热工控制系统重点

合集下载

电厂热工自动控制系统

电厂热工自动控制系统

电厂热工自动控制系统电厂热工自动控制系统单元机组的自动调节系统¾ ¾ ¾ ¾ ¾机组功率-转速调节系统汽温控制系统(过热、再热)水位控制系统(凝汽器、除氧器、汽包)燃烧控制系统(燃料、风量、炉膛压力及一、二次风配比控制)其它单回路控制系统第一部分汽温控制系统一、过热汽温控制系统1. 任务温度过高,可能造成过热器、蒸气管道和汽轮机的高压部分金属损坏;温度过低,会引起电厂热耗上升,并使汽轮机轴向推力增大造成推力轴承过载,还会引起汽轮机末级叶片蒸汽湿度增加,降低汽轮机内效率,加剧对叶片的腐蚀控制要求:最大控制偏差不超过±10℃,长期偏差不超过±5℃规定要求:2. 静态特性过热器的传热形式、结构、布置将直接影响其静态特性。

大容量锅炉一般采用对流过热器、辐射过热器和屏式过热器交替串连布置。

过热器出口温度对流式3. 动态特性蒸汽流量变化、热烟气的热量变化、减温水流量变化相同点:均为有迟延的惯性环节辐射式不同点:特性参数有较大区别蒸汽流量变化扰动下,汽温的迟延和惯性较小烟气扰动与蒸汽流量扰动相似,汽温反映较快减温水流量扰动由于管道较长,汽温反应较慢4. 控制方案串级控制导前微分控制过热器减温器出口温度TE4001TE4025末级过热器出口温度TE4024LDC指令过热器减温水阀控制逻辑静态特性:纯对流特性动态特性:更容易受负荷、燃烧工况等干扰的影响,温度变化幅度较大调节手段:烟气再循环、尾部烟道挡板、喷燃器摆角、喷水减温烟气再循环:尾部烟道烟气抽至炉膛底部,降低炉膛温度,减少炉膛的辐射传热,从而提高炉膛出口烟气的温度和流速。

使再热器的对流传热加强,达到调温的目的。

优点:反应灵敏,调温幅度大。

缺点:系统结构复杂尾部烟道挡板:尾部烟道被分割为两部分,主烟道中布置低温再热器,旁路烟道中布置低温过热器,烟气挡板布置在温度较低的省煤器下面。

优点:结构简单,操作方便缺点:调温灵敏度差,幅度小,挡板开度与汽温不成线性关系。

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点随着电厂的发展和技术的提高,电厂热工自动控制技术也越来越成熟。

热工自动控制技术是指利用计算机、仪表和控制器等自动控制设备来对电厂的热工系统进行自动化控制,从而提高设备的稳定性、可靠性和经济性。

一、热控制热控制是指对锅炉、汽轮机、再热器等设备的热量进行自动控制。

主要包括燃烧控制、给水控制、汽轮机负荷控制等。

其中,燃烧控制是最重要的一环,它通过检测锅炉烟气的CO、O2等指标来控制燃料的供给和燃料燃烧的效率。

对于给水控制,主要是通过控制给水泵的流量和压力来保证锅炉的水位稳定。

而汽轮机负荷控制则是通过改变汽轮机的进汽量来调节机组的负荷。

二、水控制电厂的热工系统中,水控制是非常重要的一环,主要包括给水控制、排污控制和冷却水控制。

给水控制和热控制一样,是通过控制泵的流量和压力来保证锅炉的水位稳定。

排污控制则是通过排除锅炉中的杂质和废水来保证锅炉的正常运行。

而冷却水的控制则是为了保证机组的冷却效果,主要是通过控制冷却水的流量和温度来达到目的。

三、过程控制过程控制主要是针对电厂的生产过程进行监测和控制。

其中包括物料的输送、化学品的配制、化学反应的控制等。

这些过程涉及到很多的传感器和执行器,需要通过控制器来实现自动化控制。

四、安全控制安全控制是电厂热工自动控制的重点之一,主要包括火灾控制、氧气控制、压力控制等。

其中,火灾控制是最关键的一环,需要通过温度传感器、烟雾传感器等探测器来检测火灾情况,并通过自动灭火装置来控制火势的蔓延。

总的来说,电厂热工自动控制技术涉及到很多方面,需要针对不同的设备和工艺过程进行相应的控制。

现代化的电厂不仅需要具备良好的设备和工艺流程,还需要具备高素质的技术团队和系统化的控制策略,才能实现高效、安全、稳定的自动化运行。

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点电厂热工自动控制技术是指利用先进的仪表仪控设备和自动控制系统,对电厂热工过程中的温度、压力、流量和品位等参数进行监测和调节,以实现对热工设备的自动控制和优化运行。

