离散数学形考任务1-7试地题目及问题详解完整版

合集下载

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1. 用命题逻辑把下列命题符号化a) 假如上午不下雨,我去看电影,否则就在家里读书或看报。

b) 我今天进城,除非下雨。

c) 仅当你走,我将留下。

2. 用谓词逻辑把下列命题符号化a) 有些实数不是有理数b) 对于所有非零实数x,总存在y使得xy=1。

c) f是从A到B的函数当且仅当对于每个a€ A存在唯一的b € B ,使得f(a)=b.二、简答题(共6道题,共32分)1. 求命题公式(P T(Q T R)).r(R T(Q T P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2. 设个体域为{1,2,3},求下列命题的真值(4分)a) -x y(x+y=4)b) y -x (x+y=4)3. 求-x(F(x) T G(x)) T ( xF(x) T-I X G(X))的前束范式。

(4 分)4. 判断下面命题的真假,并说明原因。

(每小题2分,共4分)a) (A _.B)—C=(A-B) (A-C)b) 若f是从集合A到集合B的入射函数,则|A| < |B|5. 设A是有穷集,|A|=5,问(每小题2分,共4分)a) A上有多少种不同的等价关系?b) 从A到A的不同双射函数有多少个?6. 设有偏序集<A, < >,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)7. 已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数K IS;P(S);N,N ;P(N);R,R X R,{o,1}(写出即可)(6 分)三、证明题(共3小题,共计40分)1. 使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a) A T (B A C),(E T—F) T—C, B T (A A ~S)二B T Eb) -x(P(x) T—Q(x)), -x(Q(x) V R(x)) , x—R(x)二x~P(x)2. 设R1是A上的等价关系,R2是B上的等价关系,A工._且B =_,关系R满足:<<X1,y1>,<X2,y2>>€ R,当且仅当< x 1, X2> € R1 且<y 1,y2> € R2。

离散数学1-7

离散数学1-7
(2)任意两个不同小项的合取式永为F。
(3)全体小项的析取式永为T。
求主析取范式的方法
(1) 真值表法 定理1-7.3 在真值表中,一个公式的真值为T的指派所对应
的小项的析取,即为此公式的主析取范式。
例题7 求公式P →Q,P∨ Q,和┐ (P ∧ Q )的主析取范式。 解 三公式的真值表如下:
(1) 真值表法
定理1-7.3 在真值表中,一个公式的真值为T的指派所对应的 小项的析取,即为此公式的主析取范式。
证明 设给定公式为A,其真值为T的指派所对应的小项为
m1’,m2’,…,mk’,这些小项的析取式记为B。要证A B,
只要证A与B在相应指派下具有相同真值。
首先对A为T的某一指派,其对应的小项为mi’,则因为mi’ 为T,而m1’,m2’,…,mi-1’mi+1’,mk’均为F,故B为T。
例题5 求(P ∧( Q → R)) →S的合取范式。 解 (P ∧( Q → R)) →S
┐(P ∧ (┐Q ∨R)) ∨S ┐P ∨(Q ∧┐R) ∨S (┐P ∨S) ∨ (Q ∧┐R) (┐P ∨S ∨Q ) ∧(┐P ∨S ∨ ┐R)
解 因为有公式 A B (A∧B) ∨( ┐A ∧ ┐ B)
P Q P →Q P∨ Q ┐ (P ∧ Q )
TT T
T
F
TF F
T
T
FT T
T
T

FF T
F
T
P → Q (┐P ∧┐Q )∨(┐P ∧Q ) ∨(P ∧Q)
P∨ Q (┐P ∧Q )∨(P ∧┐Q ) ∨(P ∧Q)
┐ (P ∧ Q) (┐P ∧┐Q )∨(┐P ∧Q ) ∨(P ∧┐Q)
回顾

离散数学形成性考核作业7答案

离散数学形成性考核作业7答案

一、填空题1.命题公式()→∨的真值是 1 .P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q )→R .3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧R)∨(P∧Q∧┐R) .4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为xPQx∧∃.(x())()5.设个体域D={a, b},那么谓词公式)x∨∃消去量词后的等值式为xA∀yB)((ybBaAB∨.∨A∧a)(b())(())(6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0 .7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.解:设P:今天是晴天,命题“今天是晴天”翻译成命题公式为P。

2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.解:设P:小王去旅游,Q:小李去旅游.命题“小王去旅游,小李也去旅游”翻译成命题公式为P∧Q。

3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式.解:设P:明天天下雪,Q:我就去滑雪.命题“如果明天天下雪,我就去滑雪”翻译成命题公式为P→Q。

4.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.解:设P :他去旅游,Q :他有时间.命题“他去旅游,仅当他有时间”翻译成命题公式为P →Q 。

5.请将语句 “有人不去工作”翻译成谓词公式.解:设P(x):x 是人,Q(x):x 去工作.命题“有人不去工作”翻译成谓词公式为))()((x Q x P x ⌝∧∃。

6.请将语句“所有人都努力工作.”翻译成谓词公式.解:设P(x):x 是人,Q(x):x 努力工作.命题“所有人都努力工作.”翻译成谓词公式为))()((x Q x P x →∀四、判断说明题(判断下列各题,并说明理由.)1.命题公式⌝P ∧P 的真值是1.答:不正确。

