2012初中数学总复习综合试题(不要钱文库——绝对免费)

合集下载

初中数学综合试卷及答案

初中数学综合试卷及答案

初中数学综合试卷及答案一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.03.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.20125.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106 6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.710.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为_________.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=_________;(2)直接写出下列各式的计算结果:①=_________;②=_________.(3)探究并计算:.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).16.(2010•高要市二模)计算:17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)219.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=_________.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.26.拓广探索七年某班师生为了解决“22012个位上的数字是_________.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=_________,所以24个位上的数字是_________;因为25=_________,所以25个位上的数字是_________;因为26=_________,所以26个位上的数字是_________;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:_________.(3)利用上述得到的规律,可知:22012个位上的数字是_________.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_________.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为_________.28.试确定62012+(﹣25)2013的末位数字是几.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)参考答案与试题解析一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|考点:非负数的性质:绝对值.分析:根据绝对值非负数的性质解答.解答:解:根据绝对值的性质,为非负实数的是|﹣a|.故选C.点评:本题主要考查了绝对值非负数的性质,是基础题,熟记绝对值非负数是解题的关键.2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.0考点:非负数的性质:绝对值.专题:存在型.分析:先根据非负数的性质求出a、b的值,进而可求出ab的值.解答:解:∵|a﹣2|+|b+1|=0,∴a﹣2=0,b+1=0,解得a=2,b=﹣1,∴ab=2×(﹣1)=﹣2.故选B.点评:本题考查的是非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.3.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣考点:非负数的性质:绝对值.分析:根据互为相反数的两个数的和等于0列式,再根据非负数的性质列式求出xy的值,然后代入代数式进行计算即可得解.解答:解:∵|x﹣3|与|2y﹣3|互为相反数,∴|x﹣3|+|2y﹣3|=0,∴x﹣3=0,2y﹣3=0,解得x=3,y=,所以,xy+x﹣y=3×+3﹣=4.5+3﹣1.5=6.故选C.点评:本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.2012考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,所以,(a﹣b)2012=(1﹣2)2012=1.故选B.点评:本题考查了平方数非负数,绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.5.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3354万用科学记数法表示为:3.354×107.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.解答:解:67 500=6.75×104.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位.解答:解:∵27.39亿末尾数字9是百万位,∴27.39亿精确到百万位.故选D.点评:本题考查了近似数的确定,熟悉数位是解题的关键.9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.7考点:尾数特征.专题:压轴题.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.10.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7考点:尾数特征.分析:根据已知中尾数特征得出每2个一循环,进而得出4100+1的个位数字与第2个数字尾数相同,即可得出答案.解答:解:∵41+1=5,42+1=17,43+1=65,44+1=257,…,∴上式中尾数每42个一循环,∵100÷2=50,∴4100+1的个位数字与第2个算式尾数相同,故4100+1个位数字是7.故选:D.点评:此题主要考查了尾数特征,根据已知得出式子中尾数的变化规律是解题关键.二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为1.考点:非负数的性质:绝对值.专题:计算题;压轴题.分析:根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.解答:解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值为:3﹣2=1,故答案为:1.点评:此题主要考查了绝对值的性质,根据题意得出x,y的值是解决问题的关键.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?考点:有理数的混合运算.专题:新定义.分析:认真观察已知给出的两个式子:110=1×22+1×21+0×20和110101=1×25+1×24+0×23+1×22+0×21+1×20,得出规律,再计算.解答:解:101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.点评:此题的关键找出规律,按照规定的规律进行计算.13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.考点:有理数的混合运算.专题:压轴题;规律型.分析:(1)从材料中可看出规律是;(2)直接根据规律求算式(2)中式子的值,即展开后中间的项互相抵消为零,只剩下首项和末项,要注意的是末项的符号是负号,规律为;(3)观察它的分母,发现两个因数的差为2,若把每一项展开成差的形式,则分母是2,为了保持原式不变则需要再乘以,即得出最后结果.解答:解:(1);(2)①;②;(3)原式====点评:本题考查的是有理数的运算能力和学生的归纳总结能力.解题关键是会从材料中找到数据之间的关系,并利用数据之间的规律总结出一般结论,然后利用结论直接解题.本题中的难点是第(3)个问题,找出分母因数的差为2,把每一项展开成差的形式,则分母是2,所以为了保持原式不变需要再乘以,是解决此题的关键.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.考点:有理数的混合运算.分析:按照有理数混合运算的顺序:先乘方,再乘除,最后算加减,有括号的要先算括号里面的.注意﹣34表示4个3相乘的相反数,其结果为﹣81.解答:解:原式=﹣81+1+×36×=﹣81+1+3=﹣77.点评:本题考查的是有理数的运算能力.(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).考点:有理数的混合运算.分析:含有有理数的加、减、乘、除、乘方多种运算的算式.根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.解答:解:原式=4﹣7+3+1=1.点评:注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.16.(2010•高要市二模)计算:考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方再乘除后加减,有括号的先算括号里面的,计算过程中注意正负符号的变化并都化成分数形式.解答:解:原式=×(﹣)﹣﹣÷(﹣)=﹣﹣+=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).考点:有理数的混合运算.分析:对于一般的有理数混合运算来讲,其运算顺序是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.解答:解:(1)(﹣7)×(﹣5)﹣90÷(﹣15)=35﹣(﹣6)=41.(2)==.点评:本题考查了有理数的混合运算.注意运算顺序及运算法则.18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)2考点:有理数的混合运算.分析:(1)先算乘法,再算加减;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,注意﹣32=﹣9;解答:解:(1)原式=4﹣6+1=﹣1;(2)原式=﹣9+(﹣1)×6+25=10.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.19.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)×(﹣1)=﹣5.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=4+[6+6]÷4﹣5××=4+3﹣4=3.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:由绝对值和完全平方式的结果为非负数,且两非负数之和为0可得绝对值和完全平方式同时为0,可得ab=2且b=1,把b=1代入ab=2可求出a的值为2,把求出的a与b代入所求的式子中,利用=﹣把所求式子的各项拆项后,去括号合并即可求出值.解答:解:∵|ab﹣2|≥0,(1﹣b)2≥0,且|ab﹣2|+(1﹣b)2=0,∴ab﹣2=0,且1﹣b=0,解得ab=2,且b=1,把b=1代入ab=2中,解得a=2,则=+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了有理数的混合运算,要求学生掌握两非负数之和为0时,两非负数必须同时为0,本题若直接按照运算顺序解题,运算量非常大,需利用计算技巧简化运算,根据所求式子各项的特点,利用拆项法进行化简,使拆开的一部分分数互相抵消,达到简化运算的目的.熟练运用=﹣是解本题的关键.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:规律型.分析:(1)根据=﹣,=﹣,=﹣,…则=;(2)先根据非负数的性质得出a、b的值,代入原式变形为1﹣+﹣+﹣…+﹣是解题的关键.解答:解:(1)=(2分)(2)∵|a﹣1|+(ab﹣2)2=0,∴a﹣1=0,ab﹣2=0,∴a=1,b=2(2分)原式=(2分)=.(1分)点评:考查了有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为=﹣.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?考点:有理数的混合运算.专题:应用题.分析:分别用百分数表示出每人的每段报销的金额后用加法计算.解答:解;应给花1800元医药费的农民报销的金额=500×20%+1300×30%=490(元);应给花2500元医药费的农民报销的金额=500×20%+1500×30%+500×35%=725(元);应给花6000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+1000×40%=2000(元);应给花22000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+5000×40%+12000×45%=9000(元).故给这四位农民各报销490元、725元、2000元、9000元.点评:本题利用了百分数来表示报销的金额,结合当前的农村新型农村合作医疗,做到学数学用数学,学以致用.24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).考点:有理数的混合运算.分析:按照有理数的运算顺序,先乘方,再乘除,有括号的,先算括号里的进行运算.解答:解:原式=﹣9﹣(3﹣×)×(﹣)=﹣9+×=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.考点:非负数的性质:偶次方.专题:阅读型.分析:先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x、y的值,再代入求出xy的值.解答:解:将x2+4y2﹣6x+4y+10=0,化简得x2﹣6x+9+4y2+4y+1=0,即(x﹣3)2+(2y+1)2=0.∵(x﹣3)2≥0,(2y+1)2≥0,且它们的和为0,∴x=3,y=﹣.∴xy=3×(﹣)=﹣.点评:初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.本题关键是将左边的式子写成两个完全平方的和的形式.26.拓广探索七年某班师生为了解决“22012个位上的数字是6.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:尾数每4个一循环分别为:2,4,8,6.(3)利用上述得到的规律,可知:22012个位上的数字是6.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是3.考点:尾数特征.分析:(1)根据指数运算法则直接求出各数即可;(2)①直接计算得出210个位上的数字是4;②利用(1)中所求得出尾数每4个一循环分别为:2,4,8,6;(3)利用(2)中的规律得出答案;(4)利用(2)中规律得出3的指数变化与尾数的关系.解答:解:(1)因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;故答案为:16,6;32,2;64,4;(2)①正确,理由:由(1)可得出:尾数每4个一循环,10÷4=2…2,则210个位上的数字与第2个数据相等是4;②尾数每4个一循环分别为:2,4,8,6.(3)∵2012÷4=503,∴22012个位上的数字与第4个尾数相等,则是6;故答案为:6;(4)因为31=3,所以31个位上的数字是3;因为32=9,所以32个位上的数字是9;因为33=27,所以33个位上的数字是7;因为34=81,所以34个位上的数字是1;因为35=243,所以35个位上的数字是3;…∴尾数每4个一循环,∵2013÷4=503…1,∴32013个位上的数字是3.故答案为:3.点评:此题主要考查了数字尾数特征,根据指数的变化得出位置的变化规律是解题关键.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为7.考点:尾数特征.分析:通过观察,发现3的乘方的结果上的个位数字:3,9,7,1,3,9,7,1,…4个一循环,所以根据这个规律求得答案.解答:解:∵2011÷4=502…3,∴32011的结果个位数是:7.故答案为:7.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.28.试确定62012+(﹣25)2013的末位数字是几.考点:尾数特征.分析:先根据题意得出6的2012次方的末位数字,再得出(﹣25)2013的末位数字,求出其差即可.解答:解:∵61=6,62=36,63=216,64=1296,…,∴6的任何次方的结果都是正数,且末位数字均为6,∴62012次方的末位数字是6,∵(﹣25)1=﹣25,(﹣25)2=625,(﹣25)3=﹣15625,(﹣25)4=390625,…,∴(﹣25)2013的末位数字为5,其符号为负号,∴62012+(﹣25)2013的末位数字是6﹣5=1.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?考点:尾数特征.分析:应先确定a2003的个位数字,b2004的个位数字,让其相加即可.解答:解:原式=52003+(﹣3)2004,∵3的末位数字是﹣3,9,﹣7,1依次循环,∴(﹣3)2004的个位数字为1,∴原式的末位数字是5+1=6.故a2003+b2004的末位数是6.点评:考查了尾数特征,本题的关键在于确定﹣3的个位数字,﹣3的个位数字应是﹣3,9,﹣7,1依次循环.30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)考点:科学记数法—表示较小的数.分析:(1)利用已知数据直接得出即可;(2)根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:(1)∵,,,…∴0.0001=10﹣4,0.00001=10﹣5;(2)0.000001768=1.768×10﹣6.点评:此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.。