以下是常见电厂热工自动控制技术的要点分析。

1. 控制策略的选择:根据不同的热工系统和设备,选择合适的控制策略,如比例控制、PID控制、模糊控制、模型预测控制等。

控制策略的选择应考虑到系统的动态特性、稳定性和抗干扰能力等因素。

2. 测量与监测:对于电厂热工系统而言,准确的测量和监测是实现自动控制的基础。

常见的测量参数包括温度、压力、流量、液位和浓度等。

选择合适的传感器和仪表,采用科学的校准和补偿方法,确保测量的准确性和可靠性。

3. 控制阀门与执行器的选择:电厂热工自动控制系统中,控制阀门和执行器的选择对系统的性能影响较大。

根据控制要求和系统特点,选择适当的控制阀门类型,如调节阀、截止阀、控制球阀等。

控制阀门的执行器也应采用高精度、高可靠性的电动调节阀、气动调节阀或液动调节阀等。

4. 自动控制系统的设计与优化:自动控制系统是实现电厂热工自动化控制的核心。

通过合理的系统设计和参数优化,可以提高系统的控制精度和反应速度,增强系统的稳定性和抗干扰能力。

其中包括控制算法的优化和参数调整,系统结构的优化和改进等。

5. 故障诊断与报警:电厂热工自动化控制系统应具备故障诊断和报警功能,及时监测和识别设备故障,并通过声光报警或远程通信等方式,及时通知操作人员,采取相应的措施。

对于关键设备和重要参数,还可以通过红外热像仪、振动传感器等设备进行实时监测,提前发现潜在故障。

6. 数据采集和处理:电厂热工自动控制系统中的数据采集和处理是关键的环节。

通过采集和处理系统的实时数据,包括温度、压力、流量等参数,可以实现对整个热工过程的监测和分析,为运行优化和设备维护提供依据。

常用的数据处理方法包括数据滤波、数据对齐、数据融合和数据转换等。

火电厂热工自动控制技术及应用知识点总结

火电厂热工自动控制技术及应用知识点总结

自动控制系统基础概论热工对象动态特性常规控制规律PID控制的特点比例控制(P控制)积分控制(I控制)微分控制(D控制)控制规律的选择:单回路控制概述被控对象特性对控制质量的影响:测量元件和变送器特性对控制质量的影响调节机构特性对控制质量的影响单回路系统参数整定串级控制串级控制系统的组成(要求会画控制结构图)串级控制系统的特点串级控制系统的应用范围串级控制系统的设计原则:前馈-反馈控制概述静态前馈,动态前馈前馈-反馈控制前馈-串级控制比值控制分程控制大迟延控制系统补偿纯迟延的常规控制预估补偿控制多变量控制系统耦合程度描述解耦控制系统设计火电厂热工控制系统汽包锅炉蒸汽温度控制系统过热蒸汽温度控制再热蒸汽温度一般控制方案汽包锅炉给水控制系统概述给水流量调节方式给水控制基本方案:给水全程控制:600MW机组给水全程控制实例锅炉燃烧过程控制系统概述被控对象动态特性燃烧过程控制基本方案燃烧控制中的几个问题单元机组协调控制系统概述负荷指令处理回路正常情况下负荷指令处理异常工况下的负荷指令处理负荷指令处理回路原则性方框图机炉主控制器机炉分别控制方式机炉协调控制方式直流锅炉控制系统直流锅炉特点直流锅炉动态特性直流锅炉基本控制方案直流锅炉给水控制系统直流锅炉过热汽温控制系统自动控制系统基础概论1. 控制系统的组成与分类1. 控制系统的组成及术语控制系统的四个组成部分: 被控对象,检测变送单元,控制单元,调节机构.2. 控制系统的分类:按结构分: 单变量控制系统, 多变量控制系统按工艺参数分: 过热汽温控制系统, 主蒸汽压力控制系统按任务分: 比值控制系统, 前馈控制系统按装置分: 常规过程控制系统, 计算机控制系统按闭环分: 开环控制系统, 闭环控制系统按定值的不同分: 定值控制系统, 随动控制系统, 程序控制系统3. 过渡过程: 从扰动发生,经过调节,直到系统重新建立平衡.即系统从一个平衡状态过渡到另一个平衡状态的过程,即为控制系统的过渡过程.2. 控制系统的性能指标1. 衰减比和衰减率: 衡量稳定性2. 最大偏差和超调量: 衡量准确性3. 调节时间: 衡量快速性4. 余差(静态偏差): 衡量静态特性热工对象动态特性1. 有自平衡能力对象1. 一阶惯性环节:2. 一阶惯性环节加纯迟延:3. 高阶惯性环节:4. 高阶惯性环节加纯迟延:2. 无自平衡能力对象1. 积分环节:2. 积分环节加纯迟延:3. 有积分的高阶惯性环节:4. 有纯迟延和积分的高阶惯性环节:常规控制规律PID控制的特点1. 原理简单,使用方便2. 适应性强3. 鲁棒性强比例控制(P控制)1. 控制规律: ; :比例增益:比例带,工程上用来描述控制作用的强弱.比例带越大,偏差越大.2. 控制特点:动作快有差控制积分控制(I控制)1. 控制规律:; :积分时间2. 控制特点:动作不及时无差控制3. PI控制: I控制响应慢,工程上很少有单独使用,一般都是PI控制控制规律:; P控制看作粗调,I控制看作细调.控制作用具有: 比例及时作用和积分作用消除偏差的优点.4. 积分饱和及其措施:积分饱和: 积分过量,在单方面偏差信号长时间作用下,其输出达到上下限时,其执行机构无法再增大.措施: 积分分离手段: 当偏差较大时,在控制过程的开始阶段,取消积分作用,控制器按比例动作,等到被调量快要接近给定值时,才能产生积分作用,依靠积分作用消除静态偏差.微分控制(D控制)1. 控制规律: ;2. 控制特点:超前控制3. 实际微分: 为什么采用实际微分控制:理想微分物理上不可能实现避免动作频繁,影响调节元件寿命4. PD控制: 控制规律: ;扰动进入系统的位置离输出(被调量)越远,对系统工作的影响就越小.控制通道的时间常数和迟延时间对控制质量的影响前馈-串级控制的应用场景:分程控制扩大调节阀的可调比大迟延控制系统补偿纯迟延的常规控制1. 微分先行控制方案2. 中间反馈控制方案前馈解耦导前温度: 刚通过减温器之后的蒸汽温度以导前蒸汽温度为副参数,过热蒸汽温度为主参数的串级控制系统3. 过热蒸汽温度分段控制系统:1. 过热蒸汽温度分段控制系统:缺点: 当机组负荷大范围变化时,由于过热器吸热方式不同.一级减温器出口蒸汽温度降低,为保持不变,必须减少一级减温器喷水量;二级减温器出口蒸汽温度升高,因此要增加二级减温器喷水量.造成负荷变化时两级减温器喷水量相差很大,使整个过热器喷水不均匀,恶化二级喷水减温调控能力,导致二级过热器出口温度超温.2. 按温差控制的分段控制系统:与第一种方案的差别在于: 这里以二级减温器前后的温差(-)作为第一段控制系统的被调量信号送入第一段串级的主调节器PI3.当负荷增大时,主调节器PI3的设定值随之减小,这样有(-)>T0,PI3入口偏差值增大,这意味着必须增大一级喷水量才能使下降,从而使温差(-)减小.这样平衡了负荷增加时一级喷水量和二级喷水量.该方案为串级+前馈控制策略. 后屏出口过热器出口蒸汽温度设定值由两部分组成,第一部分由蒸汽流量代表的锅炉负荷经函数发生器后给出基本设定值,第二部分是运行人员可根据机组的实际运行工况在上述基本设定值的基础上手动进行设置.虽然系统是控制后屏过热器出口温度蒸汽,用蒸汽温度信号经过比例器乘以常数K后代表后屏过热器出口蒸汽温度,其原因是蒸汽温度与蒸汽温度变化方向一致;且蒸汽温度信号比蒸汽温度信号动态响应快,能提前反映扰动对蒸汽温度的影响,有利于控制系统快速消除干扰.主调节器PID1的输出与总风量,燃烧器摆角前馈信号组合构成副调节器PID2的设定值,副调节器的测量值为一级减温器出口温度.PID2输出控制一级其控制原理如下:正常情况下即当再热蒸汽温度处于设定值附近变化时,由调节器PID1改变烟气挡板开度来消除再热蒸汽温度的偏差,蒸汽流量D作为负荷前馈信号通过函数模块去直接控制烟气挡板.当的参数整定合适时,能使负荷变化时的再热蒸汽温度保持基本不变或变化很小.反向器-K用以使过热挡板与再热挡板反向动作.喷水减温调节器PID2也是以再热蒸汽温度作为被调信号,但此信号通过比例偏置器±Δ被叠加了一个负偏置信号(它的大小相当于再热蒸汽温度允许的超温限值).这样,当再热蒸汽温度正常时,调节器PID2的入口端始终只有一个负偏差信号,它使喷水阀全关.只有当再热蒸汽温度超过规定的限值时,调节器的入口偏差才会变为正,从而发出喷水减温阀开的指令,这样可防止喷水门过分频繁的动作而降低机组热经济性.2. 采用烟气再循环调节手段的再热蒸汽温度控制系统其控制原理如下:再热蒸汽温度T 在比较器Δ内与设定值(由A 产生)比较,当蒸汽温度低时,偏差值为正信号,此信号进入调节器PID1,其输出经执行器去调节烟气挡板开度,增大烟气再循环量,以控制再热蒸汽温度.在加法器2中引入了送风量信号V 作为前馈控制信号和烟气热量(烟温×烟气流量)修正信号,送风量V 反映了锅炉负荷大小,同时能提前反映蒸汽温度的变化.当V 增加时,蒸汽温度升高,相应的烟气再循环量应减少,故V 按负向送入调节器.函数模块是用来修正风量和再循环烟气量的关系的.通过乘法器由烟温信号调整再循环烟气流量.当再热蒸汽超温时,比较器输出为负值,PID1输出负信号直至关闭烟气再循环挡板,烟气再循环失去调温作用.同时,比较器的输出通过反相器- K 1,比例偏置器±Δ去喷水调节器PID2,开动喷水调节阀去控制再热蒸汽温度,蒸汽温度负偏差信号经反相器-K2去偏差报警器,实现超温报警,同时继电器打开热风门,用热风将循环烟道堵住,防止因高温炉烟倒流入再循环烟道而烧坏设备.当再热蒸汽温度恢复到设定值时,比较器输出为零,PID2关闭喷水门,偏差报警信号通过继电器关闭热风门,烟气再循环系统重新投入工作.3. 采用摆动燃烧器调节手段的再热蒸汽温度控制系统燃烧器上倾可以提高炉膛出口烟气温度,燃烧器下倾可以降低炉膛出口烟气温度.燃烧器控制系统是一个加前馈的单回路控制系统,再热蒸汽温度设定值是主蒸汽流量经函数发生器,再加操作员可调整的偏置量A构成.PID1调节器根据再热器出口蒸汽温度T与再热蒸汽温度设定值偏差来调整燃烧器摆角.为了抑制负荷扰动引起的再热蒸汽温度变化,系统引入了送风量前馈信号,该信号能反映负荷和烟气侧的变化.送风量前馈信号和反馈控制信号经加法器4共同控制燃烧器摆角.A侧再热器出口蒸汽温度和B侧再热器出口蒸汽温度各有两个测量信号,正常情况下选择A,B两侧的平均值作为燃烧器摆角控制的被调量.燃烧器摆角控制为单回路的前馈-反馈控制系统,再热器出口蒸汽温度设定值由运行人员手动给出.再热器出口蒸汽温度设定值和实际值的偏差经PID调节器后加上前馈信号分别作为燃烧器摆角的控制指令.前馈信号由蒸汽流量经函数发生器后给出.当再热蒸汽温度偏低时,燃烧器摆角向上动作;当再热蒸汽温度偏高时,燃烧器摆角向下动作. 2. 再热蒸汽温度喷水减温控制系统汽包锅炉给水控制系统给水控制任务: 使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围内,同时保持稳定的给水流量.对象特性: 给水流量扰动的三个体现方面:4. 虚假水位现象: 当锅炉蒸发量突然增加时,汽包水下面的气泡容积也迅速增大,即锅炉的蒸发强度增强,从而使水位升高.给水控制基本方案:1. 单冲量给水控制系统: 汽包水位和水位给定值调节的反馈控制系统某600MW发电机组给水热力系统示意图,机组配三台给水泵,其中一台容量为额定容量30%的电动给水泵,两台容量各为额定容量50%的汽动给水泵.