人教版初中数学圆的综合训练
初中九年级数学《圆的综合应用》适应性训练试卷及解析

《圆的综合应用》适应性训练试卷1.如图,△ABC内接于⊙O,BD是⊙O的直径,∠A=120°,CD=•2cm,•求扇形BOC的面积.1题图2.已知AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E在AB的延长线上,∠A=∠BCE.(1)求证:CE是⊙O的切线;(2)若BC=BE,判定四边形OBCD的形状,并说明理由.2题图443. 如图,AB 为⊙O 的直径,点C 、D 都在⊙O 上,且CD 平分∠ACB ,交AB 于点E .(1)求证:∠ABD =∠BCD ;(2)若DE =13,AE =17,求⊙O 的半径;(3)DF ⊥AC 于点F ,试探究线段AF 、DF 、BC 之间的数量关系,并说明理由.3题图参考答案1. 解:∵∠A =120°,∴BDC 所对的圆心角=240°,∴∠BOC = 120 °,∴∠COD =60°,∵OC=OD ,∴△COD 是等边三角形,∵CD =2cm ,∴OC=OD =2cm ,∴S 扇形BOC =2120π24π3603 cm 2.2. (1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACO +∠BCO =90°,∵OC =OA ,∴∠A =∠ACO ,∴∠A +∠BCO =90°,∵∠A=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:四边形OBCD是菱形,理由:∵BC=BE,∴∠E=∠ECB,∵∠BCO+∠BCE=∠COB+∠E=90°,∴∠BCO=∠BOC,∴BC=OB,∴△BCO是等边三角形,∴∠AOC=120°,∵F是AC的中点,∴AF=CF,∵OA=OC,∴∠AOD=∠COD=60°,∵OD=OC,∴△COD是等边三角形,∴CD=OD=OB=BC,∴四边形OBCD是菱形.3. (1)证明:∵CD平分∠ACB,∴∠ACD=∠BCD,∵∠ACD=∠ABD,∴∠ABD=∠BCD;(2)解:如图1,过点E作EM⊥AD于点M,∵AB为⊙O的直径,∴∠ACB=90°,∠ADB=90°,∴∠DAB=∠BCD=45°,4∵AE=17,∴ME=AM,∵DE=13,∴,∴AD=AM+DM=,∴AD==24,∴AO=12AB=12;(3)AF+BC=DF.理由如下:如图2,过点D作DN⊥CB,交CB的延长线于点N,∵四边形DACB内接于圆,∴∠DBN=∠DAF,∵DF⊥AC,DN⊥CB,CD平分∠ACB,∴∠AFD=∠DNB=90°,DF=DN,∴△DAF≌△DBN(AAS),∴AF=BN,CF=CN,∵∠FCD=45°,∴DF=CF,∴CN=BN+BC=AF+BC=DF.即AF+BC=DF.4。
初中数学圆形专题训练50题含答案

初中数学圆形专题训练50题含参考答案一、单选题1.如图,A 、B 、C 是⊙O 上的三个点,若⊙C =35°,则⊙OAB 的度数是( )A .35°B .55°C .65°D .70° 2.若圆锥的侧面展开图是一个半圆,该半圆的直径是4cm ,则圆锥底面的半径是( )A .0.5cmB .1cmC .2cmD .4cm 3.如图,AB 是半圆的直径,D 是弧AC 的中点,70ABC ∠=︒,则BAD ∠的度数是( ).A .55°B .60°C .65°D .70° 4.如图,点A 、B 、C 都在⊙O 上,⊙O 的半径为2,⊙ACB =30°,则AB 的长是( )A .2πB .πC .2π3 D .1π35.如图,ABCD 为⊙O 的内接四边形,若⊙D=65°,则⊙B=( )A .65°B .115°C .125°D .135° 6.如图,AB 、AC 是O 的两条切线,切点为B 、C , ∠BAC =30°,则∠BAO 度数为( )A .60B .45C .30D .15 7.如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊙AC 于点D ,OM ⊙AB 于点M ,OM =13,则sin⊙CBD 的值等于( )A B .13 C D .128.如图,在Rt⊙ABC 中,⊙C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,图中阴影部分面积为( )A .25244π-B .25248π-C .252416π-D .252432π- 9.如图,AB 为⊙O 的切线,A 为切点,OB 交⊙O 于点D ,C 为⊙O 上一点,若42ABO ∠=︒,则ACD ∠的度数为( )A .48°B .24°C .36°D .72° 10.如图,点A ,B ,C 在O 上,//BC OA ,20A ∠=︒,则B ∠的度数为( )A .10︒B .20︒C .40︒D .50︒ 11.如图,⊙O 是⊙ABC 的外接圆,已知AD 平分⊙BAC 交⊙O 于点D ,连结CD ,延长AC ,BD ,相交于点F.现给出下列结论:⊙若AD=5,BD=2,则DE=25; ⊙ACB DCF ∠=∠;⊙FDA ∆⊙FCB ∆;⊙若直径AG⊙BD 交BD 于点H ,AC=FC=4,DF=3,则cosF=4148; 则正确的结论是( )A .⊙⊙B .⊙⊙⊙C .⊙⊙D .⊙⊙⊙ 12.下列说法中,正确的是( )A .垂直于半径的直线一定是这个圆的切线B .任何三角形有且只有一个内切圆C .所有的正多边形既是轴对称图形也是中心对称图形D .三角形的内心到三角形的三个顶点的距离相等13.如图,ABC 中,30C ∠=,90B ∠=,8AC =,以点A 为圆心,半径为4的圆与BC 的位置关系是( )A .相交B .相离C .相切D .不能确定 14.如图,⊙O 的半径长6cm ,点C 在⊙O 上,弦AB 垂直平分OC 于点D ,则弦AB 的长为( )A .9 cmB .cmC .92 cmD .cm 15.如图,正ABC 的边长为3cm ,边长为1cm 的正RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为( )A .cm πB .2cm πC .3cm πD .6cm π 16.如图,两个半径都为1的圆形纸片,固定⊙O 1,使⊙O 2沿着其边缘滚动回到原来位置后运动终止,则⊙O 2上的点P 运动的路径长为( )A .2πB .4πC .6πD .无法确定 17.下列五个说法:⊙近似数3.60万精确到百分位;⊙三角形的外心一定在三角形的外部;⊙内错角相等;⊙90°的角所对的弦是直径;⊙函数y =x 的取值范围是2x ≥-且1x ≠.其中正确的个数有( )A .0个B .1个C .2个D .3个 18.下列命题正确的有( )A .在同圆或等圆中,等弦所对的弧相等B .圆的两条不是直径的相交弦,不能互相平分C .正多边形的中心是它的对称中心D .各边相等的圆外切多边形是正多边形 19.若扇形的面积是56cm 2,周长是30cm ,则它的半径是( )A .7cmB .8cmC .7cm 或8cmD .15cm 20.如图,在ABC 中,3AB =,6BC =,60ABC ∠=︒,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .3πB 2π-C πD 32π二、填空题21.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA =___. 22.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,如图1,点P 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为_____m .23.用一个圆心角为90°半径为32cm 的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为___cm .24.如图,一块三角形透明胶片刚好在量角器上的位置,点A 、B 的读数分别是80︒、30︒,则ACB =∠________.25.如图,点I 为ABC 的三个内角的角平分线的交点,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为______.26.已知⊙O 1和⊙O 2的半径长分别为3和4,若⊙O 1和⊙O 2内切,那么圆心距O 1O 2的长等于_____.27.已知一个圆锥的底面半径为5cm ,则这个圆锥的表面积为___________28.如图,在⊙O 中,AB 为直径,CD 为弦,已知⊙BAD=60°,则⊙ACD=______度.29.正十二边形的中心角是_____度.30.如图,A 、D 是半圆O 上的两点,BC 是直径,若⊙D =35°,则⊙AOB =_____°.31.如图,四边形ABCD 内接于O ,1079,,BD CD AB AC ====,则AD 的长为 ___________.32.如图,已知⊙P的半径为1,圆心P在抛物线22=-上运动,当⊙P与x轴相切y x时,圆心P的坐标是___________________.33.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是_____34.如图,AB为⊙O的直径,弦CD⊙AB于点E,若AE=8,BE=2,则CD=_______________.35.如图,已知AB是半圆的直径,且AB=10,弦AC=6,将半圆沿过点A的直线折叠,使点C落在直径AB上的点C′,则折痕AD的长为________.36.一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上.木工师傅想到了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关数据(单位:cm )后,从点N 沿折线NF FM NF BC FM AB -(∥,∥)切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠、无缝隙、不计损耗),则CN AM ,的长分别是_______.37.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,分别以点A 、C 为圆心,OA 长为半径作OE 、OF 交AD 于点E 、BC 于点F .若6AC =,50∠=°ACB ,则阴影部分图形的面积为__________.(结果保留π)38.如图,在直角坐标系中,点A 坐标为(2,0),点B 的坐标为(6,0),以B 点为圆心,2长为半径的圆交x 轴于C 、D 两点,若P 是⊙B 上一动点,连接P A ,以P A 为一直角边作Rt ⊙P AQ ,使得1tan 2APQ ∠=,连接DQ ,则DQ 的最小值为_____39.如图,点O 为以AB 为直径的半圆的圆心,点M ,N 在直径AB 上,点P ,Q 在AB 上,四边形MNPQ 为正方形,点C 在QP 上运动(点C 与点P ,Q 不重合),连接BC 并延长交MQ 的延长P 线于点D ,连接AC 交MQ 于点E ,连接OQ ,则sin⊙AOQ =__________,若圆半径为R ,则DM ·EM =_______.40.已知Rt △ABC 中,⊙A =90°,M 是BC 的中点.如图,(1)以M 为圆心,MB 为半径,作半圆M ;(2)分别B ,C 为圆心,BA ,CA 为半径作弧,两弧交于D 点;(3)连接AM ,AD ,CD ;(4)作线段CD 的中垂线,分别交线段CD 于点F ,半圆M 于点G ,连接GC ;(5)以点..G 为圆心...,线段GC 为半径,作弧.CD .根据以上作图过程及所作图形,下列结论中:⊙点A 在半圆M 上;⊙AC =CD ;⊙弧AC =弧CD ;⊙△ABM ⊙△ACD ;⊙BC =GC ;⊙⊙BAM =⊙CGF .一定正确的是_______.三、解答题41.如图,⊙O 的半径OA 、OB 分别交弦CD 于点E 、F ,且CE =DF .求证:⊙OEF 是等腰三角形.42.如图,Rt ABC 中90BAC ∠=︒,2AE AD AC =⋅,点D 在AC 边上,以CD 为直径画O 与AB 交于点E .(1)求证:AB 是O 的切线;(2)若1==,求BE的长度.AD DO43.如图,AC是⊙O的直径,AD是⊙O的切线.点E在直径AC上,连接ED交⊙O于点B,连接AB,且AB=BD.(1)求证:AB=BE;(2)若⊙O的半径长为5,AB=6,求线段AE的长.44.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,求球的半径长.45.如图,⊙ABC内接于⊙O,AB=AC,P为⊙O上一动点(P,A分别在直线BC的两侧),连接PC.(1)求证:⊙P=2⊙ABC;(2)若⊙O的半径为2,BC=3,求四边形ABPC面积的最大值.46.如图,AB是⊙O的直径,过点A作⊙O切线AP,点C是射线AP上的动点,连接CO交⊙O于点E,过点B作BD//CO,交⊙O于点D,连接DE、OD、CD.(1)求证:CA=CD;(2)填空:⊙当⊙ACO的度数为时,四边形EOBD是菱形.⊙若BD=m,则当AC=(用含m的式子表示)时,四边形ACDO是正方形.47.如图,已知△ABC为直角三角形,⊙C=90°,边BC是⊙O的切线,切点为D,AB 经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分⊙BAC;(2)若AC=8,tan⊙DAC=34,求⊙O的半径.48.已知A,B,C是⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(⊙)如图⊙,求⊙ADC的大小;(⊙)如图⊙,经过点O作CD的平行线,与AB交于点E,与AB交于点F,连接AF,求⊙F AB的大小.49.(1)小迪同学在学习圆的内接正多边形时,发现:如图1,若P是圆内接正三角形ABC的外接圆的BC上任一点,则60APB∠=︒,在PA上截取PM PC=,连接MC,可证明MCP∆是_______(填“等腰”、“等边”或“直角”)三角形,从而得到=PC MC,再进一步证明PBC≅_______,得到=PB MA,可证得:.(2)小迪同学对以上推理进行类比研究,发现:如图2,若P是圆内接正四边形ABCD的外接圆的BC上任一点,则APB APD∠=∠=°,分别过点,B D作BM AP⊥于M、⊥DN AP于N.(3)写出,PB PD与PA之间的数量关系,并说明理由.50.某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知⊙CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm,(1)用含x的代数式表示扇形O2CD的半径;(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当⊙O1的半径为多少时,该玩具的制作成本最小?参考答案:1.B【分析】根据“同一条弧所对的圆周角等于它所对的圆心角的一半”求出⊙AOB 的度数,再根据等腰三角形的性质求解即可.【详解】⊙⊙AOB 与⊙C 是同弧所对的圆心角与圆周角,⊙⊙AOB =2⊙C =2×35°=70°,⊙OA =OB ,⊙⊙OAB =⊙OBA =180AOB 2︒-∠=180702︒︒-=55°. 故选:B .【点睛】本题考查的是圆周角定理,掌握圆周角定理及等腰三角形的性质是关键. 2.B【分析】根据圆锥侧面展开图的半圆的周长等于圆锥底面的周长,从而求出底面半径; 【详解】解:由题意,底面圆的周长为:1422ππ⨯⨯=, ⊙底面圆的半径为:212ππ=(cm ), 故选:B【点睛】此题考查立体图形的侧面展开;圆锥的侧面展开图为扇形,扇形的半径为圆锥的母线,扇形的弧长为圆锥的底面周长.3.A【分析】连接BD ,由于点D 是AC 的中点,即CD AD =,根据圆周角定理得ABD CBD ∠=∠,则35ABD ∠=︒,再根据直径所对的圆周角为直角得到90ADB ∠=︒,然后利用三角形内角和定理可计算出BAD ∠的度数.【详解】解:连接BD ,如图,⊙点D 是AC 的中点,即CD AD =,⊙ABD CBD ∠=∠,而70ABC ∠=︒,⊙170352ABD ∠=⨯︒=︒, ⊙AB 是半圆的直径,⊙90ADB ∠=︒,⊙903555BAD ∠=︒-︒=︒.故选:A .【点睛】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.4.C【详解】⊙点A 、B 、C 都在⊙O 上,⊙ACB =30°,⊙⊙AOB =60°,⊙OA =2,⊙AB =6022=1801803n r πππ⨯=︒ 故选:C .5.B【分析】根据圆内接四边形的对角互补可得答案.【详解】⊙⊙B +⊙D =180°,⊙⊙B =180°﹣65°=115°.故选B .【点睛】本题主要考查了圆内接四边形的性质,关键是掌握圆内接四边形的对角互补. 6.D【分析】根据切线长定理即可求解.【详解】⊙AB 、AC 是O 的两条切线,切点为B 、C ,⊙AO 平分⊙BAC ,⊙∠BAO =12⊙BAC=15°, 故选D.【点睛】此题主要考查圆内角度求解,解题的关键是熟知切线长定理的性质.7.B【分析】根据锐角⊙ABC 内接于⊙O ,BD ⊙AC 于点D ,OM ⊙AB 于点M ,得出sin ⊙CBD =sin ⊙OBM 即可得出答案.【详解】连接AO ,⊙OM⊙AB于点M,AO=BO,⊙⊙AOM=⊙BOM,⊙⊙AOB=2⊙C⊙⊙MOB=⊙C,⊙⊙O的半径为1,锐角⊙ABC内接于⊙O,BD⊙AC于点D,OM=13,⊙sin⊙CBD=sin⊙OBM=13113 MOOB==则sin⊙CBD的值等于13.故选B.