第二十一讲发电机失磁保护
浅谈发电机失磁保护
![浅谈发电机失磁保护](https://img.taocdn.com/s3/m/afaa525171fe910ef02df893.png)
浅谈发电机失磁保护发表时间:2017-07-17T15:25:08.730Z 来源:《电力设备》2017年第8期作者:侯小利[导读] 摘要:发电机失磁时会对发电机和电力系统产生巨大危害;本文分析了发电机失磁时对系统和发电机本身所产生的危害(河南能源焦煤公司冯营电厂河南焦作 454173)摘要:发电机失磁时会对发电机和电力系统产生巨大危害;本文分析了发电机失磁时对系统和发电机本身所产生的危害,介绍了发电机失磁保护的原理,使我们对发电机失磁及失磁保护有了一个系统的了解,为深入研究发电机失磁保护提供一定的帮助。
关键词:发电机;失磁保护;危害 1发电机失磁的危害发电机失磁是指正常运行的发电机励磁电流全部或部分消失的现象。
引起发电机失磁原因有:励磁机故障、灭磁开关误跳闸、转子绕组以及转子回路发生故障、运行人员误操作、半导体励磁系统中某些元件的损坏等等。
失磁是发电机常见故障形式之一,特别是大型发电机组,由于励磁系统环节较多,因而也增加了发生失磁的机率。
发电机发生失磁以后,励磁电流将逐渐衰减至零,发电机的感应电势Ed随着励磁电流的减小而不断减小,电磁转矩将小于原动机的转矩,因而使转子加速,导致发电机功角增大。
当发电机功角超过静稳极限角时,发电机将会与电力系统失去同步。
发电机失磁后将从系统中吸取一定的感性无功,转子会出现转差,在定子绕组中感应电势,并且定子电流增大,定子电压下降,有功功率下降,而无功功率反向并不断增大,在转子上会有差频电流产生,整个系统的电压可能会下降,某些电源支路也会产生过电流,发电机的各个电气量不断摆动,严重威胁发电机和整个电力系统的安全稳定运行。
1.1 失磁对电力系统的危害,主要表现在以下几个方面(1)低励或失磁的发电机,从系统中吸收无功功率,引起系统电压下降,如果电力系统中无功功率储备不足,将使电力系统中邻近的某些点电压低于允许值,破坏负荷与各电源间的稳定运行,甚至使电力系统因电压崩溃而瓦解。
发电机失磁保护.
![发电机失磁保护.](https://img.taocdn.com/s3/m/e4a9ed11f12d2af90242e672.png)
发电机失磁微机保护的研究摘要:介绍了现阶段的发电机失磁保护装置、发电机失磁保护的4种主要判据,并针对阻抗Ⅱ段和低电压判据延时较长的不足,提出利用发电机功率变化量作为失磁保护辅助加速判据。
还研究了失磁保护方案存在的问题,针对相应的问题提出微机失磁保护新方案,并对新方案进行了介绍。
关键词:失磁保护;失磁保护判据;功率变化量;辅助加速判据;微机失磁保护新方案。
0 引言中国历年来的发电机失磁故障率都比较高,因而,发电机失磁保护受到广泛重视。
近年来,国内在发电机失励磁分析和试验方面做了很多工作,取得了很大的成绩。
在失磁保护装置方面也已经开发出了多种型号的装置,其性能基本满足了电力系统的要求。
现阶段新型微机失磁保护判据组合及作用结果包括如下四方面的内容:a.失磁保护Ⅰ段:定子阻抗判据、转子电压判据、变励磁转子低电压判据、功率判据和无功反向判据组合。
失磁保护Ⅰ段投入,发电机失磁时,0.5 s降出力;b.失磁保护Ⅱ段:系统低电压判据、定子阻抗判据、转子电压判据、变励磁转子低电压判据和无功反向判据组合。
失磁保护Ⅱ段投入,发电机失磁时, 系统电压低于整定值,延时0.8 s 动作切发变组主断路器、灭磁断路器、厂用电源断路器及励磁系统各断路器;c.失磁保护Ⅲ段:定子阻抗判据、转子电压判据、变励磁转子低电压判据和无功反向判据组合。
失磁保护Ⅲ段保护投入,发电机失磁后,延时1.5 s,动作于“报警”,也可动作于“切换备用励磁”,或者动作于“跳闸”,有3种状态供选择;d.失磁保护Ⅳ段:定子阻抗判据和无功反向判据组合。
失磁保护Ⅳ段为长延时段,只判断定子阻抗判据,在减出力、切换备用励磁无效的情况下,5 min动作于“跳闸”。
1 发电机失磁后的基本物理过程及产生的影响发电机失磁故障是指发电机的励磁突然消失或部分消失。
对于失磁的原因有:转子绕组故障、励磁机故障、自动灭磁开关误跳闸、及回路发生故障等。
当发电机完全失去励磁时,励磁电流将逐渐衰减至零。
发电机的失磁保护
![发电机的失磁保护](https://img.taocdn.com/s3/m/b6ba897202768e9951e738bd.png)
发电机失磁故障是指发电机的励磁突然消失或部分消失。
对于失磁的原因有:转子绕组故障、励磁机故障、自动灭磁开关误跳闸、及回路发生故障等。
当发电机完全失去励磁时,励磁电流将逐渐衰减至零。
由于发电机的感应电势Ed 随着励磁电流的减小而减小,因此,其励磁转矩也将小于原动机的转矩,因此引起转子加速,使发电机的功角δ增大。
当δ超过静态稳定极限角时,发电机与系统失去同步。
发电机失磁后将从系统中吸取感性无功供给转子励磁电流,在定子绕组中感应出电势。
在发电机超过同步转速后,转子回路中将感应出频率为ff-fs(fs为系统频率、ff为发电机频率)的电流,此电流产生异步制动转矩,当异步转矩与原动机转矩达到平衡时,即进入稳定的异步运行。
当发电机异步运行时,将对发电机及电力系统产生巨大的应影响。
⑴需要从系统中吸收很大的无功功率以建立发电机磁场。
⑵由于从电力系统中吸收无功功率将引起电力系统的电压下降,如果电力系统的容量较小或无功储备不足,则可能使失磁的发电机端电压、升压变压器高压侧的母线电压、及其它的临近点的电压低于允许值,从而破坏了负荷与电源间的稳定运行,甚至引起电压崩溃而使系统瓦解。
⑶由于失磁发电机吸收了大量的无功功率,因此为了防止其定子绕组的过电流,发电机所发的有功功率将减少。
⑷失磁发电机的转速超过同步转速,因此,在转子及励磁回路中将产生频率为ff-fs的交流电流,因而形成附加的损耗,使发电机转子和励磁回路过热。
对于水轮机,①其异步功率较小,必须在较大的转差下运行,才能发出较大的功率。
②由于水轮机的调速器不够灵敏,时滞大,乃至可能在功率未达到平衡时就以超速,使发电机与系统解列。
③其同步电抗较小,异步运行时,则需要从电网吸收大量的无功功率。
④其纵轴和横轴不对称,异步运行时,机组震动较大等因素的影响,因此发电机不允许失磁。
因此必须加装失磁保护。
1 发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
失磁保护
![失磁保护](https://img.taocdn.com/s3/m/570b13222f60ddccda38a059.png)
发电机失磁保护的整定计算作者:佚名发布日期:2008-5-30 17:33:45 (阅631次)关键词: 保护电机目前,国内生产及应用的微机型失磁保护的类型主要有两类,一类是机端测量阻抗+转子低电压型;另一类是发电机逆无功+定子过电流型。
一、机端测量阻抗+转子低电压型失磁保护的整定计算该型失磁保护用于判断发电机失磁或励磁降低到不允许的程度的判据主要有机端测量阻抗元件及转子低电压元件,失磁的危害判别元件只有系统低电压元件。