电动给水泵一般是作为启动泵和备用泵,正常运行时用两台汽动给水泵,两台汽动给水泵由小汽轮机驱动,其转速控制由独立的小汽轮机电液控制系统(micro-electro hydraulic control system,MEH)完成,MEH系统的转速给定值是由给水控制系统设置,MEH 系统只相当于给水控制系统的执行机构.在高压加热器与省煤器之间有主给水电动截止阀、给水旁路截止阀和约15%容量的给水旁路调节阀.2. 给水控制系统1. 水位控制系统汽包水位控制系统如图所示,它是单冲量和串级三冲量两套控制系统构成,汽包水位设定值由运行人员在操作台面上手动设定.当锅炉启动或负荷小于15%额定负荷阶段,控制系统是通过调节器PID1调节给水旁路的调节阀开度来控制给水量以维持汽包水位,而此时切换器T2接Y端,通过调节器PID5调节电动给水泵的转速来维持给水泵出口母管压力与汽包压力之差.当旁路调节阀开到80%时,由SCS (Sequence control system, 顺序控制系统)完成开主给水电动阀,关旁路截止阀.当负荷在15%额定负荷以上,但小于30%额定负荷时,切换器T1接Y端,切换器T2接N端,这时汽包水位设定值的偏差经调节器PID2,并经调节器PID6控制给水泵转速来调节给水流量达到维持汽包水位目的.同时当机组负荷升至20%额定负荷时,第一台给水泵开始冲转升速.当负荷大于30%额定负荷,切换器T1接N端,给水控制切换为三冲量给水控制.汽包水位控制指令由两个串级调节器PID3和PID4根据汽包水位偏差、主给水流量和主蒸汽流量三个信号形成.水位设定值与汽包水位偏差经调节器PID3 后,加主蒸汽流量信号作为副回路PID4的设定值,副回路副参数为主给水流量,经PID运算后作为给水泵控制的设定值.当负荷大于30%额定负荷时,第一台汽动给水泵并入给水系统.当负荷达40%额定负荷时,第二台汽动给水泵开始冲转升速.当负荷达60%额定负荷时,第二台汽动给水泵并入给水系统,撤出电动给水泵,将其投入热备用.机组正常时,是通过改变两台汽动给水泵的转速来调节给水量.由于给水泵的工作特性不完全相同,为稳定各台给水泵的并列运行特性,避免发生负荷不平衡现象,设计了各给水泵出口流量调节回路,将各给水泵的出口流量和转速指令的偏差送入各给水泵调节器(PID6、 PID7 和PID8)的入口,以实现多台给水泵的输出同步功能.GAIN CHANGER & BALANCER作用是根据给水泵投入自动的数量,调整控制信号的大小.拇入自动数目越大,控制信号越小.2. 给水泵最小流量控制汽机跟随控制方式:控制特点: 锅炉侧调负荷,汽机侧调汽压. 在保证主蒸汽压力稳定的情况下,汽轮机跟随锅炉而动作.优点: 在运行中主蒸汽压力相对稳定,有利于发电机组的安全经济运行.机炉协调控制方式控制特点: 在负荷调节动态过程中,机炉协调控制可以使汽压在允许的范围内波动,这样可以充分利用锅炉蓄热,使单元机组较快适应负荷变化,同时主蒸汽压力p T的变动范围也不大,因而机组的运行工况比较稳定.调节燃料量M控制主蒸汽压力p T(或机组负荷) 调节送风量V控制过剩空气系数(烟气含氧量) 调节引风量V控制炉膛压力p汽轮机控制系统为工频电液控制系统时:另一种送风控制系统方案. 锅炉指令BD经过函数发生器f2(x)后形成一个风量指令,氧量调节器输出σ对锅炉指令BD进行修正.3. 引风控制系统: 引风控制系统的任务是保证一定的炉膛压力. 由引风量改变到炉膛压力变化其动态响应快,测量也容易,因此一般采用单回路即可.3. 燃烧控制系统基本方案锅炉指令BD作为给定值送到燃料控制系统和送风控制系统,使燃料量和送风量同时改变,使燃烧率与机组要求的燃烧率相适应,保证风量与燃料量比例变化; 同时送风量作为前馈信号通过引到引风调节器PI4,改变引风量以平衡送风量的变化,使炉膛压力p s不变或变化很小.由于所有调节器都采用PI控制规律,因此,调节过程结束时,主蒸汽压力P T,燃烧经济性指标O2和炉膛压力p s,都稳定在给定值上;而锅炉的燃料量M,送风量V和引风量V都改变到与要求的燃烧率相适应的新数值上.总燃料量(总发热量)的构成形式为其中: O为燃油量,k o为燃油发热系数,M c为总煤量,k MQ为煤发热系数.当M c不变,而煤种变化造成发热量增加时,刚开始M也不变,但随着炉膛发热量的增加,D Q增大,D Q>M,由积分器正向积分增大k MQ,使M增大,直至M=D Q3. 增益自动调整乘法器为燃料调节对象的一部分,选择合适的函数,则可以做到不管给煤机投入的台数如何,都可以保持燃料调节对象增益不变,这样就不必调整燃料调节器的控制参数了.增益调整与平衡器,就是完成该功能.4. 风煤交叉限制在机组增减负荷动态过程中,为了使燃料得到充分燃烧,需要保持一定的过量空气系数. 因此,在机组增负荷时,就要求先加风后加煤;在机组减负荷时,就要求先减煤后减风.这样就存在一个风煤交叉限制.锅炉指令BD经函数器f1(x)后转换为所需的风量,风量经函数器f2(x)转换为相应风量下的最大燃料量,燃料量经函数器后转换为该燃料量下的最小风量.当增加负荷时,锅炉指令BD增大,在原风量未变化前,低值选择器输出为原风量下的最大燃料量指令,即仍为原来锅炉指令BD.在风量侧,锅炉指令BD增大,则其对应的风量指令增大,大于原燃料量所需最小风量,经高值选择后作为给定值送至送风控制系统以增大风量.只有待风量增加后,锅炉燃料的给定值才随之增加,直到与锅炉指令BD一致.由此可见,由于高值选择器的作用,风量控制系统先于燃料控制系统动作.由于低值选择器的作用,使燃料给定值受到风量的限制,燃料控制系统要等风量增加后再增加燃料量.同理,减负荷时,由于低值选择器的作用,燃料给定值先减少.由于高值选择器的作用,使风量给定值受到燃料量限制,风量控制系统要等待燃料量降低后再减少风量.上图为煤粉锅炉燃料系统的一般控制方案.其中虚框1的功能是完成总燃料量(发热量)的测量与修正.虚框2的功能是燃料侧的风煤交叉限制.5. 风机调节本节下略单元机组协调控制系统概述1. 单元机组协调控制系统的基本组成2. 机组负荷控制系统被控对象动态特性3. 机组负荷控制系统被控对象动态特性1. 单元机组动态特性:当汽轮机调门开度动作时,被调量p E和p T的响应都很快,即热惯性小.当锅炉燃烧率改变时,被调量p E和p T的响应都很快,即热惯性小.2. 负荷控制系统被控对象动态特性1. 机组主机,主要辅机或设备的故障原因有两类跳闸或切除,这类故障的来源是明确的,可根据切投状况加以确定工作异常,其故障来源是不明确的,无法直接确定,只能通过测量有关运行参数的偏差间接确定.2. 对机组实际负荷指令的处理方法有四种: 负荷返回RB, 快速负荷切断FCB, 负荷闭锁增/减BI/BD, 负荷迫升/迫降RU/RD. 其中,负荷返回RB和快速负荷切断FCB是处理第一类故障的;负荷闭锁增/减BI/BD 和负荷迫升/迫降RU/RD是处理第二类故障的.1. 负荷返回RB负荷返回回路具有两个主要功能: 计算机组的最大可能出力值;规定机组的负荷返回速率.发电机组负荷返回回路的设计方案: 该机组主要选择送风机,引风机,一次风机,汽动给水泵,电动给水泵及空气预热器为负荷返回监测设备.当其中设备因故跳闸,则发出负荷返回请求,同时计算出负荷返回速率.RB目标值和RB返回速率送到如图13-9所示的负荷指令处理回路中去.2. 负荷快速切断FCB当机组突然与电网解列,或发电机,汽轮机跳闸时,快速切断负荷指令,实现机组快速甩负荷.主机跳闸的负荷快速切断通常考虑两种情况: 一种是送电负荷跳闸,机组仍维持厂用电运行,即不停机不停炉; 另一种是发电机跳闸,汽轮机跳闸,由旁路系统维持锅炉继续运行,即停机不停炉.负荷指令应快速切到0(锅炉仍维持最小负荷运行).负荷快速切断回路的功能与实现和负荷返回回路相似.只不过减负荷的速率要大得多.3. 负荷闭锁增/减BI/BD当机组在运行过程中,如果出现下述任一种情况:任一主要辅机已工作在极限状态,比如给风机等工作在最大极限状态燃料量,空气量,给水流量等任一运行参数与其给定值的偏差已超出规定限值.认为设备工作异常,出现故障.该回路就对实际负荷指令加以限制,即不让机组实际负荷指令朝着超越工作极限或扩大偏差的方向进一步变化,直至偏差回到规定限值内才解除闭锁.4. 负荷迫升/迫降RU/RD对于第二类故障,采取负荷闭锁增/减BI/BD措施是机组安全运行的第一道防线.当采用BI/BD措施后,监测的燃料量,空气量,给水流量等运行参数中的任一参数依然偏差增大,这样需采取进一步措施,使负荷实际负荷指令减小/增大,直到偏差回到允许范围内.从而达到缩小故障危害的目的.这就是实际负荷指令的迫升/迫降RU/RD,负荷迫升/迫降是机组安全运行的第二道防线.负荷指令处理回路原则性方框图该负荷指令处理回路功能的1原则性框图,是在正常工况下符合指令处理原则性方案上,添加了异常工况下相应负荷指令处理功能.锅炉跟随方式在大型单元机组负荷控制中只是作为一种辅助运行方式.一般当锅炉侧正常,机组输出电功率因汽轮机侧的原因而受到限制时,如汽轮机侧的主、辅机或控制系统故障,汽轮机控制系统处2. 汽轮机跟随方式机组负荷响应速度慢,不利于带变动负荷和参加电网调频.这种负荷控制方式适用于带基本负荷的单为了克服正反馈,应以汽轮机的能量需求信号而不是实际的消耗能量信号作为对锅炉的能量要求信号,即应以蒸汽流量的需求(称为目标蒸汽流量)而不是实际蒸汽流量作为锅炉的前馈控制信号.为此必须对p1进行修正,以形成目标蒸汽流量信号.直流锅炉控制系统上面两种控制方案均没有考虑过热汽温对燃料量和给水流量的动态响应时间差异,,会造成燃水比的动态不匹配,使得过热汽温波动大.为此提出一种燃料-给水控制原则性方案:可以选择锅炉受热面中间位置某点蒸汽温度(又称为中间点温度或微过热温度)作为燃水比是否适当的信号.这是一个前馈-串级调节系统,副调节器PID2输出为给水流量控制指令,通过控制给水泵的转速使得锅炉总给水流量等于给水给定值,以保持合适的燃水比.主调节器PID1以中间点温度为被调量,其输出按锅炉指令BD形成的给水流量基本指令进行校正,以控制锅炉中间点汽温在适当范围内.控制系统可分同负荷下的分离器出口焓值给定值.焓值给定值加上PID1输出的校正信号构成给定值SP2,由分离器出口压力和温度经焓值计算模块算出分离器出口焓值,该出口焓值与给定值SP2的偏差经调节器PID2 进行PID运算后,作为校正信号,对给水基本指令进行燃水比校正. 调节器PID3的给定值SP3是由,锅炉指令BD指令给出的给水流量基本指令加上调节器PID2输出的校正信号构成.调节器PID3根据锅炉总给水流最与流量给定值SP3的偏差进行PID运算,输出作为给水流量控制指令调节给水泵转速来满足机组负荷变化对锅炉总给水流量的需求.3. 采用焓增信号的给水控制方案在上图所示的给水控制系统中,由调节器PID3根据给定值SP3与省煤器入口给水流量(锅炉给水流量)的偏差向给水泵控制回路发出给水流量控制指令,在给水泵控制回路中,通过调节给水泵转速来实现调节给水流量的要求.在此重点分析给水流量给定值SP3的形成.当锅炉负荷在35%~ 100%MCR范围内,没有循环水流量和省煤器入口最小流量限制时,省煤器入口给水流量(锅炉给水流量)给定值SP3为水吸收的热量焓增焓增修正其中的水吸收的热量和焓增如图所示给出.。

