集合的概念与运算经典例题及习题
集合练习题加答案
集合练习题加答案集合是数学中的基本概念之一,它提供了一种描述对象集合的方式。
在集合论中,集合是由一些明确的或不明确的确定的对象构成的整体。
这些对象被称为集合的元素。
集合论是现代数学的基础之一,它在各个数学领域都有广泛的应用。
以下是一些集合练习题,以及相应的答案,供学习者练习和检验自己的理解。
练习题1:确定以下集合的元素。
- A = {x | x 是一个偶数}- B = {y | y > 5}- C = {z | z 是一个质数}答案1:- A的元素是所有偶数,例如2, 4, 6, 8等。
- B的元素是所有大于5的实数。
- C的元素是所有质数,如2, 3, 5, 7, 11等。
练习题2:判断以下集合是否相等。
- X = {1, 2, 3}- Y = {1, 3, 2}答案2:- X和Y是相等的,因为集合的元素是无序的,只考虑元素的种类和数量。
练习题3:计算以下集合的并集。
- A = {1, 2, 3}- B = {3, 4, 5}- C = {2, 5, 6}答案3:- A ∪ B ∪ C = {1, 2, 3, 4, 5, 6}练习题4:计算以下集合的交集。
- D = {1, 2, 3, 4}- E = {3, 4, 5}答案4:- D ∩ E = {3, 4}练习题5:计算集合D的补集,假设全集U包含所有自然数。
- D = {1, 2, 3, 4}答案5:- D' = U - D = {所有自然数除了1, 2, 3, 4}练习题6:如果A = {x | x 是一个偶数},B = {x | x 是一个奇数},计算A和B的差集。
答案6:- A - B = {x | x 是一个偶数但不是奇数},即A本身,因为奇数和偶数是互补的。
练习题7:给定集合F = {x | x 是一个整数,且 -3 ≤ x ≤ 3},计算F的幂集。
答案7:- F的幂集包含F的所有子集,共有2^7个子集,因为F有7个元素(-3, -2, -1, 0, 1, 2, 3)。
集合考试题及答案
集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。
以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。
求A∩B。
答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。
集合B包含所有的偶数。
A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。
题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。
求C∪D。
答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
集合D包含所有的正整数,即D={1, 2, 3, ...}。
C与D的并集是包含C和D所有元素的集合,但去除重复元素。
因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。
求E∩F。
答案:集合E包含所有的奇数,集合F包含所有3的倍数。
E与F的交集是同时满足奇数和3的倍数的元素。
这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。
题目四:集合G={x | x²=1},求G。
答案:集合G包含满足x²=1的所有x值。
解这个方程,我们得到x=1或x=-1。
因此,G={1, -1}。
题目五:集合H={x | x²-4=0},求H。
答案:集合H包含满足x²-4=0的所有x值。
解这个方程,我们得到x²=4,所以x=2或x=-2。
因此,H={2, -2}。
总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。
集合数学题
集合数学题一、集合的基本概念1. 已知集合A = {xx^2 - 3x+2 = 0},求集合A。
- 解析:- 对于方程x^2 - 3x + 2=0,分解因式得(x - 1)(x - 2)=0。
- 解得x = 1或x = 2。
- 所以集合A={1,2}。
2. 设集合B={x∈ Z2< x<3},求集合B。
- 解析:- 满足-2< x<3的整数x有-1,0,1,2。
- 所以集合B ={-1,0,1,2}。
3. 若集合C={m,m + 1},且1∈ C,求m的值。
- 解析:- 因为1∈ C,当m = 1时,集合C={1,2}满足条件。
- 当m+1 = 1,即m = 0时,集合C={0,1}也满足条件。
- 所以m = 0或m = 1。
二、集合间的关系4. 已知集合A={1,2,3},集合B={1,2},判断B与A的关系。
- 解析:- 因为集合B中的所有元素都在集合A中。
- 所以B⊂ A(B是A的子集)。
5. 设集合M={xx = 2k,k∈ Z},集合N={xx = 4k,k∈ Z},判断N与M的关系。
- 解析:- 对于集合N中的元素x = 4k,因为4k=2×(2k),且2k∈ Z。
- 所以集合N中的元素都在集合M中,但集合M中有元素不在集合N中(如2 = 2×1,1∈ Z,但2不能表示成4k的形式)。
- 所以N⊂ M。