此外,为提高失磁保护动作可靠性(例如,躲系统振荡),还设置有时间元件。
对于该型失磁保护的整定,主要是对机端测量阻抗元件、转子低电压元件、系统低电压元件及时间元件的整定。
1、机端测量阻抗元件的整定(1)失磁保护阻抗元件动作特性的类别。
截至目前,国内采用的失磁保护阻抗元件在阻抗复平面上动作特性的类型主要有:异步边界阻抗圆、静稳边界阻抗圆及通过坐标原点的下抛阻抗圆。
圆内为动作区。
2、动作阻抗圆的选择及整定理论分析及运行实践表明:发电机失磁后,机端测量阻抗的变化轨迹,与发电机的结构、发电机所带有功功率及系统的联系阻抗均有关。
运行实践表明:按静稳边界构成的动作阻抗圆,在运行中容易误动。
目前国内运行的阻抗型失磁保护,多数采用异步边界阻抗圆、下抛阻抗圆。
在确定阻抗元件的整定值时,应首先了解发电机在系统的位置,与系统的联系阻抗及常见的运行工况等。
动作阻抗圆的整定阻抗一般按下式确定:XA=-0.5X’d(或XA=0)XB=-1.2XdXA、XB分别为异步边界阻抗圆的整定电抗。
Xd为发电机的同步电抗X’d发电机的暂态电抗另外,对于与系统联系阻抗较大的大型水轮发电机,动作阻抗圆应适当增大;而对于与系统联系阻抗较小的大型汽轮发电机,动作阻抗圆可适当的减小。
对于经常进相运行的发电机,应保证在发电机进相功率较大时(但未失步),机端测量轨迹不会进入动作阻抗圆内。
另外,若阻抗元件采用静稳边界阻抗圆,则必须由转子低电压元件进行闭锁。
技能培训专题 电力系统继电保护 发电机失磁保护
![技能培训专题 电力系统继电保护 发电机失磁保护](https://img.taocdn.com/s3/m/bce8f9b7a45177232e60a2a7.png)
(2)发电机与系统间发生振荡时的机端测量阻抗
假定机端母线为无限大母线
即认为Eq≈US时,振荡中心 位于X∑/2处。当XS≈0振荡中 心即位于X’d/2处时,机端测 量阻抗的轨迹沿直接OO’变化,
如图7-27所示,当δ=180°时,
测量阻抗的最小值为Zg=-jX’d/2。
图7-27:系统振荡时机 端测量阻抗的变化轨迹
• 2 发电机在其它运行方式下的机端测量阻抗
(1)发电机正常运行及外部故障时的机端测量阻抗
Zg5----当采用0°接线方式时,故障 相测量阻抗位于第一象限,其大小
和相位正比于短路点到保护安装地
点之间的阻抗,如图7-26中的Zg5。
Zg1----当发电机向外输送有功和无功
功率时,其机端测量阻抗Zg位于第一
(3)静稳破坏后的异步运行阶段
静稳破坏后的异步运行阶段可用右图
表示,此时机端测量阻抗应为:
Zg
jX1
jX ad R2 S
( R2 S
j(X
ad
jX 2 ) X2)
,
(7
42)
图7-24:异步电机等效图
1、发电机空载运行失磁时,S≈0,R2/S≈∞,此时机端测量阻抗 最大: Zg jX1 jX ad jX d , (7 43)
(3)发电机自同步并列时的机端测量阻抗
在发电机接近于额定转速,不加励磁而投入断路器的瞬间,与 发电机空载运行时发生失磁的情况实质上是一样的。但由于自 同步并列的方式是在断路器投入后立即给发电机加上励磁,因 此,发电机无励磁运行的时间极短。对此情况,应该采取措施 防止失磁保护的误动作。
• 7.5.3 失磁保护转子判据
Zg
Ug Ig
Us
jIX s I
发电机失磁(逆无功)
![发电机失磁(逆无功)](https://img.taocdn.com/s3/m/5b2cdad676eeaeaad1f330d3.png)
发电机失磁保护(逆无功原理)一、保护原理发电机失磁及励磁降低至不允许程度的主要标志,是逆无功和定子过电流同时出)。
失磁的危害判据有现。
逆无功原理的失磁保护主判据是逆无功(-Q)和定子过电流(I>系统低电压(Us<)和机端低电压(Ug<),用来判别发电机失磁对系统及对厂用电的影响。
另外,为减少发电机失磁运行时的危害程度,采用发电机有功功率判据(P>)。
减有功图一发电机逆无功原理失磁保护逻辑图二、一般信息2. 1 输入TA/TV定义注:对应的保护压板插入,保护动作时发信并出口跳闸;对应的保护压板拔掉,保护动作时只发信,不出口跳闸。
2.6投入保护开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。
(注:该保护投入时其运行指示灯是亮的。
)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。
2.7参数监视点击进入发电机逆无功原理式失磁保护监视界面,可监视保护定值,有功功率、无功功率、发电机机端电压、系统低电压等有关信息。
三、保护动作整定值测试3.1逆无功定值测试外加三相电流和三相电压,满足过有功和过负荷条件,通过改变电流和电压的夹角来改变无功达动作值使保护出口。
记录数据。
3.2 有功功率定值测试外加三相电流和三相电压,满足逆无功和过负荷条件,增大电流达有功功率动作值使保护出口。
记录数据。
3.3 高压侧低电压定值测试在满足逆无功和过电流条件的同时,在高压侧电压输入端子CA相加电压,改变电压幅值,使t3出口灯亮。
记录数据。
3.4 机端低电压定值测试在满足逆无功和过电流条件的同时,改变机端三相电压幅值,使t2出口灯亮。
记录数据。
3.5 过负荷电流定值测试在满足逆无功和过有功功率条件的同时,增大电流达过负荷定值使t1出口灯亮。
记录数据。
3.6 过电流定值测试在满足逆无功和机端低电压条件的同时,增大电流达过电流定值使t2出口灯亮。
记录数据。
3.7 负序电压定值测试降低逆无功、过负荷、过电流及有功功率定值,同时提高低电压定值,外加三相电流和三相电压,在满足保护动作条件并有出口灯亮时,改变某一相电压幅值使负序电压计算值达整定值使保护出口灯熄灭。
发电机失磁(逆无功)
![发电机失磁(逆无功)](https://img.taocdn.com/s3/m/5b2cdad676eeaeaad1f330d3.png)
发电机失磁保护(逆无功原理)一、保护原理发电机失磁及励磁降低至不允许程度的主要标志,是逆无功和定子过电流同时出)。
失磁的危害判据有现。
逆无功原理的失磁保护主判据是逆无功(-Q)和定子过电流(I>系统低电压(Us<)和机端低电压(Ug<),用来判别发电机失磁对系统及对厂用电的影响。
另外,为减少发电机失磁运行时的危害程度,采用发电机有功功率判据(P>)。
减有功图一发电机逆无功原理失磁保护逻辑图二、一般信息2. 1 输入TA/TV定义注:对应的保护压板插入,保护动作时发信并出口跳闸;对应的保护压板拔掉,保护动作时只发信,不出口跳闸。
2.6投入保护开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。
(注:该保护投入时其运行指示灯是亮的。
)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。
2.7参数监视点击进入发电机逆无功原理式失磁保护监视界面,可监视保护定值,有功功率、无功功率、发电机机端电压、系统低电压等有关信息。