热工过程自动控制 总结完整版

热工过程自动控制 总结完整版

A=1时称为单位斜坡函数。
A L[ At ] 2 s
0
1
t
1 L[t ] 2 拉氏变换: s 斜坡函数的一阶导数为常量A,这种函数表 示由零值开始随时间t作线性增长(恒速增长) 的信号,故斜坡函数又称为等速度函数。
CH2 自动控制系统的数学描述
2.1.4 拉氏反变换 利用拉普拉斯变换对照表,由象函数X(s)求出原函数x(t). 象函数X(s)为s的有理分式时,必须将复杂的拉普拉斯函数式 X(s)分解成若干个简单函数之和.
北京理工大学珠海学院
1.3 控制系统的静态特征和动态特征
稳态工况
平衡状态:运动中的自动调节系统,其输入信号和输出 信号都不随时间变化时。
系统的静态特性:在系统处于平衡状态时,输出信号和 引起它变化的输入信号之间的关系。 静态特性的描述: 1 )描述系统各变量之间关系的数学 方程为代数方程; 2)在输入、输出为直角坐标图上, 用曲线来表示。 系统的静态特性表达式可以是线性方程或非线性方程。 不是所有的环节都有静态特性,比如:积分环节
北京理工大学珠海学院
系统的动态特性
系统的静止状态被破坏,系统中各变量随时间发生变化,
微分方程是表征系统动态特性的一种最基本的数学方程 , 它不仅包含变量本身,也包含这些变量的导数. 描述动态特性的两种方式:微分方程和传递函数
1.4 控制系统的分类 1.按给定值的形式分类 (1)定值控制系统: 给定值为常数 (2)程序控制系统: 给定值按预定规律变化 (3)随动控制系统: 给定值随机变化
(1)被调量:表征生产过程是否正常而需要控制的物理量。 (2)扰动:引起被控量偏离其给定值的各种原因。
(3)对象的输入和输出:被控对象的生产过程.以所有扰动

热工自动控制系统的主要内容

热工自动控制系统的主要内容

热工自动控制系统的主要内容
1. 热工自动控制系统能精准控制温度啊!就像妈妈能精准掌握你最爱吃的菜的火候一样,比如在炼钢的时候,它能确保温度恰到好处,钢材质量杠杠的!
2. 它还可以稳定压力呢!这就像人要保持情绪稳定一样重要,在化工厂里,它让压力始终处在安全范围内,避免出大问题呀!
3. 流量控制也是热工自动控制系统的拿手好戏哟!就如同水龙头调节水流一样,在管道运输中,它能精确控制物料的流量。

比如说石油输送,那可全靠它来把关呢!
4. 它对液位的控制那也是超厉害的呀!好比给杯子倒水要控制好水位,在蓄水池中,热工自动控制系统能确保液位高度正合适。

你能想象没有它会怎样吗?
5. 热工自动控制系统还能实现自动化调节呢!就像你设定好闹钟,它就会自动响一样方便,工厂里不用人工时刻盯着就能自动运作啦,多厉害呀!
6. 它的监控功能也不容忽视啊!这就如同有一双眼睛时刻盯着,一有异常就能马上发现,比如在电站里,它时刻保障着各项参数正常呢!
7. 故障诊断也是热工自动控制系统的强项咧!就好像医生能快速找出病因,它能迅速发现系统的毛病,及时进行处理。

这可太重要了吧!
8. 而且它的适应性很强哦!不管环境多复杂,它都能应对自如,就像一个全能战士,在各种场合都能发挥作用,比如在高温高湿的环境下也能正常工作呢!
9. 热工自动控制系统真的好牛啊!在工业生产中简直就是不可或缺的存在,有了它,我们的生产才能又稳又高效!
我的观点结论:热工自动控制系统具有极其重要的作用,在各个领域都能大显身手,我们真的应该重视并好好利用它!。