6. 已知集合A={xx^2 - 1 = 0},集合B={- 1,1},判断A与B的关系。
- 解析:- 对于集合A,解方程x^2 - 1=0,即(x + 1)(x - 1)=0,解得x=-1或x = 1。
- 所以A = B。
三、集合的运算7. 已知集合A={1,2,3},集合B={2,3,4},求A∩ B。
- 解析:- A∩ B是由既属于集合A又属于集合B的元素组成的集合。
- 所以A∩ B={2,3}。
8. 设集合M={xx>1},集合N={xx<3},求M∪ N。
第1课 集合的概念及运算(经典例题练习、附答案)
第1课 集合的概念及运算◇考纲解读理解集合、子集、补集、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.◇知识梳理1.集合的基本概念:(1)一般地,我们把研究对象统称为_________,把一些元素组成的总体叫做________.(2)集合中的元素具有的三个特性是:____________、____________、___________.(3)集合有三种表示方法: 、 、 .还可以用区间来表示集合.(4)集合中元素与集合的关系分为______与______两种,分别用_____和_______来表示.(5)表示实数集的符号是_____;表示正实数集的符号是______;表示有理数集的符号是____; 表示整数集的符号是_____;表示自然数集的符号是_____;表示正整数集的符号是_____.2.集合间的关系:(1)若集合A 中的任何一个元素都是集合B 的元素,则称集合A 是集合B 的__ _,记作_ _.(2)对于两个集合A,B,若___________且___________,则称集合A=B.(3)如果集合A B ⊆,但存在元素x B ∈且x A ∉,我们称集合A 是集合B 的__________,记作___________.(4)___________________叫空集,记作______,并规定:空集是任何集合的_______.3.集合的基本运算:(1)A B =_______________________.(2)A B =_______________________.(3)若已知全集U,集合A U ⊆,则U C A =________________.4.有限集的元素个数若有限集A 有n 个元素,则A 的子集有_____个,真子集有_____,非空子集有_____个, 非空真子集有_____ 个.◇基础训练1. (2008韶关一模)设{}{}(,)46,(,)38A x y y x B x y y x ==-+==-,则AB =( ) {}{}{}{}.(2,1).(2,2).(3,1).(4,2).A BCD ----2. (2007韶关二模)设全集{},,,,,,,7654321=U ,{}16A x x x N *=≤≤∈,,则U C A=( )A .φB .{}7C .{}654321,,,,, D .{}7654321,,,,,, 3.(2007广州一模)如图1所示,U 是全集,A B 、是U 的子集,则阴影部分所表示的集合是( ) A. A B B. )A C (B UC. A BD. )B C (A U4.(2008深圳一模)设全集{0,1,2,3,4}U =,集合{0,1,2}A =,集合{2,3}B =,则()U A B =( )A .∅B .{1,2,3,4}C .{0,1,2,3,4}D .{2,3,4}◇典型例题例1. (2007佛山一模) 设全集为 R ,A =}01|{<xx ,则=A C R ( ). A .}01|{>x x B .{x | x >0} C .{x | x 0≥} D . }01|{≥xx变式:集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,求实数a 的值.例2.已知{}{}22240,2(1)10A x x x B x x a x a =+==+++-=,其中a R ∈, 如果A ∩B=B ,求实数a 的取值范围。
集合运算精选典型例题及练习题
集合运算的典型例题与练习(一)集合的基本运算:说明:不等式的交、并、补集的运算,用数轴进行分析,注意端点。
例1:设U=R,A={x|-5<x<5},B={x|0≤x<7},求A∩B、A∪B、CU A 、CUB、(CU A)∩(CUB)、(CUA)∪(CUB)、CU(A∪B)、CU(A∩B)。
例2:全集U={x|x<10,x∈N+},A⊆U,B⊆U,且(CUB)∩A={1,9},A∩B={3},(CU A)∩(CUB)={4,6,7},求A、B。
说明:列举法表示的数集问题用Venn图示法、观察法(二)集合性质的运用:例3:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}, 若A∪B=A,求实数a的值。
说明:注意B为空集可能性;一元二次方程已知根时,用代入法、韦达定理,要注意判别式。
例4:已知集合A={x|x>6或x<-3},B={x|a<x<a+3},若A∪B=A,求实数a的取值范围。
(三)巩固练习:1.P={0,1},M={x|x⊆P},则P与M的关系是。
2.已知50名同学参加跳远和铅球两项测验,分别与格人数为40、31人,两项均不与格的为4人,那么两项都与格的为人。