初中数学总复习试题及答案

初中数学总复习试题及答案

初中总复习考试数学试题及答案一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.22.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a33.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤36.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.18.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= .12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为(结果保留π).14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= .15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.18.先化简,再求值:﹣,其中x=.19.解方程组:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<6060≤x<7070≤x<8048A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= ,b ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是;(3)请估计该年级分数在80≤x<100的学生有多少人?22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP △PCD (填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.2【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:﹣2的相反数是2.故选:D.2.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用幂的乘方运算法则计算得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式=2a4,正确;B、原式=a5,错误;C、原式=a12,错误;D、原式=a4,错误,故选A3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】用排除法:既能沿某一条直线对折两部分能够完全重合,又旋转180°后能与自身重合的图形【解答】解:A选项对应的图形只是中心对称图形;B选项对应的图形既不是轴对称图形,也不是中心对称图形;C选项对应的图形只是轴对称图形;D选项对应的图形既是轴对称图形,又是中心对称图形故:选D4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.【考点】概率公式.【分析】可先找出单词中字母的个数,再找出a的个数,用a的个数除以总个数即可得出本题的答案.【解答】解:单词中共有8个字母,a有两个,所以在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率==,故选C.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤3【考点】在数轴上表示不等式的解集.【分析】根据数轴可知解集表示﹣2和3之间(包括3)的点表示的部分,据此即可求解.【解答】解:表示的解集是:﹣2<x≤3.故选B.6.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°【考点】平行线的性质.【分析】根据对顶角相等求出∠2=65°,然后跟据CD∥EB,判断出∠B=180°﹣65°=115°.【解答】解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选D.7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.1【考点】点的坐标;解直角三角形.【分析】根据A的坐标,利用锐角三角函数定义求出t的值即可.【解答】解:∵点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,∴=2,则t=4,故选A8.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定【考点】命题与定理.【分析】根据等式性质、补角、三角形的外角和以及方差的定义即可作出正确的判断.【解答】解:A、a2=b2,则a=±b,此选项错误;B、等角的补角相等,此选项正确;C、n边形的外角和为360°,此选项错误;D、x甲=x乙,S2甲>S2乙,则乙数据更稳定,此选项错误;故选B.9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设乙每小时做x个零件,则甲每小时做(x+6)个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,由题意得: =,故选:C.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3【考点】反比例函数与一次函数的交点问题.【分析】联立直线和双曲线解析式可得方程组,消去y整理成关于x的一元二次方程,再由不等式组可求得a的取值围,从而可判定一元二次方程根的个数,则可得出直线与双曲线的交点个数.【解答】解:联立直线和双曲线解析式可得,消去y整理可得x2﹣ax﹣(2a+1)=0,该方程判别式为△=(﹣a)2﹣4××[﹣(2a+1)]=a2+2a+1=(a+1)2,解不等式组,可得a<﹣2,∴(a+1)2>0,即△>0,∴方程x2﹣ax﹣(2a+1)=0有两个不相等的实数根,∴直线y=与双曲线y=有两个交点,故选C.二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= x(x﹣6).【考点】因式分解-提公因式法.【分析】首先找出公因式,进而提取公因式得出答案.【解答】解:x2﹣6x=x(x﹣6).故答案为:x(x﹣6).12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为 3.209×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将32090000用科学记数法表示为3.209×107.故答案为:3.209×107.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为10π(结果保留π).【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为2,则底面周长=4π,圆锥的侧面积=×4π×5=10π.故答案为:10π.14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= 45°.【考点】正方形的性质.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为 2 .【考点】切线的性质;勾股定理;垂径定理.【分析】连接OD,首先证明四边形OECD是矩形,从而得到BE的长,然后利用垂径定理求得BF的长即可.【解答】解:连接OD,∵OE⊥BF于点E.∴BE=BF=2,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=EC=2,BC=3,∴BE=BC﹣EC=BC﹣OD=3﹣2=1,∴BF=2BE=2,故答案为:2.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为36 .【考点】规律型:图形的变化类.【分析】根据已知图形的面积得出变化规律,进而求出答案.【解答】解:∵第①个几何体的表面积为:6=3×1×(1+1),第②个几何体的表面积为18=3×2×(2+1),第③个几何体的表面积为3×3×(3+1)=36,故答案为:36.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.18.先化简,再求值:﹣,其中x=.【考点】分式的化简求值.【分析】先把分子、分母因式分解,再通分,然后把要求的式子进行化简,再代入进行计算即可.【解答】解:﹣=﹣===,把x=代入上式得:原始==+1.19.解方程组:.【考点】解二元一次方程组.【分析】利用加减消元法解二元一次方程组.【解答】解:①×2得:2x+4y=6③,③+②得:5x=10,解得:x=2,把x=2代入①得:2+2y=3,解得:y=,所以方程组的解为:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.【解答】证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<6060≤x<7070≤x<8048A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= 12 ,b =0.2 ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是72°;(3)请估计该年级分数在80≤x<100的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)先求出样本总人数,即可得出a,b的值,补全直方图即可.(2)用360°×频率即可;(3)全校总人数乘80分以上的学生频率即可.【解答】解:(1)∵调查的总人数=4÷0.1=40(人)∴a=40×0.3=12,b=8÷40=0.2;故答案为:12,0.2;补全直方图如图所示,(2)360°×0.2=72°;故答案为:72°;320×(0.25+0.15)=128(人);答:估计该年级分数在80≤x<100的学生有128人.22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.【考点】作图—应用与设计作图;等边三角形的性质;菱形的性质;扇形面积的计算.【分析】(1)根据题意和基本作图作出图形,根据相应的面积公式计算即可;(2)利用扇形的弧长公式和面积公式计算即可.【解答】解:(1)如图所示:(2)设扇形的半径为R,=30,R=,扇形面积为:×30×≈430m2,上述四个图形中面积最大的图形是扇形.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?【考点】一次函数的应用.【分析】(1)设y甲=k1x(k1≠0),把x=600,y甲=480代入即可;当0≤x≤200时,设y乙=k2x (k2≠0),把x=200,y乙=400代入即可;当x>200时,设y乙=k3x+b(k3≠0),把x=200,y =400和x=600,y乙=480代入即可;乙(2)当x=800时求出y甲,当x=400时求出y乙,即可求出答案.【解答】解:(1)设y甲=k1x(k1≠0),由图象可知:当x=600时,y甲=480,代入得:480=600k1,解得:k1=0.8,所以y甲=0.8x;当0≤x≤200时,设y乙=k2x(k2≠0),由图象可知:当x=200时,y乙=400,代入得:400=200k2,解得:k2=2,所以y乙=2x;当x>200时,设y乙=k3x+b(k3≠0),由图象可知:由图象可知:当x=200时,y乙=400,当x=600时,y乙=480,代入得:,解得:k3=0.2,b=360,所以y乙=0.2x+360;即y乙=;(2)∵当x=800时,y甲=0.8×800=640;当x=400时,y乙=0.2×400+360=440,∴640+440=1080,答:厂家可获得总利润是1080元.24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP ∽△PCD(填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.【考点】四边形综合题.【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过角的计算得出∠BAP=∠CPD,由此即可得出△ABP∽△PCD;(2)过点F作FH⊥PC于点H,根据矩形的性质以及角的计算找出∠B=∠FHP=90°、∠BEP=∠HPE,由此即可得出△BEP∽△HPE,根据相似三角形的性质,找出边与边之间的关系即可得出结论;(3)分点E在AB和AD上两种情况考虑,根据相似三角形的性质找出各边的长度,再利用分割图形求面积法找出S与t之间的函数关系式,令S=4.2求出t值,此题得解.【解答】解:(1)∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠BAP+∠BPA=90°.∵∠MPN=90°,∴∠BPA+∠CPD=90°,∴∠BAP=∠CPD,∴△ABP∽△PCD.故答案为:∽.(2)是定值.如图3,过点F作FH⊥PC于点H,∵矩形ABCD中,AB=2,∴∠B=∠FHP=90°,HF=AB=2,∴∠BPE+∠BEP=90°.∵∠MPN=90°,∴∠BPE+∠HPE=90°,∴∠BEP=∠HPE,∴△BEP∽△HPE,∴,∵BP=1,∴.(3)分两种情况:①如图3,当点E在AB上时,0≤t≤2.∵AE=t,AB=2,∴BE=2﹣t.由(2)可知:△BEP∽△HPE,∴,即,∴HP=4﹣2t.∵AF=BH=PB+BH=5﹣2t,∴S=S矩形ABHF﹣S△AEF﹣S△BEP﹣S△PHF=AB•AF﹣AE•AF﹣BE•PB﹣PH•FH=t2﹣4t+5(0≤t≤2).当S=4.2时,t2﹣4t+5=4.2,解得:t=2±.∵0≤t≤2,∴t=2﹣;②如图4,当点E在AD上时,0≤t≤1,过点E作EK⊥BP于点K,∵AE=t,BP=1,∴PK=1﹣t.同理可证:△PKE∽△FCP,∴,即,∴FC=2﹣2t.∴DF=CD﹣FC=2t,DE=AD﹣AE=5﹣t,∴S=S矩形EKCD﹣S△EKP﹣S△EDF﹣S△PCF=CD•DE﹣EK•KP﹣DE•DF﹣PC•FC=t2﹣2t+5(0≤t≤1).当S=4.2时,t2﹣2t+5=4.2,解得:t=1±.∵0≤t≤1,∴t=1﹣.综上所述:当点E在AB上时,S=t2﹣4t+5(0≤t≤2),当S=4.2时,t=2﹣;当点E 在AD上时,S=t2﹣2t+5(0≤t≤1),当S=4.2时,t=1﹣.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点C坐标代入抛物线解析式即可求出a,令y=0可得抛物线与x轴的交点坐标.(2)根据题意可知,当点P在圆外部的抛物线上运动时,∠CPD为锐角,由此即可解决问题.(3)存在.如图2中,将线段C′A平移至D′F,当点D′与点H重合时,四边形AC′D′E 的周长最小,求出点H坐标即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣)2+经过点C(0,﹣2),∴﹣2=a(0﹣)2+,∴a=﹣,∴y=﹣(x﹣)2+,当y=0时,﹣(x﹣)2+=0,∴x1=4,x2=1,∵A、B在x轴上,∴A(1,0),B(4,0).(2)由(1)可知抛物线解析式为y=﹣(x﹣)2+,∴C、D关于对称轴x=对称,∵C(0,﹣2),∴D(5,﹣2),如图1中,连接AD、AC、CD,则CD=5,∵A(1,0),C(0,﹣2),D(5,﹣2),∴AC=,AD=2,∴AC2+AD2=CD2,∴∠CAD=90°,∴CD为⊙M的直径,∴当点P在圆外部的抛物线上运动时,∠CPD为锐角,∴m<0或1<m<4或m>5.(3)存在.如图2中,将线段C′A平移至D′F,则AF=C′D′=CD=5,∵A(1,0),∴F(6,0),作点E关于直线CD的对称点E′,连接EE′正好经过点M,交x轴于点N,∵抛物线顶点(,),直线CD为y=﹣2,∴E′(,﹣),连接E′F交直线CD于H,则当点D′与点H重合时,四边形AC′D′E的周长最小,设直线E′F的解析式为y=kx+b,∵E′(,﹣),F(6,0),∴可得y=x﹣,当y=﹣2时,x=,∴H(,﹣2),∵M(,﹣2),∴DD′=5﹣=,∵﹣=,∴M′(,﹣2)。