热工自动控制系统1

热工自动控制系统1
基本方法: 先根据阶跃响应曲线的几何形状,选定被控 对象传递函数的形式, 然后通过作图法或计算法,确定传递函数的 未知参数。
项目一 热工控制系统 基本知识
任务三 调节器的动作规律及其 对过渡过程的影响
任务三 调节器的动作规律及其对过渡过程的影响

一、比例调节规律( P ) 二、积分调节规律( I )
1、开环控制(前馈控制)系统
特点:1)根据扰动大小对被控 量进行调节; 2)控制作用及时,结构 简单; 3)调节效果未知,控制 精度差,只能克服单一扰动。

闭环控制(反馈控制)系统 系统中的被调量反馈到输入端作为调节器产生控制作用的依据。 只要被调量的偏差存在,控制设备就不停地向控制对象施加控制作用, 直到被调量符合要求为止。单元机组自动控制系统大多属于闭环控制 系统。 1)根据被控量与给定值的偏差进行调节,控制精度高;

3、综合自动化阶段(计算机控制阶段):
(1)集中型计算机控制:用一台计算机实现几十甚至几百个控制回路 和若干个过程变量的控制、显示及操作、管理等。 (2)分散型计算机控制:指控制过程采用的系统是一种控制功能分散、 操作管理集中、兼顾复杂生产过程的局部自治与整体协调的新型分布 式计算机控制系统(又称分散控制系统) (3)综合自动化:是一种集控制、管理、决策为一体的全局自动化模 式 计算机控制的发展: 1、集中型计算机控制:可靠性要求高,风险高。(DDC) 2、分散型计算机控制:微机局部控制,协调困难。
自动控制系统中常用术语

1、被控量(被调量):表征生产过程是否符合要求需要 加以控制的物理量。 2、给定值:按生产要求被控量必须维持的希望值。 3、调节量:由控制作用改变并对被调量进行调节的物理 量。 4、扰动:引起被控量偏离给定值的各种原因。 按来源分为外扰和内扰。

热工控制系统

热工控制系统

热工控制系统1、被调量(被控制量):表征生产过程是否正常运行并需要加以调节的物理量。

2、给定值:按生产要求被调量必须维持的希望值,简称给定值。

3、控制对象(被控对象):被调节的生产过程或设备称为控制对象。

4、调节机构:可用来改变进入控制对象的物质或能量的装置称为调节机构。

5、控制量(调节量):由调节机构(阀门、挡板等)改变的流量(或能量),用以控制被调量的变化,称为控制量。

6、扰动:引起被调量偏离其给定值的各种原因称为扰动。

如果扰动不包括在控制回路内部(例如外界负荷),就称为外扰。

如果扰动发生在控制回路内部,称为内扰。

其中,由于调节机构开度变化造成的扰动,称为基本扰动。

变更控制器给定值的扰动称为给定值扰动,有时也称控制作用扰动。

7、控制过程:(调节过程):原来处于平衡状态的控制对象,一旦受到扰动作用,被调量就会偏离给定值。

要通过自动控仪表或运行人员的调节作用使被调量重新恢复到新的平衡状态的过程,称为调节过程。

8、自动控制系统:自动控制仪表和控制对象通过信号的传递互相联系起来就构成一个自动控制系统。

9、自动控制系统分类:一按系统结构特点分类:①反馈控制系统、②前馈控制系统、③前馈—反馈控制系统二按给定值特点分类:①定制控制系统(给定值保持不变,或给定值在某一很小范围内变化)例如:锅炉汽包水位控制系统、炉膛负压控制系统②随动控制系统(给定值是按预先不能确定的一些随机因素而变化(变化规律事先未知)的,因而要求其被调量以一定精度跟随给定值变化。

)例如:锅炉燃烧控制系统。

③程序控制系统(给定值是预定的时间函数)。

10、热工控制系统类型:有自平衡能力和无自平衡能力。

11、单回路控制系统由测量变送器、调节器、执行器及控制对象组成。

12、热工对象的动态特性一般具有以下特点:(1)对象的动态特性是不震荡的(2)对象的动态特性在干扰发生的开始阶段有迟延和惯性(3)在阶跃响应曲线的最后阶段,被调量可能达到新的平衡(有自平衡能力);也可能不断变化而不在平衡下来(无自平衡能力)(4)描述对象动态的特性参数有放大系数K ,时间常数T (无自平衡能力用飞升时间Ta ),迟延时间(包括迟延和容积迟延)或另一组参数飞升速度ε,自平衡率ρ和迟延时间η13、PID 调节器传递函数表达式:)11(1)()(PID s T sT S E s W d i ++==δμ 14、比例作用(P 作用):比例作用能单独的执行调节任务,并能使控制过程趋于稳定,但使被调量产生静态偏差。

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点随着工业化的发展,电力需求也在不断增长。

而作为电力的主要生产者,电厂在保证供电的同时也面临着能源消耗、环境污染等诸多问题。

为了提高电厂的运行效率和减少能源损耗,热工自动控制技术应运而生。

热工自动控制技术是指通过测量、控制和调节电厂内部的热工参数,以提高热功率的效率和安全性,降低损耗,减少环境污染。

本文将试析常见电厂热工自动控制技术的要点。

一、热工自动控制系统的构成热工自动控制系统主要由传感器、执行器、控制器和执行机构组成。

传感器用于获取被测量的热工参数,比如温度、压力、流量等;控制器通过分析传感器获取的数据,根据设定的控制策略来控制执行器;执行器则根据控制器的指令来调整执行机构,实现对电厂热工参数的精确控制。