3.满足关系{1,2}⊆A⊆{1,2,3,4,5}的集合A共有个。
4.已知A={x|-2<x<-1或x>1},A∪B={x|x+2>0},A∩B={x|1<x≦3},求集合B=5.已知集合A∪B={x|x<8,x∈N},A={1,3,5,6},A∩B={1,5,6},则B的子集的集合一共有多少个元素?6.已知A={1,2,a},B={1,a2},A∪B={1,2,a},求所有可能的a值。
7.设A={x|x2-ax+6=0},B={x|x2-x+c=0},A∩B={2},求A∪B。
8. 集合A={x|x2+px-2=0},B={x|x2-x+q=0},若A B={-2,0,1},求p、q。
集合的概念与运算经典例题及习题
第1讲 集合的概念和运算【例1】►已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 014+b 2 014=________. 答案 1【训练1】 集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N *⎪⎪⎪ 12x ∈Z 中含有的元素个数为( ).A .4B .6C .8D .12答案 B【例2】►已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.答:m 的取值范围为m ≤4.【训练2】 已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.答案 4【例3】►设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,则m 的值是________.答案 1或2【训练3】 (1)(2012·陕西)集合M ={x |lg x >0},N ={x |x 2≤4},则M ∩N =( ).A .(1,2)B .[1,2)C .(1,2]D .[1,2](2)(2012·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ).A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}答案 (1)C (2)C【真题探究1】► (2012·北京)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ).A .(-∞,-1)B.⎩⎨⎧⎭⎬⎫-1,-23C.⎝ ⎛⎭⎪⎫-23,3 D .(3,+∞) [答案] D【试一试1】 已知全集U ={y |y =log 2x ,x >1},集合P =⎩⎨⎧⎭⎬⎫y |y =1x ,x >3,则∁U P =( ).A.⎣⎢⎡⎭⎪⎫13,+∞B.⎝ ⎛⎭⎪⎫0,13 C .(0,+∞) D .(-∞,0)∪⎣⎢⎡⎭⎪⎫13,+∞ 答案 A【真题探究2】► (2012·新课标全国)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( ).A .3B .6C .8D .10[答案] D【试一试2】 定义集合运算:A B ={z |z =xy ,x ∈A ,y ∈B },设A ={-2 014,0,20 14},B ={ln a ,e a },则集合A B 的所有元素之和为( ).A .2 014B .0C .-2 014D .ln 2 014+e 2 014答案 B习题1.(2011·广东)已知集合A ={(x ,y )|x ,y 是实数,且x 2+y 2=1},B ={(x ,y )|x ,y 是实数,且y =x },则A ∩B 的元素个数为( ).A .0B .1C .2D .3 2.(2012·潍坊二模)设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2] B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)} 3.(2012·浙江)设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(∁R B )=( ).A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)4.(2012·长春名校联考)若集合A ={x ||x |>1,x ∈R },B ={y |y =2x 2,x ∈R },则(∁R A )∩B = ( ).A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅ 5.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.6.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.7.(13分)(2012·衡水模拟)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.答案 1.C 2.B 3.B 4.C 5. ② 6. 87. 解 (1) (∁I M )∩N ={2}.(2) a 的取值范围是{a |a ≥3}.。
集合简单练习题及答案
集合简单练习题及答案集合是数学中一个非常重要的概念,它描述了一组元素的总体。
下面是一些集合的简单练习题以及它们的答案。