【点睛】此题主要考查了垂径定理以及锐角三角函数值和圆周角定理等知识,根据题意得出sin⊙CBD=sin⊙OBM是解决问题的关键.8.A【分析】设等圆⊙A,⊙B外切于O点,如图,利用两圆相切的性质得到O点在AB上,再利用勾股定理计算出AB,则OA=OB=5,然后根据扇形的面积公式,利用S阴影=S△ABC一2S扇形进行计算,即可求解.【详解】解:设两等圆⊙A,⊙B外切于点O,则点O在AB上,⊙⊙C=90°,AC=8,BC=6,⊙10AB,⊙A+⊙B=90°,⊙OA =OB =5,⊙S 阴影=S △ABC -2S 扇形2190525682423604ππ⨯⨯=⨯⨯-=-. 故选:A .【点睛】本题考查了相切两圆的性质:如果两圆相切,那么连心线必经过切点.也考查了勾股定理和扇形面积的计算.9.B【分析】连结OA ,由切线定理和直角三角形性质可得⊙AOB=48°,再由圆周角定理可得⊙ACD=24°.【详解】解:如图,连结OA ,则由切线定义可得:⊙OAB=90°,⊙⊙AOB=90°-⊙ABO=90°-42° =48°,⊙根据圆周角定理可得:⊙ACD=12⊙AOB=24°, 故选B .【点睛】本题考查圆的应用,综合运用圆周角定理、切线的性质定理和直角三角形的性质求解是解题关键.10.C【分析】由//BC OA 得20C A ∠=∠=︒,由圆心角和圆周角的关系得40O ∠=︒,再利用平行线的性质可得结论.【详解】解:如图,⊙//BC OA ,20A ∠=︒⊙20C A ∠=∠=︒⊙240O C ∠=∠=︒//,BC OA⊙40B O ∠=∠=︒故选:C【点睛】此题考查了圆周角定理与平行线的性质.此题难度不大,注意掌握数形结合思想的应用.11.C【详解】试题分析:此题主要考查圆的综合问题,熟悉圆的相关性质,会证明三角形相似并解决相关问题,能灵活运用垂径定理和三角函数是解题的关键.⊙只需证明⊙BDE⊙⊙ADB ,运用对应线段成比例求解即可; ⊙连接CD ,假设⊙ACB=⊙DCF ,推出与题意不符即可判断; ⊙由公共角和同弧所对的圆周角相等即可判断; ⊙先证明⊙FCD⊙⊙FBA ,求出BD 的长度,根据垂径定理求出DH ,结合三角函数即可求解.⊙如图1,⊙AD 平分⊙BAC ,⊙⊙BAD=⊙CAD ,⊙⊙CAD=⊙CBD ,⊙⊙BAD=⊙CBD ,⊙⊙BDE=⊙BDE ,⊙⊙BDE⊙⊙ADB , ⊙BD DE AD BD=, 由AD=5,BD=2,可求DE=45, ⊙不正确;⊙如图2,连接CD ,⊙FCD+⊙ACD=180°,⊙ACD+⊙ABD=180°,⊙⊙FCD=⊙ABD ,若⊙ACB=⊙DCF ,因为⊙ACB=⊙ADB ,则有:⊙ABD=⊙ADB ,与已知不符,故⊙不正确;⊙如图3,⊙⊙F=⊙F,⊙FAD=⊙FBC,⊙⊙FDA⊙⊙FCB;故⊙正确;⊙如图4,连接CD,由⊙知:⊙FCD=⊙ABD,又⊙⊙F=⊙F,⊙⊙FCD⊙⊙FBA,⊙FC FD FB FA=,由AC=FC=4,DF=3,可求:AF=8,FB=323,⊙BD=BF-DF=233,⊙直径AG⊙BD,⊙DH=233,⊙FG=416,⊙cosF=FGAF=4148,故⊙正确.故选C.考点:圆的综合题.12.B【分析】经过半径的外端并且垂直于这条半径的直线是圆的切线,所以A不正确;三角形的内切圆的圆心是三个内角平分线的交点,而交点只有一个,所以B是对的;一个图形绕中心旋转180度能与自身重合则称此图形为中心对称图形,正五边形不是,所以C不正确;三角形的内心是三个内角平分线的交点,根据角平分线上的点的特点,D是错误的.【详解】解:A.经过半径的外端并且垂直于这条半径的直线是圆的切线,故A错误;B.三角形的内切圆的圆心是三个内角平分线的交点,而交点只有一个,故B正确;C.一个图形绕中心旋转180度能与自身重合则称此图形为中心对称图形,正五边形不是,故C错误;D.三角形的内心是三个内角平分线的交点,到三边的距离相等,故D错误.故选B.【点睛】本题考查了圆的切线的判定,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.13.C【分析】由已知条件易求AB的长,和圆的半径4比较大小即可得知与BC的位置关系.【详解】⊙⊙C =30°,⊙B =90°,AC =8,⊙AB =12AC =4. ⊙以点A 为圆心,半径为4画圆,⊙d =r ,即以点A 为圆心,半径为4的圆与BC 的位置关系是相切.故选C .【点睛】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.14.B【分析】弦AB 垂直平分OC 于点D ,得OD=3,由勾股定理得AD ,由垂径定理得AB=2AD ,可得答案.【详解】⊙⊙O 的半径长6cm ,弦AB 垂直平分OC ,⊙OD=3,由勾股定理得:,⊙OC 过O ,OC⊙AB ,⊙AB=2AD=,故选B .【点睛】本题主要考查了垂径定理,勾股定理,利用弦AB 垂直平分OC 得OD 是解答此题的关键.15.B【分析】从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P 为圆心,所以没有路程,同理在AC 和BC 上也是相同的情况,由此求解即可.【详解】解:从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=1201180⨯π,第二次是以点P 为圆心,所以没有路程,在BC 边上,第一次1201180⨯π,第二次同样没有路程,AC 边上也是如此,点P 运动路径的长为1201180⨯π×3=2π. 故选:B .【点睛】本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P 点的运动轨迹.16.B【分析】由⊙O 2上的点P 运动的路径长=点O 2运动的路径长可求解.【详解】解:⊙⊙O 2沿着其边缘滚动回到原来位置后运动终止,⊙⊙O 2上的点P 运动的路径长=点O 2运动的路径长,⊙⊙O 2上的点P 运动的路径长=2π(1+1)=4π故选:B .【点睛】本题考查了轨迹问题,掌握⊙O 2上的点P 运动的路径长=点O 2运动的路径长是本题的关键.17.B【分析】根据近似数3.60万精确到百位可判断⊙,根据三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外可判断⊙,根据两直线平行,内错角相等可判断⊙; 90°的圆周角性质可判断⊙,函数y =0,可判断⊙即可得出答案.【详解】解:⊙近似数3.60万精确到百位,故⊙近似数3.60万精确到百分位错误; ⊙三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外,故⊙三角形的外心一定在三角形的外部错误;⊙两直线平行,内错角相等;故⊙内错角相等错误;⊙90°的圆周角性质是90°的圆周角所对的弦是直径,故⊙90°的角所对的弦是直径不正确;;⊙函数y = 2010x x +≥⎧⎨-≠⎩, 解得2x ≥-且1x ≠,⊙函数y =x 的取值范围是2x ≥-且1x ≠正确. 正确的个数有一个⊙.故选择:B .【点睛】本题考查基本技能,精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围,熟练掌握精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围是解题关键.18.B【分析】根据垂径定理和正多边形的相关知识判断.【详解】解:A 、错误.因为一条弦对应着两条弧;B 、正确.只有垂直于弦的直径才能平分弦;C 、错误.正多边形的中心是它的外接圆的圆心;D 、错误.各边相等的圆外切多边形不一定是正多边形,因为角不一定相等.故选:B.【点睛】本题比较复杂,涉及到垂径定理,圆心角、弧、弦的关系,正多边形和圆的关系,是中学阶段的难点.19.C【分析】设扇形的半径为Rcm ,求出扇形的弧长为(30-2R )cm ,根据扇形的面积是56cm 2得出12R (30-2R )=56,求出即可. 【详解】解:设扇形的半径为R ,⊙扇形周长是30cm ,⊙扇形的弧长为(30-2R )cm ,⊙扇形的面积是56cm 2, ⊙12R (30-2R )=56,解得:R=7或8,故答案为C .【点睛】本题考查了扇形的面积的有关应用,注意:扇形的面积等于弧和半径积的一半. 20.D【分析】连接AD ,根据等边三角形的性质得到3AD AB ==,60ADB ∠=︒,根据勾股定理得到AC =【详解】解:连接AD ,3AB BD ==,60ABC ∠=︒,ABD ∴是等边三角形,3AD AB ∴==,60ADB ∠=︒,6BC =,3CD ∴=,AD CD ∴=,C CAD ∴∠=∠,60C CAD ADB ∠+∠=∠=︒,30C ∴∠=︒,90BAC ∴∠=︒,AC ∴=∴图中阴影部分的面积2160313332360222AB AC πππ⋅⨯=⋅-=⨯⨯=, 故选:D .【点睛】本题考查了扇形面积公式,等边三角形的判定和性质,直角三角形的性质,勾股定理,推出ABD △是等边三角形是解题的关键.21.5【详解】如图,OC 是弦AB 的弦心距,⊙AC =116322AB =⨯=,⊙5OA =.22.2【分析】过O 点作半径OD⊙AB 于E ,如图,由垂径定理得到AE =BE =4,再利用勾股定理计算出OE ,然后即可计算出DE 的长.【详解】解:过O 点作半径OD⊙AB 于E ,如图,⊙AE =BE =12AB =12×8=4,在Rt⊙AEO 中,OE 3,⊙ED =OD ﹣OE =5﹣3=2(m ),答:筒车工作时,盛水桶在水面以下的最大深度为2m .故答案为:2.【点睛】本题考查了垂径定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧,能熟练运用垂径定理是解题的关键.23.8【详解】试题分析:⊙扇形的圆心角为90°半径为32cm ,⊙根据扇形的弧长公式,扇形的弧长为()9032=16cm 180ππ⋅⋅. ⊙圆锥的底面周长等于它的侧面展开图的弧长,⊙根据圆的周长公式,得2r=16ππ,解得()r=8cm .24.25°【分析】首先设半圆的圆心为O ,连接OA ,OB ,由A 点的读数为80°,B 点的读数为30°,即可求得圆心角⊙AOB 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得⊙ACB 的大小.【详解】解:设半圆的圆心为O ,连接OA ,OB ,⊙A 点的读数为80°,B 点的读数为30°,⊙⊙AOB=80°-30°=50°, ⊙⊙ACB=12⊙AOB=25°.故答案为:25°.【点睛】此题考查了圆周角定理.此题难度不大,正确的作出辅助线是解题的关键.25.4【分析】连接AI,BI,由点I为⊙ABC的内心,得到AI平分⊙CAB,根据角平分线的定义得到⊙CAI=⊙BAI.根据平移的性质得到AC⊙DI,由平行线的性质和等角对等边得到AD=DI,BE=EI,根据三角形的周长公式进行计算即可得到答案.【详解】解:连接AI,BI,⊙点I为⊙ABC的内心,⊙AI平分⊙CAB,⊙⊙CAI=⊙BAI.由平移得:AC⊙DI,⊙⊙CAI=⊙AID.⊙⊙BAI=⊙AID,⊙AD=DI.同理可得:BE=EI,⊙⊙DIE的周长=DE+DI+EI=DE+AD+BE=AB,因为4AB ,即图中阴影部分的周长为4.故答案为:4.【点睛】本题考查角平分线的定义、平移的性质、等腰三角形的判定和平行线的性质,解题的关键是掌握角平分线的定义、平移的性质和平行线的性质和等角对等边.26.1【分析】根据两圆内切,圆心距等于半径之差.【详解】解:⊙⊙O1和⊙O2的半径长分别为3和4,⊙O1和⊙O2内切,⊙圆心距O1O2的长=4﹣3=1,故答案为:1.【点睛】本题考查了圆与圆的位置关系,掌握圆与圆之间的位置关系是解题的关键.27.255cmπ【分析】首先求得底面的周长、面积,利用勾股定理求得圆锥的母线长,然后利用扇形的面积公式即可求得圆锥的侧面积,加上底面面积就是表面积.【详解】解:底面周长是2×5π=10πcm,底面积是:5²π=25πcm².(cm),则圆锥的侧面积是:12×10π×6=30π(cm²),则圆锥的表面积为25π+30π=55π(cm²).故答案为:255cmπ.【点睛】本题考查了圆锥的计算,勾股定理,圆的面积公式,圆的周长公式和扇形面积公式求解.注意圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2的应用.28.30【分析】由在⊙O中,AB为直径,根据直径所对的圆周角是直角,可求得⊙ADB=90°,又由圆周角定理,可求得⊙ACD=⊙B=90°-⊙BAD,继而求得答案.【详解】⊙在⊙O中,AB为直径,⊙⊙ADB=90°,⊙⊙ACD=⊙B=90°-⊙BAD=30°,故答案为:30.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角.29.30【分析】根据正多边形的中心角公式:360n计算即可【详解】正十二边形的中心角是:360°÷12=30°.故答案为30.【点睛】本题的关键是掌握正多边形中心角的计算公式30.70【分析】根据圆周角定理即可求出.【详解】⊙⊙D =35°,⊙⊙AOB =2⊙D =70°,故答案为70【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧所对的圆心角是圆周角的2倍.31【分析】过点A 作AF BD ⊥,垂足为F ,过点A 作AE CD ⊥,交CD 的延长线于点E ,根据已知易证ADB ADE ∠=∠,从而证明证明AFD AED △≌△,可得,DF DE AF AE ==,然后再证明Rt Rt BAF CAE ≌,可得BF CE =,最后进行计算即可求出DF ,从而求出,,BF AF AD ,即可解答.【详解】解:过点A 作.AF BD ⊥,垂足为F ,过点A 作AE CD ⊥,交CD 的延长线于点E ,⊙AB AC =,⊙ABC ACB ∠=,⊙四边形ABCD 是圆内接四边形,⊙180ABC ADC ∠+∠=︒,⊙180ADC ADE ∠+∠=︒,⊙ABC ADE ∠=∠,⊙ADB ACB ∠=∠,⊙ADB ADE ∠=∠,⊙90,AFD AED AD AD ∠=∠=︒=,⊙(AAS)AFD AED ≌,⊙.,DF DE AF AE ==,⊙90AFB AEC ∠=∠=︒,⊙Rt Rt (HL)BAF CAE ≌,⊙.BF CE =,⊙BD DF CD DE -=+,⊙107DF DE -=+, ⊙32DF DE ==, ⊙3171022BF BD DF =-=-=,⊙AF ===⊙AD = ⊙AD【点睛】本题考查了全等三角形的判定与性质,圆内接四边形的性质,勾股定理,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.32.或(或(1,-1)或(1,-1)-【分析】根据圆与直线的位置关系可知,当⊙P 与x 轴相切时,P 点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【详解】⊙⊙P 的半径为1,⊙当⊙P 与x 轴相切时,P 点的纵坐标为1或-1.当1y =时,221y x =-=,解得x =,⊙此时P 的坐标为或(;当1y =-时,221y x =-=-,解得1x =± ,⊙此时P 的坐标为(1,1)-或(1,1)--;故答案为:或(或(1,-1)或(1,-1)-.【点睛】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x 轴相切找到点P的纵坐标的值是解题的关键.33.(﹣2,﹣1)【分析】根据外心的定义作图即可.【详解】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.⊙点A的坐标为(﹣3,2),⊙点O的坐标为(﹣2,﹣1).【点睛】本题考查了三角形外心,熟练掌握外心的定义,准确求作线段的垂直平分线是解题的关键.34.8【详解】连接OC,因为AE=8,BE=2,所以AB=10,则OB=12AB=5,所以OE=OB-BE=5-2=3,在Rt⊙OEC中,由勾股定理可得:CE4=,则CD=8,故答案为:8.35.【详解】解:设圆的圆心是O,连接OD,作DE⊙AB于E,OF⊙AC于F.根据题意知,⊙OF⊙AC,⊙AF=12AC=3,⊙⊙CAD=⊙BAD,⊙CD BD=,⊙点D是弧BC的中点.⊙⊙DOB=⊙OAC=2⊙BAD,在⊙AOF和⊙OED中,⊙⊙OFA=⊙OED,⊙FAO=⊙EDO,AO=DO,⊙⊙AOF⊙⊙OED(AAS),⊙OE=AF=3,⊙DO=5,⊙DE=4,=故答案为【点睛】本题考查翻折变换(折叠问题);勾股定理.36.18cm , 31cm .【分析】如图,延长OK 交线段MF 于点1M ,延长PQ 交BC 于点G ,交FN 于点2N ,设圆孔半径为r .根据勾股定理,得222BH KH BK +=.从而得16r =.根据题意知,12111122ON KN AB OM KM r CB ===+=,.则根据图中相关线段间的和差关系求得CN =QH -QN 2=44-26=18, AM =BC -PD -KM 1=130-50-49=31 ( cm).【详解】解:作辅助线如图所示,设圆孔半径为r ,根据勾股定理,得222BH KH BK +=.⊙()()2221305044100r -++=, 16r ∴=.按题意要求,切割后,以圆O 为中心,到两对边的距离相等, 即:12111122ON KN AB OM KM r CB ===+=,. ⊙21422KN AB ==, ⊙ QN 2+r =42,即QN 2=42-16=26.⊙CN =QH -QN 2=44-26=18.又⊙112KM r CB +=,即 11161302KM +=⨯, ⊙ KM 1=49.⊙AM =BC -PD -KM 1=130-50-49=31.⊙CN =18cm ,AM =31cm .