二、常见热工自动控制技术要点1. 温度控制技术温度是热工参数中最为关键的一个,对于电厂的运行和安全都有着重要的影响。

常见的温度控制技术包括PID控制、模糊控制和自适应控制。

PID控制是最为常见的一种控制技术,通过比例、积分和微分三个参数的组合来调整控制量,以实现对温度的精确控制。

模糊控制利用模糊逻辑来描述控制规则,通过建立模糊化的控制规则库来实现对温度的控制。

而自适应控制则是针对温度变化较大的情况,通过不断调整控制策略来适应不同的工况。

2. 压力控制技术压力是电厂内部很重要的一个参数,对于保证设备和管道的安全运行至关重要。

常见的压力控制技术同样包括PID控制、模糊控制和自适应控制。

不同的是,压力控制技术需要考虑到系统的动态响应和稳定性,因此在控制策略的选择上需要更加谨慎。

3. 流量控制技术流量控制是指对流体在电厂管道中的流动进行控制,以保证流体的正常运行和流速的均衡。

常见的流量控制技术包括开关控制、调节控制和迭代学习控制。

开关控制是通过控制阀门的开合来实现对流量的调节,适用于对流量波动不大的情况。

调节控制则是通过调整阀门的开度来实现对流量的精确控制,适用于流量波动较大的情况。

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点电厂是利用燃料进行热能转化,并将其转化为电能的设施。

热工自动控制技术是电厂运行过程中重要的一环,主要用于控制和调节燃料燃烧过程、锅炉热力过程、汽轮机过程和发电机过程等,以实现电厂高效稳定的运行。

下面将对常见电厂热工自动控制技术要点进行分析。

1. 燃料燃烧自动控制技术:电厂常用的燃料包括煤、天然气、柴油等。

燃料燃烧自动控制技术通过监测燃烧器的氧气浓度、燃料流量、燃烧温度等参数,并根据设定值进行控制,保证燃烧过程的稳定和高效。

燃烧系统还需要根据燃烧负荷的变化来调节燃料投入量,以提供足够的热量。

2. 锅炉热力过程自动控制技术:锅炉是电厂的核心设备,通过将燃料燃烧产生的热量传递给工质(一般是水蒸汽),以产生蒸汽驱动汽轮机发电。

锅炉热力过程的自动控制技术主要包括对水位、压力、温度等参数的测量和调节。

通过控制给水泵的水位控制阀来调节给水量,保持锅炉水位稳定;通过控制燃烧器的调节系统来调节锅炉出口蒸汽温度,以满足不同负荷情况的要求。

3. 汽轮机过程自动控制技术:汽轮机是电厂的发电机组,通过将高温高压的蒸汽转化为机械能,进而驱动发电机发电。

汽轮机过程的自动控制技术主要包括对蒸汽流量、压力、温度等参数的测量和调节。

通过控制汽轮机进汽阀的开度和排汽阀的开度来调节蒸汽流量和压力;通过控制汽轮机的热量抽取系统来调节蒸汽温度。

常见电厂热工自动控制技术要点包括燃料燃烧自动控制技术、锅炉热力过程自动控制技术、汽轮机过程自动控制技术和发电机过程自动控制技术。

这些技术能够实时监测和调节关键参数,保证电厂安全、高效、稳定运行。

随着科技的进步,电厂热工自动控制技术将不断发展,为电厂的运行提供更高水平和更可靠的支持。

热工仪表及自动控制系统的基本知识

热工仪表及自动控制系统的基本知识

一、单容有自平衡的对象 有自平衡的单容对象就是 前面介绍过的惯性环节。 微分方程为:
微分方程的解为:
传递函数为:
阶跃响应曲线: 特征参数: 1、K值:放大倍数
2、T值:时间常数
3、ρ值:自平衡率 被调量变化1个单位引起的 流量变化的数量
4、ε值:飞升速度 单位阶跃扰动下被调量的 最大变化速度
综上所述:
(3)起变送作用。
3.显示件 显示件接受中间件送来的信号,并将其转 变为测量人员可以识别的信号,它是与测 量人员直接联系的部件。可分为三种: (1)模拟显示:由指针、光标、色带等反映 被测参数的连续变化。 (2)数字显示:直接用数字显示被测参数的 大小或高低。 (3)屏幕显示:用计算机和电视屏幕等显示 测量结果。还可以给出要求的图形、数据 表格、曲线等。
测量就是利用测量工具,通过实验方法将
被测量与同性质的标准量(测量单位)进行
比较,以确定被测量是标准量多少倍数的
过程。其所得倍数就是测量值,可见,被
测量由测量值和测量单位两部分组成。
二、测量方法: 直读法:
直接测量:
比较法:
零值法:
微差法:
间接测量: 组合测量:
1.2 测量误差 一、误差的表示方法
根据各类仪表的设计、制造质量不同,国家 对每种仪表均规定了基本误差的最大允许值, 即允许误差。它可用绝对误差来表示,也可 以用引用误差来表示。
3、准确度等级: 仪表的准确度等级在数值上等于允许误差 去掉百分号后的绝对值。国家规定的准确 度等级系列有0.005,0.01,0.04,0.05, 0.1,0.2,0.5,1.0,1.5,2.5,4.0,5.0 等级.1 自动控制系统的基本知识 一、常用术语: 1、调节对象:指被调节的生产过程或生产设备 2、被调量:表征生产过程是否符合工艺要求的 物理量,也是调节作用所要维持为给定值或 维持在一定范围内的参数。 3、给定值:被调量应维持的数值。 4、扰动:引起被调量改变的各种因素。 扰动分为内扰和外扰

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点自动控制技术在电厂热工系统中占有重要地位,能够提高电力系统的自动化水平,大幅度提高生产效率和质量,降低能耗、排放和运行成本。

本文将重点分析常见的电厂热工自动控制技术要点,包括了控制对象、控制策略、控制器种类、控制参数的确定以及应用示例等方面。

一、控制对象电厂热工系统的控制对象包括了燃料供给系统、燃烧系统、余热回收系统、脱硫脱硝脱汞系统、烟气处理系统、汽轮机和发电机组等。

在控制对象的选择方面,需要结合具体的生产工艺和系统特点进行综合考虑,制定合理的控制方案,从而实现最佳的控制效果。

二、控制策略电厂热工系统的控制策略主要包括了开环控制和闭环控制两种。

开环控制指的是根据生产工艺过程的经验和规律,利用预先设计好的控制方案,对控制对象进行单向调节,实现对控制对象的粗略控制。

闭环控制则是通过反馈控制系统,对控制参数进行监测和调节,使系统能够根据实时数据进行自动化调节,实现精细化的控制。

在实际生产应用中,根据具体要求和系统特点,需要选用合适的控制策略,以达到最佳的控制效果。

三、控制器种类电厂热工自动控制系统中常见的控制器主要包括了PID控制器、模糊控制器、神经网络控制器等。

PID控制器是目前应用最广泛的一种控制器,通过对系统偏差、时间积分和变化率的综合考虑,对控制对象进行自动化调节。

模糊控制器则是利用模糊逻辑和模糊推理方法对系统进行控制,对于非线性和复杂控制对象具有一定的优势。

神经网络控制器则是利用人工神经网络完成控制任务,比较适用于非线性、复杂控制对象的控制。

四、控制参数的确定电厂热工自动控制系统中,控制参数的确定是控制系统能否正常工作的前提条件。

控制参数的确定需要从控制对象、控制器、传感器以及控制策略等方面综合考虑,选用合适的控制参数,以达到稳定、精确的控制效果。

五、应用示例以上介绍的控制技术可以应用于电厂热工系统的多个环节,例如对燃料供给系统进行精准控制,可以确保燃料的供应量和燃烧温度始终处于最佳状态,提高燃烧效率和能源利用率;对余热回收系统进行自动化控制,可以确保余热回收和利用的最大程度,降低能耗和运营成本;对脱硫脱硝脱汞系统进行自动化控制,可以保证废气排放达到环保要求,提高环境保护水平。

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点电厂热工自动控制技术是指利用计算机、电子设备等先进技术对电厂热工设备进行控制和调节,保证电厂热能的生产、供应和利用的安全、稳定和高效性。

1. 控制策略与参数设置电厂热工设备自动控制的基本要素是控制策略和控制参数,控制策略包括开环控制和闭环控制两种形式,而控制参数则是控制系统的重要组成部分。

在设置控制参数时,通常需要根据当前热工设备状态和运行需求进行实时调整和优化,以确保热能的稳定供应和高效利用。

此外,还需要注意控制参数的优化调节,以实现最优的热工生产效益。

2. 物理模型与仿真物理模型与仿真是电厂热工自控技术的重要核心。

在监控和调控热工设备时,必须建立合理的物理模型和仿真软件,以实现对热工系统各种参数变化和演化趋势的精确分析和预测,为控制系统提供准确的参考数据。

同时,物理模型和仿真技术也有助于提高电厂热工自控的可靠性和灵活性,减少可能出现的故障和异常情况,从而确保热能生产和供应的安全和稳定性。

3. 传感器与执行器传感器和执行器是电厂热工自控系统的重要组成部分,其中传感器主要用于实时监测热工系统各种参数变化,如温度、压力、流量、液位等;而执行器则负责对热工设备进行精确的调节和控制。

传感器和执行器的精度和可靠性直接影响热工自控系统的效果和稳定性,因此在选择和安装时需特别注意其技术性能和适用范围,以确保操作的安全和可靠性。

4. 开放性控制系统此外,开放性控制系统还需要充分考虑与其他系统的兼容性和可互操作性,在实际应用中要注意系统之间的协调和优化,总之,电厂热工自动控制技术在热能生产和利用过程中具有重要的意义和作用。

要实现优化控制和高效运行,需要各种技术要点的协调配合,充分发挥现代技术的优势和特点,提高热工自控系统的稳定性和可靠性。

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点
电厂热工自动控制技术是指在电厂的燃料燃烧、蒸汽发生、机组运行等过程中,通过先进的自动控制技术手段,提高发电效率、降低能耗、增强运行安全。

常见电厂热工自动控制技术要点主要包括以下几个方面:
1. 温度控制
温度是影响电厂运行的关键因素之一,需要对温度进行全面的控制。

热工自动控制技术可以实时监测机组温度变化,控制燃料供给、蒸汽压力、循环水温度等参数,确保温度恒定在稳定工作区间内,避免过热或失控等问题的发生。

2. 压力控制
电厂运行中,压力也是一个极其重要的参数,会直接影响到机组的正常操作。

自动控制系统可以实时监测机组压力变化,调用控制策略,及时变化给定煤量、给定气量、风量等参数,确保电厂正常运行,避免压力失控等问题的发生。

3. 流量控制
在电厂的运行过程中,液体和气体的流量也需要进行精确的控制。

热工自动控制技术通过实时监测液体和气体的流量变化,并通过调整给定的参数,控制流量在稳定工作区间内,提高电厂发电效率,降低能耗,增强运行安全。

5. 负荷控制
综上所述,电厂热工自动控制技术要点包括温度、压力、流量、炉温、负荷等多个方面的控制。

通过实时监测、及时调整参数、控制策略等手段,确保电厂的正常运行和发电效率,降低能耗,增强运行安全。

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点
电厂热工自动控制技术是保障电厂安全稳定运行的重要一环,它的主要任务是对发电过程中热力参数进行自动、精确、安全控制。