练习题1:判断下列集合是否相等。
A = {1, 2, 3}B = {3, 2, 1}C = {1, 2, 1}答案1:集合A和集合B相等,因为集合中的元素是无序的,只考虑元素的种类和数量。
集合C和A不相等,因为集合中的元素不允许重复。
练习题2:求集合A和集合B的并集。
A = {1, 2, 3}B = {2, 3, 4}答案2: A和B的并集是A ∪ B = {1, 2, 3, 4}。
练习题3:求集合A和集合B的交集。
A = {1, 2, 3}B = {2, 3, 4}答案3: A和B的交集是A ∩ B = {2, 3}。
练习题4:求集合A和集合B的差集。
A = {1, 2, 3, 4}B = {2, 3}答案4: A和B的差集是A - B = {1, 4}。
练习题5:判断下列集合是否为子集。
A = {1, 2}B = {1, 2, 3, 4}答案5:集合A是集合B的子集,因为A中的所有元素都在B中。
练习题6:求集合A和集合B的补集。
A = {1, 2, 3}B = {2, 3, 4}假设全集U = {1, 2, 3, 4, 5}答案6: A的补集是A' = {4, 5},B的补集是B' = {1, 5}。
练习题7:判断下列集合是否为幂集。
A = {1}B = {1, 2}C = {1, 2, 3}答案7:集合A的幂集是{∅, {1}}。
集合B的幂集是{∅, {1}, {2}, {1, 2}}。
集合C的幂集包含更多的子集,包括空集和所有可能的元素组合。
练习题8:求集合A和集合B的笛卡尔积。
A = {1, 2}B = {3, 4}答案8: A和B的笛卡尔积是A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}。
练习题9:求集合A的对称差集与集合B。
集合知识点及经典例题
集合知识点及经典例题一、知识点整理 ㈠集合有关概念1、集合与元素的关系元素与集合的关系:属于“∈”;不属于∉ 2、集合中元素的三个特性: ⑴元素的确定性如:世界上最高的山⑵元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}例题:①设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。
(答:8)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有__个(答:7) ⑶元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3、集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} ⑴用英文字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} ⑵集合的表示方法:列举法与描述法。
1)列举法:{a,b,c ……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R| x-3>2} ,{x| x-3>2}例题:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,例题:设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则M N = ___(答:[4,)+∞); ⑶语言描述法:例:{不是直角三角形的三角形} ⑷Venn 图:⑸常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 复数 C 4、集合的分类:⑴有限集 含有有限个元素的集合 ⑵无限集 含有无限个元素的集合⑶空集 不含任何元素的集合 例:{x|x 2=-5}5、集合间的基本关系⑴“包含”关系—子集:数学表达式:若对任意B x A x ∈⇒∈,则B A ⊆ 注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
高中数学集合练习题及讲解
高中数学集合练习题及讲解## 高中数学集合练习题及讲解集合是数学中描述对象集合的一种基本工具,它在高中数学中占有重要地位。
以下是一些集合的练习题和相应的讲解,帮助学生更好地理解和应用集合的概念。
### 练习题一:集合的基本运算题目:已知集合 A = {1, 2, 3} 和 B = {2, 3, 4},求A ∪ B 和A ∩ B。
解答:- A ∪ B 表示 A 和 B 的并集,即 A 和 B 中所有的元素,不重复地放在一起。
因此,A ∪ B = {1, 2, 3, 4}。
- A ∩ B 表示 A 和 B 的交集,即同时属于 A 和 B 的元素。
因此,A ∩ B = {2, 3}。
### 练习题二:子集与真子集题目:若集合 C = {1, 2},判断 C 是否是 A 的子集。
解答:- 子集的定义是,如果集合 C 中的每一个元素都是集合 A 的元素,那么 C 是 A 的子集。
- 在这个例子中,C 中的所有元素 1 和 2 都在 A = {1, 2, 3} 中,所以 C 是 A 的子集。
### 练习题三:幂集题目:集合 D = {a, b},求 D 的幂集。
解答:- 幂集是包含所有可能子集的集合,包括空集和集合本身。