(完整版)离散数学试题及答案,推荐文档

(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答案形考任务1(集合论部分概念及性质)单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:A.{a,{a}}A B.A C.{1,2} A D.{a} A题目2 设函数f:N→N,f(n)=n+1,下列表述正确的是().选择一项:A.f是满射的 B.f存在反函数 C.f是单射函数 D.f是双射的题目3 设集合A={1,2,3,4,5},偏序关系是A上的整除关系,则偏序集<A,>上的元素5是集合A的().选择一项:A.极小元 B.极大元 C.最大元 D.最小元题目4 设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是().选择一项:A.g° f ={<a,5>, <b,4>} B.g° f ={<5,a >, <4,b >} C.f°g ={<5,a >, <4,b >} D.f°g ={<a,5>, <b,4>}题目5 集合A={1, 2, 3, 4}上的关系R={<_,y>|_=y且_, yA},则R的性质为().选择一项:A.传递的 B.不是对称的 C.反自反 D.不是自反的题目6 设集合A = {1, a },则P(A) = ( ).选择一项:A.{{1}, {a}, {1, a }} B.{{1}, {a}} C.{,{1}, {a}} D.{,{1}, {a}, {1, a }}题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:A.AB,且AB B.AB,且AB C.BA,且AB D.AB,且AB题目8 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).选择一项:A.{1, 2, 3, 4} B.{4, 5, 6, 7} C.{2, 3, 4, 5} D.{1, 2, 3, 5}题目9 设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3, 4, 5},则元素3为B的().选择一项:A.最小上界 B.下界 C.最大下界 D.最小元题目10 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A.0 B.2 C.1 D.3。

离散数学习题的答案解析

离散数学习题的答案解析

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q ∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→15、设p :2+3=5.q :大熊猫产在中国.r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0, ()(110)1p q r ∧∧⌝⇔∧∧⌝⇔,(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q →⌝→⌝解:列出公式的真值表,如下所示:20、求下列公式的成真赋值:(4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒00p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式,所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100。

离散数学形考任务1-7试题及答案完整版

离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

离散数学形考任务一至二

离散数学形考任务一至二

国开(中央电大)本科《离散数学(本)》网上形考(任务一至二)试题及答案形考任务一试题及答案题目为随机,用查找功能(Ctr1+F)搜索题目[题目]若集合A={a,{a},{1,2}},则下列表述正确的是( )[答案]{a}A[题目]若集合A={1,2},B={1,2,{1,2},则下列表述正确的是( )答案AB,且AB[题目]若集合A={2,a,{a},4},则下列表述正确的是( )[答案]{a}A[题目]设集合A={1,2,3},B={3,4,5},C={5,6,7},则AB-C=( )[答案]{1,2,3,4}[题目]设集合A={a},则A的幂集为( )[答案]{,{a}}[题目]设集合A={1,a},则P(A)=( )[答案]{,{1},{a},{1,a}[题目]若集合A的元素个数为10,则其幂集的元素个数为( )[答案]1024[题目]设A、B是两个任意集合,则A-B=( )[答案]AB[题目]设集合A={2,4,6,8},B={1,3,5,7}A到B的关系R={<x,y>y=x+1},则R=( )。

[答案]{<2,3>,<4,5>,<6,7>}[题目]集合A={1,2,3,4,5,6,7,8}上的关系={<x,y>x+y=10且x,yA},则R的性质为( )[答案]对称的[题目]集合A={1,2,3,4}上的关系R={<x,yx=y且x,y},则R的性质为( )[答案]传递的[题目]如果R和R2是A上的自反关系,则RU2,RR2,R1-R2中自反关系有( )个[答案]2[题目]设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4},S={1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R 的( )闭包[答案]对称[题目]设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为( )[答案]无、2、无、2[题目]设集合A={1,2,3,4,5},偏序关系是A上的整除关系,则偏序集<A,>上的元素5是集合A的( )[答案]极大元[题目]设集合A={1,2,3,4,5}上的偏序关系的哈斯图如图所示,若A的子集B={3,4,5},则元素3为B的( )[答案]最小上界[题目]设A={a,b,c},B={1,2},作f:AB,则不同的函数个数为( )[答案]8[题目]设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={1,5>,<2,4},则下列表述正确的是( )[答案]gf={<a,5>,<b,4>[题目]设集合A={1,2,3}上的函数分别为:f=1,2>,<2,1>,<3,3)},g={<1,3>,<2,2>,<3,2},h=1,3>,<2,1>,<3,1},则h=( )[题目]设函数f:N→N,f(n)=n+1,下列表述正确的是( )[答案]f是单射函数判断题[题目]设集合A={1,2,3}),B={2,3,4},C={3,45},则A∩(C-B)={1,2,3,5}。

《离散数学》试题及标准答案解析

《离散数学》试题及标准答案解析

《离散数学》试题及标准答案解析⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)= __________________________ .2. 设有限集合A, |A| = n, 则 |ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B= _____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1= {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)}, 则R1?R2 = ________________________,R2? R1 =____________________________, R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A =__________________________ , A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。