三、保护动作整定值测试3.1逆无功定值测试外加三相电流和三相电压,满足过有功和过负荷条件,通过改变电流和电压的夹角来改变无功达动作值使保护出口。
记录数据。
3.2 有功功率定值测试外加三相电流和三相电压,满足逆无功和过负荷条件,增大电流达有功功率动作值使保护出口。
记录数据。
3.3 高压侧低电压定值测试在满足逆无功和过电流条件的同时,在高压侧电压输入端子CA相加电压,改变电压幅值,使t3出口灯亮。
记录数据。
3.4 机端低电压定值测试在满足逆无功和过电流条件的同时,改变机端三相电压幅值,使t2出口灯亮。
记录数据。
3.5 过负荷电流定值测试在满足逆无功和过有功功率条件的同时,增大电流达过负荷定值使t1出口灯亮。
记录数据。
3.6 过电流定值测试在满足逆无功和机端低电压条件的同时,增大电流达过电流定值使t2出口灯亮。
记录数据。
3.7 负序电压定值测试降低逆无功、过负荷、过电流及有功功率定值,同时提高低电压定值,外加三相电流和三相电压,在满足保护动作条件并有出口灯亮时,改变某一相电压幅值使负序电压计算值达整定值使保护出口灯熄灭。
发电机保护简介
![发电机保护简介](https://img.taocdn.com/s3/m/7cefa903de80d4d8d15a4fc5.png)
1.发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。
静稳阻抗判据在失磁后静稳边界时动作。
TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A<Ia<Iset(电流门坎)时判为TV二次回路断线,将失磁保护闭锁。
│Ua+Ub+Uc-3U0│≥Uset用于判别TV单相或两相断线,低压判据判断三相失压。
在电力系统短路或短路切除等非失磁因素引起系统振荡时,保护采取措施闭锁Ufd(P),可防止保护误出口。
励磁低电压Ufd(P)判据动作后经t1(2s)发出失磁信号。
励磁低电压Ufd(P)判据、静稳阻抗判据均满足且无TV二次回路断线时经t2(6s)发出跳闸指令。
励磁低电压Ufd(P)判据、静稳阻抗、系统低电压判据均满足且无TV二次回路断线时经t3(1s)发出跳闸指令。
2.发电机过激磁保护过激磁保护是反应发电机因频率降低或者电压过高引起铁芯工作磁密过高的保护。
过激磁保护分高、低两段定值,低定值经固定延时5s发出信号和降低励磁电压(降低励磁电压、励磁电流的功能暂未用),高定值经反时限动作于解列灭磁。
反时限延时上限为5秒,下限为200秒。
3.发电机定子接地保护发电机定子接地保护作为发电机定子单相接地故障保护,由基波零序电压部分和三次谐波电压两部分组成,基波零序电压保护机端至机尾95%区域的定子绕组单相接地故障,由反映发电机机端零序电压原理构成,经时限t1(3s)动作于解列灭磁;三次谐波电压保护机尾至机端30%区域的定子绕组单相接地故障,由发电机中性点和机端三次谐波原理构成,经时限t2(5s)动作于信号。
同步发电机的失磁保护
![同步发电机的失磁保护](https://img.taocdn.com/s3/m/f478009727fff705cc1755270722192e453658f1.png)
保护的配置
电流检测元件
用于检测发电机的机端电流,判 断是否出现失磁现象。
阻抗元件
通过测量发电机的功角和机端电压, 计算出发电机的阻抗,并与预设的 阻抗值进行比较,判断是否出现失 磁。
延时元件
用于防止因发电机在正常范围内的 波动而误发失磁信号,设定一定的 延时时间。
保护的整定
电流阈值
开展跨学科的研究合作,引入 新的理论和技术手段,推动失 磁保护技术的创新发展。
THANKS
谢谢
根据发电机的额定电流和允许的失磁电流,设定一个电流阈值,当 检测到的机端电流低于该阈值时,判断为失磁。
阻抗整定
根据发电机的特性,设定一个阻抗值作为判断失磁的依据。通常选 取发电机的正常阻抗与极端阻抗之间的某个值。
延时时间
根据发电机的运行特性和波动情况,合理设置延时时间,以避免误判。
保护的测试与校验
致磁场强度降低。
功角增大
由于磁场强度降低,同 步发电机输出的有功功 率会增大,功角随之增
大。
转子转速异常
失磁会导致转子转速异 常,可能高于正常转速。
无功电流反向
失磁会导致无功电流反 向流动,即从系统流向
发电机。
对电力系统的影响
01
02
03
04
电压下降
由于发电机输出的有功功率增 大,无功功率减小,导致系统
同步发电机的失磁保护
目录
CONTENTS
• 同步发电机失磁现象及影响 • 失磁保护的重要性及要求 • 失磁保护装置及原理 • 失磁保护的配置及整定 • 失磁保护的案例分析 • 总结与展望
01
CHAPTER
同步发电机失磁现象及影响
失磁现象描述
失磁保护(讲课资料)
![失磁保护(讲课资料)](https://img.taocdn.com/s3/m/ff44c91b5ef7ba0d4b733bce.png)
低励.掉磁呵护应控制的常识点:1.什么是掉磁?2.掉磁后,发电机的运行状况若何变更?或者说发电机开端掉磁(在未超出静稳极限之前)的现象?3.掉磁呵护有哪些判据?(看解释书,先记住这些判据的名称,道理可以先不看)4.发电机掉磁对体系和发电机本身有什么影响?5.发电机掉磁后,机端测量阻抗大致若何变更?(先懂得)一.界说掉磁呵护,有时刻也叫低励呵护.但从加倍确实的界说上讲,低励:暗示发电机的励磁电流低于静稳极限所对应的励磁电流;(发电机要向外送这么多有功,必须要有响应的励磁电流来保持,励磁电流太低,连静稳极限都保持不了的时刻,就叫低励.而掉磁:暗示发电机完整掉去励磁.发电机低励.掉磁,是罕有的故障情势,特殊是大型发电机组,励磁体系的环节比较多.增长了产生低励.掉磁的机遇.二.掉磁的进程正常运行时,转子的扭转磁场,与定子绕组中电流产生的交变磁场,两者耦合到一路,同步扭转,转子磁场起推进力的感化,定子绕组中电流产生的交变磁场起制动力的感化,两者大小相等,同步扭转,把原念头的能量,经由过程磁场传到三相体系中去.而低励.掉磁时,转子中的磁场就减小,最后没有了,相当于转子用来推进定子交变磁场扭转的磁场减小.甚至没有了,相当于将“原念头的能量”转换成“三订交换体系中的电能”的序言减小.甚至没有了,那么原念头的能量就只能转换成转子的机械能,所以转子的转速要加快.以下为填补:励磁与有功.机端电压的关系(纯属小我懂得,仅供参考)有功增长了在机端电压不变的情形下定子电流就会增长,定子电流增长的话就会使机端电压降低, 为了保持机端电压的恒定就会增长励磁电流来稳固电压,励磁电流只调节无功,但无功和有功要知足功率圆.可能会出如今无功必定的情形下有功无法调节.就是说在有功增长的情形下励磁电流会变大的有功减小的话励磁电流也会响应的减小.也就是说,增长励磁电流,可以增长发电机输出的无功Q,也会使发电机的输出电压升高;反之,则相反.而励磁电流与有功P之间无必定的接洽.差不久不多吧,有功增长会使发电机产生去磁感化,这个时刻发电机电压会降低,发电机遇掉磁,无功就要响应的增长.