- 对于 D = {a, b},其幂集 P(D) 包括:- 空集:{}- 只包含 a 的集合:{a}- 只包含 b 的集合:{b}- 包含 a 和 b 的集合:{a, b}- 集合 D 本身:{a, b}### 练习题四:集合的补集题目:已知全集 U = {1, 2, 3, 4, 5},求 A 的补集。
解答:- 补集的定义是全集 U 中不属于集合 A 的所有元素组成的集合。
- 集合 A = {1, 2, 3},所以 A 的补集是 U 中不属于 A 的元素,即A' = {4, 5}。
### 练习题五:集合的笛卡尔积题目:集合 E = {1, 2} 和 F = {x, y},求E × F。
集合的概念练习题
第一讲 集合的概念及其运算1、子集的个数例1、(1)若{ 1,2 }A ⊆{ 1,2,3,4 },求满足这个关系式的集合A 的个数(2)已知集合A ={0、2、4},},|{A b a b a x x B ∈⋅==、,则集合B 的子集的个数为 。
(3)从自然数1~20这20个数中,任取两个数相加,得到的和作为集合M 的元素,则M 的真子集共有 个。
☆规律方法总结:(1)子集的个数:一个有n 个元素的集合,其①子集有 个;②真子集有 个;③非空子集有 个;④非空真子集有 个; (2)已知集合M 中有m 个元素,集合N 中有n 个元素,则满足M N P ⊆的集合P 的个数为12--m n2、集合中元素的个数例2、(1)已知集合M,N 分别含有8个、13个元素,若N M 中有6个元素, ①求N M 中的元素个数. ②当N M 含多少个元素时,φ=N M .(2)50名学生参加跳远和铅球两样测试,跳远和铅球测验成绩分别及格40人和31人,两次测验成绩均不及格的有4人,则两项成绩都及格的人数是( )A 、35B 、25C 、28D 、15(3) 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 3、集合间的关系例3、判断下列两集合之间的关系⑴ },14|{},,12|{Z k k x x N Z k k x x M ∈±==∈+== (2)},2|{},,12|{22R b b b x x B R a a a x x A ∈-==∈++== (3) },24|{},,42|{Z k k x x N Z k k x x M ∈+==∈+==ππππ 4、方程、不等式与集合例4、(1) 已知方程0)(,0)(==x g x f 的解集分别为B A ,。
① 写出方程0)()(=⋅x g x f 的解集② 写出方程0)()(22=+x g x f 的解集③ 写出方程0)()(=x g x f 的解集 (2)已知不等式0)()0(>>x g x f ,的解集分别为B A 、, 0)()0(<<x g x f ,的解集分别为N M 、。
集合的概念习题答案
集合的概念习题答案集合是数学中的一个基本概念,它表示一组具有某种特定性质的对象的全体。
以下是一些集合概念的习题及其答案:1. 定义集合习题:定义一个集合A,包含所有小于10的正整数。
答案:集合A可以表示为A = {1, 2, 3, 4, 5, 6, 7, 8, 9}。
2. 集合的表示习题:用描述法和列举法表示集合B,B包含所有偶数。
答案:描述法:B = {x | x是偶数};列举法:B = {2, 4, 6,8, ...}。
3. 子集习题:判断集合C = {1, 3, 5, 7}是否是集合D = {1, 2, 3, 4, 5, 6, 7}的子集。
答案:C不是D的子集,因为C中的元素1, 3, 5, 7并不完全包含在D中。
4. 并集习题:求集合E = {1, 2, 3}和集合F = {3, 4, 5}的并集。
答案:E和F的并集是E ∪ F = {1, 2, 3, 4, 5}。
5. 交集习题:求集合G = {1, 2, 3, 4}和集合H = {3, 4, 5, 6}的交集。
答案:G和H的交集是G ∩ H = {3, 4}。
6. 差集习题:求集合I = {1, 2, 3, 4, 5}和集合J = {4, 5, 6, 7}的差集。
答案:I和J的差集是I - J = {1, 2, 3}。
7. 幂集习题:求集合K = {a, b}的幂集。
答案:K的幂集是P(K) = {∅, {a}, {b}, {a, b}}。
8. 集合的运算习题:求集合L = {1, 2}和集合M = {2, 3}的差集、交集和并集。
答案:L和M的差集是L - M = {1},交集是L ∩ M = {2},并集是L ∪ M = {1, 2, 3}。
9. 无限集合习题:描述自然数集合N。
答案:自然数集合N可以表示为N = {1, 2, 3, ...}。
10. 集合的相等习题:判断集合O = {1, 2, 3}和集合P = {3, 2, 1}是否相等。
集合的基本概念与运算习题