故答案为:18cm ,31cm【点睛】本题考查了矩形、直角三角形及圆等相关知识,将实际问题转化为数学问题经验,利用图形变换思想是解题的关键,体现了数学思想方法在现实问题中的应用价值. 37.52π 【分析】每个扇形的圆心角是50°,半径为3,根据扇形面积计算公式计算即可.【详解】⊙菱形ABCD,⊙AD∥BC,OA=OC=12AC=3,⊙⊙ACB=⊙EAO=50°,⊙阴影部分的面积为50952=3602ππ⨯⨯⨯,故答案为:52π.【点睛】本题考查了菱形的性质,扇形的面积公式,熟练掌握菱形的性质,灵活运用扇形面积公式是解题的关键.38.1##1-+【分析】由题意根据“瓜豆原理-主从联动”可得Q的点轨迹也是一个圆,找到此圆即可解决问题.【详解】解:如图,取点M(2,-2),连接AM,MQ、PB,⊙⊙MAB=⊙QAP=90°,⊙⊙MAQ=⊙BAP,⊙12 AM AQAB AP==,⊙⊙MAQ⊙⊙BAP,⊙MQ=12PB=1,⊙Q点在以M为圆心,以1为半径的圆上,由图象可得:DQ的最小值为:DM-MQ,AD=OD-OA=6+2-2=6,由勾股定理可得:DM =⊙DQ 的最小值等于:故答案为:.【点睛】本题考查轨迹圆问题,熟悉掌握利用相似三角形的性质解决动点的轨迹是快速解题的关键.39. 245R 【分析】利用全等三角形的性质证明OM =ON ,设OM =ON =m ,则MQ =2m ,求出OQ ,可得结论. 再证明⊙AME ⊙⊙DMB ,可得AM EM DM BM,由此构建关系式,可得结论. 【详解】解:如图,连接OP .⊙四边形MNPQ 是正方形,⊙⊙OMQ =⊙ONP =90°,MQ =PN ,⊙OQ =OP ,⊙Rt ⊙OMQ ⊙Rt ⊙ONP (HL ),⊙OM =ON , 设OM =ON =m ,则MQ =2m ,225OQOM MQ m , ⊙sin⊙AOQ =22555MQ m OQ m . ⊙AB =2R ,⊙OA =OB =OQ =R ,⊙QM =2MO , ⊙525sin ,55R R OM OQ AOQ MQ ,55555,,555RAM R R BM R⊙AB 是直径,⊙⊙ACB =⊙DCE =90°,⊙⊙CED =⊙AEM ,⊙⊙A =⊙D ,⊙⊙AME =⊙DMB =90°,⊙⊙AME ⊙⊙DMB ,⊙ AM EM DM BM, 255554.555R DM EMR R245R 【点睛】本题考查了圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.40.⊙⊙【分析】根据圆周角定理,弧、弦、圆心角的关系定理,相似三角形的判定方法,以及其他与圆有关的性质及定理即可判断.【详解】⊙由作图可知,以M 为圆心,BC 为直径的半圆是Rt⊙ABC 的外接圆, ⊙⊙BAC=90°,⊙⊙BAC 是直径所对的圆周角,⊙点A 在半圆M 上,故⊙正确;⊙由分别以B ,C 为圆心,BA ,CA 为半径作弧,两弧交于点D 可知,CA 、CD 是以圆C 的半径,⊙AC=CD ,故⊙正确; ⊙⊙AC 在以M 为圆心、BM 为半径的圆中,CD 在以G 为圆心,以CG 为半径的圆中, ⊙AC CD ,故⊙错误;。
七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第一章--1
![七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第一章--1](https://img.taocdn.com/s3/m/b8cce670b5daa58da0116c175f0e7cd18525181f.png)
1.2有理数及其大小比较(第2课时)1.如图,数轴上一点从点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为().A.7B.3C.-3D.-22.如图,一动点从0点处开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2 024秒时所对应的数是().A.-406B.-405C.-1 010D.-1 011 3.数轴上三个互不重合的点A,B,P,点A表示的数为-1,点B表示的数为3.若A,B,P三个点中,其中一点到另外两点的距离相等时,我们称这三个点为“和谐三点”,则符合“和谐三点”的点P对应的数表示为____________________.4.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250 m到小明家,再向东走350 m到小兵家,然后向西走800 m到小颖家,最后回到学校.(1)以学校为原点,画出数轴,并在数轴上分别标出小明家、小兵家、小颖家的位置.(2)小明家距离小颖家多远?(3)这次家访,老师共走了多少千米的路程?参考答案1.【答案】D【解析】把一点从点C向左移动5个单位长度所表示的数是-4,再向右移动2个单位长度所表示的数是-2.故选D.2.【答案】A【解析】由题意知该点的运动周期为5秒,且每5秒向左运动一个单位长度.因为2 024÷5=404……4,所以该点运动到2 020秒时对应的数为-404,第2 024秒再向左运动3个单位长度,向右运动1个单位长度得-406.故选A.3.【答案】-5或1或7【解析】方法1:①当点P在点A的左侧时,因为A,B,P三个点是“和谐三点”,所以P A=AB=4,所以点P对应的数表示为-5;②当点P在A,B之间时,因为A,B,P三个点是“和谐三点”,所以P A=PB=12 AB=2,所以点P对应的数表示为1;③当点P在点B的右侧时,因为A,B,P三个点是“和谐三点”,所以AB=PB=4,所以点P对应的数表示为7.综上,符合“和谐三点”的点P对应的数表示为-5或1或7.方法2:根据题意画出示意图,由“和谐三点”的定义可得出点P的三个位置.故答案为-5或1或7.4.【答案】解:(1)以向东为正方向,100 m为单位长度,可建立数轴如图所示.(2)小明家距离小颖家450 m.(3)250+350+800+200=1 600(m),1 600 m=1.6 km,所以这次家访,老师共走了1.6 km的路程.。
初中数学综合训练--圆中的最值问题(43题)

圆相关的最值问题1.(2016年二中广雅周练)如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =3,以C 为圆心,半径为1 作⊙C ,点D 在边AB 上运动,过点D 作⊙C 的切线DE ,切点为E ,则线段DE 的最小值为___________.2.(2017年武昌七校期中)如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为 (-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 的面积的最小 值是( )B .1C .2D .2 3.(2016年新洲区月考)如图,在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在B 上,点Q 在 ⊙O 上,且OP ⊥PQ .当点P 在BC 上移动时,PQ 长的最大值是____________.4.(2016年梅苑中学周练)如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B .连接P A ,设P A =x ,PB =y ,则(x -y )的最大值是__________.5.(2017年硚口区、汉阳区期中改)如图,在平面直角坐标系中,已知A (2,0),B (5,0),点P 为 线段AB 外一动点,且P A =2,以PB 为边作等边△PBM ,则线段AM 的最大值为____________.6.(2018-2019九上洪山区期中)如图,AB =2,BC =4,点A 是⊙B 上任一点,点C 为⊙B 外一点, △ACD 为等边三角形,则△BCD 的面积的最大值为( )A .4B .C .8D .ACDEB A DA7.(2015年七一华源月考)如图,两同心圆半径分别为3、3,点A 、B 分别为同心圆上的动点,以AB为边作正方形ABCD ,则OD 长的最大值为____________.8.(2018-2019九上梅苑期中)已知,点A (8,0)、B (6,0).将线段OB 绕着原点O 逆时针方向旋转角度α到OC ,连接AC .将AC 绕着点A 顺时针方向旋转角度β至AD ,连接OD . (1)当α=30°,β=60°时,求OD 的长;(2)当α=60°,β=120°时,求OD 的长; (3)已知E (10,0),当β=90°时,改变 的大小,求ED 的最大值.9.(2018-2019九上汉阳区期中)如图,⊙O 的半径为1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连接OC ,则OC 的最大值为__________.10.(2018年武汉元调)在⊙O 中,AB 所对的圆心角∠AOB =108°,点C 为⊙O 上的动点,以AO 、AC 为边构造□AODC .当∠A =_______°时,线段BD 最长.11.(2018-2019九上青山区期中)如图,在等腰△ABC 中,∠BAC =120°,AB =AC=D 在边 BC 上,CDCD 绕点C 逆时针旋转α°(其中0<α≤360)到CE ,连接AE ,以AB ,AE 为边作□ABFE ,连接DF .则DF 的最大值为( ) ABC. D图1图2图3OACDBFDCBA【补充】1.(2017年新洲区期中)如图,在平面直角坐标系中,⊙M交x轴于A(-1,0)、B(3,0)两点,交y 轴于C、D(0,3),点S是BD上一动点,N是OS的中点,则线段DN的最小值是____________.2.(2016年武昌C组月考)在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O直径,作AD交⊙O于点E,连BE,则BE的小值为____________.3.(2016年二中广雅月考)如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,在线段AC上有一动点P (P不与C重合),以PC为直径作⊙O交PB于Q点,连AQ,则AQ的最小值为____________.4.(2017年武珞路期中)如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE、CF相交于点P.将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°的过程中,线段OP的最小值为___________.5.(2017年东湖高新期中)如图,等边△ABC的边长为1,D、E两点分别在边AB、AC上,CE=DE,则线段CE的最小值为()A.2B.3C.12DABCE FPO6.(2018-2019九上江汉区期中)如图,点C 是半圆AB 上一动点,以BC 为边作正方形BCDE (使BC 在正方形内),连OE .若AB =4cm ,则OE 的最大值为___________cm .7.(2018-2019九上武昌七校期中)如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =4,∠AOC = 120°,P 为⊙O 上的动点,连接AP ,取AP 的中点Q ,连接CQ ,则线段CQ 的最大值为( )A .3 B.C.D.8.(2017年洪山区期中)如图,在等腰Rt △ABC 中,斜边AB =8,点P 在以AC 为直径的半圆上,M 为 PB 的中点,当点P 沿半圆从点A 运动至点C 时,点M 运动的路径长是( )A .πBC .2πD .9.(2017年外校期中模拟)如图,边长为2的正方形ABCD 的对角线交于点O ,把边BA 、CD 分别绕点 B 、C 以相同速度同时逆时针旋转一周,四边形ABCD 的形状也随之发生改变,那么在旋转的过程中, AO ′的最大值为____________.10.(2016年武汉外校期中)将边长为4正方形ABCD 向右倾斜,边长不变,∠ABC 逐渐变小.顶点A ,D 及对角线BD 的中点N 分别运动到A ′,D ′和N ′的位置.若∠A ′BC =30°,则点N 到点N ′的运动路径长为_____________.OEDC BAOO′D′A′DC B A11.如图,⊙O 的直径AB 与弦CD 互相垂直,垂足为E ,AB =4,CD =23,动点P 从B 点出发,沿劣 弧BD 运动到D 点,AF ⊥CP 于F ,则线段AF 的中点M 所经过的路径长为__________.12.如图,正方形ABCD 的顶点A 为线段EF 的中点,连接BE 、DF 交于点P ,EF =4,AB =2,若将正方 形ABCD 绕点A 从AB 与AF 重合的位置开始逆时针旋转90°后停止,则在此过程中,点P 的运动路 径长度为____________.13.如图,扇形OAB 的圆心角的度数为120°,半径长为4,P 为弧AB 上的动点,PM ⊥OA ,PN ⊥OB ,垂 足分别为M 、N ,D 是△PMN 的外心.当点P 运动的过程中,点M 、N 分别在半径上作相应运动,从 点N 离开点O 时起,到点M 到达点O 时止,点D 运动的路径长为____________.14.如图,AB 为⊙O 的直径,△CDE 内接于⊙O ,AB ∥CD ,4AB =,CD =E 从点A 顺时针 运动到点B 的过程中,△CDE 的内心I 所经过的路径长度为____________.15.(2015-2016新洲区部分学校九上期中)如图,∠AOB =60°,点P 是半径为2的弧AB 上一动点,点M 、N 分别在半径OA 、OB 上,则△PMN 的周长最小值是().A .2B.C .4D .34DPCB AFE16.(2017-2018年九上二初12月)如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1,E 是⊙C 上的一动点,则△ABE 面积的最大值为( )A.(4B .(3C .(3D .(217.如图,扇形OAB 的圆心角的度数为120°,半径长为4,P 为弧AB 上的动点,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N ,D 是△PMN 的外心.当点P 运动的过程中,点M 、N 分别在半径上作相应运动,从点N 离开点O 时起,到点M 到达点O 时止,点D 运动的路径长为( )A .π32B .πC .2D .3218.( 2016~2017二中九上月考一)已知⊙O ,AB 是直径,AB =4,弦CD ⊥AB 且过OB 的中点,P 是劣弧BC 上一动点,DF 垂直AP 于F ,则P 从C 运动到B 的过程中,F 运动的路径长度( )A .π33 B .3C .π32D .219.( 2016~2017三初九上12月考)在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y=kx ﹣3k+4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为( ).A .12B .24C .32D .32420.(2017-2018年九上六中12月) 如图,已知扇形AOB 中,OA =3,∠AOB =120°,C 是在弧AB 上的动点,以BC 为边作正方形BCDE .当点C 从点A 移动至点B 时,点D 经过的路径长是___________.21.(2016-2017上学期武昌12月考)在Rt △ABC 中,∠C =90°,AC =10,BC =12,点D 为线段BC 上一动点.以CD 为⊙O 直径,作AD 交⊙O 于点E ,连BE ,则BE 的最小值为 .22.( 2016-2017武汉一初九上周测 16)在⊙O 中,直径AB =8,∠ABC =30°,点H 在弦BC 上,弦PQ ⊥OH 于点H .当点H 在BC 上移动时,PQ 长的最大值为____________.23.( 2016-2017武汉一初九上周测17)半圆⊙O 中,AB 为直径,C 、D 为半圆上任意两点,将沿直线CD 翻折使AB 与相切,已知AB=8,求CD的最大值.24.( 2016~2017二中数学练习二)如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =3,以C 为圆心,半径为1作⊙C ,点D 在边AB 上运动,过点D 作⊙C 的切线DE ,切点为E ,则线段DE 的最小值为___________AB25.(2015—2016武昌七校九上期中)如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是 .26.(2015-2016东湖高新区九上期中)如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是____________.27.(2015-2016新洲区部分学校九上期中)如图,在O 中,直径AB=6,BC 是弦,030ABC ∠=,点P 在BC 上,点Q 在O 上,且OP ⊥PQ 。
七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第三章--3
![七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第三章--3](https://img.taocdn.com/s3/m/6f4df6377f21af45b307e87101f69e314332fa3b.png)
