以确保工程施工的顺利进行。

二、监测目标基坑监测技术的主要目标是监测基坑周围地质环境及基坑内部土体的变形情况,以及周围地下水位的变化。

通过监测数据的分析和评估,及时发现和预测可能存在的地质灾害和安全隐患,为施工人员提供及时的决策依据。

三、监测方法1. 地质环境监测地质环境监测主要通过地下水位监测、土壤水分监测和地表变位监测来实现。

其中,地下水位监测可采用压力式水位计进行实时监测,土壤水分监测则可使用TDR(时域反射)仪器进行定期测量,地表变位监测则可借助全站仪等设备进行高精度测量。

2. 建筑物变形监测建筑物变形监测主要针对基坑周围的建筑物,通过使用测斜仪、全站仪等设备进行定期监测,以获取建筑物变形的趋势和规律。

同时,也可使用静力水准仪和GNSS技术对建筑物的沉降进行监测,确保施工过程中不会对周围建筑物产生不良影响。

3. 填土与围护结构监测填土与围护结构监测主要关注填土体和围护结构的变形和变位情况,以及土体的压缩性和固结性。

监测方法包括墙体应力检测、土压力检测、土体应变检测等,常用的设备有应力计、测压计和应变计等。

四、监测数据处理与评估监测数据的处理与评估是保证监测方案的有效性的关键步骤。

通过采集的监测数据,可以对基坑周围环境的地质特征和变化情况进行分析和评估,判断是否存在地质灾害和危险隐患。

同时,根据监测数据的结果,及时调整施工方案,并采取相应的措施来保障工程的安全进行。

五、监测报告和预警机制基坑监测技术方案的最终目标是及时准确地提供监测结果,并根据监测结果制定相应的应对措施。

通过定期编制监测报告,全面记录监测数据和分析结果,并向相关人员进行通报。

另外,建立预警机制,当监测数据超出预警值时,及时发出警报以引起注意,并采取紧急措施以确保人员的安全。

基坑监测技术方案及预算

基坑监测技术方案及预算

基坑监测技术方案及预算一、技术方案1.地下水位监测:通过在基坑周边埋设水位监测管,在管道内安装水位计,实时测量地下水位的变化情况。

可以监测地下水位的高度、水位的变动速率等,便于及时采取必要的措施。

2.地表沉降监测:通过在基坑周边埋设沉降监测点,利用沉降仪测量监测点的垂直位移,以监测地表沉降的情况。

可以实时掌握地表沉降的速率和量值,及时发现异常情况。

3.土体位移监测:通过在基坑边坡或周边埋设位移监测点,利用位移传感器测量监测点的水平和垂直位移,以监测土体的变形情况。

可以及时发现土体的下移、侧移等异常情况,并采取相应的控制措施。

4.基坑周边环境监测:通过安装环境监测仪器,监测基坑周边的环境因素,如气温、湿度、风速等,以及周边建筑物的振动情况,以确保施工过程中的环境安全。

二、预算1.设备预算:根据监测范围和要求,预计需要购买地下水位监测仪器、沉降仪、位移传感器、环境监测仪器等。

这些设备的价格在几千到几万不等,预算约为10万元至50万元。

2.人员费用:需要专业的监测人员进行设备的安装、数据的采集和分析等工作。

根据监测项目的规模和周期,需要相应数量的人员,并计算其工时费用。

预算约为5万元至20万元。

3.数据存储和管理费用:基坑监测需要实时监测并保存大量的数据,需要购买专业的数据存储设备和软件,以及相关的数据管理和分析服务。

预算约为5万元至10万元。

4.其他费用:包括设备维护费用、差旅费用等。

根据具体情况进行预算。

预算约为5万元至10万元。

综上所述,基坑监测技术方案及预算大致在30万元至100万元之间,具体的预算还需要根据具体的监测范围和要求进行详细计算和确定。

基坑监测方案及技术措施

基坑监测方案及技术措施

(一)基坑监测方案及技术措施1、监测目的1.使参建各方能够彻底客观真实地把握工程质量,掌握工程各部份的关键性指标,确保工程安全;2.在施工过程中通过实测数据检验工程设计所采取的各种假设和参数的正确性,及时改进施工技术或者调整设计参数以取得良好的工程效果;3.对可能发生危机基坑工程本体和周边环境安全的隐患进行及时、准确的预报,确保基坑结构和相邻环境的安全;4 .积累工程经验,为提高基坑工程的设计和施工整体水平提供基础数据支持。