最新电大离散数学形成性考核1-7答案文档

最新电大离散数学形成性考核1-7答案文档

01任务试卷总分:100测试时间:--解答:ADBC CABD1.本课程的教学内容分为三个单元,其中第三单元的名称是().A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑2.本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是().A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系3.本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有()讲.A. 18B. 20C. 19D. 174.本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是().A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答5.课程学习平台左侧第1个版块名称是:().A. 课程导学B. 课程公告C. 课程信息D. 使用帮助6.课程学习平台右侧第5个版块名称是:().A. 典型例题B. 视频课堂C. VOD点播D. 常见问题7.“教学活动资料”版块是课程学习平台右侧的第()个版块.A. 6B. 7C. 8D. 98.课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:().A. 复习指导B. 视频C. 课件D. 自测02任务_0003解答:CCDAC ABABD1.集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反2.设集合A={a},则A的幂集为( ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}3.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为.A. 2B. 3C. 6D. 84.若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 15.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}}AB. {1,2}AC. {a}AD. A6.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y A},则R的性质为().A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的8.若集合A={ a,{a}},则下列表述正确的是( ).A. {a}AB. {{{a}}}AC. {a,{a}}AD. A9.设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3, 4, 5},则元素3为B的().A. 下界B. 最小上界C. 最大下界D. 最小元10.设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}解答 CDDBA BAABC1.命题公式(P∨Q)的合取范式是 ( ).A. (P∧Q)B. (P∧Q)∨(P∨Q)C. (P∨Q)D. ⌝(⌝P∧⌝Q)2.命题公式(P∨Q)→R的析取范式是 ( )A. ⌝(P∨Q)∨RB. (P∧Q)∨RC. (P∨Q)∨RD. (⌝P∧⌝Q)∨R满分:10分3.设C(x):x是国家级运动员,G(x):x是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为 ( ).A. B.C. D.4.表达式中的辖域是( ).A. P(x, y)B. P(x, y)∨Q(z)C. R(x, y)D. P(x, y)∧R(x, y)5.设A(x):x是人,B(x):x是工人,则命题“有人是工人”可符号化为().A. (x)(A(x)∧B(x))B. (∀x)(A(x)∧B(x))C. ⌝(∀x)(A(x)→B(x))D. ⌝(x)(A(x)∧⌝B(x))6.下列公式中 ( )为永真式.A. ⌝A∧⌝B ↔⌝A∨⌝BB. ⌝A∧⌝B ↔⌝(A∨B)C. ⌝A∧⌝B ↔A∨BD. ⌝A∧⌝B ↔⌝(A∧B)7.设个体域D={a, b, c},那么谓词公式消去量词后的等值式为.A. (A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(b))B. (A(a)∧A(b)∧A(c))∨(B(a)∨B(b)∨B(b))C. (A(a)∨A(b)∨A(c))∨(B(a)∨B(b)∨B(b))D. (A(a)∧A(b)∧A(c))∨(B(a)∧B(b)∧B(b))满分:10分8.命题公式的析取范式是( ).A. B.C. D.9.下列等价公式成立的为( ).A. ⌝P∧⌝Q⇔P∨QB. P→(⌝Q→P) ⇔⌝P→(P→Q)C. Q→(P∨Q) ⇔⌝Q∧(P∨Q)D. ⌝P∨(P∧Q) ⇔Q10.下列公式 ( )为重言式.A. ⌝P∧⌝Q↔P∨QB. (Q→(P∨Q)) ↔(⌝Q∧(P∨Q))C. (P→(⌝Q→P))↔(⌝P→(P→Q))D. (⌝P∨(P∧Q)) ↔Q满分:10分07任务请参见/view/8ddb74eb81c758f5f61f670a.html 差不多就行了要求不要太高。

离散数学习题答案1-2-6-7-8-9章-2009-12-17

离散数学习题答案1-2-6-7-8-9章-2009-12-17

习题1:1. 解 (1){2,3,5,7,11,13,17,19}(2){x|x=20*k,k 是自然数}(3){2,-1}2. 解 (1){2,4}(2){1,2,3,4,5}(3){1,3}(4){1,3,5}3. 解 (1){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}(2)φ(3)全体自然数(4){0,2,4,6,8,10,12,14,16,18,20}(5)1,3,5,7,9,11,13,15,17,19}4. 解 (1)正确(2)正确(3)错误(4)正确5. 解 (1)A={1},B={{1}},C={{1}}(2)A={1},B={{1}},C={{{1}}}6. 解 (1)正确。

由子集的定义。

(2) 不一定。

如:A={1},B={{1}},C={{1}}。

(3)不一定。

如:A={1},B={1,2},C={{1,2}}(4)不一定。

如:A={1},B={1,2},C={{1,2}}。

7. 解 A={1,2},B={1},C={2},有B A ≠,但是C B C A =成立。

A={1,2},B={1},C={1},有B A ≠,但是C B C A =成立。

8. 解 (1)φ(2){φ}(3){{φ}}(4){φ,{φ}}9. 解 (1){1,2,3,4,5,6,7,8,9}(2){0,1,2,3,4,5,6,7,8,9,10}(3){0,3,6,7,8,9}10. 解 33311. 解 2512. 解(1)454(2)124(3)22013. 解 (1){φ}(2){φ,{a}}(3){φ,{φ},{a},{φ,a}}(4){φ,{φ},{{φ}},{{φ},φ}}(5){φ,{{φ}},{φ},{a},{{φ},φ},{{φ},a},{φ,a},{{φ},φ,a}}14. 证明:假设B ≠C ,则至少存在一元素x ∈B 且x ∉C 。