常见电厂热工自动控制技术要点包括调节系统、保护系统、监测系统以及信息系统等四个方面。

1.调节系统
电厂热工自动调节系统是整个电厂自动化的核心,主要负责控制锅炉温度、汽轮机转速、蒸汽压力、给水流量等参数。

它涉及压力、温度、流量、液位、水位等多项技术,具有很高的自动化程度,对于保障发电的持续、稳定运行具有至关重要的作用。

2.保护系统
电厂保护系统是防止在发电过程中出现突发故障和事故的关键,包括机组保护和人员保护两部分。

机组保护主要应对机械故障、电气故障、输电线路故障等,在关键时刻快速切断发电机组运行,避免二次事故的发生;人员保护则是针对操作员的安全进行保障,通过对设备、工艺、环境等方面进行监测和预警,并及时传递信息,保障人员的安全。

3.监测系统
电厂热工监测系统主要是对发电机房内各类设备参数进行监测、检测和传输,并及时的反馈到维护人员手中,以便对故障进行快速判断和处理。

该系统包括机组监测系统、机房环境监测系统、油气系统监测系统、给水泵监测系统等多方面内容。

4.信息系统
电厂信息化系统是支撑电厂热工自动化运行的重要技术,它涉及到各个子系统之间的信息传递和处理。

该系统主要由服务器、数据库、通讯设备、控制终端组成,可以实现充分的集中化信息管理,提高系统的整体管理水平。

总之,电厂热工自动控制技术贯穿于整个电厂发电的过程中,保障电厂的安全运行和高效发电,具有重要的意义。

上述所述的四个要点,是当前电厂热工自动化技术中必要的关键技术,并且也是未来电厂技术升级的重要方向。

《热工控制系统》课程教学大纲

《热工控制系统》课程教学大纲

《热工控制系统》课程教学大纲课程编号: 0805507306课程名称:热工控制系统英文名称:Thermal Control System课程类型: 专业必修课总学时:72 讲课学时:72 实验学时:0学分:4.5适用对象: 热能动力工程专业(本科,热自方向)(08/09/10级)先修课程:工程数学、电子技术、自动控制原理、计算机技术、热工基础、热工测量与仪表、生产过程设备系统及运行一、课程性质、目的和任务《热工控制系统》是热能动力工程专业火电厂热工自动化方向学生的专业必修课,也是其主干专业课。

通过本课程的学习使学生理解并掌握热工对象的动态特性;掌握调节器的调节规律;掌握控制系统的基本概念、组成原理、分析设计方法、投运和调试方法,了解引进机组控制系统的新技术,为学生将来尽快适应实际工作奠定扎实的基础。

二、教学基本要求本课程主要以单回路控制系统、串级控制系统、导前微分控制系统和前馈-反馈复合控制系统为研究对象,以单回路控制系统为重点。

学完本课程应达到以下基本要求:1.理解热工对象动态特性并掌握其求取的基本方法。

2.理解掌握比例调节规律;理解掌握积分调节规律;理解掌握微分调节规律。

3.熟练掌握单回路控制系统分析;熟练掌握单回路控制系统的参数整定;了解单回路控制系统应用实例。

4.理解串级控制系统特点;掌握串级控制系统实例。

5.理解导前微分控制系统特点;掌握导前微分控制系统整定;了解导前微分控制系统实例。

6.理解前馈控制系统特点;掌握复合控制系统特性分析方法、复合控制系统实例分析方法和三冲量给水系统。

7.了解汽包锅炉燃烧对象动态特性;掌握燃烧控制系统基本方案;理解中储式锅炉燃烧控制系统和直吹式锅炉燃烧控制系统。

8.了解直流锅炉特点;了解直流锅炉动态特性;理解直流锅炉控制系统的基本方案。

9.掌握协调控制系统基本概念;理解协调控制系统基本方案。

三、教学内容及要求1.概论1)了解热控的发展2)了解热控的内容和分类3)掌握热控系统的品质指标2.热工对象1)了解影响对象动态特性的结构性质;2) 理解有自平衡能力对象的动态特性3) 理解无有自平衡能力对象的动态特性4) 掌握由阶跃响应求对象传递函数的基本方法;3.调节器1) 理解比例调节规律的特点,掌握比例调节规律对过渡过程的影响2) 理解积分调节规律的特点,掌握积分调节规律对过渡过程的影响3) 理解微分调节规律的特点,掌握微分调节规律对过渡过程的影响4.单回路控制系统1)熟练掌握单回路控制系统分析2)熟练掌握单回路控制系统的参数整定3)了解单回路控制系统实例5.串级控制系统1) 了解串级控制系统组成2) 理解串级控制系统特点3) 了解串级控制系统选择4) 掌握串级控制系统实例6.导前微分控制系统1) 了解导前微分控制系统组成2) 理解导前微分控制系统特点3) 掌握导前微分控制系统整定4) 了解导前微分控制系统实例7.复合控制系统1) 了解前馈控制系统组成2) 理解前馈控制系统特点3) 掌握复合控制系统特性分析4) 掌握复合控制系统实例分析5) 掌握三冲量给水系统8.比值及锅炉燃烧控制系统1)了解比值控制系统;2)了解锅炉燃烧控制系统的任务3)了解汽包锅炉燃烧对象动态特性4)掌握燃烧控制系统基本方案5)理解中储式锅炉燃烧控制系统6)理解直吹式锅炉燃烧控制系统9.直流锅炉控制系统1)了解直流锅炉的特点2)了解直流锅炉的动态特性3)理解直流锅炉控制系统的基本方案10.协调控制系统1) 掌握协调控制系统基本概念2) 理解协调控制系统基本方案四、所含实践环节参见《热工控制系统课程设计大纲》五、课外习题及课程讨论围绕下列主要问题给学生布置作业:一、基本概念和控制系统品质指标的物理意义二、由阶跃响应求对象传递函数的基本方法并熟悉其推导思路三、理调节器调节规律和调节参数对过渡过程的影响四、单回路控制系统的参数整定的方法五、串级控制系统特点、整定方法及现场整定等问题六、串级控制系统特点、整定方法及现场整定等问题七、复合控制系统特性分析;单级和串级三冲量给水系统的整定及故障分析八、比值控制系统基本概念;汽包锅炉燃烧对象动态特性;燃烧控制系统基本方案;中储式锅炉燃烧控制系统工作原理;直吹式锅炉燃烧控制系统工作原理。

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点电厂热工自动控制技术是指通过自动化设备和系统来实现电厂热工过程的自动化控制。