3.2代数式的值(第1课时)1.已知x-2y=3,则代数式6-2x+4y的值为().A.0B.-1C.-3D.32.若a、b互为相反数,x、y互为倒数,则式子2(a+b)+5xy的值为().A.2B.5C.7D.33.如果m-n=15,那么-3(n-m)=().A.15B.35C.-15D.-354.若a+b=1,则代数式5-a-b的值为().A.2B.3 C.4D.5 5.当ab=1,a-b=3时,求ab+2a-2b的值.6.若xy=23,求代数式2x+yy的值.参考答案1.【答案】A【解析】因为x-2y=3,所以6-2x+4y=6-2(x-2y)=6-2×3=0.2.【答案】B【解析】因为a,b互为相反数,所以a+b=0.因为x,y互为倒数,所以xy=1.则式子2(a+b)+5xy=2×0+5×1=5.3.【答案】B【解析】如果m-n=15,那么n-m=-15,-3(n-m)=-3×(-15)=35.4.【答案】C【解析】因为a+b=1,代数式5-a-b=5-(a+b)=5-1=4.5.【答案】ab+2a-2b=ab+2(a-b)=1+2×3=7.【解析】因为已知条件是ab与a-b的值,所以先将代数式整理成含有项ab与a-b的形式,ab+2a-2b=ab+2(a-b).再把ab=1,a-b=3代入计算.6.【答案】2x+yy=2xy+1=2xy+1=2×23+1=73.【解析】因为已知条件是xy=23,所以先将代数式整理成含有项xy的形式,2x+yy=2xy+1=2xy+1.再把xy=23代入计算即可得到2x+yy的值.。
七年级-人教版(2024新版)-数学-上册-【综合训练】初中数学-七年级上册-第二章--2

2.2有理数的乘法与除法(第1课时)1.数轴上的三点A,B,C所表示的数分别为a,b,c.根据下图中各点的位置,判断下列各式正确的是().A.(a-1)(b-1)>0B.(b-1)(c-1)>0C.(a+1)(b+1)<0D.(b+1)(c+1)<02.已知|x|=2,|y|=3,且x·y<0,则x·y=________,x+y=________.3.若x是不等于1的有理数,我们把11x-称为x的差倒数,例如,2的差倒数是1112=--,-1的差倒数为11112=-(-).现已知x1=-13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,以此类推,则x2 022=_________.参考答案1.【答案】D【解析】由数轴上三个点的位置,知a-1<0,b-1>0,c-1<0,a+1>0,b+1>0,c+1<0.根据“两个有理数相乘,同号得正,异号得负”依次判断,得(b+1)(c+1)<0成立.故选D.2.【答案】-6±1【解析】由|x|=2,|y|=3,得x=±2,y=±3.由x·y<0,得x,y异号.当x=2时,y=-3,x·y=2×(-3)=-6,x+y=2+(-3)=-1;当x=-2时,y=3,x·y=-2×3=-6,x+y=-2+3=1.3.【答案】4【解析】因为x1=13-,所以根据差倒数的定义可得,21113x⎛⎫⎪⎝⎭--==34,31314x=-=4,41 14x=-=13-.显然,计算结果出现三个数循环的循环数组,因为2 022÷3=674,所以x2 022=x3=4.。
初中数学圆形经典习题

第二十四章圆经典训练题24.1 圆一、选择题.1.如图1,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,•错误的是().A.CE=DE B.BC BD=C.∠BAC=∠BAD D.AC>ADC(1) (2) (3)2.如图2,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4 B.6 C.7 D.83.如图3,在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是()A.AB⊥CD B.∠AOB=4∠ACD C.AD BD=D.PO=PD二、填空题1.如图4,AB为⊙O直径,E是BC中点,OE交BC于点D,BD=3,AB=10,则AC=_____.BA2.P为⊙O一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.3.如图5,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么_______________(只需写一个正确的结论)三、综合提高题1.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.24.1 圆(第2课时)一、选择题.1.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对 2.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( ) A .AB =2CD B .AB >CD C .AB <2CD D .不能确定 3.如图5,⊙O 中,如果AB =2AC ,那么( ).A .AB=ACB .AB=AC C .AB<2ACD .AB>2ACABA二、填空题1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的__________________. 2.一条弦长恰好为半径长,则此弦所对的弧是半圆的__________________.3.如图6,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________. 三、解答题1.如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N•在⊙O 上. (1)求证:AM =BN ;(2)若C 、D 分别为OA 、OB 中点,则AM MN NB ==成立吗?BA2.如图,∠AOB=90°,C 、D 是AB 三等分点,AB 分别交OC 、OD 于点E 、F ,求证:AE=BF=CD .24.1 圆(第3课时)一、选择题1.如图1,A 、B 、C 三点在⊙O 上,∠AOC=100°,则∠ABC 等于( ).A .140°B .110°C .120°D .130°2.如图2,∠1、∠2、∠3、∠4的大小关系是() A .∠4<∠1<∠2<∠3 B .∠4<∠1=∠3<∠2 C .∠4<∠1<∠3∠2 D .∠4<∠1<∠3=∠23.如图3,AD 是⊙O 的直径,AC 是弦,OB ⊥AD ,若OB=5,且∠CAD=30°,则BC 等于( ).A .3B .C .5-12.5二、填空题1.半径为2a 的⊙O 中,弦AB 的长为,则弦AB 所对的圆周角的度数是________.2.如图4,A 、B 是⊙O 的直径,C 、D 、E 都是圆上的点,则∠1+∠2=_______.• 3.如图,已知△ABC 为⊙O 接三角形,BC=•1,•∠A=•60•°,•则⊙O•半径为_______.OB三、综合提高题1.如图,已知AB=AC ,∠APC=60°(1)求证:△ABC 是等边三角形.(2)若BC=4cm ,求⊙O 的面积.2.如图,⊙C 经过坐标原点,且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,4),M 是圆上一点,∠BMO=120°.(1)求证:AB 为⊙C 直径.(2)求⊙C 的半径及圆心C 的坐标.24.2 与圆有关的位置关系(第1课时)一、选择题.1.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆;•③圆有且只有一个接三角形;④三角形的外心是各边垂直平分线的交点;⑤三角形的外心到三角形三边的距离相等;⑥等腰三角形的外心一定在这个三角形,其中正确的个数有(• ) A .1 B .2 C .3 D .42.如图,Rt △ABC ,∠C=90°,AC=3cm ,BC=4cm ,则它的外心与顶点C 的距离为( ).A .2.5B .2.5cmC .3cmD .4cmAA3.如图,△ABC接于⊙O,AB是直径,BC=4,AC=3,CD平分∠ACB,则弦AD长为()A.52B.52CD.3二、填空题.1.经过一点P可以作_______个圆;经过两点P、Q可以作________•个圆,•圆心在_________上;经过不在同一直线上的三个点可以作________个圆,•圆心是________的交点.2.边长为a的等边三角形外接圆半径为_______,圆心到边的距离为________.三、综合提高题.1.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图24-49所示,A、B、C•为市的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址....24.2 与圆有关的位置关系(第2课时)一、选择题.1.如图,AB与⊙O切于点C,OA=OB,若⊙O的直径为8cm,AB=10cm,那么OA的长是()ABC D2.下列说确的是()A.与圆有公共点的直线是圆的切线.B.和圆心距离等于圆的半径的直线是圆的切线;C.垂直于圆的半径的直线是圆的切线;D.过圆的半径的外端的直线是圆的切线3.已知⊙O分别与△ABC的BC边,AB的延长线,AC的延长线相切,则∠BOC等于()A.12(∠B+∠C)B.90°+12∠A C.90°-12∠A D.180°-∠AA二、填空题1.如图,AB 为⊙O 直径,BD 切⊙O 于B 点,弦AC 的延长线与BD 交于D•点,•若AB=10,AC=8,则DC 长为________.AD2.如图,P 为⊙O 外一点,PA 、PB 为⊙O 的切线,A 、B 为切点,弦AB 与PO 交于C ,⊙O 半径为1,PO=2,则PA_______,PB=________,PC=_______AC=______,BC=______∠AOB=________. 3.设I 是△ABC 的心,O 是△ABC 的外心,∠A=80°,则∠BIC=•________,•∠BOC=________. 三、综合提高题1.如图,P 为⊙O 外一点,PA 切⊙O 于点A ,过点P 的任一直线交⊙O 于B 、C ,•连结AB 、AC ,连PO 交⊙O 于D 、E .(1)求证:∠PAB=∠C .(2)如果PA 2=PD ·PE ,那么当PA=2,PD=1时,求⊙O 的半径.24.2 与圆有关的位置关系(第3课时)一、选择题.1.如图1,PA 、PB 分别切圆O 于A 、B 两点,C 为劣弧AB 上一点,∠APB=30°,则∠ACB=( ). A .60° B .75° C .105° D .120°BP(1) (2) (3) (4)2.从圆外一点向半径为9的圆作切线,已知切线长为18,•从这点到圆的最短距离为(). A .B .9) C .9-1) D .93.圆外一点P ,PA 、PB 分别切⊙O 于A 、B ,C 为优弧AB 上一点,若∠ACB=a ,则∠APB=( ) A .180°-a B .90°-a C .90°+a D .180°-2a 二、填空题1.如图2,PA 、PB 分别切圆O 于A 、B ,并与圆O 的切线,分别相交于C 、D ,•已知PA=7cm ,则△PCD 的周长等于_________.2.如图3,边长为a 的正三角形的切圆半径是_________.3.如图4,圆O 切Rt △ABC ,切点分别是D 、E 、F ,则四边形OECF 是_______. 三、综合提高题1.如图,EB 、EC 是⊙O 的两条切线,B 、C 是切点,A 、D 是⊙O 上两点,• 如果∠E=46°,∠DCF=32°,求∠A 的度数.24.2 与圆有关的位置关系(选学第4课时)一、选择题.1.已知两圆的半径分别为5cm 和7cm ,圆心距为8cm ,那么这两个圆的位置关系是( ) A .切 B .相交 C .外切 D .外离2.半径为2cm 和1cm 的⊙O 1和⊙O 2相交于A 、B 两点,且O 1A ⊥O 2A ,则公共弦AB 的长为(• ). A.5cm Ccm D .5cm3.如图所示,半圆O 的直径AB=4,与半圆O 切的动圆O 1与AB 切于点M ,•设⊙O 1的半径为y ,AM=x ,则y 关于x 的函数关系式是( ).A.y=14x2+x B.y=-14x2+xC.y=-14x2-x D.y=14x2-x二、填空题.1.如图1所示,两圆⊙O1与⊙O2相交于A、B两点,则O1O2所在的直线是公共弦AB的________.(1) (2) (3)2.两圆半径R=5,r=3,则当两圆的圆心距d满足______•时,•两圆相交;•当d•满足_______时,两圆不外离.3.•如图2•所示,•⊙O1•和⊙O2•切于T,•则T•在直线________•上,•理由是_________________;若过O2的弦AB与⊙O2交于C、D两点,若AC:CD:BD=2:4:3,则⊙O2与⊙O1半径之比为________.三、综合提高题.1.如图3,已知⊙O1、⊙O2相交于A、B两点,连结AO1并延长交⊙O1于C,连CB并延长交⊙O2于D,若圆心距O1O2=2,求CD长.2.如图所示,点A坐标为(0,3),OA半径为1,点B在x轴上.(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.AyxO24.3 正多边形和圆一、选择题1.如图1所示,正六边形ABCDEF接于⊙O,则∠ADB的度数是().A.60°B.45°C.30°D.22.5°(1) (2) (3)2.圆接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是().A.36°B.60°C.72°D.108°3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为()A.18°B.36°C.72°D.144°二、填空题1.已知正六边形边长为a,则它的切圆面积为_______.2.在△ABC中,∠ACB=90°,∠B=15°,以C为圆心,CA长为半径的圆交AB于D,如图2所示,若AC=6,则AD的长为________.3.四边形ABCD为⊙O的接梯形,如图3所示,AB∥CD,且CD为直径,•如果⊙O的半径等于r,∠C=60°,那图中△OAB的边长AB是______;△ODA的周长是_______;∠BOC的度数是________.三、综合提高题1.如图所示,•已知⊙O•的周长等于6 cm,•求以它的半径为边长的正六边形ABCDEF的面积.24.4 弧长和扇形面积(第1课时)一、选择题1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ). A .3π B .4π C .5π D .6π2.如图1所示,把边长为2的正方形ABCD 的一边放在定直线L 上,按顺时针方向绕点D 旋转到如图的位置,则点B 运动到点B ′所经过的路线长度为( ) A .1 B .π C .2 D .2π(1) (2) (3)3.如图2所示,实数部分是半径为9m 的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )A .12πmB .18πmC .20πmD .24πm 二、填空题 1.如果一条弧长等于4πR ,它的半径是R ,那么这条弧所对的圆心角度数为______,• 当圆心角增加30°时,这条弧长增加________.2.如图3所示,OA=30B ,则AD 的长是BC 的长的_____倍. 三、综合提高题1.已知如图所示,AB 所在圆的半径为R ,AB 的长为3πR ,⊙O ′和OA 、OB 分别相切于点C 、E ,且与⊙O 切于点D ,求⊙O ′的周长.24.4 弧长和扇形面积(第2课时)一、选择题1.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线为()A.6cm B.8cm C.10cm D.12cm2.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,•用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()A.228°B.144°C.72°D.36°3.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,•从点A出发绕侧面一周,再回到点A的最短的路线长是()A.63B.33C.33D.3二、填空题1.母线长为L,底面半径为r的圆锥的表面积=_______.2.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,•所得圆柱体的表面积是__________(用含 的代数式表示)3.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m2的油毡.三、综合提高题1.一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,•需要加工这样的一个烟囱帽,请你画一画:(1)至少需要多少厘米铁皮(不计接头)(2)如果用一圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?2.如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,•求圆锥全面积.页脚.。
七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第一章--1
![七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第一章--1](https://img.taocdn.com/s3/m/26bebaaaf71fb7360b4c2e3f5727a5e9856a2788.png)
1.2有理数及其大小比较(第3课时)
1.对于有理数a,有下面3个说法:①-a表示负有理数;②+a表示正有理数;③a与-a中,必有一个是负有理数.其中正确的说法有().