离散数学形考任务07答案

离散数学形考任务07答案

离散数学作业7离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成并上交任课教师(不收电子稿)。

并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。

一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100,则G 的边数为( D ).A .5B .6C .3D .4 2.设图G =<V ,E >,则下列结论成立的是 ( C ). A .deg(V )=2∣E ∣ B .deg(V )=∣E ∣ C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(3.设有向图(a )、(b )、(c )与(d )如下图所示,则下列结论成立的是( D ).A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的 4.给定无向图G 如右图所示,下面给出的结 点集子集中,不是点割集的为( B ).A .{b , d }B .{d }姓 名: 学 号: 得 分: 教师签名:a b dc eο ο ο ο ο 4题图C .{a , c }D .{b , e }5.图G 如右图所示,以下说法正确的是 ( C ) . A .{(a , c )}是割边 B .{(a , c )}是边割集 C .{(b , c )}是边割集 D .{(a, c ) ,(b, c )}是边割集6.无向图G 存在欧拉通路,当且仅当(D ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点7.若G 是一个欧拉图,则G 一定是( C ).A .平面图B .汉密尔顿图C .连通图D .对偶图8.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( A ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +29.设G 是有n 个结点,m 条边的连通图,必须删去G 的( A )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 10.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为(D ).A .8B .5C .4D .3二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .2.设给定图G (如右由图所示),则图G 的点割集是 {f,c} .3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数 等于边数的两倍.4.设有向图D 为欧拉图,则图D 中每个结点的入度 等于出度 . 5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路.6.设无向图G =<V ,E >是汉密尔顿图,则V 的任意非空子集V 1,都有 W(G-V1) ≤∣V 1∣.7.设完全图K n 有n 个结点(n ≥2),m 条边,当 当m=2n 时,K n 中存在欧拉回路.ο a οο οο b cde 5题图8.设图G=<V,E>,其中|V|=n,|E|=m.则图G是树当且仅当G是连通的,且m=2V-2 .9.连通无向图G有6个顶点9条边,从G中删去4 条边才有可能得到G的一棵生成树T.10.设正则5叉树的树叶数为17,则分支数为i = 4 .三、判断说明题(判断下列各题,并说明理由.)1.(1) 如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路..(2) 图G1,(如下图所示) 是欧拉图.解:(1)错,图G是无向图,当且仅当G是连通的,且所有结点度数均为偶数,这里不能确定G图是否是连通的。