理论上调剂有功,无功会跟着变更,增长无功,有功不跟着无功变更.单台发电机对于无限大体系而言,发电机输出的有功.无功的表达式为如下,式中,各参数的界说与上面填补部分的界说雷同.但下式成立的前提是xd=xq(此时xdΣ=xqΣ),即对于隐极发电机,才成立,对于凸极机,不成立.式中,P为发电机的有功,E0为发电机的机端电压;Us为体系电压,XΣ为包含发电机在内的全部体系的电抗,δ为转子磁场与定子绕组的电枢磁场的夹角(也可懂得为机端电压与无限大体系电压之间的夹角).对于水轮发电机:d轴:直轴(横轴),磁极轴线,转子上是一个大齿;q轴:交轴(相轴.时轴),相邻南北极之间的中间线,都是些小齿.是以,Xd与Xq不成能完整相等,Xd>Xq.发电机的机端电压E0与励磁电流If是成线性关系的,掉磁进程中,励磁电流减小,引起机端电压E0降低(无功功率降低),但是掉磁后,因为转子转速加快,δ会变大(δ的转变比E0的转变慢),在必定规模内,sinδ变大,cosδ,所以:“机端电压E0降低”与“sinδ变大”二者是互相抵偿的感化,所以在掉磁初始阶段,有功功率P先减小,后增长,往返摇动,但有功P的平均值变更不大;而无功功率Q则中断降低,甚至向体系接收无功(E0降低.cosδ降低);因为机端电压E0降低(在超出静稳极限后,机端电压讲大幅降低),是以,机端电流I先降低,后面有功P增长后,I也会回升.具体各电气参数如上图所示.综上,发电机开端掉磁(在未超出静稳极限之前)的现象如下:①无功功率Q在中断降低,甚至从正值变成负值;②机端电压E0在中断降低;③机端电流I在上升(先降低.后上升);④有功功率P有摇动(先降低.后上升),但平均值变更不大.这个时刻,发电机仍能向体系输送有功P,但因为无功Q降低,甚至接收无功,机端电压要降低,是以须要本厂其他无故障的机组,或者其他厂无故障的机组多发一些无功功率,以保持体系电压.当功角δ>180°今后,发电机完整掉步,有功P已变成负值,即发电机接收有功,发电机在体系电压的感化下,作电念头运转,定子电枢磁场已不再是对转子磁场起制动感化,而是和转子上的原动力矩一路,合营使令发电机加快扭转,很快使δ>360°,开端一个新的扭转周期,发电机输出的有功功率.无功功率.定子电流.转子电流和电压均呈现不合程度的振荡,但定子机端电压手体系电压的牵制,是以摇动比较安稳.三.掉磁后的发电机机端测量阻抗轨迹以下内容针对汽轮发电机而言:满负荷稳固运行时,发电机运行在A点,以掉磁开端为0s,约5s后无功功率反向,机端测量阻抗轨迹开端进入-x的第四象限;10s今后,机端测量阻抗轨迹在C区摆动;若将有功负荷减到额定功率的60%,则机端测量阻抗轨迹在D区摆动;若将有功负荷减到额定功率的40%,则机端测量阻抗轨迹稳固在B点邻近,掉磁机组进入稳固异步运行.1.掉磁初始阶段(在掉去静态稳固之前)的阻抗轨迹:等有功阻抗圆等有功的概念:前面已经剖析,在掉磁初始阶段(在掉去静态稳固之前),发电机有功功率P固然在摇动,但其平均值差不久不多是不变的,是以叫等有功.如今就假定输出有功功率P(这里用Ps暗示)根本不变,来剖析机端测量阻抗Z的轨迹.掉磁初始阶段(在掉去静态稳固之前)的阻抗轨迹就是等有功圆,静稳极限损坏之后,阻抗轨迹才偏离等有功圆进入第三.四象限.图6-3-3给我们的启示:①假如掉磁发电机与无限大体系的衔接电抗Xs越大(即发电厂与体系接洽很单薄,远离体系中间),则等有功圆就要沿着jx轴往上偏移,是以掉磁后的机端测量阻抗轨迹也整体往上偏移,即位于阻抗平面的上部区域,就不轻易进入第三.第四象限,而掉磁阻抗圆的动作区在第三.第四象限,所以此时掉磁呵护可能拒动.②掉磁以前,发电机带的有功Ps越大,则掉磁后机端测量阻抗轨迹圆的圆心越接近原点(从式6-6-3a可知),掉磁后的机端测量阻抗轨迹(即等有功圆)越小,同理,就不轻易进入第三.第四象限,而掉磁阻抗圆的动作区在第三.第四象限,所以此时掉磁呵护可能拒动.2.静稳极限阻抗圆填补:对于汽轮机的静稳极限(鸿沟)阻抗圆,上面为Xs(体系接洽电抗,或者叫发电机与无限大体系的衔接电抗),下面为-Xd,以它们为直径所作的圆.机端测量阻抗轨迹进入该圆,暗示这台发电机的静稳极限损坏了.等有功圆与静稳极限(鸿沟)阻抗圆是订交的,刚一开端掉磁,机端测量阻抗轨迹就有可能沿着等有功圆进入静稳极限(鸿沟)阻抗圆,是以,静稳极限(鸿沟)阻抗圆的动作区域较大,比异步鸿沟阻抗圆更敏锐,静稳极限方才被损坏,呵护就动作了.但是,对于汽轮机的静稳极限(鸿沟)阻抗圆,其动作区域它包含了所有象限,第四象限是同步发电机掉磁应当动作的区域,第三象限是同步电念头掉磁应当动作的区域.而在第一.二象限,除了掉磁呵护会动作外,短路故障也会动作,是以,为了防止短路时静稳极限(鸿沟)阻抗圆误动,从第二象限到第四象限整齐根直线,弄成一个偏向阻抗继电器.如P303,图6-4-5所示.而在我国,为了防止短路时静稳极限(鸿沟)阻抗圆误动,就把Xs移到零点,即机端,以零点和-Xd为弦,以静稳极限(鸿沟)阻抗圆为基本,画一个苹果圆,让这个苹果圆尽可能的跟理论上的静稳极限(鸿沟)阻抗圆挨近.我们把这个苹果园叫:准静稳极限阻抗圆.如P304所讲.无论是静稳极限阻抗圆,照样异步鸿沟阻抗圆,阻抗继电器不但是在掉磁的时刻才动作,在体系振荡.PT断线以及发电机从机端到高压体系产生相间短路.接地短路(经由渡电阻短路,过渡电阻达到必定命值)时,这些阻抗圆可能会误动.所以阻抗圆也要和“励磁低电压”等判据相合营应用,即进入阻抗圆之后,要“励磁电压低于整定值”之后,才动作.若是体系短路,为了保持体系稳固,励磁体系会主动将励磁加大,此时进入阻抗圆之后,因为“励磁低电压”等判据不知足,掉磁呵护也不会动作.详见金安桥的“静稳极限励磁电压U (P) fd主判据”金安桥掉磁呵护的几个判据1.静稳极限励磁电压U (P) fd主判据若定子机端电势E0用定子的额定电压作为基准值,再盘算它的标幺值;而转子电压U1的基准值为发电机空载的额定励磁电压,则定子机端电势E0的标幺值,就等于转子电压U1的标幺值,那么从标幺值来说,E0就是转子电压,故有功P即为转子电压乘以无限大母线电压,再比上同步电抗.所以,发电机要发出某一数目的有功P,就必须要有必定命量的励磁电压E0(转子电压,它们的标幺值相等)来保持,换句话,发电机要送某一数目的有功功率P,且体系要保持静稳极限,那么必须要有的谁人转子电压就能肯定下来.转子电压的标幺值,与有功P成一个线性关系.故,用转子低电压作为判据时,转子低电压的定值是跟着有功功率的变更而变更的.不合的有功功率,保持静稳极限所需的转子电压就有不合的定值.(但这是从稳态的状况下来说的,而在暂态进程中,这个线性关系不成立)该判据的长处是:凡是能导致掉步的掉磁初始阶段,因为U fd 快速降低,U (P) fd判据可快速动作;在平日工况下掉磁,U (P) fd 判据动作大约比静稳鸿沟阻抗判据动作提前1 秒钟以上,有猜测掉磁掉步的功效,明显进步机组压出力或切换励磁的后果.5.6.2 定励磁低电压帮助判据为了包管在机组空载运行及 Pt < P 的轻载运行情形下掉磁时呵护能靠得住动作,或为了全掉磁及轻微部分掉磁时呵护能较快出口,附加装设整定值为固定值的励磁低电压判据,简称为“定励磁低电压判据”,其动作方程为:金安桥掉磁呵护跳闸清册:静稳鸿沟阻抗判据知足后,至少延时1~1.5s 发掉磁旌旗灯号.