A.0个B.1个C.2个D.3个
2.如果a的相反数是最大的负整数,b的相反数是最小的正整数,a+b=_______.3.已知数a,b表示的点在数轴上的位置如图所示.
(1)在数轴上表示出数a,b的相反数的位置.
(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?
(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,则a表示的数是多少?
参考答案
1.【答案】A
【解析】当a<0时,-a表示正有理数,+a表示负有理数,故①,②错误;
当a=0时,a和-a都不表示负有理数,故③错误.
综上所述,3个说法均不正确.
故选A.
2.【答案】0
【解析】因为最大的负整数为-1,所以a的相反数为-1,则a=1.
因为最小的正整数为1,所以b的相反数为1,则b=-1.
则a+b=1+(-1)=0.
故答案为0.
3.【答案】解:(1)a的相反数是-a,b的相反数是-b.位置如图.
(2)因为数b与其相反数相距20个单位长度,所以b距原点10个单位长度.
因为b在负半轴上,所以它表示的数是-10.
(3)由(2)可得-b表示的点距原点10个单位长度,而数a表示的点与-b表示的点相距5个单位长度,所以数a表示的点到原点的距离为5个单位长度,故a表示的数是5.。
初中数学专题:圆中的重要模型-圆中的翻折模型

圆中的重要模型-圆中的翻折模型知识储备:1、翻折变换的性质:翻折前后,对应边相等,对应角相等,对应点之间的连线被折痕垂直平分;2、圆的性质:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等;同弧或等弧所对的圆周角相等;3、等圆相交:如图,圆O和圆G为两个相等的圆,圆O和圆G相交,相交形成的弦为AB,则弦AB为整个图形的对称轴,圆心O和圆心G关于AB对称,弧ACB和弧ADB为等弧,且关于AB对称;4、弧翻折(即等圆相交):如图,以弦BC为对称轴,将弧BC翻折后交弦AB于点D,那么弧CDB所在的圆圆G与圆O是相等的圆,且两个圆关于BC对称,故圆心O、G也关于BC对称。
模型1.圆中的翻折模型(弧翻折必出等腰)如图,以圆O的一条弦BC为对称轴将弧BC折叠后与弦AB交于点D,则CD=CA特别的,若将弧BC折叠后过圆心,则CD=CA,∠CAB=60°九年级校联考阶段练习)如图,ABC是O的内接三角形,将劣弧,则O的半径长为(1224是O的直径,且是O上一点,将弧,则(1)AC)劣弧BC的长是是O的直径,是O的弦,15=︒,将CE CE翻折,交为O的两条弦,,则O的半径为(统考二模)如图,O的直径是O上一点,将,则图中阴影部分的面积为(4π4π2π将O沿弦AB)85422355是O上5个点,若,此时,图中阴影部分恰好形成一个“钻戒型的O折叠,弧已知ABC是⊙九年级专题练习)如图,在O中,AB为O的直径,弦OA上的点E处(点E不与点交O于点M,连结,若AM=为弦的O与AB相切于点是O的切线;)将O中BC以下部分沿直线,若翻折后的弧过AB,并交AC23,且翻折后的弧恰好过点A,则O的半径为17.(2023·江苏无锡·九年级校联考期中)如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为AB,P是半径OB上一动点,Q是AB上的一动点,连接PQ.(1)当∠POQ=时,PQ有最大值,最大值为;(2)如图2,若P是OB中点,且QP⊥OB于点P,求BQ的长;(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积.18.(2023·江西萍乡·校考模拟预测)如图(1)AB是O的直径,且2AB=,点C是半圆AB的中点,点P 是BC上一动点,将AP沿直线AP折叠交AB于点D,连接PD,PB.(1)求证:PD PB=;(2)当点D与点O重合时,如图(2),求BP的长.专题04 圆中的重要模型-圆中的翻折模型知识储备:1、翻折变换的性质:翻折前后,对应边相等,对应角相等,对应点之间的连线被折痕垂直平分;2、圆的性质:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等;同弧或等弧所对的圆周角相等;3、等圆相交:如图,圆O和圆G为两个相等的圆,圆O和圆G相交,相交形成的弦为AB,则弦AB为整个图形的对称轴,圆心O和圆心G关于AB对称,弧ACB和弧ADB为等弧,且关于AB对称;4、弧翻折(即等圆相交):如图,以弦BC为对称轴,将弧BC翻折后交弦AB于点D,那么弧CDB所在的圆圆G与圆O是相等的圆,且两个圆关于BC对称,故圆心O、G也关于BC对称。
(北京专版)中考数学 第7单元 圆 第28课时 圆的有关概念与性质作业-人教版初中九年级全册数学试题

圆的有关概念与性质1.[2014·] 如图J28-1,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A °,OC =4,CD 的长为( )A .2 2B .4C .4 2D .8图J28-1图J28-22.[2010·] 如图J28-2,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接OOC =5,CD =8,则AE =________.3.[2009·] 如图J28-3,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC ︵上的一点.若∠CEA =28°,则∠ABD =________°.图J28-31.[2014·西城一模] 如图J28-4,表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5 cm ,水面宽AB 为8 cm ,则水的最大深度CD 为( )A .4 cmB .3 cmC .2 cmD .1 cm图J28-4图J28-52.[2015·西城一模] 如图J28-5,线段AB 是⊙O 的直径,弦CD ⊥AB ,如果∠BOC =70°,那么∠BAD 等于( )A .20°B .30°C .35°D .70°3.[2015·海淀一模] 如图J28-6,⊙O 的直径AB 垂直于弦CD ,垂足为E .若∠B =60°,AC =3,则CD 的长为( )A .6B .2 3 C. 3 D .3图J28-6图J28-74.[2015·某某一模] 如图J28-7,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为________.5.[2014·房山期末] 如图J28-8,点A 是半圆上的一个三等分点,点B 是AN ︵的中点,点P是直径MN 上一动点.若⊙O 的半径为1,则AP +BP 的最小值是________.图J28-8图J28-96.[2014·怀柔期末] 如图J28-9,圆心B 在y 轴的负半轴上,半径为5的⊙B 与y 轴的正半轴交于点A (0,1).过点P (0,-7)的直线l 与⊙B 相交于C ,D 两点,则弦CD 长的所有可能的整数值有________个,它们是________.7.[2013·海淀一模] 如图J28-10(1)所示,圆上均匀分布着11个点A 1,A 2,A 3,…,A 11.从A 1起每隔k 个点顺次连接,当再次与点A 1连接时,我们把所形成的图形称为“k +1阶正十一角星”,其中1≤k ≤8(k 为正整数).例如,图J28-10(2)是“2阶正十一角星”,那么∠A 1+∠A 2+…+∠A 11=________°;当∠A 1+∠A 2+…+∠A 11=900°时,k =________.图J28-108.[2014·丰台期末] 如图J28-11,在⊙O中,C,D为⊙O上的两点,AB是⊙O的直径.已知∠AOC=130°.求∠D的度数.图J28-119.[2014·东城期末] 如图J28-12,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O 于点E,连接EAB=8,CD=2,求EC的长.图J28-12一、选择题1.如图J28-13,CD是⊙O的直径,弦AB⊥CD于点E,连接BC,BD,下列结论中不一定正确的是( )A .AE =BE B.AD ︵=BD ︵C .OE =DE D .∠DBC =90°图J28-13图J28-142.[2015·东城一模] 如图J28-14,AB 是⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,连接OC ,A C.若∠D =50°,则∠A 的度数是( )A .20°B .25°C .40°D .50°3.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )图J28-154.[2013·大兴一模] 如图J28-16,在平面直角坐标系中,点P 的坐标为(-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( )A .-4和-3之间B .3和4之间C .-5和-4之间D .4和5之间图J28-16图J28-175.如图J28-17,⊙O 的直径AB =2,弦AC =1,点D 在⊙O 上,则∠D 的度数为( )A .30°B .45°C .60°D .75°6.如图J28-18,⊙C 过原点,且与两坐标轴分别交于点A ,B ,点A 的坐标为(0,3),M 是第三象限内一点,∠BMO =120°,则⊙C 的半径为( )A.6 B.5 C.3 D.3 2图J28-18图J28-197.[2012·丰台一模] 如图J28-19是X老师晚上出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示X老师家的位置,则X老师散步行走的路线可能是( )图J28-208.如图J28-21,半圆O的直径AB=10 cm,弦AC=6 cm,AD平分∠BAC,则AD的长为( )图J28-21A.4 5 cm B.3 5 cmC.5 5 cm D.4 cm二、填空题9.若直径为10 cm的⊙O中,弦AB=5 cm,则弦AB所对的圆周角是________.10.[2012·昌平一模] 如图J28-22,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器________台.图J28-2211.如图J28-23,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是________°.图J28-23图J28-2412.[2013·房山一模] 如图J28-24,在平面直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于点A1,A2,A3,A4,…,则点A31的坐标是________.三、解答题13.[2015·某某期末] 如图J28-25,在平面直角坐标系xOy中,以点A(2,3)为圆心的⊙A 交x轴于点B,C,BC=8,求⊙A的半径.图J28-2514.[2014·房山期末] 已知:在△ABC中,∠ABC=∠ACB,以AB为直径的⊙O交BC于点D.图J28-26(1)如图J28-26,当∠A为锐角时,AC与⊙O交于点E,连接BE,则∠BAC与∠CBE的数量关系是∠BAC=________∠CBE.(2)如图J28-27,若AB不动,AC绕点A逆时针旋转,当∠BAC为钝角时,CA的延长线与⊙O 交于点E,连接BE,(1)中∠BAC与∠CBE的数量关系是否依然成立?若成立,请加以证明;若不成立,请说明理由.图J28-2715.[2015·西城期末] 如图J28-28,在⊙O 中,弦BC ,BD 关于直径AB 所在的直线对称.E 为半径OC 上的一点,OC =3OE ,连接AE 并延长交⊙O 于点F ,连接DF 交BC 于点M .(1)请依题意补全图形;(2)求证:∠AOC =∠DBC ;(3)求BM BC的值.图J28-2816.[2013·西城一模] 先阅读材料,再解答问题:图J28-29小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图J28-29,点A ,B ,C ,D 均为⊙O 上的点,则有∠C =∠D .小明还发现,若点E 在⊙O 外,且与点D 在直线AB 同侧,则有∠D >∠E .请你参考小明得出的结论,解答下列问题:(1)如图J28-30(a ),在平面直角坐标系xOy 中,点A 的坐标为(0,7),点B 的坐标为(0,3),点C 的坐标为(3,0).①在图(a )中作出△ABC 的外接圆(保留必要的作图痕迹,不写作法);②若在x 轴的正半轴上有一点D ,且∠ACB =∠ADB ,则点D 的坐标为________.(2)如图J28-30(b ),在平面直角坐标系xOy 中,点A 的坐标为(0,m ),点B 的坐标为(0,n ),其中m >nP 为x 轴正半轴上的一个动点,当∠APB 达到最大时,直接写出此时点P 的坐标.图J28-30参考答案真题演练1.C [解析] ∵∠A °,∴∠BOC =2∠A =45°.∵⊙O 的直径AB 垂直于弦CD ,∴CE =DE ,△OCE 为等腰直角三角形,∴CE =22OC =2 2,∴CD =2CE =4 2. 2.2 [解析] ∵AB 为⊙O 的直径,弦CD ⊥AB 于点E ,∴CE =12CD =4. 在Rt △OCE 中,OE =OC 2-CE 2=3,∴AE =OA -OE =5-3=2.3.28 [解析] 本题综合考查了垂径定理和圆周角的求法及性质.由垂径定理可知AC ︵=AD ︵,又根据在同圆或等圆中相等的弧所对的圆周角也相等的性质可知∠ABD =∠CEA =28°. 模拟训练1.C [解析] ∵输水管的半径为5 cm ,水面宽AB 为8 cm ,水的最大深度为CD ,∴DO ⊥AB ,AO =5 cm ,∴AC =4 cm ,∴CO =52-42=3(cm),∴水的最大深度CD 为5-3=2(cm).故选C.2.C 3.D4.20° 5. 2 [解析] 作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,则此时PA +PB 最小,连接OA ′,OB .∵点A 与点A ′关于MN 对称,点A 是半圆上的一个三等分点,∴∠A ′ON =∠AON =60°,PA =PA ′.∵点B 是AN ︵的中点,∴∠BON =30°,∴∠A ′OB =∠A ′ON +∠BON =90°.又∵OA =OA ′=1,∴A ′B = 2.∴PA +PB =PA ′+PB =A ′B = 2.6.3 8,9,10 [解析] 当CD 过圆心B 时,此时CD 为⊙B 的直径,CD =10;当CD ⊥y 轴时,CD 为过点P 的最短弦.∵点A (0,1),BA =5,∴点B 的坐标为(0,-4).∵点P 的坐标为(0,-7),∴BP =-4-(-7)=3.∵BP ⊥CD ,∴PC =PD.在Rt △PBC 中,BC =5,BP =3,∴PC =BC 2-BP 2=4,∴CD =2PC =8,∴过点P 的最短弦长为8,最长弦长为10,∴弦CD 长的所有可能的整数值有3个,为8,9,10.7.1260 2或78.解:由∠AOC =130°,得∠BOC =50°.又∵∠D =12∠BOC ,∴∠D =12×50°=25°. 9.解:如图,∵OD ⊥AB ,∴AC =BC =12AB =4. 设AO =x .在Rt △ACO 中,AO 2=AC 2+OC 2,∴x 2=42+(x -2)2.解得x =5.∴AE =10,OC =3.连接BE .∵AE 是⊙O 的直径,∴∠ABE =90°.由OC 是△ABE 的中位线可得BE =2OC =6.在Rt △CBE 中,CE 2=BC 2+BE 2,∴EC =BC 2+BE 2=16+36=213.自测训练1.C2.A3.B [解析] ∵直径所对的圆周角是直角,∴直角三角板与圆弧的位置关系中,可判断弧为半圆的是选项B.故选B.4.A [解析] ∵点P 的坐标为(-2,3),∴OP =22+32=13.∵点A ,P 均在以点O 为圆心,以OP 为半径的圆上,∴OA =OP =13.∵9<13<16,∴3<13<4.又∵点A 在x 轴的负半轴上,∴点A 的横坐标介于-4和-3之间.5.C [解析] ∵⊙O 的直径是AB ,∴∠ACB =90°.又∵AB =2,弦AC =1,∴sin ∠CBA =AC AB =12, ∴∠CBA =30°,∴∠A =∠D =60°.故选C.6.C [解析] ∵四边形ABMO 是圆内接四边形,∠BMO =120°,∴∠BAO =60°.∵∠AOB =90°,点A ,B 均在⊙C 上,∴AB 为⊙C 的直径,∠ABO =90°-∠BAO =90°-60°=30°.∵点A 的坐标为(0,3),∴OA =3,∴AB =2OA =6,∴⊙C 的半径=12AB C. 7.D [解析] 根据函数图象可知,X 老师离家先逐渐远去,有一段时间离家距离不变说明他走的是一段弧线,之后离家越来越近直至回家,分析四个选项只有D 符合题意. 8.A9.30°或150°10.3 [解析] ∵∠A =65°,∴该圆周角所对的弧所对的圆心角是130°,∴共需安装360°÷130°≈3(台).11.35 [解析] 连接O C.