2、监测原则(1)基坑工程监测基本原则1.监测数据必须是可靠真正的,数据的可靠性由测试元件安装或者埋设的可靠性、监测仪器的精度以及监测人员的素质来保证。

监测数据真实性要求所有数据必须以原始记录为依据,任何人不得篡改、删除原始记录;2.监测数据必须是及时的,监测数据需在现场及时计算处理,发生有问题可及时复测,做到当天测、当天反馈;3.对所有检测项目,应按照工程具体情况预先设定预警值和报警制度,预警体系包括变形或者内力积累值及其变化速率;4.监测应整理完整监测记录表、数据报表、形象的图表和曲线,监测结束后整理出监测报告。

3、监测基点的布设及仪器配备(1)变形监测基准点、工作基点布设要求1.至少有3 个稳定、可靠的基准点。

2 .工作基准点选在相对稳定和方便使用的位置。

在通视条件良好、距离较近、观测项目较少的情况下,可直接将基准点作为工作基点。

3 .监测期间,应定期检查工作基点和基准点的稳定性。

(2)监测仪器与使用根据《中华人民共和国国家标准•工程测量规范GB50026-2022》(以下简称《规范GB50026-2022》)中的有关规定,结合《中华人民共和国行业标准•建造变形测量规范JGJ/T 8-2022》(以下简称《规程JGJ/T 8-2022》)中的有关内容,选择安全监测仪器及施测方法。

1 .基坑侧壁的水平位移采用测斜仪监测;2.建造物及地面(路面)的沉降监测采用DS05 级水准仪、测微器,配合铟钢尺,按测微法施测;3.地下水水位应经过检定的长度量具施测,执行《建造基坑支护技术规程》(JGJ120-2022) 8.3.9 条有关规定;观测精度不宜低于10mm。

基坑监测方案2024

基坑监测方案2024

引言:概述:正文内容:1. 地质勘察与监测1.1. 地质调查与分析:对基坑所在地区的地质情况进行详细的调查和分析,了解地层结构、土壤条件、地下水位等因素,为后续监测工作提供依据。