广东省白云区2012年初中数学毕业班综合测试试题(一) 人教新课标版

广东省白云区2012年初中数学毕业班综合测试试题(一)  人教新课标版

2012年白云区初中毕业班综合测试(一)数学试题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数据3,1,5,2,7,2的极差是(*)(A)2(B)7(C)6(D)52.单项式-22x y的系数为(*)(A)2(B)-2(C)3(D)-33.不等式组26020xx-<⎧⎨+≥⎩的解集是(*)(A)x>3(B)-2≤x<3(C)x≥-2(D)-2<x≤34.一个多边形的内角和与它的外角和相等,则这个多边形的边数为(*)(A)4(B)5(C)6(D)75.如图1,△ABC中,∠C=90°,∠A的正切是(*)(A)B CA B(B)B CA C(C)A CB C(D)A CA B6.已知两条线段的长度分别为2cm、8cm,下列能与它们构成三角形的线段长度为(*)(A)4cm (B)6cm (C)8cm (D)10cm7.64的算术平方根与64的立方根的差是(*)(A)-12(B)±8(C)±4(D)48.如图2,⊙O是△ABC的外接圆,∠A=50°,则∠OBC的度数等于(*)(A)50°(B)40°(C)45°(D)100°9.如图3,梯形ABCD中,AD∥BC,AC、BD交于点O,AD=1,BC=3,则S△AOD︰S△BOC等于(*)(A)1︰2(B)1︰3(C)4︰9(D)1︰910.若一次函数y=kx+b,当x的值增大1时,y值减小3,则当x的值减小3时,y值(*)(A)增大3 (B)减小3 (C)增大9 ( D)减小9第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.已知∠α=50°,则∠α的余角的度数为 * °. 12.不等式-26x >的解集为 * .13.点P (-2,1)关于原点对称的点P '的坐标为 * .14.在一次数学测验中,某学习小组的六位同学的分数分别是54,85,92,73,61,85.这组数据的平均数是 * ,众数是 * ,中位数是 * . 15.计算并化简式子2224()22y x x xx yyy⋅-÷的结果为 * .16.如图4,A D 是以边长为6的等边△ABC一边AB为半径的四分之一圆周,P为A D 上一动点.当BP经过弦AD的中点E时,四边形ACBE的周长为 * (结果用根号表示).三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程组:32435x y x y +=⎧⎨-=⎩.18.(本小题满分9分)已知,如图5,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF. 求证:BE=DF.19.(本小题满分10分)先化简,再求值:2(2)(3)(3)x x x +-+-,其中x =-32.y1x1O图6BAABCDEF 图5OC B A图2图1 CB A ODCB A 图3 图4BC P DA²20.(本小题满分10分)如图6,等腰△OAB的顶角∠AOB=30°,点B在x 轴上,腰OA=4. (1)B点的坐标为: ;(2)画出△OAB关于y 轴对称的图形△OA1B1(不写画法,保留画图痕迹),求出A1与B1的坐标;(3)求出经过A1点的反比例函数解析式.(注:若涉及无理数,请用根号表示)21.(本小题满分12分)在-2,-3,4这三个数中任选2个数分别作为点P的横坐标和纵坐标. (1)可得到的点的个数为 ;(2)求过P点的正比例函数图象经过第二、四象限的概率(用树形图或列表法求解); (3)过点P的正比例函数中,函数y 随自变量x 的增大而增大的概率为 .22.(本小题满分11分)在同一间中学就读的李浩与王真是两邻居,平时他们一起骑自行车上学.清明节后的一天,李浩因有事,比王真迟了10分钟出发,为了能赶上王真,李浩用了王真速度的1.2倍骑车追赶,结果他们在学校大门处相遇.已知他们家离学校大门处的骑车距离为15千米.求王真的速度.23.(本小题满分13分) 如图7,已知⊙O的弦AB等于半径,连结OB并延长使BC=OB. (1)∠ABC= °;(2)AC与⊙O有什么关系?请证明你的结论;(3)在⊙O上,是否存在点D,使得AD=AC?若存在,请画出图形,并给出证明;若不存在,请说明理由.24.(本小题满分14分)如图8,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,点P、Q分别是边AD和AE上的动点(两动点都不与端点重合).(1)PQ+DQ的最小值是 ;(2)说出PQ+DQ取得最小值时,点P、点Q的位置,并在图8中画出;(3)请对(2)中你所给的结论进行证明.25.(本小题满分14分)已知抛物线y =2x +kx +2k -4.(1)当k =2时,求出此抛物线的顶点坐标;(2)求证:无论k 为什么实数,抛物线都与x 轴有交点,且经过x 轴上的一定点; (3)已知抛物线与x 轴交于A(x 1,0)、B(x 2,0)两点(A在B的左边),|x 1|<|x 2|,与y 轴交于C 点,且S△ABC =15.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.A B CD E 图8C参考答案及评分建议(2012一模)一、选择题二、填空题三、解答题 17.(本小题满分9分) 解:324 35 x y x y +=⎧⎨-=⎩①②解法一(加减法):①-②³3,………………………………………………3分 得(32)3(3)435x y x y +--=-⨯3239415x y x y +-+=-………………………………………………………5分 1111y =-…………………………………………………………………………6分 y =-1,…………………………………………………………………………7分代入②式,得x =2,……………………………………………………………8分 ∴原方程组的解为:21x y =⎧⎨=-⎩.…………………………………………………9分解法二(代入法):由②得:35 x y =+③,……………………………………………………3分-5542-2-4-6Oyx1备用图把③代入①式,……………………………………………………………………5分得3(35y+)+2y=4,………………………………………………………6分解得y=-1,……………………………………………………………………7分代入③式,得x=2,……………………………………………………………8分∴原方程组的解为:21xy=⎧⎨=-⎩.…………………………………………………9分18.(本小题满分9分)证法一:∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°.…………………………………………4分在△ABE和△CDF中,……………………………………………………5分∵A E C FA CA B C D=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS),……………………8分∴BE=DF(全等三角形对应边相等).…………………………………9分证法二:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,…………………………………………………3分又∵AE=CF,∴AD-AE=BC-CF,……………………………5分即ED=BF,…………………………………………………………………6分而ED∥BF,∴四边形BFDE为平行四边形………………………………………………8分∴BE=DF(平行四边形对边相等).……………………………………9分19.(本小题满分10分)解:2(2)(3)(3)x x x+-+-=2244(9)x x x++--………………………………………………………5分=22449x x x++-+…………………………………………………………6分=413x+………………………………………………………………………7分当x=-32时,………………………………………………………………8分原式=4³(-32)+13=-6+13……………………………………………………………9分=7………………………………………………………………………10分20.(本小题满分10分)解:(1)(4,0);…………………………………………………………1分(2)如图1,过点A作AC⊥x轴于C点.………………………………2分在Rt△OAC中,∵斜边OA=4,∠AOB=30°,∴AC=2,OC=OA²cos.………………………………………………5分由轴对称性,得A点关于y轴的对称点A1,………………………………………………6分B点关于y轴的对称点B1的坐标为(-4,0);…………………………7分(3)设过A1点的反比例函数解析式y=kx,……………………………8分把点A1,2)代入解析式,,∴k从而该反比例函数的解析式为y=-x.…………………………………10分21.(本小题满分12分)解:(1)6;……………………………………………………………………3分(2)树形图如下:所经过的6个点分别为P1(-2,-3)、P2(-2,4)、P3(-3,-2)、P4(-3,4)、P5(4,-2)、P6(4,-3),……………………………8分其中经过第二、四象限的共有4个点,………………………………………………9分∴P(经过第二、四象限)=46=23;……………………………………………10分列表法:y1x1O图1BAA1B1 C 点P的横坐标点P的纵坐标-2-3 4-3-2 4 -24-3……………6分……………………………………………………………………………………………6分所经过的6个点分别为P1(-2,-3)、P2(-2,4)、P3(-3,-2)、P4(-3,4)、P5(4,-2)、P6(4,-3),……………………………8分其中经过第二、四象限的共有4个点,………………………………………………9分∴P(经过第二、四象限)=46=23;……………………………………………10分(3)13.……………………………………………………………………………12分22.(本小题满分11分)解:设王真骑自行车的速度为x千米/时,……………………………………1分则李浩的速度为1.2x千米/时.根据题意,得1510151.260x x+=.…………………………………………………6分即151151.26x x+=,两边同乘以6x去分母,得75+x=90,………………………………………………………………8分解得x=15.……………………………………………………………………9分经检验,x=15是该分式方程的根.………………………………………10分答:王真的速度为15km/时.………………………………………………11分23.(本小题满分13分)解:(1)120°;……………………………………………………………1分(2)AC是⊙O的切线.……………………………………………………3分证法一∵AB=OB=OA,∴△OAB为等边三角形,…………………………4分∴∠OBA=∠AOB=60°.……………………………………………5分∵BC=BO,∴BC=BA,∴∠C=∠CAB,……………………………………………………………6分又∵∠OBA=∠C+∠CAB=2∠C,即2∠C=60°,∴∠C=30°,………………………………………7分在△OAC中,∵∠O+∠C=60°+30°=90°,∴∠OAC=90°,…………………………………………………………8分∴AC是⊙O的切线;证法二:∵BC=OB,∴点B为边OC的中点,……………………………………4分即AB为△OAC的中位线,…………………………………………………5分∵AB=OB=BC,即AB是边OC的一半,……………………………6分∴△OAC是以OC为斜边的直角三角形,…………………………………7分∴∠OAC=90°,…………………………………………………………8分∴AC是⊙O的切线;(3)存在.……………………………………………………………………9分 方法一:如图2,延长BO交⊙O于点D,即为所求的点.…………………………10分 证明如下:连结AD,∵BD为直径,∴∠DAB=90°.…………………………11分 在△CAO和△DAB中,∵C A O D A B A O A B A O C A B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAO≌△DAB(ASA),………………12分 ∴AC=AD.…………………………………………………………………13分 (也可由OC=BD,根据AAS证明;或HL证得,或证△ABC≌△AOD) 方法二:如图3,画∠AOD=120°,……………………………………………10分 OD交⊙O于点D,即为所求的点.…………………………………………11分 ∵∠OBA=60°,∴∠ABC=180°-60°=120°. 在△AOD和△ABC中,∵O A B A A O D A B C O D B C =⎧⎪∠=∠⎨⎪=⎩,∴△AOD≌△ABC(SAS),………………12分 ∴AD=AC.…………………………………………………………………13分24.(本小题满分14分) 解:(1)(2)如图4,过点D作DF⊥AC,垂足为F,………………………3分 DF与AE的交点即为点Q;………………………………………………4分 过点Q作QP⊥AD,垂足即为点P;……………………………………5分 (3)由(2)知,DF为等腰Rt △ADC底边上的高, ∴DF=AD²sin45°=4³2=∵AE平分∠DAC,Q为AE上的点, 且QF⊥AC于点F,QP⊥AD于点P, ∴QP=QF(角平分线性质定理),……………………………………7分∴PQ+DQ=FQ+DQ=DF=CD C下面证明此时的PQ+DQ为最小值: 在AE上取异于Q的另一点Q1(图5).…………………………………9分 ①过Q1点作Q1F1⊥AC于点F1,………………………………………10分 过Q1点作Q1P1⊥AD于点P1,…………………………………………11分 则P1Q1+DQ1=F1Q1+DQ1, 由“一点到一条直线的距离”,可知,垂线段最短, ∴得F1Q1+DQ1>FQ+DQ,即P1Q1+DQ1>PQ+DQ.…………………………………………12分 ②若P2是AD上异于P1的任一点,………………………………………13分 可知斜线段P2Q1>垂线段P1Q1,………………………………………14分 ∴P2Q1+DQ1>P1Q1+DQ1>PQ+DQ. 从而可得此处PQ+DQ的值最小.25.(本小题满分14分) 解:(1)当k =2时,抛物线为y =2x +2x ,…………………………1分 配方:y =2x +2x =2x +2x +1-1 得y =2(1)x +-1,∴顶点坐标为(-1,-1);………………………………………………3分(也可由顶点公式求得) (2)令y =0,有2x +kx +2k -4=0,………………………………4分 此一元二次方程根的判别式⊿=2k -4²(2k -4)=2k -8k +16=2(4)k -,…………………5分 ∵无论k 为什么实数,2(4)k -≥0,方程2x +kx +2k -4=0都有解,…………………………………………6分 即抛物线总与x 轴有交点.P Q A B C D E 图4 F P Q A B C D E图5 FP 2 Q1F 1 P 1由求根公式得x=42k k-±-,………………………………………………7分当k≥4时,x=(4)2k k-±-,x1=(4)2k k-+-=-2,x2=(4)2k k---=-k+2;当k<4时,x=(4)2k k-±-,x1=(4)2k k-+-=-k+2,x2=(4)2k k---=-2.即抛物线与x轴的交点分别为(-2,0)和(-k+2,0),而点(-2,0)是x轴上的定点;…………………………………………8分(3)过A,B,C三点的圆与该抛物线有第四个交点.…………………9分设此点为D.∵|x1|<|x2|,C点在y轴上,由抛物线的对称,可知点C不是抛物线的顶点.……………………………10分由于圆和抛物线都是轴对称图形,过A、B、C三点的圆与抛物线组成一个轴对称图形.……………………11分∵x轴上的两点A、B关于抛物线对称轴对称,∴过A、B、C三点的圆与抛物线的第四个交点D应与C点关于抛物线对称轴对称.……………………………………12分由抛物线与x轴的交点分别为(-2,0)和(-k+2,0):当-2<-k+2,即k<4时,……………………………………………13分A点坐标为(-2,0),B为(-k+2,0).即x1=-2,x2=-k+2.由|x1|<|x2|得-k+2>2,解得k<0.根据S△ABC=15,得12AB²OC=15.AB=-k+2-(-2)=4-k,OC=|2k-4|=4-2k,∴12(4-k)(4-2k)=15,化简整理得267k k--=0,解得k=7(舍去)或k=-1.此时抛物线解析式为y=26x x--,其对称轴为x=12,C点坐标为(0,-6),它关于x=12的对称点D坐标为(1,-6);………………………………14分当-2>-k+2,由A点在B点左边,知A点坐标为(-k+2,0),B为(-2,0).即x 1=-k +2,x 2=-2. 但此时|x 1|>|x 2|,这与已知条件|x 1|<|x 2|不相符, ∴不存在此种情况.故第四个交点的坐标为(1,-6). (如图6)-2-4-6O y x C 1 D B A 图6。