∵BD ,CD 分别是过⊙O 上点B ,C 的切线,∴OC ⊥CD ,OB ⊥BD ,∴∠OCD =∠OBD =90°.∵∠BDC =110°,∴∠BOC =360°-∠OCD -∠BDC -∠OBD =70°,∴∠A =12∠BOC =35°. 12.(-4 2,-4 2) [解析] ∵31÷4=7……3,∴点A 31在第三象限.∵在直角坐标系中,以原点O 为圆心的同心圆的半径由内向外依次为1,2,3,…,∴OA 31=8.∴A 31的横坐标是-8sin45°=-4 2,纵坐标是-4 2.13.解:如图,过点A 作AD ⊥BC 于点D ,连接AB .由题意知BD =12BC =4. ∵点A 的坐标是(2,3),∴AD =3.在Rt △ABD 中,AB =BD 2+AD 2=5,∴⊙A 的半径为5.14.解:(1)2(2)(1)中∠BAC 与∠CBE 的数量关系成立.证明:如图,连接AD .∵AB 为⊙O 的直径,∴AD ⊥BC ,∴∠AEB =∠ADB =90°,∴∠AEB +∠ADB =180°.∵∠AEB +∠ADB +∠CBE +∠EAD =360°,∴∠CBE +∠EAD =180°.∵∠DAC +∠EAD =180°,∴∠CBE =∠DAC .又∵AB =AC ,∴∠BAC =2∠DAC ,∴∠BAC =2∠CBE .15.解:(1)补全图形如图,(2)证明:∵弦BC ,BD 关于直径AB 所在的直线对称,∴∠DBC =2∠AB C.又∵∠AOC =2∠ABC ,∴∠AOC =∠DBC .(3)∵BF ︵=BF ︵,∴∠A =∠D .又∵∠AOC =∠DBC ,∴△AOE ∽△DBM ,∴OE OA =BM BD .∵OC =3OE ,OA =OC ,∴BM BD =OE OA =OE OC =13. ∵弦BC ,BD 关于直径AB 所在的直线对称,∴BC =BD ,∴BM BC =BM BD =13.16.解:(1)①如图所示.②(7,0)(2)当以AB 为弦的圆C 与x 轴正半轴相切于点P 时,∠APB 的值最大,作CD ⊥y 轴于点D ,连接CP ,CB .∵点A 的坐标为(0,m ),点B 的坐标为(0,n ),∴点D 的坐标是(0,m +n 2),即BC =PC =m +n 2. 在Rt △BCD 中,BC =m +n 2,BD =m -n 2, 则CD =BC 2-BD 2=mn ,则OP =CD =mn ,故点P 的坐标是(mn ,0).。
七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第一章--1
![七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第一章--1](https://img.taocdn.com/s3/m/59f983b1b8f3f90f76c66137ee06eff9aff8490c.png)
1.2有理数及其大小比较(第2课时)1.如图,数轴上一点从点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为().A.7B.3C.-3D.-22.如图,一动点从0点处开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2 024秒时所对应的数是().A.-406B.-405C.-1 010D.-1 011 3.数轴上三个互不重合的点A,B,P,点A表示的数为-1,点B表示的数为3.若A,B,P三个点中,其中一点到另外两点的距离相等时,我们称这三个点为“和谐三点”,则符合“和谐三点”的点P对应的数表示为____________________.4.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250 m到小明家,再向东走350 m到小兵家,然后向西走800 m到小颖家,最后回到学校.(1)以学校为原点,画出数轴,并在数轴上分别标出小明家、小兵家、小颖家的位置.(2)小明家距离小颖家多远?(3)这次家访,老师共走了多少千米的路程?参考答案1.【答案】D【解析】把一点从点C向左移动5个单位长度所表示的数是-4,再向右移动2个单位长度所表示的数是-2.故选D.2.【答案】A【解析】由题意知该点的运动周期为5秒,且每5秒向左运动一个单位长度.因为2 024÷5=404……4,所以该点运动到2 020秒时对应的数为-404,第2 024秒再向左运动3个单位长度,向右运动1个单位长度得-406.故选A.3.【答案】-5或1或7【解析】方法1:①当点P在点A的左侧时,因为A,B,P三个点是“和谐三点”,所以P A=AB=4,所以点P对应的数表示为-5;②当点P在A,B之间时,因为A,B,P三个点是“和谐三点”,所以P A=PB=12 AB=2,所以点P对应的数表示为1;③当点P在点B的右侧时,因为A,B,P三个点是“和谐三点”,所以AB=PB=4,所以点P对应的数表示为7.综上,符合“和谐三点”的点P对应的数表示为-5或1或7.方法2:根据题意画出示意图,由“和谐三点”的定义可得出点P的三个位置.故答案为-5或1或7.4.【答案】解:(1)以向东为正方向,100 m为单位长度,可建立数轴如图所示.(2)小明家距离小颖家450 m.(3)250+350+800+200=1 600(m),1 600 m=1.6 km,所以这次家访,老师共走了1.6 km的路程.。
七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第五章--5
![七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第五章--5](https://img.taocdn.com/s3/m/eae6a66fbb1aa8114431b90d6c85ec3a87c28bc6.png)
5.3 实际问题与一元一次方程(第4课时)1.为了鼓励市民节约用水,某区居民生活用水按阶梯式水价计费.居民一年内用水在不同的定额范围内,执行不同的水价,其中水价=供水价格+污水处理费.具体价格如下:该区一居民家发现去年7月份比6月份多用水10 m 3,7月份水费为86.4元,比6月份多了55.6元,则该居民家7月份属于阶梯二的用水量为( ). A .22 m 3B .18 m 3C .13 m 3D .12 m 32.某地区居民用电的计费方式:白天时段的单价为m元/(kW ·h ),晚间时段的单价为n 元/(kW ·h ).某户8月份白天时段用电量比晚间时段多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的总用电量虽比8月份的总用电量多20%,但9月份的总电费却比8月份的总电费少10%,则mn=_______. 3.下表是某市青少年业余体育健身运动中心的三种消费方式.设一年内参加健身运动t 次(t 为正整数),分别采取三种不同的计费方式.(温馨提示:若一年内参加健身次数为70次,方式A 计费为580元;若一年内参加健身次数为80次,则方式A 计费为580+(80-75)×25=705元)(1)当t >180时,方式A 计费为___________元;方式B 计费为_______________元; 方式C 计费为___________元(用含t 的代数式表示). (2)当t =__________时,方式A 与方式C 的计费相同.(3)求当t为何值时,方式A与方式B的计费相同.(4)请你根据参加运动的次数,分别写出最省钱的消费方式.4.下表中有两种移动电话计费方式:月使用费固定收;主叫不超过限定时间不再收费,主叫超时部分加收超时费;被叫免费.(1)若小明某月主叫通话时间为200 min,则他按方式一计费需__________元,按方式二计费需__________元;若他按方式二计费需107元,则主叫通话时间为__________ min.(2)是否存在某主叫通话时间t(min),按方式一和方式二的计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)直接写出当月主叫通话时间t(min)满足什么条件时,选择方式一省钱;当月主叫通话时间t(min)满足什么条件时,选择方式二省钱.参考答案1.【答案】D【解析】根据题意,阶梯一、二、三阶段的水价分别2.90/ m3、3.85/ m3、6.70元/ m3.若6、7月份用水量同在第一阶段,则两月水费差应为10×2.90=29(元);若6、7月份用水量同在第二阶段,则两月水费差应为10×3.85=38.5(元);若6、7月份用水量同在第三阶段,则两月水费差应为10×6.70=67(元).由于两月实际水费差为55.6元,38.5<55.6<67,可知7月份用水量跨二、三阶段.6月份的用水量为(86.4-55.6)÷(2.85+1)=8(m3).设该居民家7月份属于阶梯二的用水量为x m3.由题意,得3.85x+6.70(10+8-x)=86.4.解方程得x=12.故选D.2.【答案】2【解析】设8月份晚上用电量为a kW·h,则白天用电量为(1+50%)a kW·h,总用电量为(a+1.5a) kW·h.所以9月份白天用电量为(1-60%)×1.5a kW·h,总用电量为2.5a(1+20%) kW·h.所以9月份晚上用电量=2.5a(1+20%)-(1-60%)×1.5a=2.4a(kW·h).由题意可得m•0.6a+n•2.4a=(1-10%)×(an+1.5am),所以1.5an=0.75am.所以2n=m.所以mn=2.3.【答案】解:(1)消费方式A所需费用为580+25(t-75)=(25t-1 295)元;消费方式B所需费用为880+20(t-180)=(20t-2 720)元;消费方式C所需费用为29t元.故答案是(25t-1 295),(20t-2 720),29t.(2)当0<t≤75时,消费方式A所需费用为580元;当t>75时,消费方式A所需费用为(25t-1 295)元.当t>0时,消费方式C所需费用为29t元.若方式A与方式C的计费相同,则580=29t.解方程,得t=20.所以当t=20时,方式A与方式C的计费相同.(3)当0<t≤180时,消费方式B所需费用为880元;当t>180时,消费方式B所需费用为(20t-2 720)元.方式A与方式B的计费相同,则25t-1 295=880.解方程,得t=87.所以当t=87时,方式A与方式B的计费相同.故答案是20.(4)根据(2)(3)的结论,可知:当0<t<20时,选择方式C消费最省钱;当t=20时,选择方式A与方式C的计费相同;当20<t<87时,选择方式A消费最省钱;当t=87时,选择方式A与方式B的计费相同;当t>87时,选择方式B消费最省钱.4.【答案】解:(1)因为200>160,所以小明按方式一计费需65+(200-160)×0.2=73(元).因为200<380,所以小明按方式二计费需100元.若小明按方式二计费需107元,设主叫通话时间为x分钟.根据题意,得100+(x-380)×0.25=107.解得x=408.故答案为73,100,408.(2)若160<t≤380,根据题意,得65+(t-160)×0.2=100.解得t=335.若t>380,根据题意,得65+(t-160)×0.2=100+(t-380)×0.25.解得t=560.答:存在某主叫通话时间335分钟或560分钟,按方式一和方式二的计费相等.(3)若t<335或t>560,选择方式一省钱;若335<t<560,选择方式二省钱.。
七年级-人教版(2024新版)-数学-上册-【综合训练】初中数学-七年级上册-第二章-2

2.3 有理数的乘方(第3课时)1.据报道,某市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%.用科学记数法表示民生项目资金是( ).A .87010×元B .9710×元C .86.9310×元D .96.9310×元2.光的速度约是每秒钟300 000千米,有一颗恒星发射的光需要10年才能到达地球,若一年以365天计算,则这颗恒星与地球的距离用科学记数法表示为________千米.3.一粒米微不足道,平时总会在饭桌上不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米的质量约为10 g .现在请你来计算:(1)一粒大米的质量约为多少克?(2)按我国现有人口14.3亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)若我们把一年节约的大米卖成钱,按每千克5元计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?参考答案1.【答案】D【解析】70亿×99%=69.3亿=6 930 000 000=9×.6.9310 2.【答案】9.460 8×1310【解析】300 000×10×365×24×60×60=9.460 8×1310.3.【答案】解:(1)10÷500=0.02(g).答:一粒大米的质量约为0.02 g.(2)14.3亿=1 430 000 000,0.02×3×365×1 430 000 000÷1 000=3.131 7×710(kg).答:一年大约能节约大米3.131 7×710kg.(3)5×3.131 7×107=1.565 85×810(元).答:可卖得人民币1.565 85×810元.(4)1.565 85×108÷500=313 170(名).答:卖得的钱可供313 170名失学儿童上一年学.。
初中数学.与圆有关的位置关系.教师版

与圆有关的位置关系中考内容中考要求A B C圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关1可题圆周角了解圆周角与圆心角的关系;知道直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关1可题点与圆的位置关系了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点圆圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题圆与圆的位置关系了解圆与圆的位置关系能利用圆与圆的位置关系解决简单问题中考内容与要求,中考考点分析圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。
要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。
与圆有关的位置关系点和圆的位置关系[直线利阅的位置关系点和国的位苫矢系的ft 质利判定 直技和剧的位宥关系的性质和判定确定留的条件~| @线的性质用判定TM 角形外接冏|园和圆的位置关系定义示例剖析点和圆的位置关系:点P 在圆外:点和圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距 离与半径的大小关系决定.设。
O 的半径为r ,点P 到圆心O 的距离为 点P 在圆上:d ,则有:/VA点在圆外 d r ;点在圆上 d r ; 点在圆内 d r .点P 在圆内:确定圆的条件:1.圆的确定确、个圆有两个基本条件:①圆心(定点) ,确正圆的位置;②半径(正长),确正圆的大小.只 Qy C有当圆心和半径都确定时,圆才能确定.模块点和圆的位置关系知识导航 生【例1】1.已知△ ABC 中, ACB 90 , AC 2 , BC 3, AB 的中点为 M ,⑴ 以C 为圆心,2为半径作OC,则点A , B , M 与OC 的位置关系如何?⑵ 若以C 为圆心作。
圆切线的判定与性质综合(3大类题型)(解析版)--初中数学专项训练