压出力或跳闸,延时1~1.5s 的原因是躲开体系振荡.扇形与R 轴的夹角10°~15°为了躲开辟电机出口经由渡电阻的相间短路,以及躲开辟电机正常进相运行.5.6.4 稳态异步鸿沟阻抗判据发电机产生凡是能导致掉步的掉磁后,老是先到达静稳鸿沟,然后转入异步运行,进而稳态异步运行.该判据的动作圆为下抛圆,它匹配发电机的稳态异步鸿沟圆.特征曲线见图5-6-4.5.6.5 主变高压侧三雷同时低电压判据发电机掉磁后,可能引起主变高压侧(体系)电压降低,激发局部电网电压解体,是以,在掉磁呵护设置装备摆设计划中,应有“三雷同时低电压”判据.为防止该判据误动,该判据应与其它帮助判据构成“与”门出口.此判据重要断定掉磁的发电机对体系电压(母线电压)的影响.五.不雅音岩所用的南瑞PCS-985GW发电机呵护中,掉磁呵护有哪些判据?它们各有什么感化?实用于哪些场合?答:①母线(机端)低电压判据:该判据用于呵护电力体系不被掉磁故障的发电机拖垮,是一个保体系的判据;实用于体系无功储备缺少时,远离负荷中间.与体系接洽比较单薄的发电厂扶植初期,或枯水运行季候的时刻.②定子阻抗判据,包含静稳极限阻抗圆.异步鸿沟阻抗圆:该判据为掉磁故障的主判据,用于判别发电机的低励掉磁故障,延时动作于旌旗灯号或出口;个中静稳极限阻抗圆实用于“远离负荷中间,与体系接洽单薄,体系等值阻抗大”的发电厂,而异步鸿沟阻抗圆实用于“在负荷中间,与体系接洽慎密,体系等值阻抗小”的发电厂.③转子侧判据,包含转子低电压判据.发电机的变励磁电压判据(也叫静稳极限励磁电压判据):因为在能导致掉步的掉磁初始阶段,该判据能快速动作;在平日工况下比定子抗判据动作提前1 s 以上,是以有猜测掉磁掉步的功效,明显进步机组减出力或切换励磁的后果;实用于在体系振荡.PT断线以及发电机从机端到高压体系产生相间短路.接地短路(经由渡电阻短路,过渡电阻达到必定命值)时,与定子阻抗判据合营应用,防止定子阻抗判据单独应用时误动作.④无功反向判据:该判据用于反应掉磁进程中发电机向体系倒吸无功,导致体系电压降低,用于与其他掉磁判据相合营,完美掉磁呵护的功效,增长掉磁呵护动作的靠得住性.六.发电机掉磁对发电机.体系的影响发电机掉磁对体系和发电机本身有什么影响?汽轮发电机许可掉磁运行的前提是什么?(高等技师)答:发电机掉磁对体系的影响:(1)发电机掉磁后,不单不克不及向体系送出无功功率,并且还要从体系中接收无功功率,将造成体系电压降低.(2)为了供应掉磁发电机无功功率,可能造成体系中其他发电机过电流.发电机掉磁对发电机自身的影响:(1)发电机掉磁后,转子和定子磁场之间消失了速度差,则在转子回路中感应出转差频率的电流,引起转子局部过热.(2)发电机受交变的异步电磁力矩的冲击而产生振动,转差率愈大,振动也愈大.汽轮发电机许可掉磁运行的前提是:(1)体系有足够供应发电机掉磁运行的无功功率,以不至于造成体系电压轻微降低为限.(2)降低发电机有功功率的输出,使之能在很小的转差下,在许可的一段时光内异步运行.即发电机应在较小的有功功率下掉磁运行,使之不至于造成伤害发电机转子的发烧和振动.七.几道技巧判定的习题大型发电机掉磁呵护,在什么情形下采取异步鸿沟阻抗圆?又在什么情形下采取静稳极限阻抗圆?解释来由.(技师)答:在负荷中间,体系等值阻抗小的宜选用异步鸿沟阻抗圆;远离负荷中间,体系等值阻抗大的宜选用静稳极限阻抗圆.来由是:远离负荷中间的大型发电机掉磁后,机端等有功阻抗圆可能不与异步鸿沟阻抗圆订交,掉磁呵护动作慢,有可能对侧体系的后备呵护是以掉磁引起过流而先动作了,本侧掉磁呵护却还未动作,造成对侧呵护先跳闸,从而扩展变乱规模.(即在掉磁初始阶段,还未掉步时,机端测量阻抗轨迹还在等有功圆上,且阻抗轨迹正在慢慢的由第一象限向第四象限移动的时刻,因为端等有功阻抗圆可能不与异步鸿沟阻抗圆订交,掉磁呵护就不克不及提前动作,而等阻抗轨迹进入异步鸿沟阻抗圆时,机组已完整异步运行了,这时才动作跳闸,线路上的后备呵护可能早就动作了,使故障扩展.)“励磁低电压”判据为什么不克不及单独用于掉磁呵护?答:这是因为当前电力体系的容量越来越大,鄙人三更电力体系负荷较低的时刻,超高压输电线路对地电容产生的无功,会使发电机机端电压升高(即容升效应,电容电流要给发电机励磁,即发电机接收无功,处于进相运行状况),是以不克不及不把发电机本身的励磁电压.励磁电流减小,以使发电机机端电压还能保持在正常程度,不至于过高,在励磁电压降低后,轻易使“励磁低电压”判据误动,所以,不克不及单独用于掉磁呵护,而要与其他判据合营应用.(为了抵偿高压输电线路的电容和接收其无功功率,防止电网轻负荷时因容性功率过多引起的电压升高.在线路两头装配了并联电抗器)。
浅析发电机失磁保护原理及整定计算
![浅析发电机失磁保护原理及整定计算](https://img.taocdn.com/s3/m/d8b5a4244b35eefdc8d33360.png)
浅析发电机失磁保护原理及整定计算1 概述同步发电机在运行过程中,可能突然全部或部分地失去励磁。
引起失磁的原因不外是由于励磁回路开路(如灭磁开关误跳闸、整流装置的误跳开等)、短路或励磁机励磁电源消失或转子绕组故障等。
发电机发生失磁故障后,将从系统吸收大量无功, 导致系统电压下降,甚致系统因电压崩溃而瓦解;引起发电机失步运行,并产生危及发电机安全的机械力矩;在转子回路中出现差频电流,引起附加温升等危害。
由此可见发电机失磁故障严重影响大型机组的安全运行。
2 失磁保护的主判据及整定计算目前失磁保护使用最多的主判据主要有三种,分别是:a.转子低电压判据,即通过测量励磁电压Ufd 是否小于动作值;b.机端低阻抗判据Z<;c.系统低电压判据Um<。
三种判据分别反映转子侧、定子侧和系统侧的电气量。
2.1 转子低电压判据Ufd目前浑江发电公司采用国电南自的DGT801微机型发电机保护,失磁保护采用变励磁电压判据Ufd(P),即在发电机带有功P 的工况下,根据静稳极限所需的最低励磁电压,来判别是否已失磁。
正常运行情况下(包括进相),励磁电压不会低于空载励磁电压。
Ufd(P)判据十分灵敏,能反映出低励的情况,但整定计算相对复杂。
因为Ufd 是转子系统的电气量,多为直流,而功率P 是定子系统的电气量,为交流量,两者在一个判据进行比较。
如果整定不当很容易导致误动作。
但是勿容置疑的是,该判据灵敏度最高,动作很快。
如果掌握好其整定计算方法,在整定计算上充分考虑空载励磁电压Ufd0 和同步电抗Xd 等参数的影响,或在试运行期间加以实验调整,不仅可以避免误动作,而且是一个十分有效的判据。
能防止事故扩大而被迫停机,特别适用于励磁调节器工作不稳定的情况。
主要对转子低压元件进行整定。