九年级数学下册 各单元综合测试题含答案共12套

九年级数学下册 各单元综合测试题含答案共12套

人教版九年级数学下册第二十六章综合测试卷01一、选择题(每小题4分,共32分)1.已知反比例函数的图象经过点()2,1P -,则这个函数的图象位于()A .第一、第三象限B .第二、第三象限C .第二、第四象限D .第三、第四象限2.下列说法正确的是()A .在2xy =中,y 与x 成正比例B .在2xy =-中,y 与1x成反比例C .在11y x =+中,y 与1x +成反比例D .在213y x=中,y 与x 成反比例3.已知反比例函数()0ky k x=<的图象上有两点()1,A x y ,()22,B x y ,且12x x <,则12y y -的值是()A .正数B .负数C .非负数D .不确定4.(2013·四川攀枝花中考)二次函数()20y ax bx c a =++≠的图象如图所示,则函数ay x=与y bx c =+在同一直角坐标系内的大致图象是()A B C D5.面积为2的ABC △,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()A B C D6.若点()3,4是反比例函数72m y x-=图象上的一点,则此函数图象必过点()A .()6,2-B .()2,6-C .()4,3D .()3,4-7.已知反比例函数ky x=与关于x 的一次函数y kx b =+的图象的一个交点坐标为()2,1-,则点(),k b 关于y 轴的对称点是()A .()2,3-B .()2,3-C .()2,3D .()2,3--8.在同一平面直角坐标系中,函数1y x=-与函数y x =的图象的交点个数是()A .0B .1C .2D .3二、填空题(每小题4分,共32分)9.已知反比例函数()232m y m x -=-的图象过点()4,P n ,则n 的值为________.10.已知反比例函数的图象经过点(),2m 和()2,3-,则m 的值为________.11.已知反比例函数32ay x-=的图象在第二、第四象限,则a 的取值范围是________.12.已知一次函数23y x =--的图象与反比例函数ky x=的图象相交于第四象限内的一个点(),3P a a -,则这个反比例函数的解析式为________.13.反比例函数()10y x x=-<的图象应在第________象限.14.老师给了一个y 关于x 的函数解析式,甲、乙、丙、丁四位同学各指出这个函数的一条性质:甲:函数的图象不过第三象限;乙:函数的图象过第一象限;丙:当1x >时,y 随x 的增大而减小;丁:当2x <时,0y >.已知这四位同学的叙述都正确,请你写出满足上述所有性质的一个函数解析式:________________.15.如图所示,在反比例函数()20y x x=>的图象上有点1P ,2P ,3P ,4P ,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,则123S S S ++=________.16.如图所示,直线y mx =与双曲线ky x=交于A ,B 两点,过点A 作AM x ⊥轴于点M ,连接BM ,若2ABM S =△,则k 的值为________.三、解答题(共36分)17.(9分)为了绿化环境,某单位进行植树造林活动,计划每天植树0.5公顷,6天植完.(1)写出植树时间t (单位:天)与植树速度v (单位:公顷/天)之间的函数解析式.(2)天气预报报近几天有雨,该单位决定3天之内植完,那么每天至少要植树多少公顷?18.(9分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO .在一次矿难事件的调查中发现:从零时起,井内空气中CO 的浓度达到4 mg/L ,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L ,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO 浓度y 与时间x 的函数解析式,并写出相应的自变量的取值范围.(2)当空气中的CO 浓度达到34 mg/L 时,井下3km 的矿工接到自动报警信号,这时他们至少要以多少千米每小时的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?19.(9分)如图所示,已知一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别交于A ,B 两点,且与反比例函数()0my m x=≠的图象在第一象限内交于点C ,CD 垂直于x 轴,垂足为D ,若1OA OB OD ===.(1)求点A ,B ,D 的坐标;(2)求一次函数与反比例函数的解析式.20.(9分)(2013·浙江衢州中考)如图所示,函数为14y x =-+的图象与函数()220k y x x=>的图象交于(),1A a ,()1,B b 两点.(1)求函数2y 的解析式;(2)观察图象,比较当0x >时,1y 与2y 的大小.第二十六章综合测试答案解析一、1.【答案】C【解析】设函数解析式为()0ky k x=≠.因为其图象过点()2,1P -,所以()2120k =⨯=--<,所以其图象位于第二、第四象限.2.【答案】C 3.【答案】D【解析】可分以下三种情况讨论:①若120x x <<,由反比例函数()0ky k x =<的性质可得12y y <,所以120y y -<,即12y y -的值是负数.②若120x x <<,由反比例函数()0ky k x =<的性质可得12y y >,所以120y y ->,即12y y -的值是正数.③若120x x <<,由反比例函数()0ky k x=<的性质可得12y y <,所以120y y -<,即12y y -的值是负数.所以12y y -的值不确定.4.【答案】B【解析】因为二次函数()20y axbx c a =++≠的图象开口向下,所以0a <.因为对称轴经过x 轴的负半轴,所以a ,b 同号,所以0b <.因为图象经过y 轴的正半轴,所以0c >.因为函数ay x=,0a <,所以图象分别在第二、第四象限.因为y bx c =+,0b <,0c >,所以图象经过第一、第二、第四象限.5.【答案】C【解析】因为y 与x 的函数解析式为()40y x x=->,所以其图象为双曲线在第一象限内的一支.6.【答案】C【解析】双曲线上任意点的横、纵坐标的积相等.7.【答案】C【解析】因为两函数的图象相交于点()2,1-,所以点()2,1-既在反比例函数的图象上,又在一次函数的图象上.把点()2,1-的坐标代入反比例函数k y x=中,得2k =-.把点()2,1-的坐标和2k =-代入一次函数y kx b =+中,得3b =,即点(),k b 为()2,3-,点()2,3-关于y 轴的对称点为()23,.8.【答案】A 二、9.【答案】1-【解析】由题意得23120m m ⎧-=-⎨-≠⎩,,解得2m =-,所以4y x -=.把4x =代入4y x -=,得1y =-,即1n =-.10.【答案】3-【解析】设反比例函数的解析式为()0ky k x=≠.由题意得()223k m ==⨯-,所以3m =-.11.【答案】32a >【解析】因为反比例函数32a y x -=的图象在第二、第四象限,所以320a -<.所以32a >.12.【答案】27y x=-【解析】将点P 的坐标(),3a a -代入一次函数的解析式得,323a a -=--,所以3a =.所以点P 的坐标为()3,9-.将点P 的坐标()3,9-代入反比例函数解析式得93k =-.所以27k =-.所以反比例函数的解析式为27y x=-.13.【答案】二【解析】反比例函数1y x=-的图象在第二、第四象限,因为0x <,所以其图象应在第二象限.14.【答案】()10y x x =>或112y x =-+(答案不唯一)【解析】此函数可以是一次函数,也可以是反比例函数.若是一次函数y kx b =+,只需0k <,图象与x 轴交于()2,0点即可;若是反比例函数k y x=,需0k >,且0x >.另外,还可以写其他函数解析式,只要满足题意即可.15.【答案】32【解析】由题意得()11,2P ,()22,1P ,323,3P ⎛⎫ ⎪⎝⎭,414,2P ⎛⎫ ⎪⎝⎭,1S为正方形,故1111S =⨯=.对于2S 来说,它的长为1,宽为点2P 的纵坐标减去点3P 的纵坐标,2211133S ⎛⎫=⨯-= ⎪⎝⎭.同理,32111326S ⎛⎫=⨯-= ⎪⎝⎭.故1231131362S S S ++=++=.16.【答案】2【解析】设(),A x y ,则(),B x y --,则OM x =,AM y =,B点到x 轴的距离为||y y AM -==,所以11222ABM AOM BOM S S S xy xy =+=+=△△△,即2xy =.所以2k =.17.【答案】(1)由题意知0.56tv =⨯,所以3t v=.即t 与v 之间的函数解析式为()30t v v=>.(2)当3t =时,有33v =,所以313v ==,即每天至少要植树1公顷.18.【答案】(1)因为爆炸前CO 浓度呈直线型增加,所以可设y 与x 的函数解析式为()110y k x b k =+≠.由图象可知1y k x b =+过点()0,4和点()7,46,所以14746b k b =⎧⎨+=⎩,,解得164.k b =⎧⎨=⎩,所以64y x =+,此时自变量x 的取值范围是07x ≤≤.因为爆炸后浓度成反比例下降,所以可设y 与x 的函数解析式为()220k y k x=≠.由图象知kiy x =过点()7,46,所以2467k =.所以2322k =.所以322y x=,此时自变量x 的取值范围是7x >.(2)当34y =时,由64y x =+,得6434x +=,5x =.所以撤离的最长时间为752-=(h ).所以撤离的最小速度为32 1.5÷=(km/h ).(3)当4y =时,由322y x=得,80.5x =,80.5773.5-=(h ).所以矿工至少在爆炸后73.5h 才能下井.19.【答案】(1)因为1OA OB OD ===,所以A ,B ,D 三点的坐标为()1,0A -,()0,1B ,()1,0D .(2)因为点A ,B 在一次函数y kx b =+的图象上,所以01k b b -+=⎧⎨=⎩,,解得11.k b =⎧⎨=⎩,所以一次函数的解析式为1y x =+.因为点C 在一次函数1y x =+的图象上,CD x ⊥轴,且1OD =,所以点C 的横坐标为1,纵坐标为112+=,即点C 的坐标为()1,2.又因为点C 在反比例函数my x=的图象上,所以2m =,所以反比例函数的解析式为2y x=.20.【答案】(1)把点A 的坐标代入14y x =-+,得41a -+=,解得3a =,所以()3,1A .把点A 的坐标代入22=k y x的,得23k =.所以函数2y 的解析式为23y x=.(2)由图象可知,当01x <<或3x >时,12y y <;当1x =或3x =时,12y y =;当13x <<时,12y y >.人教版九年级数学下册第二十七章综合测试卷01一、选择题(每小题3分,共42分)1.要做甲、乙两个形状相同的三角形框架,已有三角形框架甲,它的三边长分别是50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么符合条件的三角形共有()A .1种B .2种C .3种D .4种2.如图所示,在ABC △中,DE BC ∥,DF AB ∥,则下列等式错误的是()A .AE ADAB AC=B .CD DFAC AB=C .BE CDAE AD=D .BF BECF AE=3.在太阳光下,同一时刻物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么,影长为30m 的旗杆高为()A .20cmB .18cmC .16cmD .15cm4.如果一个三角形的一条高将这个三角形分成两个相似的三角形,那么这个三角形必是()A .等腰三角形B .任意三角形C .直角三角形D .直角三角形或等腰三角形5.如图所示,已知点M 是ABCD 上AB 边的中点,CM 交BD 于点E ,则图中阴影部分面积与ABCD 面积之比为()A .13B .14C .25D .5126.如图所示,ABC △与DEF △位似,且A 是OD 的中点,则等BCEF=()A .12B .13C .14D .237.如图所示,斜拉桥是利用一组钢索把桥面重力传递到耸立在两侧的高塔上的桥梁,它不需建造桥墩,图中1A B 1,22A B ,…,55A B .是斜拉桥上5条互相平行的钢索,并且1B ,2B ,3B ,4B ,5B .被均匀地固定在桥上,如果最长钢索180A B =1m ,最短钢索5520A B =m ,那么钢索33A B ,22A B 的长分别为()A .50m ,65mB .50m ,35mC .50m ,57.5mD .40m ,42.5m8.如图所示,若DAC ABC △∽△,则需满足()A .AC ABCD BC=B .CD BCDA AC=C .2CD AD DB = D .2AC BC CD= 9.如图所示,ABC △是等边三角形,它被一平行于BC 的矩形所截,AB 被截成三等份,则图中阴影部分的面积是ABC △面积的()A .19B .29C .13D .4910.如图所示,在ABC △中,3AB AD =,DE BC ∥,EF AB ∥,若9AB =,2DE =,则线段FC 的长度是()A .6B .5C .4D .311.在ABCD 中,10AB =,6AD =,E 是AD 的中点,在AB 上取一点F ,使CBF CDE △∽△,如图所示,则AF 的长是()A .5B .8.2C .6.4D .1.812.如图所示,在正方形ABCD 的外侧作等边ADE △,BE ,CE 分别交AD 于G ,H ,设CDH △,GHE △的面积分别为1S ,2S ,则()A .1232S S =B .1223S S =C .122S =D 122S =13.如图所示,把PQR △沿着PQ 的方向平移到P Q R '''△的位置,它们重叠部分的面积是PQR △面积的一半,若PQ =,则此三角形移动的距离PP '是()A .12B .2C .1D 114.(2012·贵州毕节中考)如图所示,在平面直角坐标系中,以原点O 为位似中心,将ABO △扩大到原来的2倍,得到A BO '△.若点A 的坐标是()12,,则点A '的坐标是()A .()24,B .()12-,-C .()24--,D .()2,1--二、填空题(每空3分,共18分)15.如图所示,两个三角形的关系是________(填“相似”或“不相似”),理由是________.16.在ABC △中,5AB =,2AC =,AD 平分BAC ∠交BC 于D ,DE AC ∥交AB 于E ,则BDE △与ABC△的周长之比是_____________.17.已知ABC △与DEF △相似且面积比为4:25,则ABC △与DEF △的相似比为________.18.如图所示,锐角三角形ABC 的边AB ,AC 上的高线CE ,BF 相交于点D ,请写出图中的两对相似三角形________.(用相似符号连接)19.ABO △的顶点坐标分别为()3,3A -,()3,3B ,()0,0O ,试将ABO △放大为EFO △,使EFO △与ABO △的相似比为2:1,则E 点的坐标为,F 点的坐标为________.20.如图所示,ABC △与A B C '''△是位似图形,点O 是位似中心,若2OA AA '=,8ABC S =△,则A B C S '''=△________.三、解答题(共60分)21.(10分)如图所示,90ACB CDA ∠=∠=︒,4AC =,8AB =,当AD 为何值时,以A ,B ,C 为顶点的三角形与以A ,C ,D 为顶点的三角形相似.22.(10分)如图所示,学校的围墙外有一旗杆AB ,甲在操场上C 处直立3m 高的竹竿CD ,乙从C 处退到E 处恰好看到竹竿顶端D 与旗杆顶端B 重合,量得3CE =m ,乙的眼睛到地面的距离 1.5FE =m ;丙在1C 处也直立3m 高的竹竿11C D ,乙从E 处退后6m 到1E 处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D ,与旗杆顶端B 也重合,量得114C E =m.求旗杆AB 的高.23.(12分)(2012·山东潍坊中考)如图所示,ABC △的两个顶点B ,C 在圆上,顶点A 在圆外,AB ,AC 分别交圆于E ,D 两点,连接EC ,BD .(1)求证:ABD ACE △∽△;(2)若BEC △与BDC △的面积相等,试判定ABC △的形状.24.如图所示,已知ABC △是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t (单位:s ),解答下列问题:(1)当2t =s 时,判断BPQ △的形状,并说明理由;(2)设BPQ △的面积为S (单位:2cm ),求S 与t 的函数解析式;(3)作QR BA ∥交AC 于点R ,连接PR ,当t 为何值时,APR PRQ △∽△?25.(14分)如图所示,在正方形ABCD 中,E 是BC 上的一点,连接AE ,作BF AE ⊥,垂足为H ,交CD 于F ,作CG AE ∥,交BF 于G 求证:(1)CG BH =;(2)2FC BF GF = ;(3)22FC GF AB GB=.第二十七章综合测试答案解析一、1.【答案】C【解析】由于甲和乙的对应边不确定,故有三种对应关系,即50cm 和20cm 是对应边,60cm 与20cm 是对应边,80cm 和20cm 是对应边,故选C .2.【答案】D【解析】DE BC ∥,AE AD AB AC ∴=,BE CD AE AD =,∴A ,C 正确;D F AB ∥,CDF CAB ∴△∽△,CD DFAC AB∴=,BF AD CF DC =.又AD AE DC BE =,BF AECF BE∴=,∴B 正确,D 错调,故选D .3.【答案】B【解析】设旗杆高为m x ,由题意得1.52.530x=,18x ∴=.4.【答案】D【解析】如图所示,若ADB ADC △∽△,则B C ∠=∠,AB AC ∴=,即ABC △为等腰三角形;若ADB CDA △∽△,则B CAD ∠=∠.90B BAD ∠+∠=︒ ,90CAD BAD ∠∴∠+=︒,即90BAC ∠=︒,ABC∴△为直角三角形,故该三角形为直角三角形或等腰三角形.5.【答案】A【解析】设BM E S x =△,DC AB ∥,CDE MBE ∴ △△,DE DCEB MB∴=.又因为M 是AB 的中点,AB DC =,21DE DC EB MB ∴==.2CDE MBE S DC S MB ⎛⎫∴= ⎪⎝⎭△△,即=4CDE S x△,4CDE S x ∴=△.MDE △与MBE △的高相同,2MED MEB S DES EB∴==△△,2MED x ∴=△,同理2BEC x ∴=△.23S DMB x x x ∴=+=△,又因为D M 是ABD △的中线,224DAM DMB S S x x x∴==+=△△,44312ABC D C D E BM E D AMS S S S S x x x x x ∴=++=+++= △△△阴+.41123ABCDS x S x ∴== 阴,故选A .6.【答案】A【解析】ABC △与DEF △位似,A BD E ∴∥,BC EF ∥,OA OBOD OE∴=,OBC OEF △∽△,BC OB OA EF OE OD ∴==.又因为A 是OD 的中点,12BC OA EF OD ∴==.7.【答案】A【解析】设12233445B B B B B B B B x ====.5511A B A B ∥,5511OA B OA B ∴ △△.555111A B OB A B OB ∴=,即5520=804OB OB x+,543OB x ∴=.同理333111A B OB A B OB =,222111A B OB A B OB =,334348043x x xA B x x ++∴=+,2243348043x xA B x x +∴=+.3350A B ∴=m ,2265A B =m .故选A .8.【答案】D【解析】C ∠ 是公共角,要使DAC ABC △∽△,∴只需AC CDCB AC=,即2AC CB CD = ,故选D .9.【答案】C 【解析】设AEFS x =△.由题意得AE EH HB ==,EF HG ∥,AEF AHG ∴△∽△,214AEF AHG S AE S AH ⎛⎫∴== ⎪⎝⎭△△,44AHG AEF S S x ∴==△△,43AH G AEF EH G F S S S x x x ∴=-=-=△△四边形.EF BC ∥,AEF ABC ∴△∽△,219AEF ABC S AE S AB ⎛⎫∴== ⎪⎝⎭△△.99ABC AEF S S x ∴==△△,31=93EHGF ABC S x S x ∴=四边形△.10.【答案】C【解析】DE BC ∥,EF AB ∥,四边形B F E D 为平行四边形,2BF DE ∴==.FC CE BF AE =,CE BDAE AD=,FC BD BF AD ∴=.又3AB AD =,9AB =,3AD ∴=,6BD =.6=23FC ∴,4FC ∴=.11.【答案】B 【解析】E 是AD 的中点,132DE AD =∴=.在ABCD 中,10CD AB ==,6BC AD ==.CBF CDE △∽△.CB BF CD DE ∴=,即6103BF=,1.8BF ∴=,10 1.88.2AF AB BF =-=-=.12.