它能够提高电厂的运行效率、减少能源浪费,同时能够提高生产过程的安全性和稳定性。

下面将对常见的电厂热工自动控制技术要点进行分析。

1. 传感器技术:传感器是电厂热工自动控制的关键技术之一,它能够将温度、压力、流量等物理量转换为电信号,并传递给控制系统。

传感器的精度和可靠性对于热工自动控制非常重要。

2. 控制阀门技术:控制阀门是热工自动控制过程中用来调节介质流量和压力的关键设备。

控制阀门需要根据自动控制系统的指令来调节,可以通过电动、气动、液动等方式实现。

3. 控制系统技术:控制系统是电厂热工自动控制的核心,它由传感器、执行器、控制器和监视器等组成。

控制系统能够根据所设定的参数和要求,自动调节和控制电厂的热工过程,提高系统的稳定性和可靠性。

4. 数据采集和监测技术:电厂热工自动控制需要对各种参数进行实时采集和监测,以便及时调整和控制系统的运行状态。

数据采集和监测技术能够获取到关键的运行数据,并通过分析和处理,提供给控制系统进行决策和调节。

5. 过程优化技术:通过对电厂的热工过程进行优化,可以提高能源利用效率,减少能源浪费。

过程优化技术可以通过数学模型和算法对电厂的热工过程进行优化分析,找出最佳控制策略,从而提高系统的性能和效益。

6. 安全监控和报警技术:安全监控和报警技术能够实时监测和识别电厂的安全隐患和故障,并及时发出警报。

这样可以保障电厂的运行安全,避免事故的发生。

7. 远程监控和控制技术:远程监控和控制技术可以实现对电厂热工过程的远程监控和控制,提高运维的效率和灵活性。

通过互联网和通讯技术,可以在远离电厂现场的地方对电厂的热工过程进行实时监控和控制。

电厂热工自动控制技术要点包括传感器技术、控制阀门技术、控制系统技术、数据采集和监测技术、过程优化技术、安全监控和报警技术,以及远程监控和控制技术。

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点

试析常见电厂热工自动控制技术要点电厂热工自动控制技术是指利用自动化系统、计算机技术、仪表仪器等现代科技手段对电厂的热工系统进行监测、调节和控制的一种技术。

随着电力行业的快速发展和电厂的不断升级改造,热工自动控制技术的要点也在不断地更新和完善。

本文将从控制系统结构、控制原理、控制策略和常见问题分析等方面进行论述,试析常见电厂热工自动控制技术要点。

一、控制系统结构电厂热工自动控制系统是由监控系统、执行系统、控制器和调节器等部分组成的。

监控系统主要负责对电厂燃烧系统、锅炉系统、汽轮机系统等进行实时监测和数据采集,监控系统可以采用现场总线、工业以太网等网络通信技术,实现远程监控和故障诊断。

执行系统主要包括控制阀、调节阀、执行机构等,用于根据控制系统的指令对燃料供给、烟气排放、蒸汽调节等进行实时控制。

控制器是控制系统的核心部分,它根据监测系统采集的数据来对过程进行分析和判断,生成控制指令传输给执行系统。

调节器主要通过对控制参数进行调整来实现对热工过程的精确控制。

二、控制原理三、控制策略电厂热工自动控制系统的控制策略是根据不同的热工系统特点和要求来选择相应的控制策略,实现对热工过程的最佳控制。

常见的控制策略包括比例-积分-微分(PID)控制、模糊控制、神经网络控制等。

PID控制是一种经典的控制策略,通过对系统的偏差、积分和微分进行调节来实现对过程的精确控制。

模糊控制是一种基于模糊逻辑的控制策略,通过对系统的模糊规则进行推理和判断来实现对过程的控制。

神经网络控制是一种基于人工智能的控制策略,通过对系统的神经网络进行训练和学习来实现对过程的智能控制。

四、常见问题分析在电厂热工自动控制系统的运行过程中,常见的问题包括控制系统故障、传感器故障、执行器故障等。

控制系统故障可能导致对热工过程的控制失效,严重影响电厂的安全运行。

传感器故障可能导致对热工过程监测数据的失实,影响控制系统的判断和分析。

执行器故障可能导致对热工过程的调节失效,无法根据控制器的指令进行调节。

热工学习笔记总结:不可错过的知识点和学习方法

热工学习笔记总结:不可错过的知识点和学习方法

热工学习笔记总结:不可错过的知识点和学习方法热工学是机械工程领域中极其重要的一门学科,它与热力学、流体力学以及传热学息息相关。

通过热工学的学习,我们可以深刻理解机械设备、热力系统以及能源的运行原理,有助于我们在职业生涯中提高专业素质和技能水平。

本文将总结一些热工学中不可错过的知识点和学习方法,以供读者参考。

一、重要知识点1. 热力控制系统:热力控制是热工学领域中极为重要的一个领域。

掌握热力控制的原理和方法可以帮助我们更好地实现机械设备的运行控制和能源的利用。

2. 热力学基本概念:热工学和热力学密切相关,热力学的基本概念是我们学习热工学的基础。

理解热力学中的热量、功、焓、熵等概念,可以帮助我们更好地理解能量转化和传递的过程。

3. 热力学公式:热力学公式是热工学中的重要内容之一。

学习热力学公式可以帮助我们更好地理解热力学中的各个概念和原理,并应用于实际问题中。

4. 热力系统分析:热力系统分析是热工学中的一项基本技能。

通过对热力系统的分析,我们可以掌握热力系统的性能和特点,从而为热力系统的调整和优化提供重要参考。

5. 能源利用分析:能源利用分析是热工学的一个重要领域,学习能源利用分析可以帮助我们更好地理解热力系统中能量的转化和利用过程,从而为科学合理的能源利用提供重要参考。

二、有效学习方法1. 充分理解概念:在学习热工学的过程中,我们需要充分理解相关概念和定义。

如果没有掌握好基本概念,就很难理解后续的知识内容了。

2. 实验练习:通过实验练习可以更好地理解热工学中的各种概念和原理。

实验练习可以帮助我们更好地掌握热力学中的一些公式和分析方法。

3. 培养逻辑思维能力:热力系统分析和能源利用分析需要我们培养逻辑思维能力。

在学习过程中不仅要进行计算、分析,还要注意运用逻辑思考问题所在,这可以帮助我们更好地掌握热工学中的知识内容。

4. 培养创新能力:在学习热工学中,我们需要根据已有的理论知识来解决实际的问题。

因此,我们需要培养创新能力,不断总结和提炼经验,从而更好地解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热工控制系统重点
1.反馈、前馈、复合控制系统的图形、特点。

例题:例题:反馈控制系统的特点是( A 基于偏差、消除偏差,调节及时果的准确性 )。

B 调节不及时,无法保证结 D、调节
C 基于偏差、消除偏差,调节不及时及时,无法保证结果的准确性
2.自动调节系统性能指标及它们之间的关系。

例题:评价一个自动调节系统调节过程好坏的性能指标是( A 峰值时间、衰减率、上升时间)。

B 静态偏差、动态偏差、稳定 D 上升时性 C 静态偏差、动态偏差、衰减率、控制过程时间间、超调量、衰减率
3.环节连接方式,方框图等效变换(必考),传递函数定义
4.热工对象的分类,利用阶跃响应曲线法求取对象高阶传递函数。

5.P、I、D调节的规律。

四种调节器的参数变化对调节品质的影响(选择、判断)
例题:单回路控制系统中 PI 控制作用下,如下所示哪组参数可使稳定性增强() B、δ增大,Ti 增大 C、δ减小,Ti 增A、δ增大,Ti 减小大 D、减小,减小
6.二阶系统标准方程及符号意义。

阻尼系数范围,会求取时域性能指标。

7.劳斯判据在判定系统稳定性中的应用。

8.单回路控制系统三种整定方法及其区别,开环试验与闭环试验的区别。

9.什么是串级系统,主、副调各有何种任务。

例题:串级控制系统比单回路控制系统控制性能好的原因之一在于副回路的加入改善了调节对象的动态特性。

()
10.串级系统及导前微分系统的参数整定(大题)(两种出题方式:(1)给出阶跃响应曲线(或对象高阶传递函数)(2)给出减温器与总对象的特征参数 Tc、τ)
11.串级过热汽温控制系统采用喷水减温而非烟气侧调节或蒸汽量D 进行调节的原因。

12.再热汽温控制系统的控制策略,不采用喷水减温作为主控方案的原因。

13.水位的组成,三扰动、三冲量,虚假水位图形及原因,何种扰动对水位影响最大。

三冲量应分别采用何种控制方案。

前馈控制方案对系统稳定性有无促进作用。

14.单冲量控制系统的图形及低负荷下采用单冲量系统的原因。

锅炉在低负荷工况下,蒸汽流量和给水流量的测量值误差很大,所以在低负荷运行时宜采用单冲量调节系统
15.单级三冲量与串级三冲量系统控制方框图,单级三冲量采用PI 调节器为何无法做到既稳态又无差。

串级三冲量系统与单级三冲量系统的区别。

16.燃烧控制系统的调节量与被调量,燃烧控制系统的三个子系统分别为达到何种目的。

例题:燃烧控制系统由燃料、送风、引风三个子系统组成,燃烧控制系统的被调量为()
A、燃料量、送风量、引风量压
B、燃料量、主蒸汽压力、炉膛负 D、主蒸汽压力、烟气
C、燃料量、烟气含氧量、送风量
含氧量、炉膛负压
17.燃烧过程自动控制原则性方案图
(1)燃料控制为什么用串级系统?(2)送风为什么用串级系统?风煤比表征燃烧经济性的缺点。

(3)引风为什么要加送风的前馈?
18.什么是热量信号?其基本原理表达式,它的出现是为了代替哪个信号。

19.单元机组协调控制系统两个主控参数及选择它们的原因。

BF、TF控制方式的图形、特点。

CBF、CTF 控制方式的图形,它们如何克服分开控制的缺点。

例题:画出 BF 原理图,说明其特点并指出有何方法可克服 BF 的缺点。

在机组负荷控制中,TF 控制方式的特点是( A、未利用锅炉蓄热,负荷适应性好 B、利用了锅炉蓄热,机组C、负荷适应性差,机组安全性、稳定性好负荷适应性好,机组安全性、稳定性差D、安全性、稳定性好)
题型:单选、判断、画图及说明、计算、分析。

相关文档
最新文档