离散数学任务7答案

离散数学任务7答案

离散数学作业2离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成并上交任课教师(不收电子稿)。

并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。

一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100,则G 的边数为( ).A .5B .6C .3D .4答 D2.设图G =<V , E >,则下列结论成立的是 ( ). A .deg(V )=2∣E ∣ B .deg(V )=∣E ∣ C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(答 C (握手定理)3.设有向图(a )、(b )、(c )与(d )如下图所示,则下列结论成立的是( ).A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的 答 A (有一条经过每个结点的回路)4.给定无向图G 如右图所示,下面给出的结 点集子集中,不是点割集的为( ).A .{b , d }B .{d }C .{a , c }D .{b , e } 答 B5.图G 如右图所示,以下说法正确的是( ). A .{(a , c )}是割边 B .{(a , c )}是边割集 C .{(b , c )}是边割集 D .{(a, c ) ,(b, c )}是边割集 答 D6.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 答 D7.若G 是一个欧拉图,则G 一定是( ).A .平面图B .汉密尔顿图C .连通图D .对偶图答 C8.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 答 A (欧拉公式:v -e +r = 2)9.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 答 A (n 个结点的连通图的生成树有1n -条边,必须删去(1)m n --条边) 10.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为( ).A .8B .5C .4D .3 解 这棵无向树T 有7条边,所有结点的度数之和为14,而4度、3度、2度的分支点各一个共3个结点占用了9度,所以剩下的5个结点占用5度,故有5片树叶.答 Bο a οο οο b c de 5题图 a b dc eο ο ο ο ο 4题图二、填空题1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是.解设G有x条边,则由握手定理,112233442x⨯+⨯+⨯+⨯=,15x=答152.设给定图G(如右由图所示),则图G的点割集是.答{f}、{c,e}3.设G是一个图,结点集合为V,边集合为E,则G的结点等于边数的两倍.答的度数之和4.设有向图D为欧拉图,则图D中每个结点的入度.答等于出度5.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于,则在G中存在一条汉密尔顿路.答n-16.设无向图G=<V,E>是汉密尔顿图,则V的任意非空子集V1,都有≤∣V1∣.答W(G-V1)7.设完全图Kn 有n个结点(n≥2),m条边,当时,Kn中存在欧拉回路.答n为奇数8.设图G=<V,E>,其中|V|=n,|E|=m.则图G是树当且仅当G是连通的,且m=.答n-19.连通无向图G有6个顶点9条边,从G中删去条边才有可能得到G的一棵生成树T.答 410.设正则5叉树的树叶数为17,则分支数为i = .答4(定理5.2.1:(m-1)i=t-1)三、判断说明题(判断下列各题,并说明理由.)1.(1) 如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.解错误.只有当G是连通图且其结点度数均为偶数时,图G才存在一条欧拉回路.(2) 图G1,(如下图所示) 是欧拉图.解正确.图G1是连通图,有4个2度结点,2个4度结点,即图G1的结点全是偶数度结点,所以是欧拉图.2.图G2(如下图所示)不是欧拉图而是汉密尔顿图.解正确.图G2有4个3度结点a,b,d,f,所以图G2不是欧拉图.图G2有汉密尔顿回路abefgdca,所以图G2是汉密尔顿图.3.(1) 设G是一个有7个结点16条边的连通简单图,则G为平面图.(2) 设G是一个连通平面图,且有6个结点11条边,则G有7个面.解(1)错误.由定理4.3.3知,若G有v个结点e条边,且v≥3,则e≤3v-6.但本题中,16≤3×7-6不成立.(2)正确.由欧拉定理,连通平面图G的结点数为v,边数为e,面数为r,则v-e+r=2.于是有r=2-v+e=2-6+11=7.4.下图给出的树是否同构的.解图(a)有一个4度结点,图(b)、(c)没有4度结点,所以图(a)不与图(b)、(c)同构;在图(b)、(c)中标上结点标号,如下图,建立从图(b)结点到图(c)结点的映射() (1,2,3,4,5)i i f b c i ==,则f 是同构双射,所以图(b )与图(c )同构.四、计算题1.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1) 给出G 的图形表示; (2) 写出其邻接矩阵;(3) 求出每个结点的度数; (4) 画出其补图的图形. 解 (1)G 的图形为:(2)图G 的邻接矩阵为:0010000110110110110100110A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭(3)图G 的每个结点的度数为:1deg()1v =,2deg()2v =,3deg()4v =,4deg()3v =,5deg()2v =.(4)图G 的补图为:2.图G =<V , E >,其中V ={a , b , c , d , e , f },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (d , e ), (d , f ), (e , f ) },对应边的权值依次为5,2,1,2,6,1,9,3及8.(1) 画出G 的图形; (2) 写出G 的邻接矩阵; (3) 求出G 权最小的生成树及其权值. 解 (1)G 的图形如左下图:(2)G 的邻接矩阵为:011010100110100010010011111101000110A ⎛⎫⎪⎪ ⎪=⎪ ⎪ ⎪⎪⎪⎝⎭(3)图G 有6个结点,其生成树有5条边,用Kruskal 算法求其权最小的生成树T :第1步,取具最小权1的边(a ,e ); 第2步,取剩余边中具最小权1的边(c ,e );第3步,取剩余边中不与前2条边构成回路的具最小权2的边(b ,d ); 第4步,取剩余边中不与前3条边构成回路的具最小权3的边(d ,f ); 第5步,取剩余边中不与前4条边构成回路的具最小权5的边(a ,b ). 所求最小生成树T 如右下图,其权为()1123512W T =++++=.3.已知带权图G 如右图所示.(1) 求图G 的最小生成树; (2)计算该生成树的权值. 解 (1)图G 有6个结点,其生成树有5条边,用Kruskal算法求其权最小的生成树T :第1步,取具最小权1的边; 第2步,取剩余边中具最小权2的边;第3步,取剩余边中不与前2条边构成回路的具最小权3的边; 第4步,取剩余边中不与前3条边构成回路的具最小权5的边; 第5步,取剩余边中不与前4条边构成回路的具最小权7的边.所求最小生成树T 如右图.(2)该最小生成树的权为()1235718W T =++++=.4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.解 所求最优二叉树T 如下图:所求最优二叉树T 的权为:()(23)55473172311131w T =+⨯+⨯+⨯+⨯+⨯=五、证明题1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.证明 设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于3的奇数,从而n K 的每个结点都是偶数度的( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等.2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k条边才能使其成为欧拉图.证明 由定理3.1.2知,k 必为偶数.要使这k 个奇数度结点变成偶数度结点,从而使图G 变成欧拉图,可在每两个结点间添加一条边.故在图G 中至少要添加2k条边才能使其成为欧拉图.。