1.2. 地质灾害风险评估:根据地质调查结果,对基坑所处地区的地质灾害潜在风险进行评估,确定监测的重点和方向。

1.3. 地下水位监测:通过布置地下水位监测孔,实时监测地下水位的变化情况,及时掌握基坑水平。

1.4. 地质灾害预警:根据地质灾害风险评估和监测数据,制定相应的预警方案,一旦发生地质灾害,可以及时采取措施避免危害。

2. 土体变形监测2.1. 支撑结构监测:对基坑周边支撑结构进行安装应变计、水平位移仪等监测设备,监测支撑结构的变形情况,确保其稳定性。

2.2. 土体位移监测:通过安装监测孔和地表应变测量点,实时监测土体位移的情况,及时掌握基坑变形情况,确保工程的稳定进行。

3. 土体力学参数监测3.1. 土压力监测:通过安装土压力计,实时监测基坑周边土体的压力变化情况,判断土体与支撑结构之间的相互作用。

3.2. 土体力学参数测试:采集土体样本,进行室内试验,获取土体的力学参数,为工程施工提供依据。

3.3. 强度指标监测:对于基坑周边土体的强度指标进行实时监测,及时发现并解决可能出现的强度问题。

4. 建筑物变形监测4.1. 建筑物结构监测:通过安装挠度计、应变计等监测设备,实时监测建筑物结构的变形情况,确保其稳定性和安全性。

4.2. 建筑物沉降监测:通过设置沉降点,实时监测建筑物的沉降情况,及时掌握建筑物沉降的速度和变化趋势。

5. 施工期基坑开挖监测5.1. 土方开挖监测:通过地下位移监测仪和支护结构监测点,实时监测土方开挖过程中的变形情况,预测土方塌陷风险。

5.2. 施工振动监测:通过振动传感器,实时监测施工过程中的振动情况,确保施工振动对周边建筑物和土体的影响控制在合理范围内。

总结:基坑监测方案是保障基坑工程施工安全和顺利进行的重要措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中冶交通建设集团有限公司四平市海绵城市建设中心城区雨污分流改造工程基坑监测方案编制人:审核人:批准人:中冶交通建设集团有限公司四平市海绵城市建设中心城区雨污分流改造工程2017 年 8 月目录1、工程概况 (1)2、基坑施工环境 (1)3、监测依据及目的 (1)3.1 监测依据 (1)3.2 监测目的 (1)4、基坑安全等级以及材料使用 (2)5、监测人员配备 (2)6、监测仪器设备及检定要求 (3)7、监测项目 (3)8、主要检测方法 (3)8.1 钢板桩顶水平位移及竖直位移监测 (4)8.2 钢板桩变形监测 (4)8.3 管内支撑应力/变形监测 (5)8.4 基坑周边建筑物沉降监测 (5)8.5 基坑现场巡视检查 (5)8.6 地下水位监测 (6)9、监测精度及技术措施 (6)9.1精度要求 (6)9.2技术措施 (6)10、监测频率 (7)11、控制标准与险情预报 (8)11.1控制标准 (8)11.2险情预报 (9)12、监测数据处理与信息反馈 (9)13、作业安全及其他管理制度 (10)1、工程概况四平市海绵城市建设工程—城区雨污分流工程南北河截污管线主干线工程,全长约2.1Km,管径DN1400—1800mm,采用明挖法沿北河北侧沿河道路敷设,并汇合红嘴河截污管道,最终排入西侧污水处理厂。

2、基坑施工环境根据工程勘察报告,规划区为河漫滩与台地相接壤地段,地层变化大。

其中台地的覆盖层为不均匀粘性土,下部为厚度不等的砾砂、粗砂层,底部为泥岩、粉砂岩、砂岩基座。

施工沿线周边环境复杂,分布密集民房、农作物大棚等构筑物,且管线下穿建成河堤路及河流,施工难度较大。

为确保施工质量和安全,此段设计为钢板桩支护施工。

3、监测依据及目的3.1 监测依据(1)《工程测量规范》(GB50026-2007);(2)《建筑基坑工程监测技术规范》(GB 50497-2009);(3)《建筑变形测量规范》(JGJ 8-2007);(4)《建筑边坡工程技术规范》(GB 50330-2013);(5)《建筑结构荷载规范》(GB 50009-2012);(6)本工程招标、设计等有关资料。

3.2 监测目的为了确保施工期间周围环境及结构自身的施工安全,由专职人员组成监控量测组,在项目总工程师的直接安排下负责测点的设置、日常量测和数据处理、信息反馈工作,进行信息化施工,确保工程施工的安全。

通过监控量测达到以下目的:1)将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全。

2)将现场监测的数据、信息及时反馈,及时修改和完善设计,使设计达到优质安全、经济合理。

3)将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使方案更符合实际,便用以指导今后的工程建设。

4、基坑安全等级以及材料使用1.基坑安全等级:二级;基坑重要性系数取1.0。

2.地面超载:基坑坡顶两侧20m范围内不得有大量堆载或新建建筑,施工期间15m范围内临时超载不大于10KPa,基坑顶部2m范围内不得堆载。

3.材料使用:采用V型(500mm*200mm*24.3mm)拉森钢板桩,钢板桩顶部以下2米处设36b工字钢三拼腰梁,然后采用Φ500t×12mm的钢管支撑进行支撑,间距4m。

5、监测人员配备为满足本工程监测工作需求,设项目负责1人,现场监测人员2人。

监测员要及时落实各项监测工作,详细记录各班次的各个项目的现场监测数据,做好监测资料的整理,发现监测数据超过设计控制标准情况时,及时上报业主、管理、设计、监理等单位。