2.1.1 转子低电压的动作方程:Ufd<Ufdl ………………………Ufd<UfdlUfd<125(P- Pt)/Kfd×866 ………Ufd>UfdlUfd- 转子电压计算值P—发电机有功功率计算值Ufd、Ufd1、Pt- 保护整定值2.1.2 转子电压的动作特性如下图:2.1.3 转子低电压特性曲线系数Kfd 整定:Kfd=(Kk/XdΣ)×(125Se/866Ufd0)XdΣ= Xd+XsXd………发电机电抗Xs………为升压变压器及系统等值电抗之和Kk………可靠系数2.1.4 转子低电压定值整定:一般取发电机空载电压的(0.6~0.8)倍Ufd1=(0.6~0.8)Ufd02.2 低阻抗判据Z<反映发电机机端感受阻抗,当感受阻抗落入阻抗圆内时,保护动作。
发电机失磁保护介绍
![发电机失磁保护介绍](https://img.taocdn.com/s3/m/f8695e896bd97f192279e9f7.png)
发电机失磁保护介绍1 概述同步发电机是根据电磁感应的原理工作的,发电机的转子电流(励磁电流)用于产生电磁场。
正常运行工况下,转子电流必须维持在一定的水平上。
发电机失磁故障是指励磁系统提供的励磁电流突然全部消失或部分消失。
同步发电机失磁后将转入异步运行状态,从原来的发出无功功率转变为吸收无功功率。
对于无功功率容量小的电力系统,大型机组失磁故障首先反映为系统无功功率不足、电压下降,严重时将造成系统的电压崩溃,使一台发电机的失磁故障扩大为系统性事故。
在这种情况下,失磁保护必须快速可靠动作,将失磁机组从系统中断开,保证系统的正常运行。
引起发电机失磁的原因大致有:发电机转子绕组故障、励磁系统故障、自动灭磁开关误跳闸及回路发生故障等。
2 发电机失磁过程中机端测量阻抗分析发电机从失磁开始进入稳态异步运行,一般分为三个阶段:(1)失磁后到失步前(2)临界失步点(3)异步运行阶段2.1隐极式发电机以汽轮发电机经联络线与无穷大系统并列运行为例,其等值电路与正常运行时的向量图如图1所示。
图1 发电机与无限大系统并列运行图中,d E 为发电机的同步电势,f U 为发电机机端相电压,s U 为无穷大系统相电压,I 为发电机定子电流,d X 为发电机同步电抗,s X 为发电机与系统之间的等值电抗,且有s d X X X +=∑ ,ϕ为受端的功率因数角,δ为d E 与s U 之间的夹角(即功角)。
若规定发电机发出有功功率、无功功率时,表示为jQ P W -=,则δsin ∑=X U E P sd (1) ∑∑-=X UX U E Q ss d 2cos δ(2) 功率因数角为PQ1tan -=ϕ (3) 在正常运行时,090<δ。
090=δ为稳定运行极限,090>δ后发电机失步。
1. 失磁后到失步前在失磁后到失步前的阶段中,转子电流逐渐减小,Ed 随之减小,随之增大,两者共同的结果维持发电机有功功率P 不变。
与此同时,无功功率Q 随着Ed 的减小与的增大迅速减小,按(2)式计算的Q 值由正变负,发电机由发出感性无功转变为吸收感性无功。
发电机失磁保护校验方法
![发电机失磁保护校验方法](https://img.taocdn.com/s3/m/b91f696fbb1aa8114431b90d6c85ec3a86c28b7f.png)
发电机失磁保护校验方法嘿,咱今儿个就来讲讲发电机失磁保护校验方法!这可不是个小事情啊,就好像汽车没了油,那可跑不起来啦!发电机呢,就像是个大力士,给我们源源不断地提供能量。
可要是它失磁了,那可就麻烦喽!就好像大力士突然没了力气,那整个系统都可能会出问题呀!那怎么校验这个失磁保护呢?首先,咱得了解它的原理。
就好比你要了解一个人的脾气性格,才能更好地和他相处嘛。
失磁保护就是要在发电机出现失磁情况时,迅速地做出反应,避免更大的损失。
然后呢,我们可以通过一些专门的仪器和设备来进行校验。
这就像是医生给病人做检查,要用各种工具来确定病人的身体状况。
比如说,可以用电流表、电压表之类的,看看各项参数是不是正常。
再来说说具体的步骤吧。
咱得先把发电机调整到合适的状态,就像运动员比赛前要做好热身一样。
然后,模拟失磁的情况,看看保护装置是不是能及时地响应。
这就好比是一场实战演练,只有经过了考验,才能知道行不行啊!在这个过程中,可得细心再细心,不能有一点儿马虎。
这可不是闹着玩的,万一没校验好,到时候出了问题,那可就糟糕啦!你想想看,如果发电机在关键时刻掉链子,那得造成多大的影响啊!工厂可能会停产,家里可能会停电,那可不是开玩笑的!所以说,这个失磁保护校验太重要啦!而且啊,校验的时候还得注意安全。
这就跟过马路要看红绿灯一样,不能乱来。
要按照规定的操作流程来,不能随心所欲地瞎搞。
还有啊,要定期进行这样的校验。
不能说一次就完事儿了,就像人要定期体检一样,机器也需要经常检查保养。
总之呢,发电机失磁保护校验可不是个简单的事儿,但只要我们认真对待,按照正确的方法去做,就一定能保证发电机的正常运行,让我们的生活和工作都能顺顺利利的!可别小瞧了这事儿,它关系到我们的方方面面呢!大家都要重视起来呀!。
发电机失磁危害及其保护措施
![发电机失磁危害及其保护措施](https://img.taocdn.com/s3/m/73ba47d6647d27284a73512a.png)
发电机失磁危害及其保护措施一、前言作者在二期发电机组失磁保护校验时,发现失磁保护下抛边界阻抗圆总是抢先失磁异步边界阻抗圆出口,造成异步阻抗圆保护失去作用,鉴于发电机失磁对发电机及系统的危害,由此引出失磁保护分析应用事宜。
二、发电机失磁危害发电机失磁后,发电机转子和定子磁场间出现了速度差,则在转子回路中感应出差频电流,引起转子局部过热,甚至灼伤,同时发电机受交变异步电磁力矩冲击而发生振动,尤其在重负荷下失磁将发生剧烈振动,直接威胁机组安全运行。
此外,发电机从系统吸收无功功率引起系统电压下降,如果系统无功储备不足则可能使系统电压低于允许值,甚至电压崩溃而瓦解系统。
三、失磁保护配置大唐韩城第二发电有限责任公司二期装机容量为2×600MVA,发变组采用单元接线,发电机保护采用美国通用公司G60微机保护装置,均为双重化配置,发变组保护A、B屏各设置一台。
该装置硬件由多功能模块组成,软件按模块化外加灵活逻辑设计,由用户根据需要配置。
该失磁保护为两段阻抗圆外加灵活逻辑配件共同组成。
3.1失磁保护逻辑图1 失磁保护逻辑3.2失磁保护定值二期发电机失磁判据采用类似静稳极限阻抗圆的下抛阻抗圆及异步边界阻抗圆主判据。
a、下抛圆阻抗设置:圆心:(稍偏坐标原点)半径:出口时间:t1=0.5sb、异步边界阻抗圆设置:圆心:-半径:出口时间:t2=1sc、机端低电压定值设置:Uop=0.85pu,即三相电压低于85%额定电压时开放失磁保护。
d、失磁保护出口方式设置:失磁两段式阻抗保护动作后分别经延时动作于全停。
四、失磁保护判据分析4.1常见失磁保护判据a、常见失磁保护主判据有:①、静稳极限励磁电压判据;②、静稳极限阻抗判据;③、异步边界阻抗判据;④、系统或发电机三相低电压判据等。
b、常见辅助判据有:①ueop≤0.8ueo其中,ueop:励磁实际电压,ueo:空载励磁电压。
②u2op≤(0.05~0.06)ugn,I2op≤(1.2~1.4)I2∞其中,u2op:发电机实际负序电压,ugn:发电机额定电压,I2op:发电机实际负序电流,I2∞:发电机长期允许负序电流。