国开电大《离散数学》形考任务+大作业

国开电大《离散数学》形考任务+大作业

国开电大《离散数学》形考任务+大作业离散数学(本)·形考任务一1.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}ÎAB.{1,2}ÏAC.{a}ÍAD.ÆÎA正确答案:C2.若集合A={1, 2, 3, 4},则下列表述正确的是 ().A.{1, 2}ÎAB.{1, 2, 3 } Í AC.AÌ{1, 2, 3 }D.{1, 2, 3}ÎA正确答案:B3.若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}ÎAB.ÎAC.{2}ÎAD.{ a }ÍA正确答案:D4.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A.AÌB,且AÎBB.BÌA,且AÎBC.AÌB,且AÏBD.AËB,且AÎB正确答案:A5.若集合A={a,b},B={a,{a,b}},则下列表述正确的是( ).A.AÌBB.BÌAC.AÏBD.AÎB正确答案:D6.若集合A的元素个数为5,则其幂集的元素个数为().A.5B.16C.32D.64正确答案:C7.设集合A={1, 2, 3, 4, 5, 6},B={1, 2, 3},A到B的关系R={<x,y>| x A,yB且 x=y2},则R=( ).A.{<1, 1>, <2, 4>}B.{<1, 1>, <4, 2>}C.{<1, 1>, <6, 3>}D.{<1, 1>, <2, 1>}正确答案:B8.设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x,y>|xA, y B且y=x +1},则R= ().A.{<2, 3>, <4,5>, <6, 7>}B.{<2, 1>, <4, 3>, <6, 5>}C.{<2, 1>, <3, 2>, <4, 3>}D.{<2, 2>, <3, 3>, <4, 6>}正确答案:A9.设A={1, 2, 3},B={1, 2, 3, 4},A到B的关系R={〈x,y〉| xÎA,yÎB,x=y},则R= ( ) .A.{<1, 2>, <2, 3>}B. {<1, 1>, <1, 2>, <1, 3>, <1, 4>, <1, 5>}C. {<1, 1>, <2, 1>}D.{<1, 1>, <2, 2>, <3, 3 >}正确答案:D10.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为()A.2B.3C.6D.8正确答案:D11.空集的幂集是空集.()A.正确B.错误正确答案:B12.存在集合A与B,可以使得AÎB与AÍB同时成立.A.正确B.错误正确答案:A13.集合的元素可以是集合.A.正确B.错误正确答案:A14.如果A是集合B的元素,则A不可能是B的子集.A.正确B.错误正确答案:B15.设集合A={a},那么集合A的幂集是{Æ, {a}}A.正确B.错误正确答案:A16.若集合A的元素个数为4,则其幂集的元素个数为16A.正确B.错误正确答案:A17.设A={1, 2, 3},B ={1, 2, 3, 4},A到B的关系R ={<x,y> |xÎA,yÎB,x>y},则R ={<2, 1>, <3, 1>, <3, 2 >}A.正确B.错误正确答案:A18.设A={1, 6,7},B={2, 4,8,10},A到B的关系R={〈x,y〉|xÎA,yÎB,且 x=y},则R={<2, 2>, <4, 4>, <8, 8>, <10, 10>}A.正确B.错误正确答案:B19.设A={a,b,c},B={1,2,3},作f:A→B,则共有9个不同的函数.A.正确B.错误正确答案:B20.设A={1,2},B={ a,b,c },则A´B的元素个数为8.()A.正确B.错误正确答案:B离散数学(本)·形考任务二1.n阶无向完全图Kn的边数是().A.nB. n(n-1)/2C. n-1D.n(n-1)正确答案:B2.n阶无向完全图Kn每个结点的度数是().A.nB. n(n-1)/2C.n-1D.n(n-1)正确答案:C3.已知无向图G的结点度数之和为20,则图G的边数为().A.5B.15C.20D.10正确答案:D4.已知无向图G 有15条边,则G的结点度数之和为().A.10B.20C.30D.5正确答案:C5.图G如图所示,以下说法正确的是( ) .A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d,e)}是边割集正确答案:D6.若图G=<V,E>,其中V={ a,b,c,d },E={ (a,b), (b,c) , (b,d)},则该图中的割点为().A.aB.bC.cD.d正确答案:B7.设无向完全图K有n个结点(n≥2),m条边,当()时,K中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m为偶数正确答案:C8.设G是欧拉图,则G的奇数度数的结点数为( )个.A.0B.1C.2D.4正确答案:A9.设G为连通无向图,则()时,G中存在欧拉回路.A.G不存在奇数度数的结点B.G存在偶数度数的结点C.G存在一个奇数度数的结点D.G存在两个奇数度数的结点正确答案:A10.设连通平面图G有v个结点,e条边,r个面,则.A.v + e - r=2B.r +v - e =2C.v +e - r=4D.v +e – r = –4正确答案:B11.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15.( )A.正确B.错误正确答案:A12. 设G是一个无向图,结点集合为V,边集合为E,则G的结点度数之和为2|E|. ( )A.正确B.错误正确答案:A13. 若图G=<V,E>,其中V={ a,b,c,d },E={ (a,b), (a,d),(b,c), (b,d)},则该图中的割边为(b,c).( )A.正确B.错误正确答案:A14. 边数相等与度数相同的结点数相等是两个图同构的必要条件.A.正确正确答案:A15. 若图G中存在欧拉路,则图G是一个欧拉图.A.正确B.错误正确答案:B16. 无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( )A.正确B.错误正确答案:A17. 设G是具有n个结点m条边k个面的连通平面图,则n-m=2-k.A.正确B.错误正确答案:A18.设G是一个有6个结点13条边的连通图,则G为平面图.A.