题型一集合的基本概念【例1】(2009·山东)集合A={0,2,a},B={1,a 2},若A ∪B={0,1,2,4,16},则a 的值为()A.0B.1C.2D.4解∵A={0,2,a},B={1,a 2},A ∪B={0,1,2,4,16},Q a 2=16;a=4∴a=4.知能迁移1设a,b ∈R ,集合{1,a+b,a}=则b-a 等于()A.1B.-1C.2D.-2解析∵a≠0,∴a+b=0又{1,a+b,a}=∴b=1,a=-1.∴b-a=2.题型二集合与集合的基本关系【例2】已知集合A={x|0<ax+1≤5},集合B=(1)若A B ,求实数a 的取值范围;(2)若BA ,求实数a 的取值范围;(3)A 、B 能否相等?若能,求出a 的值;若不能,试说明理由.解{0,,},bb a1.ba \=-1{|2}.2x x -<£ÍÍ{0,,},bb a(1)当a=0时,若A B ,此种情况不存在.当a<0时,若AB ,如图,当a>0时,若A B ,如图,综上知,当AB 时,a<-8或a ≥2.(2)当a=0时,显然B A ;当a<0时,若B A ,如图,当a>0时,若B A ,如图,综上知,当B A 时,(3)当且仅当A 、B 两个集合互相包含时,A=B.由(1)、(2)知,a=2.知能迁移2已知A={x|x2-8x+15=0},B={x|ax-1=0},若B A ,求实数a.解A={3,5},当a=0时,当a ≠0时B=要使B A ,Í4182,,8.1122a a a a aìì<->-ïïï\\<-íí£-ïï-£îïî则Í1122,. 2.422a a a a aì-³-ïì³ïï\\³íí³ïïî£ïî则ÍÍÍ41812,.0;11222a a a a aìì³-£-ïïï\\-<<íí>-ïï->îïî则..,202224211£<\îí죣\ïïîïïíì³-£-a a a aa 则ÍÍ1|22a a ìüïï-<£íýïïîþÍ;B A =ÆÍ1{}.aÍ1135,a a ==则或1111.0.3535a a a ===即或综上或或Í题型三集合的基本运算【例3】已知全集U={1,2,3,4,5},集合A={x|x 2-3x+2=0},B={x|x=2a ,a ∈A},求集合∁U(A ∪B)中元素的个数.解∵A={x|x2-3x+2=0}={1,2},∴B={x|x=2a ,a ∈A}={2,4},∴A ∪B={1,2,4},∴∁U(A ∪B)={3,5},共有两个元素知能迁移3(2009·全国Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A ∪B,则集合∁U(A ∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个解析∵A={4,5,7,9},B={3,4,7,8,9},∴A ∪B={3,4,5,7,8,9},A ∩B={4,7,9},∴∁U(A ∩B)={3,5,8},∴∁U(A ∩B)共有3个元素.强化练习1.(2010陕西文数)1.集合A ={x-1≤x ≤2},B ={xx <1},则A ∩B =[D](A){x x <1}(B){x -1≤x ≤2}(C){x-1≤x ≤1}(D){x-1≤x <1}解析:本题考查集合的基本运算由交集定义得{x-1≤x ≤2}∩{xx <1}={x -1≤x <1}2.(2010辽宁文数)(1)已知集合{}1,3,5,7,9U =,{}1,5,7A =,则U C A =(A){}1,3(B){}3,7,9(C){}3,5,9(D){}3,9解析:选D.在集合U 中,去掉1,5,7,剩下的元素构成.U C A3.(2010辽宁理数)1.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ∁B ∩A={9},则A=(A ){1,3}(B){3,7,9}(C){3,5,9}(D){3,9}【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。
集合知识点总结带例题
集合知识点总结带例题一、基本概念1. 集合集合是由一些确定的对象构成的整体。
集合是一个无序的整体,它只关心集合中包含的元素,与元素的排列顺序无关。
2. 元素集合中的个体称为元素,元素可以是任何事物或对象,例如数字、字母、集合等。
3. 空集一个不包含任何元素的集合称为空集,通常用符号∅ 或 {} 表示。
4. 包含关系若集合 A 中的所有元素都是集合 B 中的元素,则称集合 A 包含在集合 B 中,通常用符号A⊆B 表示。
5. 相等关系若集合 A 包含在集合 B 中,并且集合 B 包含在集合 A 中,则称集合 A 和集合 B 相等,通常用符号 A=B 表示。
6. 子集若集合 A 包含在集合 B 中,且集合 A 不等于集合 B,则称集合 A 是集合 B 的子集,通常用符号A⊂B 表示。
7. 并集若集合 A 和集合 B 的元素都包含在一个新的集合中,则称该集合为 A 和 B 的并集,通常用符号A∪B 表示。
8. 交集若集合 A 和集合 B 的公共元素构成一个新的集合,则称该集合为 A 和 B 的交集,通常用符号A∩B 表示。
9. 完全集一个包含所有可能元素的集合称为完全集。
10. 互斥集若集合 A 和集合 B 没有共同的元素,则称集合 A 和集合 B 互斥。
二、运算1. 并集对于两个集合 A 和 B,它们的并集是一个包含 A 和 B 所有元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∪B={1,2,3,4,5}。
2. 交集对于两个集合 A 和 B,它们的交集是一个包含 A 和 B 共同元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∩B={3}。