第二十一讲发电机失磁保护
![第二十一讲发电机失磁保护](https://img.taocdn.com/s3/m/bbb9d43a8f9951e79b89680203d8ce2f01666546.png)
组成: 第一组:由电流互感器1、2、5 和差动继电器1CJ组成,用以选 择第Ⅰ组母线上的故障。 第二组:由电流互感器3、4、6 和差动继电器2CJ组成,用以选 择第Ⅱ 组母线上的故障。 第三组:由电流互感器1~6和差 动继电器3CJ组成的完全电流差 动保护,作为整套保护的起动元 件。 当第Ⅰ组母线故障时 继电器1CJ、3CJ流入全部短路电 流,故1CJ、3CJ起动,使断路器 1DL、2DL、5DL跳闸,切除Ⅰ 母线故障。继电器2CJ流入不平 衡电流,不会动作, Ⅱ母线继续 运行。
(二)开始失步( 90°<δ≤180° )
随着δ的增大,PT-P的值越来越大;
在发电机超过同步转速后,转子回路中将感应出频率为 ff-fx电流,该电流将产生异步功率Pac
Q负的越多机端电压下降的越多,定子电流将持续增大。 (三)完全失步δ >小汽门或水门,减小原动机输 入的功率,使转子减慢。
U B U f jIxB ZI jIxB
U B U s
Z jxB Z j(xB xs )
R2 (x xs )2 R2 (x xB xs )2
整理后:R 2
(x
1
M2 -M
2
xs
- xB)2
M2 (1 M 2 )2
xs2
临界电压阻抗园
三、失磁保护的主要判据
1.主要判据 现在大型同步发电机的失磁保护都是利用定子回路 参数变化来检测失磁故障。可作为失磁保护的判据有: (1)无功功率改变方向; (2)机端测量阻抗超越静稳边界阻抗园的边界; (3)机端测量阻抗进入异步边界阻抗园。 可作为失磁保护的定子判据,还有反应发电机感应电 势衰减及消失、功角增大等。
发电机失磁保护的整定计算、功角
![发电机失磁保护的整定计算、功角](https://img.taocdn.com/s3/m/a57a6a2e83c4bb4cf7ecd1f7.png)
发电机失磁保护的整定计算 1目前,国内生产及应用的微机型失磁保护的类型主要有两类,一类是机端测量阻抗+转子低电压型;另一类是发电机逆无功+定子过电流型。
一、机端测量阻抗+转子低电压型失磁保护的整定计算该型失磁保护用于判断发电机失磁或励磁降低到不允许的程度的判据主要有机端测量阻抗元件及转子低电压元件,失磁的危害判别元件只有系统低电压元件。
此外,为提高失磁保护动作可靠性(例如,躲系统振荡),还设置有时间元件。
对于该型失磁保护的整定,主要是对机端测量阻抗元件、转子低电压元件、系统低电压元件及时间元件的整定。
1、机端测量阻抗元件的整定(1)失磁保护阻抗元件动作特性的类别。
截至目前,国内采用的失磁保护阻抗元件在阻抗复平面上动作特性的类型主要有:异步边界阻抗圆、静稳边界阻抗圆及通过坐标原点的下抛阻抗圆。
圆内为动作区。
2、动作阻抗圆的选择及整定理论分析及运行实践表明:发电机失磁后,机端测量阻抗的变化轨迹,与发电机的结构、发电机所带有功功率及系统的联系阻抗均有关。
运行实践表明:按静稳边界构成的动作阻抗圆,在运行中容易误动。
目前国内运行的阻抗型失磁保护,多数采用异步边界阻抗圆、下抛阻抗圆。
在确定阻抗元件的整定值时,应首先了解发电机在系统的位置,与系统的联系阻抗及常见的运行工况等。
动作阻抗圆的整定阻抗一般按下式确定:XA=-0.5X’d(或XA=0)XB=-1.2XdXA、XB分别为异步边界阻抗圆的整定电抗。
Xd为发电机的同步电抗X’d发电机的暂态电抗另外,对于与系统联系阻抗较大的大型水轮发电机,动作阻抗圆应适当增大;而对于与系统联系阻抗较小的大型汽轮发电机,动作阻抗圆可适当的减小。
对于经常进相运行的发电机,应保证在发电机进相功率较大时(但未失步),机端测量轨迹不会进入动作阻抗圆内。
另外,若阻抗元件采用静稳边界阻抗圆,则必须由转子低电压元件进行闭锁。
此时,动作阻抗XA、XB 可按下式决定XA=XC XB=-Xd目前,国内生产及应用的微机型保护装置,阻抗型失磁保护的转子低电压元件多采用其动作电压随发电机有功功率的增大而增大的UL-P元件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、几种常用的母线差动保护 1.母线完全电流差动保护
整定计算:按躲过外部故障最大不平衡电流整定
I set Krel 0.1I k .max / nTA
Krel----可靠系数,取1.3
灵敏度
K sen
I k ..max 2 I set
2.电流比相式母线保护 工作原理
正常运行或外部故障时
I2
Ⅱ 发电机的失磁保护
发电机的失磁运行及其产生的影响 一、失磁的原因: (1)励磁回路开路、励磁绕组断线、灭磁开关误动作、励磁调节 装臵的自动开关误动、可控硅励磁装臵中部分元件损坏; (2)励磁绕组由于长期发热,绝缘老化或损坏引起短路; (3)运行人员误调整等。 发电机失磁后,它的各种电气量和机械量都会发生 变化。将危及发电机的安全。
(四)失磁后的影响 对电力系统:
(1)发电机失磁后,不但不能向系统送出无功功率,而
且还要从系统吸收无功功率。将造成系统电压下降;
(2)为了供给失磁发电机无功功率,可能造成系统中其
它发电机过电流;
(3)发电机失磁失步后,将造成系统振荡,甩掉大量负
荷。
对发电机: (1)发电机失磁后,转子和定子磁场间出现了速度 差,则在转子回路中感应出转差频率的电流,引起转 子局部过热。 (2)发电机受交变的异步电磁力矩的冲击而发生振 动,转差率越大,振动越厉害。 可见,失磁后,若不失步,无直接危害。失步后,对 发电机及系统有不利影响。故应装设失磁保护。
可见,失磁后,ZJ向第四象限移动,且最终将稳定 在第四象限内。
②等无功阻抗圆(δ=90°)
临界失步(或静稳极限)阻抗圆
③临界电压值(临界电压园)
发电机失磁后,系统某一点电压下降到使机 组不能稳定运行,此为临界电压值
U jI ( x x ) ZI jI ( x x ) U s f B s B S U jI x ZI jI x U B f B B U Z jxB B Z j ( x B xs ) U s R ( x xs )
t
发电机负序电流与允许它通过 的时间关系曲线
I2*---为以发电机额定电流倍数表示的负序电流的标幺 值; A –允许过热时间常数 曲线表明发电机允许负序电流持续的时间t是随大小而变 化的。I2*大时,允许的时间短,I2*小时,允许的时间长。 这种变化的特性称为反时限特性。 为此发电机应装设负序过电流保护。 二、负序定时限过电流保护
随着δ的增大,PT-P的值越来越大;
在发电机超过同步转速后,转子回路中将感应出频率 为ff-fx电流,该电流将产生异步功率Pac
Q负的越多机端电压下降的越多,定子电流将持续增大。 (三)完全失步δ >180° 在δ较大时,由于转子相对速度很大,发电机调 速器必然动作,关小汽门或水门,减小原动机输 入的功率,使转子减慢。 当P+Pac=PT时,发电机运行在稳定的异步状态。同步 功率随着δ 的变化将呈周期振荡状态,各电气量也 都相应地将周期性的摆动。