6、监测仪器设备及检定要求1、满足观测精度和量程的要求,且应具有良好的稳定性和可靠性。

2、监测仪器应经过校准或标定,并在规定的校准有效期内使用。

3、监测过程中应定期进行监测仪器、设备的维护保养、检测以及监测元件的检查。

7、监测项目结合设计图纸的要求和规范文件,考虑到本基坑重要等级为二级,确定本深基坑工程的监测主要包括以下几个方面的内容:1. 钢板桩顶水平位移及竖直位移;2.钢板桩变形;3.管内支撑应力/变形;4.基坑周边建筑物沉降;5.基坑现场巡视检查;6.地下水位监测。

8、主要检测方法监测项目初始值在相关施工工序之前测定,并取至少连续观测3次的稳定值的平均值。

在监测过程中,宜采用相同的观测方法和观测路线,由固定的观测人员使用同一监测仪器和设备,在基本相同的环境和条件下工作。

深基坑工程的现场监测,监测工作的主要内容如下:8.1 钢板桩顶水平位移及竖直位移监测根据本工程场地形状,水平位移观测主要采用视准线法进行观测,即沿基坑边线的方向上建立一条基准线,在该基准线的一端点设置经纬仪,瞄准远方另一端点定向,然后纵转经纬仪望远镜,读取经纬仪十字丝所对应的各测点的读数,比较相邻两次的读数结果,即可得出测点在该观测周期内的位移值。

以开工前的测量值作为起始初值,以后每次的测量值与之比较得到本次位移量和累积位移量。

工作基点埋设:基点应埋设在沉降影响范围以外的稳定区域,并且应埋设在视野开阔、通视条件好的地方,工作基点数量根据需要埋设,要牢固可靠,边坡和地面水平位移和垂直位移的量测。

观测与数据处理:在开挖前,将城市高程点的高程引至基准点,作为地表沉降的基点,并取各测点初值。

根据施工进度、监测频率对各沉降点进行沉降观测,将各沉降点沉降值汇总成沉降变化曲。

8.2 钢板桩变形监测测斜管导槽应垂直于基坑边线,测斜管管口设置可靠的保护装置:在桩顶部加钢套管于测斜管外以起保护作用,钢套管的上口必须高出桩顶部15cm、埋入桩的深度不能小于1m,同时测斜管管口加管盖,防止杂物掉入管内。

8.3 管内支撑应力/变形监测钢支撑采用钢板应力计来监测其支撑应力/变形的变化。

首先将钢板计支座焊接在钢支撑管上,然后将钢板计安装在支座上,外部用铁盒保护,每次观测时采用频率读数仪测量钢板计的变化,然后计算出其应力变化。

8.4 基坑周边建筑物沉降监测支护结构施工及土方开挖过程中,由于地下土体被挖空与地面形成压力差,势必导致土体沉降,同时对支护体系形成水平压力造成土体位移,所以在施工过程中必须对地面建筑物进行监测,确保施工的安全性。

沉降监测用水准仪观测设在建/构筑物上的测点来实现。

测点处埋入(或打入)顶部为光滑的凸球面的钢制测钉,测钉与混凝土体间不应有松动,并用(红色)油漆标明点号和保护标记,随时检查,保证测点在施工期间绝对不遭到破坏。

8.5 基坑现场巡视检查采用仪器进行监测是基坑监测不可缺少的重要手段,但由于仪器监测有限,不能覆盖基坑变化的所有地方,因此,作为补充,由有经验的工程师定期进行现场目测巡视检查是非常必要的。