3. 补集对于一个集合 A,它在另一个集合 U 中的补集是指 U 中不属于 A 的元素所组成的集合,通常用符号 A' 或 A^c 表示。
4. 差集对于两个集合 A 和 B,它们的差集是包含在 A 中但不包含在 B 中的元素所组成的集合,通常用符号 A-B 表示。
集合经典练习题含答案
.集合学习过程一、复习预习考纲要求:1.理解集合的概念。
2.能在具体的数学环境中,应用集合知识。
3.特别是集合间的运算。
4.灵活应用集合知识与其它知识间的联系,集合是一种方法。
二、知识讲解1.集合的相关概念基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.常见的数集:自然数集、整数集、有理数集、实数集2集合间的关系任何一个集合是它本身的子集,记为A A;空集是任何集合的子集,记为 A ;空集是任何非空集合的真子集;n 元集的子集个数共有2n个;真子集有2n1个;非空子集有2n1个;非空的真子集有2n 2 个.3.集合间的运算交: A B{ x | x A,且 x B}并: A B{ x | x A或 x B}补: C U A{ x U ,且x A}4主要性质和运算律( 1)A A,A,A U,C U A U,包含关系:B, B C A C; A B A, A B B;A B A,A B B.A( 2)等价关系: A B A B A A B B C U A B U( 3)集合的运算律:交换律: A B B A; A B B A.新课标第一网结合律:(A B) C A( B C); (A B)C A(B C)分配律 :.A(BC)( A B)( A C); A( B C )( A B)( A C )三、例题精析考点一子集、真子集【例题 1】:集合{ 1,0,1}共有个子集【答案】: 8【解析】: n 元集的子集个数共有2n个,所以是8个。
【例题 2】:设集合M { x | x k 1, k Z},N{ x | x k1, k Z} ,则2442(A)M N(B)MN(C)MN(D)M N【答案】: B【解析】:由集合之间的关系可知,M N ,或者可以取几个特殊的数,可以得到B 考点二集合的简单运算【例题 3】:已知集合M{1,2,3}, N {2,3,4} ,则A.M N B.N M C.M N {2,3} D.M N {1,4}【答案】: C【解析】:根据集合的运算,正确的只有C。
数学高中集合大题练习题及讲解
数学高中集合大题练习题及讲解集合是数学中描述对象的集合体,是高中数学中的重要组成部分。
以下是一些集合相关的大题练习题及讲解:### 练习题1:集合的运算设集合A = {1, 2, 3},集合B = {2, 3, 4},求以下集合运算的结果:1. A ∪ B(A并B)2. A ∩ B(A交B)3. A - B(A减B)讲解:1. A ∪ B表示A和B中所有元素的集合,不重复地列出,即{1, 2, 3, 4}。
2. A ∩ B表示A和B中共有的元素,即{2, 3}。
3. A - B表示A中有而B中没有的元素,即{1}。
### 练习题2:子集与幂集设集合S = {a, b, c},求:1. S的所有子集。
2. S的幂集。
讲解:1. S的所有子集包括空集以及S中所有元素的所有组合,即:∅,{a},{b},{c},{a, b},{a, c},{b, c},{a, b, c}。
2. S的幂集是S所有子集的集合,即:{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}。
### 练习题3:集合的包含关系设集合A = {1, 2, 3},集合B = {2, 3, 4, 5},判断A是否是B的子集,并说明理由。
讲解:A不是B的子集,因为A中的元素1不在B中。
子集的定义是如果集合A的所有元素都在集合B中,那么A是B的子集。
### 练习题4:集合的相等集合A = {1, 2, 3}和集合C = {3, 2, 1}是否相等?为什么?讲解:集合A和C相等。
根据集合的性质,集合的元素是无序的,即元素的排列顺序不影响集合的相等性。
### 练习题5:描述法和列举法用描述法表示集合{x | x是小于10的正整数},并用列举法表示集合{x | x是偶数}。
讲解:1. 描述法表示为{x | x ∈ N, 1 ≤ x < 10},其中N表示自然数集合。
2. 列举法表示为{2, 4, 6, 8, 10}。
高中集合练习题及讲解及答案
高中集合练习题及讲解及答案集合是数学中的基本概念之一,它涉及到元素和集合之间的关系。
以下是一些高中集合练习题,以及相应的讲解和答案。
练习题1:已知集合A = {x | x > 3},B = {x | x < 5},求A∪B。
讲解:A∪B表示集合A和集合B的并集,即包含在A或B中的所有元素的集合。
答案:A∪B = {x | x < 5 或 x > 3},由于x > 3已经包含了x < 5的所有情况,所以A∪B = R,即所有实数。
练习题2:设集合C = {y | y = x^2, x ∈ Z},求C中所有元素的和。
讲解:集合C由所有整数的平方组成。
我们需要找出所有整数的平方并将它们相加。
答案:C = {0, 1, 4, 9, 16, ...},即所有整数的平方。
由于整数是无限的,它们的平方之和也是无限的,所以这个问题没有具体的数值答案。