圆切线的判定与性质综合(3大类题型)重难点题型归纳【题型1证圆的切线-有公共点:连半径,证垂直】【题型2证圆的切线-没有公共点:作垂直,证半径】【题型3圆切线的判定与性质综合】满分必练【题型1证圆的切线-有公共点:连半径,证垂直】1(2023春•保德县校级期中)如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.求证:DE是⊙O切线.【答案】见解答.【解答】证明:连接OD,∵∠BAC=2∠BAD,∠BOD=2∠BAD,∴∠BAC=∠BOD,∴OD∥AC,又∵DE⊥AC,∴∠AED=90°,∴∠ODE=∠AED=90°,∴半径OD⊥DE,∴DE是⊙O的切线.2(2022秋•大连期末)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.求证:CD是⊙O的切线.【答案】见试题解答内容【解答】解:连OD,如图,∵∠ADE=60°,∠C=30°,∴∠A=∠ADE-∠C=60°-30°=30°,又∵OD=OA,∴∠ODA=∠A=30°,∴∠EDO=90°,所以CD是⊙O的切线.3(2022秋•龙川县校级期末)如图,OA是⊙O的半径,∠B=20°,∠AOB=70°.求证:AB是⊙O的切线.【答案】见解答.【解答】证明:∵∠AOB=70°,∠B=20°,∴∠OAB=180°-∠B-∠AOB=90°,∴OA⊥AB,∵OA是⊙O的半径,∴AB是⊙O的切线.4(2022秋•利通区期末)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E,求证:AC是⊙D的切线.【答案】见解析.【解答】证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,在⊙D中,AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-∠ADC-∠C=180°-60°-30°=90°,∴AD⊥AC,又∵DA是半径,∴AC是⊙D的切线.5(2022秋•天河区校级期末)如图,AB是⊙O的直径,AC的中点D在⊙O上,DE⊥BC于E.求证:DE是⊙O的切线.【答案】见试题解答内容【解答】证明:连接OD,∵AO=OB,D为AC的中点,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线.6(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB= AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【答案】证明过程见解答.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.7(2022•昭平县一模)如图,AB是⊙O的弦,OP⊥AB交⊙O于C,OC=2,∠ABC=30°.(1)求AB的长;(2)若C是OP的中点,求证:PB是⊙O的切线.【答案】见试题解答内容【解答】(1)解:连接OA、OB,如图,∵∠ABC=30°,OP⊥AB,∴∠AOC =60°,∴∠OAD =30°,∴OD =12OA =12×2=1,∴AD =3OD =3,又∵OP ⊥AB ,∴AD =BD ,∴AB =23;(2)证明:由(1)∠BOC =60°,而OC =OB ,∴△OCB 为等边三角形,∴BC =OB =OC ,∠OBC =∠OCB =60°,∴C 是OP 的中点,∴CP =CO =CB ,∴∠CBP =∠P ,而∠OCB =∠CBP +∠P ,∴∠CBP =30°∴∠OBP =∠OBC +∠CBP =90°,∴OB ⊥BP ,∴PB 是⊙O 的切线.8(2022•漳州模拟)已知:△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E .求证:DE 是⊙O 的切线.【答案】见试题解答内容【解答】证明:连接OD ,∵AB 为⊙O 的直径,∴AD ⊥BC ,又AB =AC ,∴BD =DC ,∵BO =OA ,∴OD ∥AC ,∴∠ODE =180°-∠AED =90°,∴DE 是⊙O 的切线.9(2022秋•芜湖期末)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,AC =CD =DB,DE ⊥AC .求证:DE 是⊙O 的切线.【答案】见解析.【解答】证明:连接OD ,∵AC =CD =DB,∴∠BOD =13×180o =60o ,∵CD =DB ,∴∠EAD =∠DAB =12∠BOD =30°,∵OA =OD ,∴∠ADO =∠DAB =30°,∵DE ⊥AC ,∴∠E =90°,∴∠EAD +∠EDA =90°,∴∠EDA =60°,∴∠EDO =∠EDA +∠ADO =90°,∴OD ⊥DE ,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.【题型2证圆的切线-没有公共点:作垂直,证半径】10(2022秋•长乐区期中)如图,在△OAB 中,OA =OB =5,AB =8,⊙O 的半径为3.求证:AB 是⊙O 的切线.【答案】证明见解析.【解答】证明:如图,过O 作OC ⊥AB 于C ,∵OA =OB ,AB =8,∴AC =12AB =4,在Rt △OAC 中,OC =OA 2-AC 2=52-42=3,∵⊙O 的半径为3,∴OC 为⊙O 的半径,∴AB 是⊙O 的切线.11(2022•八步区一模)如图,在Rt △ABC 中,∠BAC 的角平分线交BC 于点D ,E 为AB 上一点,DE =DC ,以D 为圆心,DB 的长为半径作⊙D ,AB =5,BE =3.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.【解答】(1)证明:过点D 作DF ⊥AC 于F ;∵AB 为⊙D 的切线,∴∠B =90°,∴AB ⊥BC ,∵AD 平分∠BAC ,DF ⊥AC ,∴BD =DF ,∴AC 与⊙D 相切;(2)解:在△BDE 和△DCF 中;BD =DF DE =DC ,∴Rt △BDE ≌Rt △DCF (HL ),∴EB =FC .∵AB =AF ,∴AB +EB =AF +FC ,即AB +EB =AC ,∴AC =5+3=8.12(秋•莆田期末)如图,半圆O 的直径是AB ,AD 、BC 是两条切线,切点分别为A 、B ,CO 平分∠BCD .(1)求证:CD 是半圆O 的切线.(2)若AD =20,CD =50,求BC 和AB 的长.【解答】(1)证明:过点O 作OE ⊥CD ,垂足为点E ,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD-DE=50-20=30,∴BC=30,∴CF=BC-BF=10,在Rt△CDF中,由勾股定理得:DF=DC2-CF2=502-102=206,∴AB=DF=206,∴BC的长为30,AB的长为206.【题型3 圆切线的判定与形式综合】13(2023•银川校级四模)如图△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,以点D为圆心,BD为半径作⊙D交AB于点E.(1)求证:⊙D与AC相切;(2)若AC=5,BC=3,试求AE的长.【答案】见试题解答内容【解答】(1)证明:过D 作DF ⊥AC 于F ,∵∠B =90°,∴AB ⊥BC ,∵CD 平分∠ACB 交AB 于点D ,∴BD =DF ,∴⊙D 与AC 相切;(2)解:设圆的半径为x ,∵∠B =90°,BC =3,AC =5,∴AB =AC 2-BC 2=4,∵AC ,BC ,是圆的切线,∴BC =CF =3,∴AF =AB -CF =2,∵AB =4,∴AD =AB -BD =4-x ,在Rt △AFD 中,(4-x )2=x 2+22,解得:x =32,∴AE =4-3=1.14(2022秋•五莲县期中)如图,O 为正方形ABCD 对角线上一点,以点O 为圆心,OA 长为半径的⊙O 与BC 相切于点E .(1)求证:CD 是⊙O 的切线;(2)若正方形ABCD 的边长为10,求⊙O 的半径.【答案】见试题解答内容【解答】(1)证明:连接OE ,并过点O 作OF ⊥CD .∵BC 切⊙O 于点E ,∴OE ⊥BC ,OE =OA ,又∵AC 为正方形ABCD 的对角线,∴∠ACB =∠ACD ,∴OF =OE =OA ,即:CD 是⊙O 的切线.(2)解:∵正方形ABCD 的边长为10,∴AB =BC =10,∠B =90°,∠ACB =45°,∴AC =AB 2+BC 2=102,∵OE ⊥BC ,∴OE =EC ,设OA=r,则OE=EC=r,∴OC=OE2+EC2=2r,∵OA+OC=AC,∴r+2r=102,解得:r=20-102.∴⊙O的半径为:20-102.15(2023•甘南县一模)如图,已知AB是⊙O的直径,点C在⊙O上,AD⊥DC于点D,AC平分∠DAB.(1)求证:直线CD是⊙O的切线;(2)若AB=4,∠DAB=60°,求AD的长.【答案】见试题解答内容【解答】(1)证明:连接OC,如图1所示:∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥DC,∴CD⊥OC,又∵OC是⊙O的半径,∴直线CD是⊙O的切线;(2)解:连接BC,如图2所示:∵AB是⊙O的直径,∴∠ACB=90°,∵AC平分∠DAB,∠DAB=60°,∴∠DAC=∠BAC=30°,AB=2,AC=3BC=23,∴BC=12∵AD⊥DC,∴∠ADC=90°,AC=3,AD=3CD=3.∴CD=1216(2023•夹江县模拟)如图,已知AB是⊙O的直径,BC⊥AB于点B,D是⊙O上异于A、B的一个动点,连接AD,过O作OC∥AD交BC于点C.(1)求证:CD是⊙O的切线;(2)若EA=1,ED=3,求⊙O的半径.【答案】(1)见解答;(2)4.【解答】解:(1)如图,连接OD,由OD=OA得:∠OAD=∠ODA,∵OC∥AD,∴∠DOC=∠ODA,∠BOC=∠OAD,∴∠DOC=∠BOC,又∵OD=OB,OC=OC,∴△ODC≌△OBC,∴∠ODC=∠OBC,∵BC⊥AB,∴∠ODC=∠OBC=90°,又∵D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为x,则:OD=x,OA=x+1,∵CD是⊙O的切线,∴∠ODE=90°,在Rt△ODE中,由勾股定理得:ED2+OD2=OE2,∴32+x2=(x+1)2,解得:x=4,∴⊙O的半径为4.17(2022秋•盘山县期末)如图,已知AB是⊙O的直径,AC是⊙O的弦,过点C的直线与AB的延长线相交于点P,且AC=PC,∠P=30°.(1)求证:PC是⊙O的切线;(2)若AB=6,求PC的长.【答案】(1)证明见解析;(2)33.【解答】(1)证明:如图所示,连接OC,∵AC=PC,∠P=30°,∴∠A=∠P=30°,∴∠BOC=2∠A=60°,∴∠PCO=180°-∠P-∠POC=90°,即OC⊥PC,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵AB=6且AB是⊙O的直径,∴OC=1OA=3,2在Rt△POC中,∠PCO=90°,∠P=30°,∴OP=2OC=6,∴PC=PO2-OC2=33.18(2023春•东营期末)如图,在⊙O中,PA是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的直径.【答案】见试题解答内容【解答】证明:(1)如图,连接OH,∵PH平分∠APB,∴∠HPA=∠HPB,∵OP=OH,∴∠OHP=∠HPA,∴∠HPB=∠OHP,∴OH∥BP,∵BP⊥BH,∴OH⊥BH,∴HB 是⊙O 的切线;(2)如图,过点O 作OE ⊥PC ,垂足为E ,∵OE ⊥PC ,OH ⊥BH ,BP ⊥BH ,∴四边形EOHB 是矩形,∴OE =BH =4,OH =BE ,∴CE =OH -2,∵OE ⊥PC∴PE =EC =OH -2=OP -2,在Rt △POE 中,OP 2=PE 2+OE 2,∴OP 2=(OP -2)2+16∴OP =5,∴AP =2OP =10,∴⊙O 的直径是10.19(2023•汉川市模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,直线BF 与AD 延长线交于点F ,且∠AFB =∠ABC .(1)求证:直线BF 是⊙O 的切线;(2)若CD =12,BE =3,求⊙O 的半径.【答案】(1)证明见解析;(2)152.【解答】(1)证明:∵AC =AC ,∴∠ABC =∠ADC ,∵∠AFB =∠ABC ,∴∠ADC =∠AFB ,∴CD ∥BF ,∵CD ⊥AB ,∴AB ⊥BF ,∵OB 为⊙O 的半径.∴直线BF 是⊙O 的切线;(2)解:设⊙O 的半径为R ,连接OD ,如图,∵AB ⊥CD ,CD =12,∴CE =DE =12CD =6,∵BE =3,∴OE =R -3,在Rt △OED 中,∵OE2+DE2=OD2,∴R2=(R-3)2+62,解得:R=15 2.即⊙O的半径为15 2.20(2022秋•斗门区期末)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠ACP=∠OBC.(1)求证:PC与⊙O相切;(2)若PA=4,PC=BC,求⊙O的半径.【答案】(1)见解析;(2)4.【解答】(1)证明:连接OC,则OC=OB,∴∠OBC=∠OCB,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACP=∠OBC,∴∠ACP=∠OCB,∴∠OCP=∠OCA+∠ACP=∠OCA+∠OCB=∠ACB=90°,∵PC经过⊙O的半径OC的外端,且PC⊥OC,∴PC与⊙O相切.(2)解:∵PC=BC,∴∠P=∠B,∵∠ACP=∠B,∴∠ACP=∠P,∴CA=PA=4,∵∠OCP=90°,∴∠ACO+∠ACP=90°,∠AOC+∠P=90°,∴∠ACO=∠AOC,∴CA=OA=OC=4.21(2023•黑龙江模拟)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=10,BD=3,求AE的长.【答案】(1)见解析;(2)658.【解答】(1)证明:(1)连接OC ;∵AE ⊥CD ,CF ⊥AB ,又CE =CF ,∴∠1=∠2.∵OA =OC ,∴∠2=∠3,∠1=∠3.∴OC ∥AE .∴OC ⊥CD .∴DE 是⊙O 的切线.(2)解:∵OC ⊥ED ,AB =10,BD =3,∴OB =OC =5.CD =OD 2-OC 2=39,∵S △OCD =12OC ⋅CD =12OD ⋅CF ,即12×5×39=125+3 ⋅CF ,∴CF =5398,∴OF =OC 2-FC 2=658,∴AF =OA +OF =5+258=658,在Rt △AEC 和Rt △AFC 中,CE =CF ,AC =AC ,∴Rt △AEC ≌Rt △AFC (HL ),∴AE =AF =658.22(2023•宿豫区三模)如图,Rt △ABC 中,∠ACB =90°,点D 在AC 边上,以AD 为直径作⊙O 交BD 的延长线于点E ,CE =BC .(1)求证:CE 是⊙O 的切线;(2)若CD =2,BD =2,求⊙O 的半径.【答案】见试题解答内容【解答】解:(1)如图,连接OE,∵∠ACB=90°,∴∠1+∠5=90°.∵CE=BC,∴∠1=∠2.∵OE=OD,∴∠3=∠4.又∵∠4=∠5,∴∠3=∠5,∴∠2+∠3=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线.(2)在Rt△BCD中,∠DCB=90°,CD=2,BD=25,BC=CE=4.设⊙O的半径为r,则OD=OE=r,OC=r+2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+42=(r+2)2,解得r=3,∴⊙O的半径为3.23(2023•东港区校级三模)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点E,点D在AB上,且以AD为直径的⊙O经过点E.(1)求证:BC是⊙O的切线;(2)当AD=3BD,且BE=4时,求⊙O的半径.【答案】(1)证明见解析;(2)3.【解答】(1)证明:连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠OEA=∠CAE,∴OE∥AC,∵∠C=90°,∴∠OEC =90°,∴OE ⊥BC ,∵OE 为半径,∴BC 是⊙O 切线;(2)解:∵AD =3BD ,设BD =2x ,则AD =6x ,∴AO =OD =OE =3x ,∴OB =5x ,在Rt △OBE 中,根据勾股定理得:OE 2+BE 2=OB 2,∴(3x )2+42=(5x )2,∴x =1,∴OE =3x =3,∴⊙O 半径为3.24(2023•泗县校级模拟)如图,在Rt △ABC 中,∠ACB =90°,以AB 为直径作⊙O ,在⊙O 上取一点D ,使CD =BC,过点C 作EF ⊥AD ,交AD 的延长线于点E ,交AB 的延长线于点F .(1)求证:直线EF 是⊙O 的切线;(2)若AB =10,AD =6,求AC 的长.【答案】(1)见详解;(2)45.【解答】(1)证明:连接OC ,如图,∵CD =CB,∴∠EAC =∠CAB ,∵EF ⊥AD ,∴∠EAC +∠ACE =90°,∵OC =OA ,∴∠CAB =∠OCA ,∴∠EAC =∠OCA ,∴∠ACO +∠ACE =90°,即半径OC ⊥EF ,∴EF 是⊙O 的切线;(2)解:连接BD ,交OC 于点G ,如图,∵AE ⊥EF ,OC ⊥EF ,∴AE ∥OC ,∵O 为AB 为中点,∴OG 为△ABD 中位线,∴OG=1AD=3,DG=BG,2∴DG=BG=CE,DB⊥OC,GC=OC-OG=2,∵AB=10,∴OB=5,∴BG=OB2-OG2,∴DG=BG=4,∵AE⊥EF,OC⊥EF,DB⊥OC,∴四边形DECG是矩形,∴DE=CG=2,EC=DG=4,∴AE=8,∴在△AEC中,AC=AE2+EC2=45.25(2023•荔湾区校级一模)如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为2,求EF的长度.【答案】(1)证明见解析;(2)12.【解答】(1)证明:如图所示,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图所示,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴DC=12BC=1,FC=12AC=1.∵∠EDC=30°,∴EC=12DC=12.∴EF=FC-EC=12.。