正确B.错误正确答案:B19. 完全图K5是平面图.B.错误正确答案:B20. 设G是汉密尔顿图,S是其结点集的一个子集,若S的元素个数为6,则在G-S中的连通分支数不超过6A.正确B.错误正确答案:A离散数学(本)·形考任务三1.无向图G是棵树,边数为12,则G的结点数是().A.12B.24C.11D.13正确答案:D2.无向图G是棵树,边数是12,则G的结点度数之和是().A.12B.13D.6正确答案:C3.无向图G是棵树,结点数为10,则G的边数是().A.9B.10C.11D.12正确答案:A4.设G是有10个结点,边数为20的连通图,则可从G中删去()条边后使之变成树.A.12B.9C.10D.11正确答案:D5.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.m-n+1C.m+n+1D.n-m+1正确答案:A6.设A(x):x是金属,B(x):x是金子,则命题“有的金属是金子”可符号化为().A.(x)(A(x)∧B(x))B.┐("x)(A(x)→B(x))C.(x)(A(x)∧B(x))D.┐(x)(A(x)∧┐B(x))正确答案:C7.设A(x):x是学生,B(x):x去跑步,则命题“所有人都去跑步”可符号化为().A.($x)(A(x)∧B(x))B.("x)(A(x)→B(x))C.($x)(A(x)∧┐B(x))D.("x)(A(x)∧B(x))正确答案:B8.设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().A.┐("x)(A(x)→B(x))B.┐($x)(A(x)∧B(x))C.("x)(A(x)∧B(x))D.┐($x)(A(x)∧┐B(x))正确答案:A9.("x)( P(x,y)∨Q(z))∧($y) (R(x,y) → ("z) Q(z))中量词“"”的辖域是().A.P(x,y)B.P(x,y)∨Q(z)C.R(x,y)D.P(x,y)∧R(x,y)正确答案:B10.设个体域D={a,b,c},那么谓词公式($x)A(x)∨("y)B(y)消去量词后的等值式为( ).A.(A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(c))B.(A(a)∧A(b)∧A(c))∨(B(a)∨B(b)∨B(c))C.(A(a)∨A(b)∨A(c))∨(B(a)∨B(b)∨B(c))D.(A(a)∧A(b)∧A(c))∨(B(a)∧B(b)∧B(c))正确答案:A11.若无向图G的边数比结点数少1,则G是树.A.正确B.错误正确答案:B12.无向图G是树当且仅当无向图G是连通图.A.正确B.错误正确答案:B13.无向图G是棵树,结点度数之和是20,则G的边数是9A.正确B.错误正确答案:B14.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去5条边后使之变成树.A.正确B.错误正确答案:A15.设个体域D={1,2,3},则谓词公式("x)A(x)消去量词后的等值式为A(1)∧A(2)∧A(3).B.错误正确答案:A16.设个体域D={1, 2, 3, 4},则谓词公式($x)A(x)消去量词后的等值式为A(1 ) ∨A(2) ∨ A(3) ∨ A(4)A.正确B.错误正确答案:A17.设个体域D={1, 2},则谓词公式("x)P(x) ∨($x)Q(x)消去量词后的等值式为(P (1)∧P (2)) ∨(Q(1)∨Q(2)).A.正确B.错误正确答案:A18.("x)(P(x)∧Q(y)→R(x))中量词“"”的辖域为(P(x)∧Q(y)).A.正确B.错误正确答案:B19.("x)(P(x)∧Q(y))→R(x)中量词“"”的辖域为(P(x)∧Q(y)).A.正确正确答案:A20.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为┐(x)(A(x)∧┐B(x))A.正确B.错误正确答案:B大作业1. 在线提交word文档第一部分一、公式翻译题(每小题2分,共10分)1.将语句“我会英语,并且会德语.”翻译成命题公式.参考答案:设p.我学英语Q:我学法语则命题公式为:pΛQ2.将语句“如果今天是周三,则昨天是周二.”翻译成命题公式.参考答案:设P:今天是周三Q:昨天是周二则命题公式为:P→Q3.将语句“小王是个学生,小李是个职员.”翻译成命题公式.参考答案:设P:小王是个学生Q:小李是个职员则命题公式为:P∧Q4.将语句“如果明天下雨,我们就去图书馆.”翻译成命题公式.参考答案:设P:如果明天下雨Q:我们就去图书馆则命题公式为:P→Q5.将语句“当大家都进入教室后,讨论会开始进行.”翻译成命题公式.参考答案:设P:当大家都进入教室后Q:讨论会开始进行则命题公式为:P→Q二、计算题(每小题10分,共50分)1.设集合A={1, 2, 3},B={2, 3, 4},C={2, {3}},试计算(1)A-C;(2)A∩B;(3)(A∩B)×C.参考答案:(1)A-C={l,3};(2)A∩B={2,3};(3)(A∩B)×C= { <2,2>,<2, {3} > ,<3,2> ,<3, {3} >}.2. 设G=<V,E>,V={v1,v2,v3,v4,v5},E={(v1,v3) , (v1,v5) , (v2,v3) , (v3,v4) , (v4,v5) },试(1)给出G的图形表示;(2)求出每个结点的度数;(3)画出其补图的图形.参考答案:(1)关系图(2)deg(v1)=3deg(v2)=2deg(v3)=3deg(v4)=2deg(v5)=2(3)补图3.试画一棵带权为1, 2, 3, 3, 4的最优二叉树,并计算该最优二叉树的权.参考答案:权为1×3+2×3+3×2+3×2+4×2=294.求出如下所示赋权图中的最小生成树(要求写出求解步骤),并求此最小生成树的权.参考答案:解:用Kruskal 算法求产生的最小生成树,步骤为:w(v2,v6)=1 选(v2,v6)w(v4,v5)=1 选(v4,v5)w(v1,v6)=2 选(v1,v6)w(v3,v5)=2 选(v3,v5)w(v2,v3)=4 选(v2,v3)最小生成树如图所示:最小生成树的权w(T)=1+1+2+2+4=10.5. 求P→(Q∧R) 的析取范式与合取范式. 参考答案:解:(P∨Q)→R⇔┐(P∨Q)∨R⇔(┐P∧┐Q)∨R(析取范式)⇔(┐P∨R)∧(┐Q∨R)(合取范式)第二部分从下列选题中选择一个感兴趣的主题,自主查阅文献资料进行深入的研究和学习,并形成一份至少一千字的总结报告。