【答案】A【解析】设正方形的边长为x ,作EM AD ⊥于M.22EM AE x ∴==.9060150BAE BAG GAE ∠=∠+∠=︒+︒=︒,AB AE =,()1180150152AEG ∴∠=︒-︒=︒,601575EGH GAE AEG ∠=∠+∠=︒+︒=︒,同理75EHG ∠=︒,EG EH ∴=,EMH EMG ∴△≌△,∵EM CD ∥,22EMH S S ∴=△.EG EH = ,EMH CDH △∽△,2EMH CDH S ED S CD ⎛⎫∴= ⎪⎝⎭△△,即2132EMH x S S x ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭△,134EMH S S =△,211332242EMH S S S S ∴==⨯=△,即1232S S =,故选A .13.【答案】D【解析】由题意知R P RP ''∥,MP Q RPQ ' △△,2MP Q RPQS QP S QP ''⎛⎫∴= ⎪⎝⎭△△,即212=.1QP ∴'=,1PP '∴=-.14.【答案】C【解析】ABO △与A B O ''△位似,原点O 为位似中心,位似比为1:2,且不在同一象限,则点A '的横、纵坐标分别为点A 的横、纵坐标的2-倍.二、15.【答案】相似三边对应成比例,两三角形相似【解析】4652697.53===,三边对应成比例,两三角形相似.16.【答案】5:7【解析】AD 平分BAC ∠,BAD CAD ∠=∠∴.又DE AC ∥,EDA DAC ∠=∠∴,E D A E A D ∠=∠,D E A E =.DE AC ∥,BDE BCA ∴△∽△,DE BE AC BA ∴=,即525DE DE -=,107DE ∴=,105727DE AC ∴==.BDE ∴△与ABC △的周长之比为5:7.17.【答案】2:5【解析】相似三角形面积的比等于相似比的平方,面积比为4:25.相似比为2:5.18.【答案】BDE CDF △∽△,ABF ACE△∽△【解析】BF AC ⊥ ,CE AB ⊥,BFC AFB AEC BEC ∠=∠=∠=∠∴.BED CFD ∠=∠ ,BDE CDF ∠=∠,BDE CDF ∴△∽△.A A ∠=∠ ,AFB AEC ∠=∠,ABF ACE ∴△∽△.19.【答案】()6,6-或()6,6-()6,6或()6,6--【解析】把A ,B 两点的横坐标和纵坐标分别乘2或2-,即得到点E ,F 的横坐标和纵坐标.20.【答案】18【解析】2OA AA '= ,:2:3OA OA '∴=,:4:9ABC A B C S S '''=△△.8ABC S ∴=△,18A B C S '''∴=△.三、21.【答案】90ACB CDA ∠=∠=︒ ,当AB AC AC AD =时,ABC ACD △△,即844AD =,2A D ∴=.当AB ACCA CD=时,ABC CAD △△,即844CD=,2CD ∴=,AD ∴=.∴当2AD =或A D =时,以A ,B ,C 为顶点的三角形与以A ,C ,D 为顶点的三角形相似.22.【答案】如图所示,设直线1F F 与AB ,CD ,11C D 分别交于点G ,M ,N ,令BG x =,GM y =.MD GB ∥,DM MFBG GF ∴=.又 1.5DM DC EF =-=,3MF CE ==,1.533x y=+.又1ND GB ∥,111D N NF BG GF ∴=.又1 1.5D N DM ==,136GF GM MF FF y =++=++1, 1.5463x y ∴=++,解方程组 1.5331.5463x y xy ⎧=⎪+⎪⎨⎪=⎪++⎩,得915x y =⎧⎨=⎩.∴旗杆AB 的高为9 1.510.5+=(m ).23.【答案】(1)证明:∵弧ED 所对的圆周角相等,EBD ECD ∠=∠∴.又A A ∠=∠,ABD ACE ∴△∽△.(2)解法1:BEC BCD S S = △△,BCE ABC BEC S S S =-△△△,ABD BAC BCD S S S =-△△△,ACE ABD S S ∴=△△.又由(1)知ABD ACE △△,∴对应边之比等于1,AB AC ∴=,即ABC △为等腰三角形.解法2:连接ED .BEC △与BCD △的面积相等,有公共底边BC ,∴高相等,即E ,D 两点到BC 的距离相等,ED BC ∴∥.BCE CED ∠=∠∴.又CED CBD ∠=∠,BCE CBD ∠=∠∴.由(1)知ABD ACE △∽△,ABD ACE ∠=∠∴,ABD CBD ACE BCE ∠+∠=∠+∠,ABC ACB ∴∠=∠,AB AC ∴=,即ABC △为等腰三角形.24.【答案】(1)BPQ △是等边三角形.理由:当2t =s 时,212AP =⨯=,224BQ =⨯=.624BP AB AP =∴=--=.BQ BP ∴=.又60B ∠=︒,BPQ ∴△是等边三角形.(2)过Q 作QE AB ⊥,垂足为E .由2QB t =,得2 60Q E tsin =,AP t =,故6PB t =-.()11622BPQ S BP QE t ∴=⨯=-△.(3)QR BA ∥,60QRC A ∠=∠=∴︒,60RQC B ∠=∠=︒.又60C ∠=︒,QRC ∴△是等边三角形,62QR RC QC t ∴===-.又BE t =,662EP AB AP BE t t t ∴=--=--=-.EP QR ∥,EP QR =,故四边形EPRQ 是平行四边形.PR EQ ∴=.而APR PRQ △△,PR QRAP PR ∴=,即t ,65t ∴=.∴当65t =s 时,APR PRQ △△.25.【答案】(1)BF AE ⊥ ,CG AE ∥,CG BF ∴⊥.∵在正方形ABCD 中,90ABH CBG ∠+∠=︒,且90CBG BCG ∠+∠=︒,90BAH ABH ∠+∠=︒,BAH CBG ∠=∠∴,ABH BCG ∠=∠,AB BC =,ABH BCG ∴△≌△,CG BH ∴=.(2)BFC CFG ∠=∠ ,90BCF CGF ∠=∠=︒,CFG BFC ∴△∽△,FC GFBF FC∴=,即2FC BF GF = .(3)∵在Rt BCF △中,CG BF ⊥,CBG FBC ∠=∠∴,90BGC BCF ∠=∠=︒,CBG FBC ∴△∽△.BC BG BF BC ∴=,2 BC BG BF ∴= .AB BC = ,2AB BG BF ∴= ,22FC FG BF FG AB BG BF BG ∴== ,即22FC GF AB GB=.人教版九年级数学下册第二十八章综合测试卷01一、选择题(每小题3分,共36分)1.如图所示,在正方形网格中,tan α等于()A .1B .2C .12D .52.如图所示,已知在Rt ABC △中,90C ∠=︒,4AC =,1tan 2A =,则BC 的长是()A .2B .8C .25D .453.已知α为锐角,()1cos 902α︒-=,则α∠的度数为()A .30︒B .45︒C .60︒D .90︒4.如图所示,在Rt ABO △中,斜边1AB =.若OC BA ∥,36AOC ∠=︒,则()A .点B 到AO 的距离为sin 54︒B .点B 到AO 的距离为tan 36︒C .点A 到OC 的距离为sin 36sin 54︒︒D .点A 到OC 的距离为cos 36sin 54︒︒5.将()05-,()33-,()2cos30--︒这三个实数按从小到大的顺序排列,正确的顺序是()A .()()()3235cos 30----︒<<B .()()()32cos 3053--︒--<<C .()()()3253cos 30----︒<<D .()()()32cos 3035--︒--<<6.一直角三角形的两条边长分别为3,4,则较小锐角的正切值为()A .34B .43C .34或73D .以上答案都不对7.若A ∠是锐角,且2sin 5A =,则A ∠的取值范围是()A .030A ︒︒<∠<B .3045A ︒︒<∠<C .4560A ︒︒<∠<D .6090A ︒︒<∠<8.河堤横断面如图所示,堤高 5 m BC =,迎水坡AB 的坡比为BC 与水平宽度AC 之比),则AC 的长为()A .B .10mC .15mD .9.在等腰ABC △中,一腰上的高为1,腰与底边的夹角为15°,则ABC △的面积为()A .1B C .12D .1410.若菱形的边长为1cm ,其中一内角为60°,则它的面积为()A 2B 2C .22 cmD .211.如图所示,在ABC △中,AD BC ⊥于D ,CE AB ⊥于E ,且2BE AE =,已知AD =,tan BCE ∠,那么CE 等于()A .B .2-C .D .12.下图是以ABC △的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD AB ⊥交AB 于D .已知3cos5ACD ∠=,4BC =,AC 则的长为()A .1B .203C .3D .163二、填空题(每小题3分,共24分)13.计算2sin 60tan 30sin 45︒÷︒+︒=________.14.如图所示,在Rt ABC △中,90C ∠=︒,3AC =,4BC =,则sin A =________.15.如图所示,P 为α∠的边OA 上一点,且P 点的坐标为()3,4,则sin cos αα+=________.16.图是某超市自动扶梯的示意图,大厅两层之间的距离 6.5 m h =,自动扶梯的倾斜角为30°,若自动扶梯运行速度为0.5 m/s v =,则顾客乘自动扶梯上一层楼的时间为________s .17.在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200 m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图所示),那么,由此可知B ,C 两地相距________m .18.数学实践探究课中,老师布置给同学们一个测量学校旗杆的高度的作业.如图所示,小民所在的学习小组在距离旗杆底部10m 的地方,用测角仪(测角仪的高度忽略不计)测得旗杆顶端的仰角为60°,则旗杆的高度是________m .19.如图所示,在顶角为30°的等腰三角形ABC △中,AB AC =,若过点C 作CD AB ⊥于点D ,则15BCD ∠=︒,根据图形计算tan 15︒=________.20.如图所示,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得 4 m CD =,10 m BC =,CD 与地面成30°角,且此时测得1m 长的杆的影子长为2m ,则电线杆的高度约为________m .(结果保留到0.1 m 1.41≈ 1.73≈)三、解答题(共60分)21.(10分)(1)计算:()1120122|3tan 303π-⎛⎫--++︒ ⎪⎝⎭.(2)先化简,再求代数式的值:222111a a a a a +⎛⎫+÷ ⎪+-+⎝⎭,其中()20121tan 60a =-+︒.22.(8分)如图所示,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A ,B (不计大小),树干垂直于地面,量得=2 m AB ,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO .(结果精确到1m ) 1.73≈ 1.41≈)23.(9分)一副直角三角板如图所示放置,点C 在FD 的延长线上,AB CF ∥,90F ACB ∠=∠=︒,45E ∠=︒,60A ∠=︒,10AC =,试求CD 的长.24.(12分)如图所示,梯形ABCD 是拦水坝的横截面(图中i =DE 与水平宽度CE 的比),60B ∠=︒, 6 m AB =, 4 m AD =,求拦水坝的横截面ABCD 的面积.(结果精确到20.1 m ,1.414≈)25.(10分)如图所示,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡角为45°的山坡向上走到C 处,这时,30 m PC =,点C 与点A 恰好在同一水平线上,点A ,B ,P ,C 在同一平面内.(1)求居民楼AB 的高度;(2)求C ,A 之间的距离.(精确到0.1m 1.41≈ 1.73≈ 2.45≈)26.(11分)如图,某海域有两个海拔均为200米的海岛A 和海岛B ,一勘测飞机在距离海平面垂直高度为1100m 的空中飞行,飞行到点C 处时测得正前方一海岛顶端A 的俯角是60°,然后沿平行于AB 的方向水平飞行41.9910 m ⨯到达点D 处,在D 处测得正前方另一海岛顶端B 的俯角是45°,求两海岛间的距离AB .第二十八章综合测试答案解析一、1.【答案】B 【解析】2tan ==21ααα=的对边的邻边.2.【答案】A 【解析】∵1tan 2BC A AC ==,所以122BC AC ==.3.【答案】A【解析】∵()1cos 902α︒-=,∴9060α︒-=︒,∴30α∠=︒.4.【答案】C【解析】B 到AO 的距离是指BO 的长.∵AB OC ∥,∴36BAO AOC ∠=∠=︒.在Rt BOA △中,∵90BOA ∠=︒,1AB =,∴.sin 36BOAB︒=,∴sin 36=sin 36BO AB =︒︒,故选项A 、B 均错误.过A 作AD OC ⊥于D ,则AD 的长是点A 到OC 的距离,∵36BAO ∠=︒,90AOB ∠=︒,∴54ABO ∠=︒.∵sin 36AD AO ︒=,∴·sin 36AD AO =︒.∵sin 54AOAB=,∴·sin 54AO AB -︒,∴·sin54·sin 36sin54sin36AD AB =︒︒=︒⋅︒,故选项C 正确,D 错误.5.【答案】A【解析】∵(01=,(3=-()224cos3023--⎛-︒=-= ⎝⎭,∴413-<,即((()32cos30--︒<<.6.【答案】C【解析】当4为斜边时,较小锐角的正切值为3;当4为直角边时,较小锐角的正切值为34.7.【答案】A 【解析】∵1sin302︒=,2sin 5A =,∴sinA sin 30︒<,∴30A ︒∠<.8.【答案】A【解析】∵tanBC A AC ==5AC =,∴AC =.9.【答案】A【解析】如图,过B 作BD AC ⊥,在Rt ABD △中,21530BAD ∠=⨯︒=︒,∴2AB =,∴12112ABC S =⨯⨯=△.10.【答案】A【解析】如图所示,作AE BC ⊥于点E .∵sin AE B AB=,∴()sin 1sin 60cm 2AE AB B ==⨯︒= ,∴()2=1cm 22ABCD S BC AE =⨯= 菱形.11.【答案】D【解析】∵tan BCE =∠,∴=30BCE ︒∠,∴=60B ︒∠.∵sin AD B AB =,∴6sin AD AB B ===.又2BE AE =,∴226433BE AB ==⨯=.∵tan BE BCE CE =∠,∴4tan tan30BE CE BCE ===︒∠.12.【答案】D【解析】∵AB 为直径,∴90ACB ∠=︒,∴90ACD BCD ∠+∠=︒.∵CD AB ⊥,∴90BCD B ∠+∠=︒,∴B ACD ∠=∠.∵3cos 5ACD ∠=,∴3cos =5B ,∴4tan 3B =.∵4BC =,4tan 43AC AC B BC ===,∴163AC =.二、13.【答案】2【解析】2231sin 60tan 30sin 45223222⎛︒÷︒+︒==+= ⎝⎭.14.【答案】45【解析】5AB ===,4sin 5BC A AB ==.15.【答案】75【解析】如图所示,过点P 作PB 垂直x 轴于点B .∵P 点的坐标为()3,4,∴3OB =,4PB =,∴5OP =.∴437sin cos =555PB OB OP OP αα+=+=+.16.【答案】26【解析】 6.5131sin 302h AB ===︒,∴13260.5AB t v ===(s ).17.【答案】200【解析】由题意得30CAB ∠=︒,120ABC ∠=︒,∴30ACB ∠=︒,∴CAB ACB ∠=∠,∴200 m AB BC ==.18.【答案】【解析】由题意得旗杆的高度是10tan 6010⨯︒==m ).19.【答案】2【解析】设CD x =,∵30A ∠=︒,∴2AC x =,∴2AB x =.∵tan CD A AD =,∴tan tan 30CD xAD A ===︒,∴(22DB AB AD x x =-==,∴(2tan 152x DBCD x-︒===-20.【答案】8.7【解析】如图D-6所示,延长AD ,BC ,交于点F ,作DE CF ⊥于点E .∵30DCE ∠=︒, 4 m CD =,∴ 2 m DE =,CE ===m ).∵1m 长的杆的影子的长为2m ,∴12DE EF =,∴2 4 m EF DE ==,∴(10414 m BF BC CE EF =++=+=+.∴12AB BF =,即(111478.722AB BF ==+=≈(m ).三、21.【答案】(1)解:原式=132303-+-⨯==.(2)解:原式()()()2121=11a a a a a a-++++-()()313=111a a a a a a +=+-- ,把()20121tan601a =-+︒===.22.【答案】解:设OC x =,在Rt AOC △中,∵45ACO ∠=︒,∴OA OC x ==.在Rt BOC △中,∵30BCO ∠=︒,∴·tan 303OB OC x =︒=.∵23AB OA OB x x =-=-=,解得35x =+≈.因此,C 处到树于DO 的距离CO 约为5m .23.【答案】解:如图,过点B 作BM FD ⊥于点M .在ACB △中,90ACB ∠=︒,60A ∠=︒,10AC =,∴30ABC ∠=︒,tan 60BC AC =︒=.∵AB CF ∥,∴30BCM ABC ∠=∠=︒.∴1sin302BM BC =︒== ,1cos30152CM BC === .在EFD △中,90F ∠=︒,45E ∠=︒,∴45EDF ∠=︒,∴MD BM ==15CD CM MD =-=-24.【答案】解:过点A 作AF BC ⊥,垂足为F .在Rt ABF △中,60B ∠=︒, 6 m AB =,∴sin 6sin60AF AB B ==︒=(m ),cos 6cos603BF AB B ==︒=(m ).∵AD BC ∥,AE BC ⊥,DE BC ⊥,∴四边形AFED 是矩形.∴DE AF ==, 4 m FE AD ==.在Rt CDE △中,ED i EC ==∴9EC ==(m ).∴34916BC BF FE EC =++=++=(m ).∴()()()211=4+1652.0m 22ABCD S AD BD DE +=⨯⨯≈ 梯形因此,拦水坝的横截面ABCD 的面积约为252.0 m .25.【答案】(1)解:过点P 作PD AC ⊥,垂足为D ,则45CPD PCD ∠=∠=︒,30APD ∠=︒.在Rt PCD △中,sin45CD PD PC ==︒=.易得四边形ABPD 为矩形,∴21.2AB PD ==≈(m ).(2)解:在Rt APD △中,tan AD APD PD ∠==∴AD =.∴33.4AC AD DC =+=≈(m ).26.【答案】解:如图,过点A 作AE CD ⊥于点E ,过点B 作BF CD ⊥,交CD 的延长线于点F ,连接AB .∵AB CD ∥,∴90AEF EFB ABF ∠=∠=∠=︒,∴四边形ABFE 为矩形,∴AB EF =,AE BF =.由题意可知:1100200900AE BF ==-=(m ),41.9910 m=19900 m CD =⨯.∴在Rt AEC △中,60C ∠=︒,900 m AE =,∴tan 60AE CE ===︒m ).在Rt BFD △中,45BDF ∠=︒,900 m BF =.∴900===900tan 451BF DF ︒(m )∴(1990090020800AB EF CD DF CE ==+-=+-=-m ).因此,两海岛之间的距离AB 是(20800-m .人教版九年级数学下册第二十九章综合测试卷01一、选择题(每小题3分,共36分)1.投影不可能为一条线段的是()A.线段B.正方形C.正五边形D.球2.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的3.两个不同长度的物体,在同一时刻同一地点的太阳光下,得到的投影的长度关系是()A.相等B.长的较长C.短的较长D.不能确定4.在太阳光的投影下,正方形所形成的影子可能是()A.正方形B.平行四边形或一条线段C.矩形D.菱形5.(2012·湖南益阳中考)下列命题是假命题的是()A.中心投影下,物高与影长成比例B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径6.(2012·湖北随州中考)如图所示,下列四个立体图形中,主视图与左视图相同的有()A.1个B.2个C.3个D.4个7.如图是由一些完全相同的小立方块搭成的立体图形的三视图,那么搭成这个立体图形所用的小立方块的块数是()A.5B.6C.7D.88.(2012·湖北黄冈中考)如图所示,水平放置的圆柱体的三视图是()A B C D9.用两张完全相同的矩形纸片分别卷成两个形状不同的柱面(圆柱的侧面),设较高圆柱的侧面积和底面半径分别是1S ,和1r ,较矮圆柱的侧面积和底面半径分别是2S 和2r ,那么()A .12S S =,12r r =B .12S S =,12>r r C .12S S =,12<r r D .12S S ≠,12r r ≠10.长方体的主视图与左视图如图所示(单位:cm ),则其俯视图的面积是()A .122cmB .82cmC .62cmD .42cm 11.(2012·黑龙江鸡西中考)小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图所示),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的展开图可能是()A B C D12.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A .37B .33C .24D .21二、填空题(每空3分,共24分)13.如图所示是由若干个大小相同的小正方体堆砌而成的立体图形,那么其三视图中面积最小的是________。