七年级-人教版(2024新版)-数学-上册-【综合训练】初中数学-七年级上册-第二章-2

2.3有理数的乘方(第1课时)1.一根1 m长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第100次剪完后剩下绳子的长度是().A.9913⎛⎫⎪⎝⎭m B.9923⎛⎫⎪⎝⎭m C.10013⎛⎫⎪⎝⎭m D.10032⎛⎫⎪⎝⎭m2.设a=-3×42,b=(-3×4)2,c=-(3×4)2,则a,b,c的大小关系为_______(用“<”连接起来).3.阅读材料并完成下列问题:你能比较2 0212 022和2 0222 021的大小吗?为了解决这个问题,先把问题一般化,即先比较n n+1和(n+1)n的大小(n≥1,n是整数),再从分析n=1,n=2,n=3,…这些简单情形入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①~⑥各组中两个数的大小(在横线上填“>”“<”或“=”).①12_______21;②23_______32;③34_______43;④45_______54;⑤56_______65;⑥67_______76.(2)根据上面各小题的结果,经过归纳,猜想n n+1和(n+1)n的大小关系.(3)根据上面归纳猜想的一般结论,可以得到2 0212 022_______2 0222 021(在横线上填“>”“<”或“=”).参考答案1.【答案】C【解析】因为第一次剪去绳子的23,还剩13m;第二次剪去剩下绳子的23,还剩21211333⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭-m;……所以第100次剪去剩下绳子的23后,还剩下绳子的长度为10013⎛⎫⎪⎝⎭m.2.【答案】c<a<b【解析】因为a=-3×42=-48,b=(-3×4)2=(-12)2=144,c=-(3×4)2=-122=-144,所以c<a<b.3.【答案】(1)①<②<③>④>⑤>⑥>(2)当1≤n≤2时,n n+1<(n+1)n;当n≥3时,n n+1>(n+1)n.(3)>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学圆的综合训练一、选择题1.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n的大小和图中阴影部分的面积分别为( )A .302,B .602,C .3602,D .603,【答案】C 【解析】试题分析:∵△ABC 是直角三角形,∠ACB=90°,∠A=30°,BC=2, ∴∠B=60°,AC=BC×cot ∠33AB=2BC=4, ∵△EDC 是△ABC 旋转而成, ∴BC=CD=BD=12AB=2, ∵∠B=60°,∴△BCD 是等边三角形, ∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE ⊥AC , ∴DE ∥BC , ∵BD=12AB=2, ∴DF 是△ABC 的中位线, ∴DF=12BC=12×2=1,CF=12AC=1233 ∴S 阴影=12DF×CF=1233故选C .考点:1.旋转的性质2.含30度角的直角三角形.2.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺的10cm 处,铁片与直尺的唯一公共点A 落在直尺的14cm 处,铁片与三角尺的唯一公共点为B ,下列说法错误的是( )A .圆形铁片的半径是4cmB .四边形AOBC 为正方形 C .弧AB 的长度为4πcmD .扇形OAB 的面积是4πcm 2【答案】C 【解析】 【分析】 【详解】解:由题意得:BC ,AC 分别是⊙O 的切线,B ,A 为切点, ∴OA ⊥CA ,OB ⊥BC , 又∵∠C=90°,OA=OB , ∴四边形AOBC 是正方形, ∴OA=AC=4,故A ,B 正确; ∴»AB 的长度为:904180π⨯=2π,故C 错误; S 扇形OAB =2904360π⨯=4π,故D 正确.故选C . 【点睛】本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.3.如图,在矩形ABCD 中,6,4AB BC ==,以A 为圆心,AD 长为半径画弧交AB 于点E ,以C 为圆心,CD 长为半径画弧交CB 的延长线于点F ,则图中阴影部分的面积是( )A .13πB .1324π+C .1324π-D .524π+【答案】C 【解析】 【分析】先分别求出扇形FCD 和扇形EAD 的面积以及矩形ABCD 的面积,再根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)即可得解. 【详解】解:∵S 扇形FCD 29036096ππ==⨯⨯,S 扇形EAD 24036094ππ==⨯⨯,S 矩形ABCD 6424=⨯=, ∴S 阴影=S 扇形FCD ﹣(S 矩形ABCD ﹣S 扇形EAD ) =9π﹣(24﹣4π) =9π﹣24+4π =13π﹣24 故选:C . 【点睛】本题考查扇形面积的计算,根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)是解答本题的关键.4.将直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB =4,则光盘表示的圆的直径是( )A .4B .3C .6D .43【答案】B 【解析】 【分析】设三角板与圆的切点为C ,连接OA 、OB ,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案. 【详解】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知,AB =AC =3,AO 平分∠BAC , ∴∠OAB =60°,在Rt △ABO 中,OB =AB tan ∠OAB 3 ∴光盘的直径为3 故选:B . 【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.5.下列命题中,是假命题的是( ) A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等 【答案】D 【解析】 【分析】根据相关的知识点逐个分析. 【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D . 【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.6.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A.20°B.35°C.40°D.55°【答案】B【解析】【分析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作»PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交»PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.8.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°【答案】C【解析】【分析】根据圆内接四边形的性质得:∠GBC=∠ADC=50°,由垂径定理得:··=,则∠CM DMDBC=2∠EAD=80°.【详解】如图,∵四边形ABCD为⊙O的内接四边形,∴∠GBC=∠ADC=50°.∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M.∵AO⊥CD,∴··=,∴∠DBC=2∠EAD=80°.CM DM故选C.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.9.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.10.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A 532π-B532π+C.23πD.432π【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=323BCAB==,∴∠A=30°,∴OH=12OA=32,AH=AO•cos∠A=3332⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()26031132323222360π⨯⨯⨯-⨯⨯-=532π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】试题分析:∵AC为切线∴∠OAC=90°∵∠C=40°∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50°∴∠ABD=∠ODB=25°.考点:圆的基本性质.12.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是()A .1B .2C .3D .4【答案】C 【解析】 【分析】作△ABC 的外接圆,作出过点C 的切线,两条图象法即可解决问题. 【详解】如图⊙O 即为所求,观察图象可知,过点C 作△ABC 外接圆的切线,则该切线经过的格点个数是3个,选:C . 【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.13.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16B .6π C .8π D .5π 【答案】B 【解析】 【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】 解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.14.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD 中,∵∠ABC=60°,AB=1,∴△ABC ,△ACD 都是等边三角形,①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为31 -③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为31-故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG 上,正方形PCGQ的顶点P也在⊙O上.若BC=1,GH=2,则CG的长为()A.125B6C21D.22【答案】B【解析】【分析】【详解】解:连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,由勾股定理可知:22222222211{22r xr x x yr y=++=++=++()①()②()③,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x).∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6.∵x+y>0,∴x+y6,∴CG=x+y6.故选B .点睛:本题考查了正方形的性质、圆、勾股定理等知识,解题的关键是设未知数列方程组解决问题,难点是解方程组,利用因式分解法巧妙求出x 的值,学会把问题转化为方程组,用方程组的思想去思考问题.16.如图,ABC V 是O e 的内接三角形,且AB AC =,56ABC ∠=︒,O e 的直径CD 交AB 于点E ,则AED ∠的度数为( )A .99︒B .100︒C .101°D .102︒【答案】D【解析】【分析】 连接OB ,根据等腰三角形的性质得到∠A ,从而根据圆周角定理得出∠BOC ,再根据OB=OC 得出∠OBC ,即可得到∠OBE ,再结合外角性质和对顶角即可得到∠AED 的度数.【详解】解:连接OB ,∵AB=AC ,∴∠ABC=∠ACB=56°,∴∠A=180°-56°-56°=68°=12∠BOC , ∴∠BOC=68°×2=136°,∵OB=OC ,∴∠OBC=∠OCB=(180°-136°)÷2=22°,∴∠OBE=∠EBC-∠OBC=56°-22°=34°,∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB ,得到∠BOC 的度数.17.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E 点,若AD =CD = 23.则»BC 的长为( )A .3πB .23πC 3πD 23π 【答案】B【解析】【分析】根据垂径定理得到3CE DE ==»»BC BD = ,∠A=30°,再利用三角函数求出OD=2,即可利用弧长公式计算解答.【详解】如图:连接OD ,∵AB 是⊙O 的直径,弦CD ⊥AB 于E 点,AD =CD = 23∴3CE DE ==»»BC BD = ,∠A=30°, ∴∠DOE=60°,∴OD=2sin 60DE =o , ∴»BC的长=»BD 的长=60221803ππ⨯=, 故选:B.【点睛】此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.18.下列命题中正确的个数是( )①过三点可以确定一个圆②直角三角形的两条直角边长分别是5和12,那么它的外接圆半径为6.5③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米④三角形的重心到三角形三边的距离相等.A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据圆的作法即可判断;②先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;③根据圆与圆的位置关系即可得出答案;④根据重心的概念即可得出答案.【详解】①过不在同一条直线上的三点可以确定一个圆,故错误;②∵直角三角形的两条直角边长分别是5和12, 2251213+= , ∴它的外接圆半径为.113652⨯=,故正确; ③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误; ④三角形的内心到三角形三边的距离相等,故错误;所以正确的只有1个,故选:A .【点睛】本题主要考查直角三角形外接圆半径,圆与圆的位置关系,三角形内心,重心的概念,掌握直角三角形外接圆半径的求法,圆与圆的位置关系,三角形内心,重心的概念是解题的关键.19.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为()A.4 B.3 C.7 D.8【答案】A【解析】【分析】连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,根据勾股定理和题意求得OP=2,则AB的最小长度为4.【详解】解:如图,连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,∵C(3,4),∴OC22,34∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OC﹣3=2,∴OP=OA=OB=2,∵AB是直径,∴∠APB=90°,∴AB长度的最小值为4,故选:A.【点睛】本题考查了圆切线的性质、坐标和图形的性质、圆周角定理、勾股定理,找到OP的最小值是解题的关键.20.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S 阴影=4025360π⨯=259π, 故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.。