定积分在物理学上的应用ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
wh
h
0 kxdx
kh2 2
,
依题意知,每次锤击所作的功相等.
wh nw1
kh2 n k , 22
n次击入的总深度为 h n,
第n次击入的深度为 n n 1.
9
二、水压力
由 物 理 学 知 道 , 在 水 深 为h 处 的 压 强 为
p h,这里 是水的比重.如果有一面积为A
0
2x
R2 x2dx
R
0
R2 x2d(R2 x2)
2 3
R2
x2
3
R 0
2
3
R3.
12
说明: 当桶内充满液体时,小窄条上的压强为 g (R x),
侧压力元素 dP 2 g (R x) R2 x2 dx ,
故端面所受侧压力为
所求功为 w
bkq
a r 2 dr
kq
1b r a
kq
1 a
1 b
.
如果要考虑将单位电荷移到无穷远处
w
a
krq2 dr
kq
1 r a
kq a
.
4
例2. 在底面积为 S 的圆柱形容器中盛有一定量的气 体,由于气体的膨胀, 把容器中的一个面积为S 的活塞从 点 a 处移动到点 b 处 (如图),求移动过程中气体压力所
第三节
第六章
定积分在物理学上的应用
一、 变力沿直线所作的功 二、 液体的侧压力 三、 引力问题 四、 转动惯量 (补充)
1
一、变力沿直线所作的功
由物理学知道,如果物体在作直线运动的
过程中有一个不变的力F 作用在这物体上,且
这力的方向与物体的运动方向一致,那么,在
物体移动了距离s时,力F 对物体所作的功为
点 M ,计算该棒对质点 M 的引力.
解 建立坐标系如图
ly
取y为积分变量
y
l 2
,
2l ,
取任一小区间[ y, y dy]
2 y dy
yr
o a M
x
将典型小段近似看成质点
l 2
小段的质量为 dy,
16
小段与质点的距离为 r a2 y2 ,
引力
mdy
F k a2 y2 ,
边长,求薄板所受的侧压力.
解 建立坐标系如图 面积微元 2(a x)dx,
2a
o 2a
a百度文库
dP ( x 2a) 2(a x) 1dx
x
P
a
0
2(
x
2a)(a
x)dx
7
3
a3.
14
三、引力
由物理学知道,质量分别为m1 , m2 相距为
r 的两个质点间的引力的大小为F
k
m1m2 r2
,
其中k 为引力系数,引力的方向沿着两质点的
连线方向.
如果要计算一根细棒对一个质点的引力, 那么,由于细棒上各点与该质点的距离是变化 的,且各点对该质点的引力方向也是变化的, 就不能用此公式计算.
15
例 7 有一长度为l 、线密度为 的均匀细棒, 在其中垂线上距棒 a 单位处有一质量为 m的质
W F s.
如果物体在运动的过程中所受的力是变化 的,就不能直接使用此公式,而采用“微元法” 思想.
2
例 1 把一个带 q 电量的点电荷放在 r 轴上坐
标原点处,它产生一个电场.这个电场对周围的电
荷有作用力.由物理学知道,如果一个单位正电荷
放在这个电场中距离原点为 r 的地方,那么电场
4R g R R2 x2 dx 0 令 x R sin t
奇函数
o
x
y
xdx
R
x
4Rg x
2
R2
x2
R2 2
arcsin
x R
R 0
g R3
13
例 6 将直角边各为a及2a的直角三角形薄板
垂直地浸人水中,斜边朝下,直角边的边长与
水面平行,且该边到水面的距离恰等于该边的
点击图片任意处播放\暂停
o
x x dx
5
x
6
这一薄层水的重力为 9.8 32 dx
功元素为 dw 88.2 x dx,
o
x x dx
5
x
5
w 0 88.2 x dx
88.2
x2 2
5 0
3462 (千焦).
7
例4 用铁锤把钉子钉入木板,设木板对铁钉的阻
力与铁钉进入木板的深度成正比,铁锤在第一次 锤击时将铁钉击入1厘米,若每次锤击所作的功
相等,问第 次锤n击时又将铁钉击入多少?
解 设木板对铁钉的阻力为 f ( x) kx,
第一次锤击时所作的功为
w1
1
0
f
( x)dx
k 2
,
设 n次击入的总深度为 h厘米
n次锤击所作的总功为
h
wh 0 f ( x)dx.
水平方向的分力元素
dFx
k
amdy
(a2
y
2
)
3 2
,
Fx
l 2
l 2
k
amdy
(a2 y2 )
3 2
2kml
a(4a 2
l
2
)
1 2
作的功 . 解: 建立坐标系如图. 由波义耳—马略特定律知压强
p 与体积 V 成反比 , 即
故作用在活塞上的
力为 功元素为
S
o a xx dx b x
所求功为
5
例 3 一圆柱形蓄水池 高为 5 米,底半径为 3 米,池内盛满了水. 问要把池内的水全部 吸出,需作多少功?
解 建立坐标系如图
取x为积分变量, x [0,5] 取任一小区间[ x, x dx],
的平板水平地放置在水深为h 处,那么,平板一 侧所受的水压力为P p A.
如果平板垂直放置在水中,由于水深不同
的点处压强p 不相等,平板一侧所受的水压力
就不能直接使用此公式,而采用“微元法”思 想.
10
例 5 一个横放着的圆柱形水桶,桶内盛有半桶水,
设桶的底半径为 R,水的比重为 ,计算桶的一端
面上所受的压力.
解 在端面建立坐标系如图
取x为积分变量,x [0, R]
取任一小区间[ x, x dx]
小矩形片上各处的压强近
似相等 p x,
小矩形片的面积为 2 R2 x2dx.
o
x
x dx
x
11
小矩形片的压力元素为 dP 2x R2 x2dx
端面上所受的压力
P
R
对它的作用力的大小为
F
k
q r2
(k
是常数),当
这个单位正电荷在电场中从 r a 处沿 r 轴移
动到 r b 处时,计算电场力 F 对它所作的功.
3
解 取r 为积分变量,
q
o
a
1
r
r
dr
b
r
r [a,b],
取任一小区间[r, r dr],
功元素
kq dw r 2 dr,