初中数学专题复习绝对值(含答案)(家教C)

初中数学专题复习绝对值(含答案)(家教C)

绝对值【基础知识精讲】1.给出一个数,能求出它的绝对值.2.会利用绝对值比较两个负数的大小.【重点难点解析】明确绝对值的意义一个数的绝对值就是数轴上表示这个数的点与原点的距离,这就是绝对值的几何意义,即表示数a 的点是P ,则一定是|a|=OP .绝对值的代数定义是:设a 为有理数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值为0,注意对于任何有理数a ,都有0||≥a ,在今后的学习中很重要.A .重点、难点提示B .考点指要绝对值是初中数学的一个重要内容,也是中考的必考内容之一。

一个数的绝对值与这个数的关系:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

比较两个负数的大小,可利用绝对值比较,也可以利用数轴比较。

【难题巧解点拨】例1 求下列各数的绝对值:-32,53+,0,-2.1 解:32|32|=-,5353=+,|0|=0,|-2.1|=2.1。

例2 比较下列各组数的大小:(1)-1与0 (2)-1与-2 (3)32-与-2.1 解:(1)因为-1在数轴上的对应点在0在数轴上的对应点的左边,所以-1<0。

(2)因为|-1|=1,|-2|=2,1<2,所以-2<-1。

(3)在为3232=-,|-2.1|=2.1,1.232<,所以321.2-<-。

(两个负数的比较,转化成了它们的绝对值的大小的比较,即两个正数的大小的比较,这就是化归转化的思想)注:比较两个有理数的大小,还可以应用数轴比较,这样较直观。

方便,同学们不妨试一试。

例3 已知a>b>0,试比较-a 与-b 的大小。

解法一:因为a>b>0,所以-a<0,-b<0,而|-a|=a ,|-b|=b ,又a>b ,所以-a<-b 。

初三数学总复习资料_分专题试题及答案(90页)

初三数学总复习资料_分专题试题及答案(90页)
绝对值符号去掉。
(2) 已知| x | a(a 0) ,求 x 时,要注意 x a
考点 3 平方根与算术平方根
1、 若 x 2 a(a 0) ,则 x 叫 a 做的_________,记作______;正数 a 的__________叫做算术平 方根,0 的算术平方根是____。当 a 0 时, a 的算术平方根记作__________。
2
y
5、 实数 a, b, c 在数轴上对应点的位置如图 2 所示,下列式子中正确的有( )
c
ba
-2 -1 0 1 2 3
图2
① b c 0 ② a b a c ③ bc ac ④ ab ac
A.1 个
B.2 个 C.3 个 D.4 个
6、 ①数轴上表示-2 和-5 的两点之间的距离是______数轴上表示 1 和-3 的两点之间的距离是
用根号形式表示的数并不都是无理数(如 4 ),也不是所有的无理数都可以写成根号的形
式(如 )。
练习: 1、 把下列各数填入相应的集合内:
7.5,
15, 4,
8 ,
2 ,
3 8,
,
0.25,
0.1 5
13 3
有理数集{ 正实数集{
},无理数集{
}
}
2、 在实数 4, 3 , 0, 2
2 1,
64, 3 27 , 1 中,共有___ 27
2、 幂的运算法则:(以下的 m, n 是正整数)
(1)a m a n _____ ; (2)(a m )n ____ ; (3)(ab)n _____ ; (4)a m a n ______(a 0) ;
(5)(b )n ______ a
3、 乘法公式:

初中数学中考复习——实数专题(含答案)

初中数学中考复习——实数专题(含答案)