2 2
R 2 ( x x B xs ) 2
2 2 M M 2 2 整理后:R 2 (x x x ) x B 2 s 2 2 s 1- M (1 M )
临界电压阻抗园
三、失磁保护的主要判据
1.主要判据
现在大型同步发电机的失磁保护都是利用定子回 路参数变化来检测失磁故障。可作为失磁保护的判据 有: (1)无功功率改变方向;
组成: 第一组:由电流互感器1、2、5和 差动继电器1CJ组成,用以选择第 Ⅰ组母线上的故障。 第二组:由电流互感器3、4、6和 差动继电器2CJ组成,用以选择第 Ⅱ 组母线上的故障。 第三组:由电流互感器1~6和差动 继电器3CJ组成的完全电流差动保 护,作为整套保护的起动元件。 当第Ⅰ组母线故障时 继电器1CJ、3CJ流入全部短路电 流,故1CJ、3CJ起动,使断路器 1DL、2DL、5DL跳闸,切除Ⅰ母线 故障。继电器2CJ流入不平衡电流, 不会动作, Ⅱ母线继续运行。
组成: 第一组:由电流互感器1、 2、5和差动继电器1CJ组成, 用以选择第Ⅰ组母线上的 故障。 第二组:由电流互感器3、 4、6和差动继电器2CJ组成, 用以选择第Ⅱ 组母线上的 故障。 第三组:由电流互感器1~6 和差动继电器3CJ组成的完 全电流差动保护,作为整 套保护的起动元件。 正常运行或外部故障 时,流入1CJ、2CL、3CJ的 电流均为不平衡电流,保 护不会动作。
利用发电机的过电流保护切除母线故障
利用变压器的过电流保护切除低压母线故障
在双电源网络上,利用电源侧的保护切除母线故障
2.装设专门的母线保护。
《电力系统继电保护及自动装臵技术规程》规定下列情况应装 设专门的母线保护: (1)在110kV及以上的双母线和分段单母线上,为保证有选择性 地切除任一组(或段)母线上所发生的故障,而另一组(或段) 无故障的母线仍能继续运行,应装设专门的母线保护。 (2) 110kV及以上的单母线,主要发电厂的35kV母线或高压侧 位110kV及以上的重要降压变电所的35kV母线,按照装设全线速 动保护的要求必须快速切除母线上的故障时,应装设专门的母线 保护。
二、实现母线差动保护的基本原则 1.在正常运行以及母线范围以外故障时,在母线所 有连接元件中,流入的电流和流出的电流相等; 2.当母线上发生故障时,所有与电源有连接元件都 向故障点供给短路电流,而在供电给负荷的连接元 件中电流等于零; 3.从相位来看,在正常运行以及外部故障时,至少 有一个元件中的电流相位和其余元件中的电流相位 相反。而当母线故障时除电流等于零的元件以外, 其它元件中的电流则是同相位的。
3.失磁保护的构成方案 (1)以失磁阻抗继电器作主要判据而构成失磁保护 程度方案
发电机失磁保护方案图
(2)整定值能自动随有功功率P变化的转子低电压失 磁继电器作主要判据而构成失磁保护的方案
(3)稳态异步运行阻抗圆
发电机异步运行等值电路
异步运行阻抗圆
Ⅲ
母线保护
一、装设母线保护的基本原则 1.利用供电元件的保护装臵切除母线故障。
组成: 第一组:由电流互感器1、2、5 和差动继电器1CJ组成,用以选 择第Ⅰ组母线上的故障。 第二组:由电流互感器3、4、6 和差动继电器2CJ组成,用以选 择第Ⅱ 组母线上的故障。 第三组:由电流互感器1~6和差 动继电器3CJ组成的完全电流差 动保护,作为整套保护的起动 元件。 当固定连接破坏时,区外故障, 继电器1CJ、2CJ都将流入较大 的差电流而误动。但继电器3CJ 仍流过不平衡电流,但它不会 动作,可以保证保护不会误跳 闸。
二、失磁发电机机端测量阻抗的变化轨迹 ①等有功阻抗图(δ<90°)
系统等值电路图
等有功阻抗圆
结论:
(1)园的大小与有功功率的大小有关,功率越小, 园的直径越大;
(2)失磁前,发电机向系统送有功功率和无功功率, θ为正,测量阻抗在第一象限;失磁后,无功功率 由正变负, θ角由正值向负值变化,测量阻抗也逐 渐向第四象限过渡,失磁前,发电机送出的有功功 率越大,进入第四象限的时间越短。 (3)等有功阻抗园的圆心坐标与联系阻抗Xs有关。
(3)在cd段内,保护装臵Ⅰ段不会动作,只能由
Ⅱ段动作于发信号,靠运行人员去处理。在靠近c
点部分,允电机是不安全的。 (4)在dc段内,保护不反应。 结论:两段式负序定时限过电流保护的动作特性与 发电机允许的负序电流曲线不能很好配合,且不能
反应负序电流变化时发电机转子的热积累过程。
三、负序反时限过流保护
反时限过电流保护是一种动 作时间随通过电流的增大而减小 的保护。反时限过电流保护的特 性与发电机允许的负序电流曲线 相配合,如图所示。即动作特性 在运行负序电流曲线的上面,这 t 样可避免在发电机还没有达到危 发电机反时限负序电流保 险状态时就被切除。次时保护的 护的特性 动作特性可表示为 A 2 t 2 I t A t 2 I 2 式中 α—与发电机转子的温升特性,温升裕度等 因素有关的常数。
3.双母线固定连接的母线差动保护
组成:
第一组:由电流互感器1、 2、5和差动继电器1CJ组 成,用以选择第Ⅰ组母 线上的故障。
第二组:由电流互感器3、 4、6和差动继电器2CJ组 成,用以选择第Ⅱ 组母 线上的故障。 第三组:由电流互感器 1~6和差动继电器3CJ组 成的完全电流差动保护, 作为整套保护的起动元 件。
Ⅰ段:
I
2op
0.5I ef
0.1I ef
经t1(4s)延时动作于跳闸。
Ⅱ段:
I
2op
经t2(5-10)s延时动作于序信号
分析: (1)在ab段内: t1>t允许,对发电机 不安全; (2)在bc段内: t1<t,可保证发电机 安全,但没有充分利 用发电机承受负序电 流的能力。
两段负序定时限过电流保护动作特性与发电机 允许负序电流曲线的配合情况
系统等值电路
功角特性关系: P E dU s sin
x s xd
Ed U s Us Q cos x s xd x s xd
PT—原动机功率;P—同步功率;PM—异步功率; 转子运动方程:
d 2 TJ 2 PT ( P PM ) dt
d 2 2 --电气角加速度;TJ—机组的惯性时间常数 dt
第二十一讲
发电机的负序过电流保护
失磁保护和母线保护
主要内容
1.掌握发电机负序过电流保护的作用 2.掌握发电机失磁进入异步运行时,对电力系统和发电 机的危害 3.掌握发电机失磁机端测量阻抗的变化轨迹 4、什么是失磁发电机的等有功阻抗园、等无功阻抗园 和临界失步园 5、简述母线常见的故障类型及相应的保护方式 6、掌握母线完全差动保护和相位差动保护的基本原理
组成: 第一组:由电流互感器1、2、5 和差动继电器1CJ组成,用以选 择第Ⅰ组母线上的故障。 第二组:由电流互感器3、4、6 和差动继电器2CJ组成,用以选 择第Ⅱ 组母线上的故障。 第三组:由电流互感器1~6和差 动继电器3CJ组成的完全电流差 动保护,作为整套保护的起动元 件。 当第Ⅱ 组母线故障时 继电器3CJ、4CJ流入全部短路电 流,故3CJ、4CJ起动,使断路器 3DL、4DL、5DL跳闸,切除Ⅱ 母 线故障。继电器1CJ流入不平衡 电流,不会动作, Ⅰ 母线继续 运行。