最新离散数学形考任务1-7试题及答案完整版

最新离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是( A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是( D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是(C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

其三是初步掌握处理离散结构所必须的描述工具和方法离散数学的主要内容:第一章节:主要介绍集合及其运算第二章节:主要介绍关系与函数第三章节:主要介绍图的基本概念及性质第四章节:主要介绍几种特殊图第五章节:主要介绍树及其应用第六章节:主要介绍命题逻辑第七章节:主要介绍谓词逻辑离散数学的考核方式分为:了解、理解和掌握。

了解是能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;掌握是在理解的基础上加以灵活应用。

离散数学形考任务二若集合A={a,{a},{1,2}}A={a,{a},{1,2}},则下列表述正确的是( C ).选择一项:A.{a,{a}∈A{a,{a}∈AB.{1,2}∉A{1,2}∉AC.{a}⊆A{a}⊆AD.∅∈A∅∈A题目2答案已保存满分10.00标记题目题干设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( A ).选择一项:A. {1, 2, 3, 4}B. {1, 2, 3, 5}C. {2, 3, 4, 5}D. {4, 5, 6, 7}题目3答案已保存满分10.00标记题目题干设集合A = {1,aa},则P(A) = ( D ).选择一项:A. {{1}, {aa}}B. {Ø,{1}, {aa}}C.{{1},{a},{1,a}}{{1},{a},{1,a}}D.Ø,{1},{a},{1,a}}Ø,{1},{a},{1,a}}题目4答案已保存满分10.00标记题目题干集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R的性质为(B).选择一项:A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的题目5答案已保存满分10.00标记题目题干如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有( B )个选择一项:A. 0B. 2C. 1D. 3题目6答案已保存满分10.00标记题目题干设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( D).选择一项:A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、2、无、2题目7答案已保存满分10.00标记题目题干设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ( A ).选择一项:A. {<2, 3>, <4, 5>, <6, 7>}B. {<2, 1>, <4, 3>, <6, 5>}C. {<2, 1>, <3, 2>, <4, 3>}D. {<2, 2>, <3, 3>, <4, 6>}题目8答案已保存满分10.00标记题目题干设集合A ={1 , 2, 3}上的函数分别为:ƒ= {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =(A).选择一项:A. ƒ◦gB. g◦ƒC. ƒ◦ƒD. g◦g题目9答案已保存满分10.00标记题目题干设A、B是两个任意集合,侧A-B = ØØ⇔( B ).选择一项: A. A = B B. A ⊆ B C. A ⊇ B D. B =ØØ题目10 答案已保存 满分10.00标记题目题干设集合A ={1,2,3,4,5},偏序关系£是A 上的整除关系,则偏序集<A ,£>上的元素5是集合A 的( C ). 选择一项: A. 最大元 B. 最小元 C. 极大元 D. 极小元离散数学作业3离散数学集合论部分形成性考核书面作业一、填空题1.设集合{1,2,3},{1,2}A B ==,则P (A )-P (B )= {{3},{1,3},{2,3},{1,2,3}} ,A ⨯ B = {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A 有10个元素,那么A 的幂集合P (A )的元素个数为 1024 .3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系,则R 的有序对集合为 {<2, 2>,<2, 3>,<3, 2>},<3,3> .4.设集合A ={1, 2, 3, 4 },B ={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=><},,{B A y x B y A x y x R ⋂∈∈∈><=且且那么R -1= {<6,3>,<8,4>}5.设集合A ={a , b , c , d },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则R 具有的性质是 没有任何性质 .6.设集合A ={a , b , c , d },A 上的二元关系R ={<a , a >, <b , b >, <b , c >, <c , d >},若在R 中再增加两个元素 {<c,b>,<d,c>} ,则新得到的关系就具有对称性.7.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有 2 个.8.设A ={1, 2}上的二元关系为R ={<x , y >|x ∈A ,y ∈A , x +y =10},则R 的自反闭包为 {<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素. 10.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是 {<1, a >, <2, b >}或{<1, b >, <2, a >} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系. 解:(1)错误。

R 不具有自反的关系,因为<3,3>不属于R 。

(2)错误。

R 不具有对称的关系,因为<2,1>不属于R 。

2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由.解:成立.因为R 1和R 2是A 上的自反关系,即I A ⊆R 1,I A ⊆R 2。

由逆关系定义和I A ⊆R 1,得I A ⊆ R 1-1;由I A ⊆R 1,I A ⊆R 2,得I A ⊆ R 1∪R 2,I A ⊆ R 1⋂R 2。

所以,R 1-1、R 1∪R 2、R 1⋂R 2是自反的。

3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误.集合A 的最大元不存在,a 是极大元.4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2)f ={<1, 6>, <3, 4>, <2, 2>};οο ο ο a b c d 图一 ο ο ο ge f hο(3) f={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1)不构成函数。

相关文档
最新文档