初中数学中考复习——实数专题选择题下列各数中,绝对值最小的是()A. -3B. 2C. 0D. π如果一个实数的相反数是它本身,那么这个数一定是()A. 正数B. 负数C. 零D. 无法确定一个数的平方根是它本身的数有()A. 0B. 1C. -1D. A和B实数-5和7在数轴上对应的点之间的距离是()A. 2B. 12C. 10D. 14利用科学记数法表示的数,下列哪个选项是错误的()A. 350 = 3.5 × 10²B. 0.05 = 5 × 10⁻²C. 500 = 5 × 10²D. 0.0006 = 6 × 10⁻⁴下列哪个数不是无理数()A. πB. √2C. 0.333...(3无限重复)D. 22/7如果a和b是两个实数,且a的绝对值大于b的绝对值,那么|a| - |b|的值()A. 一定为正B. 一定为负C. 可能是正数或负数D. 无法确定对于实数x,以下哪个条件可以保证x² - 4x + 4 = 0()A. x = 2B. x = -2C. x = 0D. x = 4下列哪个表达式的结果不是实数()A. √16B. √(-1)C. -√(-4)D. √9如果一个数的立方根是2,那么这个数是()A. 6B. 8C. -8D. 4正确答案:CCDCBCAABC填空题实数包括有理数和无理数,其中有限小数和无限循环小数属于______。

一个数的相反数是与它符号相反的数,例如,数-7 的相反数是______。

一个数的绝对值是它到原点的距离,因此,|-5| 等于______。

如果一个数的平方根是4,则这个数的算术平方根是______。

立方根的定义是,如果一个数的立方等于a,则这个数叫做 a 的立方根。

例如,3 的立方根是______。

在实数大小比较中,数轴上右边的数总是比左边的数大。

因此,在数轴上,5 大于______。

2012中考数学试题及答案

2012中考数学试题及答案

2012中考数学试题及答案第一节:选择题1. 若 a + b = 8,且 a - b = 4,则 a 的值是多少?A. 12B. 6C. 4D. 2答案:C. 4解析:将两个等式相加得到 2a = 12,因此 a = 6。

将 a = 6 代入第一个等式得到 6 + b = 8,从而可以得到 b = 2。

因此 a 的值是 4。

2. 已知一个等腰直角三角形的两条直角边分别为 5 cm。

那么斜边的长是多少?A. 5 cmB. 10 cmC. 7.07 cmD. 4.24 cm答案:C. 7.07 cm解析:根据勾股定理,斜边的长可以计算为√(a^2 + a^2),其中 a 代表直角边的长度。

代入 a = 5 cm,得到斜边的长约为 7.07 cm。

3. 若 3x - 4 = 7,则 x 的值是多少?A. 2B. 3C. 4D. 5答案:D. 5解析:将等式两边同时加上 4,得到 3x = 11。

接着将等式两边同时除以 3,得到 x = 11/3 或约等于 3.67。

因此 x 的值是 5。

第二节:填空题1. 若 f(x) = 2x^2 + 3x - 5,则 f(-1) 的值是多少?答案:-6解析:将 x = -1 代入函数 f(x) = 2x^2 + 3x - 5,得到 f(-1) = 2(-1)^2 + 3(-1) - 5 = 2 - 3 - 5 = -6。

2. 在一个等差数列中,首项为 3,公差为 4。

第 n 项为多少?答案:3 + 4(n-1)解析:在一个等差数列中,第 n 项可以通过首项加上 (n-1) 倍的公差得到。

代入首项为 3,公差为 4,得到第 n 项为 3 + 4(n-1)。

第三节:解答题1. 请用因数分解法求解方程 x^2 + 6x + 8 = 0 的解。

解答:首先,我们可以尝试将方程进行因数分解。

将方程右侧的 8 进行因式分解得到 8 = 2 * 2 * 2 或者 8 = 1 * 2 * 4。

初中数学专题复习代数综合题(含答案)

初中数学专题复习代数综合题(含答案)

初中数学专题复习代数综合题(含答案)代数综合题是一类综合题,主要包括方程、函数、不等式等内容,需要用到化归思想、分类思想、数形结合思想以及代入法、待定系数法、配方法等数学思想方法。

解决代数综合题需要注意归纳整理教材中的基础知识、基本技能、基本方法,抓住题意,化整为零,层层深入,各个击破。

同时,需要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,从而达到解决问题的目的。

已知关于x的一元二次方程x-(k+1)x-6=0的一个根是2,求方程的另一根和k的值。

解:设方程的另一根为x1,由韦达定理:2 x1 =-6,∴x1 =-3.由韦达定理:-3+2= k+1,∴k=-2.已知关于x的一元二次方程(k+4)x+3x+k-3k-4=0的一个根为2,求k的值。

解:把x=0代入这个方程,得k-3k-4=0,解得k1=1,k2=-4.因为k+4≠0,所以k≠-4,所以k=1.需要注意需满足k+4的系数不能为0,即k≠-4.已对方程2x+3x-l=0,求作一个二次方程,使它的两根分别是已知方程两根的倒数。

解:设2x+3x-l=0的两根为x1、x2,则新方程的两根为1/x1、1/x2.得到1/x1+1/x2=3,所以新方程为y2-3y-2=0.某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y(件)之间的关系如下表:x(元)xxxxxxxx… y(件)xxxxxxxx…(省略号表示数据继续往下延伸)。

⑴在草稿纸上描点,观察点的分布,建立y与x的恰当函数模型。

⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴经观察发现各点分布在一条直线上,∴设y=kx+b(k≠0)。

⑵由题意可知每件产品的销售价应为20元,此时每日销售利润为200元。

1、根据题意可列出函数关系:y=ax^2+bx+c,代入三组数据得到三个方程组成的线性方程组:begin{cases} 8.6=1990a+1990b+c \\ 10.4=1995a+1995b+c \\ 12.9=2000a+2000b+c \end{cases}$$解得:$a=0.45,b=-1792.5,c=xxxxxxx$,所以二次函数为$y=0.45x^2-1792.5x+xxxxxxx$,代入$x=15$得到2005年该市国内生产总值为14.1亿元人民币。

2012年中考数学试题及答案

2012年中考数学试题及答案

2012年中考数学试题及答案一、选择题1. ( ) 设a、b、c、d是四个不同的整数,且a<b<c<d,那么它们中最小的一个是?A. aB. bC. cD. d2. ( ) 从一个圆盘上切下一个小扇形的时候,整个圆盘的周长减小7cm,小扇形的周长减小7cm的结果是原来的周长的等于1/3,那么整个圆盘的面积减小的结果是?A. 2/7B. 1/3C. 1/7D. 3/73. ( ) 如果x+y=200,x>y,那么x.y的最大值是A. 40000B. 40401C. 40500D. 405014. ( ) 如图,正方形ABCD中,E、F分别为AB和CD的中点,连结EF.求证:EF⊥BC.A. 对,方法不唯一B. 对,方法唯一C. 对,方法准确D. 错5. ( ) 如图,已知∠A=42°,AP和BP分别是△ABC的角平分线,且∠APC=∠BPC=96°,求∠PBC=_______°.A. 18B. 42C. 48D. 54二、填空题6. 六个完全相同的圆半径的和是90,则r的值为______.8. 如图,是一块标有长方体的正六面体.4、5、6三点所在直线交EF于点P,其中,exE=16cm,则EP=________cm.9. √(7+√41) +(7-√41) = ______10. 如图,ABCD是一个平行四边形,四边中点依次为E、F、G、H.则EFHG是平行四边形吗?(是或否)三、解答题11. 一个正整数恰好被13整除,当它的各位数字交换后,所得的数恰好被17整除,那么这个数是多少?12. 如图,①是一个等边三角形,边长为20cm.分别以A、B为圆心,AB为半径交于点P.连结OP,OP与②的交点为Q.求过P,Q两点的直线的长度13. 解方程:3(x-1)+4(x-2)=5(x+3)14. 如图,是一个摄影器材专卖店的平面图.把ㄨBCD┼縄顺时针旋转100°。

初中数学总复习分章节测试题与答案(完整版)

初中数学总复习分章节测试题与答案(完整版)

2012年 第一章 有理数的概念一、选择题:1.下列命题中,正确的是 ( ) A 有限小数是有理数 B 无限小数是无理数 C 数轴上的点与有理数一一对应 D 数轴上的点与实数一一对应2.四位同学画数轴如下图所示,你认为正确的是 ( )A B C D3.下列说法正确的是 ( ) A 绝对值较大的数较大 B 绝对值较大的数较小 C 绝对值相等的两数相等 D 相等两数的绝对值相等4.若a 与b 互为相反数,则下列式子成立的是 ( ) A 0=-b a B 1=+b a C 0=+b a D .0=ab5.数轴上原点和原点左边的点表示的数是 ( ) A 负数 B 正数 C 正数或零 D 负数或零6.下列比较中,正确的是 ( )A331212-<<- B212313-<<- C 210->-> D 201-><- 7.a--是一个 ( )A 正数 B 负数 C 正数或零 D 负数或零8.下列命题中正确的是 ( )A 3和-是互为相反数 B 3和-3是互为倒数 C 绝对值为3的数是-3D -3的绝对值是39.数x 由四舍五入得到的近似数是35.0,数x 不可能是 ( ) A 35.049 B 34.974C 35.052 D 34.95910.若a 为实数,下列代数式中,一定是负数的是 ( )A 2a - B 2)1(+-a C a - D )1(+--a11.若)(21++n m b a ·)(35212b a b a m n =-,则n m +的值为 ( ) A 1 B 2 C 3 D -312.据6月4日《苏州日报》报道,今年苏州市商品房销售量迅速增加,1~4月商品房销售金额高达1 711 000 00O 元,这个数用科学计数法表示是 ( )A 1.711×610B 1.711×910C 1.711×1010D 1711×61013.在0,1-,1,2的四个数中,最小的数是 ( ) A. 0 B 1- C 1 D. 214.张玲身高h ,由四舍五入后得到的近似数为1.5米,正确表示h 的值是 ( ) A 1.43米 B 1.56米 C 1.41≤ h ≤ 1.51 D 1.41≤ h <1.55 二、填空题:14.2001年3月,国家统计局公布我国总人口为129533万人.如果以亿为单位保留两位小数,可以写成约为____________亿人;15.计算:)3()20()100(---⨯-= ;16.2)1(-的相反数是_______;17.已知5,10=-=b a ,代数式)(b a --的值是 ; 18.如果ba b a ><<,0,0,那么0____b a -;如果ba b a <<<,0,0,那么___b a -0;19.21的倒数的相反数的3次幂等于 ;20.把3729000-用科学记数法可表示为 ; 21.41030.3⨯有 个有效数字,它精确到 位; 22.方程275=+x 的解的2003次幂是 ; 23.若0<m ,则_____=+m m ,若0>m ,则______=+m m ,若0=m ,则______=+m m ;24.0)4(|3||2|2=+-+-++z y x ,则.____=+zy x x 25.观察下列算式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;28=256;……通过观察,用你所发现的规律写出811的末位数字是 ;26.已知:1+3=22;1+3+5=32;1+3+5+7=42;1+3+5+7+9=52; ……… 根据前面各式的规律,可猜测:1+3+5+7+…+_____12=+n ;27.观察下列等式:41314313121321211211-=;-=;-=⨯⨯⨯; ……。