检查内容包括邻近建筑物及邻近地面有无新裂缝发生、原有裂缝有无扩大、延伸、断层有无错动、地表有无隆起或下陷,是否有新的地下水露头,原有的渗水量和水质有无变化。

巡视检查可用眼看、手摸、脚踩等直观的方法,或辅以锤、钎、钢卷尺等简单工具进行。

8.6 地下水位监测采用水位仪测量,记录每次观测时水位的高程,测量精度±1mm。

9、监测精度及技术措施9.1精度要求1)水准测量每站观测高差中误差M0≤± 0.07mm2)水准闭合(附合)路线,闭合(附合)差fw≤±0.15 (N为测站数)3)垂直位移监测精度:相邻基准点高程中误差≤±0.3mm4)水平位移监测精度:相邻基准点的点位中误差≤±1.5mm5)测斜监测精度:分辨率0.02mm/500mm6)水位监测精度:±10mm7)反力计/或钢筋应力计分辨率:0.2%F×S9.2技术措施1)为了确保各项监测项目的精度,投产的仪器必须按规定内容检查标定其主要技术指标,仪器检查合格后方能使用,并做记录归档。

遇特殊情况(如受震、受损)随时检查、标定。

不合格仪器坚决不能投产使用。

2)每月进行一次质量检查,连续两次观测结果进行对比,检查结果垂直位移检查高程与观测高程差值不超过±1.0mm。

每个月对沉降监测工作基点进行联测,联测高程差值不超过±1.0mm,若超限则已新高程起算。

每个月进行一次仪器维护保养。

3)水准测量采用闭合或附合路线观测方法。

4)做到测量人员固定、仪器固定、线路固定;测量数据有疑问时,应做到反复观测寻找问题原因。

5)对布设的监测点明确标识,并向有关单位提出保护要求。

每次检查监测点的稳定性和可靠性,当发现监测点被破坏或不稳定时,及时补充布点。

6)各监测项目变形量或测量值接近或到达报警值时,应及时发出预警报告或报警,并提请业主及有关单位注意。

7)定期进行质量检查(如月检查、季度检查等)。

10、监测频率施工期间要对全过程进行监测。

根据施工进度,在基坑开挖前将沉降监测点布设完毕并进行初始数据的观测、裂缝调查和记录,在各监测项目施工时按照要求和施工顺序安装应力计,并进行数据观测。

监测在基坑的施工期、维护期,可根据监测点的变形情况适当地加大或减少监测频率,允许时也可减少某一项的监测,如遇到较大降雨时以及观测值达到预警值时观测加密,当基坑回填完毕至±0.00时,整个基坑监测工程结束。

表10-1 监测周期及频率表11、控制标准与险情预报11.1控制标准根据设计及规范要求,本监测工程各监测项目预警值如下:(1)基坑支护结构水平位移为累计值为18mm或连续3天单日变形量超过3mm;(2)基坑支护结构竖向位移为累计值为18mm或连续3天单日变形量超过3mm;(3)地表沉降累计值为21mm或连续3天单日变形量超过3mm;(4)支撑轴力为设计值的70%,当内力增长速率明显加快时,应及时将监测数据反馈给设计单位;11.2险情预报各监测项目达到预警值时,首先应复测,以确保监测数据的正确性,其次应与附近其它项目监测及基坑的施工情况对比分析,证实确为达到预警值时,方可预警。

监测项目达到预警值时,应加密观测。

预警步骤为:(1)监测数据经过复测超过预警值时,立刻通知监理单位。

(2)针对预警部位,2小时内整理监测报告,提供给监理单位。

(3)6小时内出预警通知,提供业主、管理、设计、监理等单位。

12、监测数据处理与信息反馈在监测过程中,监测人员与业主、监理及设计单位之间应经常联系,每次监测后及时整理测试结果,正常情况下,24小时内提交监测成果资料,监测结束后及时提供总结报告。

13、作业安全及其他管理制度加强安全生产管理要做到以下几点:1、作业人员须经安全知识学习考核后上岗,严格遵守安全技术操作规程。

2、进入工地应戴好安全帽,穿好工作服和平底鞋。

严禁酒后上岗;遇大风或大、中雨应停止作业。

3、作业人员必须分工明确,密切配合,并采取安全防护措施。

4、技术人员应做到“四懂”、“三会”,即懂构造、懂原理、懂性能与用途;会操作、会维修保养、会排除故障。

相关文档
最新文档