初一数学初中数学综合库试题

初一数学初中数学综合库试题

初一数学初中数学综合库试题1.单项式的系数和次数分别是()A.-π,5B.-1,6C.-3π,6D.-3,7【答案】C【解析】略2.如图,(1)若∠B=∠1,那么根据________,可得AD∥BC;(2)若∠D=∠1,那么根据________,可得AB∥CD.【答案】(1)同位角相等,两直线平行;(2)内错角相等,两直线平行【解析】由题图可知,∠B和∠1是直线AD、BC被AB所截形成的同位角,由∠B=∠1,可得AD∥BC,根据:同位角相等,两直线平行;∠D和∠1是直线AB、CD被AD所截形成的内错角,由∠D=∠1,可得AB∥CD,根据:内错角相等,两直线平行.3.﹣2的绝对值是().A.2B.﹣2C.0D.【答案】A.【解析】因为正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,所以-2的绝对值是2,故选A.【考点】绝对值意义.4.的相反数是()A.B.C.D.【答案】D【解析】因为数a的相反数是-a,所以的相反数是2,故选:D.【考点】相反数5.若-3x3m y3与2xy3n是同类项,则(m-n)2的值是_________.【答案】.【解析】试题解析:∵-3x3m y3与2xy3n是同类项,∴3m=1,3n=3,解得:m=,n=1,∴(m-n)2=(-1)2=.【考点】同类项.6.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.梦C.中D.国【答案】D.【解析】试题解析:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选D.【考点】正方体相对两个面上的文字.7.(2015秋•甘谷县期末)当x=﹣2时,代数式﹣x+1的值是()A.﹣1B.﹣3C.1D.3【答案】D【解析】根据x=﹣2,直接代入可以解决问题.解:∵x=﹣2∴原式=﹣x+1=﹣(﹣2)+1=3.故选D.【考点】代数式求值.8.(2015秋•沧州期末)下列各图中,能正确表示数轴的是()A.B.C.D.【答案】A【解析】根据数轴的三要素:原点、正方向、单位长度,即可解答.解:由数轴的三要素:原点、正方向、单位长度,可知A正确;故选:A.【考点】数轴.9.(2015秋•石柱县期末)如图,∠AOC和∠DOB都是直角,如果∠DOC=28°,那么∠AOB= .【答案】152°【解析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.解:∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC,=90°+90°﹣28°,=152°.故答案为:152°【考点】角的计算.10.四川5•12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间?这批灾民有多少人?【答案】这次为灾民安置了5个房间,灾民有23人.或者这次为灾民安置了6个房间,灾民有28人.【解析】设这次为灾民安置的有x个房间,那么就有(3x+8)人,根据如果每个房间住5人,则有一个房间不足5人,可列出不等式组求解.解:设这次为灾民安置的有x个房间.,解得4<x<6.5.所以房间有5个或6个.当房间5个时,就有3×5+8=23(人);当房间有6个时,就有3×6+8=26(人).答:这次为灾民安置了5个房间,灾民有23人.或者这次为灾民安置了6个房间,灾民有28人.11.如图,矩形ABCD被分割成六个正方形,其中最小正方形的面积等于4,则矩形ABCD的周长为,面积为.【答案】96;572【解析】根据最小正方形的面积求出边长,设左下角正方形的边长为x,表示出其他正方形的边长,根据AD=BC列出方程,求出方程的解得到矩形的长与宽,求出周长与面积即可.解:由最小正方形的面积为4,得到边长为2,设左下角正方形的边长为x,根据题意得:x+x﹣2+x﹣2=x+2+x+4,解得:x=10,∴AD=3x﹣4=26,AB=x+x+2=2x+2=22,则矩形ABCD的周长为2×(26+22)=96;面积为26×22=572.故答案为:96;572.12.把下列各数分别填入相应的集合里.,,0,,,…,,,(1)正数集合:{ …}(2)整数集合:{ …}(3)分数集合:{ …}(4)无理数集合:{ …}【答案】答案见解析【解析】(1)、正数包括正整数和正分数;(2)、整数包括正整数、零和负整数;(3)、分数包括正分数和负分数;(4)、无理数是指无限不循环小数.试题解析:(1)、正数集合:{ ,,,…}(2)、整数集合:{ , 0 …}(3)、分数集合:{ ,,,…}(4)、无理数集合:{ …,π…}【考点】有理数的分类13.--2(1-x+)+1【答案】x-【解析】首先根据去括号的法则将括号去掉,然后进行合并同类项计算,得出答案.试题解析:原式=-x+-2+2x-x-1+1=x-【考点】合并同类项14.“地球停电一小时”活动的某地区烛光晚餐中,设座位有 x 排,每排坐 30 人,则有 8 人无座位;每排坐 31 人,则空 26 个座位.则下列方程正确的是()A.30x﹣8=31x﹣26B.30x + 8=31x+26C.30x + 8=31x﹣26D.30x﹣8=31x+26【答案】C【解析】设座位有x排,根据总人数是一定的,列出一元一次方程30x+8=31x-26.故选:C.15.角度换算:45.6°=___________°___________'。

2012中考数学试题及答案

2012中考数学试题及答案

2012中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的周长是多少厘米?A. 16B. 21C. 22D. 26答案:B4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C5. 一个数的平方根是4,这个数是?A. 16B. 8C. 4D. 2答案:A6. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少立方米?A. 24B. 12C. 8D. 6答案:B7. 一个数的倒数是1/5,这个数是?A. 5B. 1/5C. 1/4D. 4/5答案:A8. 一个直角三角形的两条直角边分别是3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A9. 一个分数的分子是8,分母是它的4倍,这个分数是多少?A. 1/4B. 1/3C. 1/2D. 2/3答案:A10. 一个数的立方是27,这个数是?A. 3B. 9C. 27D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。

答案:5或-512. 如果一个数的平方是25,那么这个数是______或______。

答案:5或-513. 一个数的立方是-8,这个数是______。

答案:-214. 一个数的平方根和立方根相等,这个数是______。

答案:0或115. 如果一个数的对数是2,那么这个数是______。

答案:10016. 一个数的平方是36,那么这个数是______或______。

答案:6或-617. 一个数的倒数是2/3,这个数是______。

答案:3/218. 如果一个数的立方是-27,那么这个数是______。

初中数学中考计算题复习(最全)-含答案

初中数学中考计算题复习(最全)-含答案

一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(1)计算:.22.(2)求不等式组的整数解.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.16.(2009•随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002•曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.24.先化简代数式再求值,其中a=﹣2.25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011•南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011•武汉)先化简,再求值:÷(x ﹣),其中x=3. 30.化简并求值:•,其中x=21. . 2。

初中数学总复习题及答案

初中数学总复习题及答案

初中数学总复习题及答案一、选择题1. 下列哪个选项不是有理数?A. -3B. 0C. πD. √2答案:C2. 如果一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个表达式等于0?A. 3 + 0B. 2 - 2C. 5 × 0D. 4 ÷ 4答案:C二、填空题1. 一个数的立方等于它本身,这个数可以是______。

答案:-1,0,12. 一个直角三角形的两个直角边分别为3和4,斜边的长度是______。

答案:53. 如果一个圆的半径为r,则圆的面积是______。

答案:πr²三、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求长方体的体积。

解:长方体的体积V = a × b × c2. 某工厂生产一批零件,合格率为95%,如果生产了200个零件,求不合格的零件数。

解:不合格的零件数= 200 × (1 - 95%) = 200 × 0.05 = 103. 一个数列的前三项为1,2,3,从第四项开始,每一项都是前三项的和。

求第10项的值。

解:第4项 = 1 + 2 + 3 = 6第5项 = 2 + 3 + 6 = 11以此类推,可以发现这是一个斐波那契数列,但起始值不同。

通过计算可得第10项的值为55。

四、应用题1. 某班级有40名学生,其中男生和女生的比例为3:2。

求班级中男生和女生各有多少人。

解:设男生人数为3x,女生人数为2x,根据题意有 3x + 2x = 40,解得 x = 8。

所以,男生人数为3 × 8 = 24,女生人数为2 × 8 = 16。

2. 某商店购进一批商品,进价为每件50元,标价为每件100元。

商店决定进行促销,顾客购买满200元可以享受8折优惠。

如果一位顾客购买了4件商品,求他需要支付的金额。

解:首先计算4件商品的原价:100 × 4 = 400元。

初中数学——绝对值综合大题(学案)

初中数学——绝对值综合大题(学案)

绝对值综合大题1、少年科技组制成一台单项功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算的过程是:输入第一个整数1x ,只显示不运算;接着输入2x 后则显示21x x -的结果,以后每输入一个整数都进行与前次显示的结果进行求差取绝对值的运算.现小明将1到1991这1991个整数随意地一个一个地输入,全部输完后显示结果的最大值是多少?2、有理数a ,b ,c 在数轴上的位置如图所示,若11m a b b a c c =+------,则100m 的值是多少?3、已知a 、b 、c 、d 为不等于零的有理数,你能求得a b c a b c++的值吗?4、已知实数c b a ,,的关系是,0,0,0<><c b a 且a b c >>,(1)在数轴上作出数c b a ,,的大致位置; (2)化简:a c b c b a -+--+5、若2310a b c -+-+-=,求23a b c ++的值.6、已知7=x ,12=y ,求代数式y x +的值。

7、若1a =,5b =,且a b <,则a 与b 的值分别是多少?8、若3a >,则|3|a -=_____;若3a =,则|3|a -=______;若3a <,则|3|a -=________. 9、已知有理数b a ,满足2005,2004==b a ,且b a >,你知道它有几种情形吗?试分别写出b a ,的值。

10、(1)阅读下面材料:点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图形1,b a b OB AB -===; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点右边,a b OA OB AB -=-=b a a b -=-=;②如图3,点A 、B 都在原点左边,a b OA OB AB -=-=b a a b -=---=)(;③如图4,点A 、B 在原点两边,a b OA OB AB +=+=b a b a -=-+=)(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年初中数学总复习综合试题一、选择题(每题4分,共36分)1、抛物线y=3(x-1)+1的顶点坐标是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1) 2、二次函数26y x x =+-的图像与x 轴交点的横坐标是( ) A. -2和-3 B.-2和3 C. 2和3 D. 2和-33、抛物线2)1(2++=x a y 的一部分如图1所示,该抛物线在y 轴右侧部分与x 轴交点的坐标是( ) A 、(21,0) B 、(1,0) C 、(2,0) D 、(3,0)4、( 长沙市)把抛物线22y x =-向上平移1个单位,得到的抛物线是( )C A .22(1)y x =-+ B .22(1)y x =-- C .221y x =-+ D .221y x =--5、若抛物线22y x x c =-+与y 轴的交点为(03)-,,则下列说法不正确的是( ) A .抛物线开口向上B .抛物线的对称轴是1x =C .当1x =时,y 的最大值为4-D .抛物线与x 轴的交点为(10)(30)-,,,6、抛物线c bx x y ++-=2的部分图象如图2所示,若0>y ,则x 的取值范围是( ) A.14<<-x B. 13<<-x C. 4-<x 或1>x D.3-<x 或1>x 7、( 常州市)若二次函数222y ax bx a =++-(a b ,为常数)的图象如下(图3),则a 的值为( )A .2-B .C .1D 8、一个运动员打尔夫球,若球的飞行高度(m )y 与水平距离(m)x 之间的函数表达式为()21301090y x =--+,则高尔夫球在飞行过程中的最大高度为( )A .10mB .20mC .30mD .60m 9、小敏在某次投篮中,球的运动路线是抛物线5.3512+-=x y 的一部分(如图4),若命中篮圈中心,则他与篮底的距离l 是( ) A 、3.5m B 、4m C 、4.5m D 、4.6m二、填空题(每题3分,共27分)10、抛物线y =2x 2+4x+5的对称轴是x=_________ . 11、二次函数()y x =-+122的最小值是_____________.12、已知抛物线的顶点坐标为(-1,4),且其图象与x 轴交于点(-2,0),抛物线的解析式为___________________.13、已知二次函数222c x x y ++-=的对称轴和x 轴相交于点(0,m )则m 的值为_______. 14、请写出一个开口向下,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .15、二次函数y =x 2+bx +c 的图象经过点A(-1,0)、B(3,0)两点.其顶点坐标是__________. 16、( 甘肃省兰州市)抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是_____________.17、( 甘肃省兰州市)将抛物线y =2x 2先沿x 轴方向向左平移2个单位,再沿y 轴方向向下平移3个单位,所得抛物线的解析式是________________.18、( 佛山市)已知二次函数2y ax bx c =++(a b c ,,是常数),x 与y 的部分对应值如下表,则当x 满足的条件是 时,0y =;当x 满足的条件是 时,0y >. x2-1-0 1 2 3y16- 6-26-三、解答题(共57分)19、(8分)二次函数2(0)y ax bx c a =++≠的图象如图9 所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 20、(12分)(1)把二次函数2339424y x x =-++代成2()y a x h k =-+的形式.(2)写出抛物线2339424y x x =-++的顶点坐标和对称轴,并说明该抛物线是由哪一条形如2y ax =的抛物线经过怎样的变换得到的? (3)如果抛物线2339424y x x =-++中,x 的取值范围是03x ≤≤,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等).21、(12分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22、(12分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A 在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)23、(2007 安徽省)(13分)按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)参考答案:一、1、A 2、D 3、B 4、C 5、C 6、B 7、D 8、A 9、B二、10、-1 11、2 12、y=-4(x+1)2+4 13、1 14、y=-(x -1)2+7 15、(1,-4) 16、(1,0) 17、y =2x 2+8x +5 18、0或2;20<<x三、19、(1)11x =,23x = (2)13x << (3)2x > (4)2k < 20、解:(1)2339424y x x =-++239(2)44x x =--+239(211)44x x =--+-+23(1)34x =--+.(2)由上式可知抛物线的顶点坐标为(13),,其对称轴为直线1x = 该抛物线是由抛物线234y x =-向右平移1个单位,再向上平移3个单位(或向上平移3个单位,再向右平移1个单位)得到的.(3)抛物线与x 轴交于(30),,与y 轴交于904⎛⎫ ⎪⎝⎭,,顶点为(13),,把这三个点用平滑的曲线连接起来就 得到抛物线在03x ≤≤的图象(如图所示). (画出的图象没有标注以上三点的减1分)情境示例:小明在平台上,从离地面2.25米处抛出一物体,落在离平台底部水平距离 为3米的地面上,物体离地面的最大高度为3米.(学生叙述的情境只要符合所画出的抛物线即可)/2012zhongkao 初中及中考资料最权威下载)21、(1)903(50)y x =--化简得:3240y x =-+ (2)2(40)(3240)33609600w x x x x =--+=-+- (3)233609600w x x =-+-0a < ,∴抛物线开口向下.当602b x a=-=时,w 有最大值又60x <,w 随x 的增大而增大∴当55x =元时,w 的最大值为1125元∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.22、解:(1)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+.由已知:当0x =时1y =.即1136412a a =+∴=-,.∴表达式为21(6)412y x =--+. (或21112y x x =-++)(2)(3分)令20(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)如图,第二次足球弹出后的距离为C D 根据题意为了您或您孩子的成绩,赶快访问吧/51gaokao :C D E F =(即相当于将抛物线A E M F C 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+1210CD x x ∴=-=.1361017B D ∴=-+=(米).23、(1)当P=12时,y=x +()11002x -,即y=1502x +.∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)又当x=20时,y=1100502⨯+=100.而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;(2)本题是开放性问题,答案/2012zhongkao 初中及中考资料最权威下载)不唯一.若所给出的关系式满足:(a )h≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求. 如取h=20,y=()220a x k -+,∵a >0,∴当20≤x≤100时,y 随着x 的增大令x=20,y=60,得k=60 ①令x=100,y=100,得a×802+k=100 ②由①②解得116060ak⎧=⎪⎨⎪=⎩,∴()212060160y x=-+.。

相关文档
最新文档