练习题3:给定集合D = {1, 2, 3, 4, 5},E = {x | x ∈ D 且 x > 2},求D∩E。
讲解:D∩E表示集合D和集合E的交集,即同时属于D和E的所有元素的集合。
答案:E = {3, 4, 5},因此D∩E = {3, 4, 5}。
练习题4:集合F = {x | x^2 - 5x + 6 = 0},求F的元素。
讲解:要找出集合F的元素,我们需要解这个二次方程。
答案:x^2 - 5x + 6 = 0,分解因式得 (x - 2)(x - 3) = 0,所以x = 2 或x = 3。
因此,F = {2, 3}。
练习题5:已知集合G = {x | x 是质数},求G中小于20的所有元素。
讲解:质数是指只能被1和它本身整除的大于1的自然数。
答案:G中小于20的质数有:2, 3, 5, 7, 11, 13, 17, 19。
这些练习题涵盖了集合的基本操作,如并集、交集、元素的求法等,是高中数学课程中常见的题目。
通过解决这些问题,学生可以加深对集合概念的理解。
集合经典大题及解析 -回复
集合经典大题及解析一、集合的基本概念1.1 集合与元素问题:什么是集合?什么是元素?它们之间的关系是什么?解析:集合是由一组具有共同特征的元素组成的整体。
这个整体称为集合,而组成这个整体的每一个元素称为元素。
元素是集合的一部分,且必须满足集合的定义。
1.2 集合的子集问题:什么是子集?如何判断一个集合是否为另一个集合的子集?解析:如果一个集合中的所有元素都是另一个集合中的元素,那么这个集合称为另一个集合的子集。
判断一个集合是否为另一个集合的子集,可以通过将两个集合进行比较,检查前者是否包含在后者中。
1.3 集合的并集与交集问题:什么是并集和交集?如何计算两个集合的并集和交集?解析:并集是将两个集合的所有元素合并在一起,形成一个新的集合。
交集则是从两个集合中选出共同的元素组成一个新的集合。
计算并集和交集可以通过简单的数学运算来实现。
1.4 集合的补集问题:什么是补集?如何计算一个集合的补集?解析:补集是指在一个集合中去掉所有属于另一个集合的元素后剩下的元素组成的集合。
计算补集可以通过先找出不属于另一个集合的元素,然后将这些元素组成一个新的集合。
二、集合的关系2.1 子集与真子集问题:什么是真子集?如何判断一个集合是否为另一个集合的真子集?解析:真子集是指在一个集合中去掉所有不属于另一个集合的元素后剩下的元素组成的集合。
判断一个集合是否为另一个集合的真子集,可以通过比较两个集合的大小来确定。
2.2 集合相等问题:什么是集合相等?如何判断两个集合是否相等解析:如果两个集合中的元素完全相同,那么这两个集合相等。
判断两个集合是否相等,可以通过比较两个集合中的每一个元素来确定。
2.3 空集问题:什么是空集?空集有哪些性质?解析:空集是指没有任何元素的集合。
空集具有以下性质:(1) 空集是任何非空集合的真子集;(2) 任何元素都属于空集;(3) 空集的补集也是空集。
三、集合的运算性质3.1 集合的并运算问题:什么是并运算?如何计算两个集合的并运算?解析:并运算是指将两个或多个集合合并成一个新集合的操作。
集合练习题含答案
集合练习题含答案1. 定义题:什么是集合?请给出集合的三个基本性质。
- 答案:集合是由一些确定的、不同的元素所组成的整体。
集合的三个基本性质包括:确定性(集合中的元素是明确的)、互异性(集合中不会有重复的元素)、无序性(元素的排列顺序不影响集合的确定性)。
2. 列举题:列举出集合{1, 2, 3, 4, 5}的所有子集。
- 答案:集合{1, 2, 3, 4, 5}的所有子集包括空集∅和所有可能的元素组合,共32个子集。
3. 运算题:设集合A={1, 2, 3},B={2, 3, 4},求A∪B和A∩B。
- 答案:A∪B={1, 2, 3, 4},表示A和B中所有元素的集合。
A∩B={2, 3},表示A和B中共有的元素集合。
4. 关系题:如果集合C={x | x是偶数},D={x | x是小于10的正整数},判断C和D的关系。
- 答案:C是D的子集,因为C中的所有元素都是偶数,而D包含了所有小于10的正整数,包括了C中的所有元素。
5. 证明题:证明对于任意集合A,A⊆A。
- 答案:根据子集的定义,如果集合A中的每一个元素都是集合A的元素,则A是A的子集。
因为集合A中的元素自然属于A本身,所以A⊆A。
6. 应用题:某班级有30名学生,其中15名喜欢数学,12名喜欢物理,8名既喜欢数学又喜欢物理。
求至少喜欢一门科目的学生人数。
- 答案:设喜欢数学的学生集合为M,喜欢物理的学生集合为P。
根据集合的并集公式,至少喜欢一门科目的学生人数为|M∪P| = |M|+ |P| - |M∩P| = 15 + 12 - 8 = 19。
7. 推理题:如果A={x | x是大于10的整数},B={x | x是小于20的整数},C={x | x是奇数},判断A∩(B∪C)是否为空集。
- 答案:A∩(B∪C)不为空集。
因为B∪C包含了所有小于20的整数,而A包含了所有大于10的整数,所以它们有交集,即11, 13, 15, 17, 19。
集合计算练习题(打印版)
集合计算练习题(打印版)### 集合计算练习题一、集合的基本概念1. 定义集合A={1, 2, 3},集合B={3, 4, 5},求A∪B(A和B的并集)。
2. 已知集合C={x | x是小于10的正整数},求C的元素个数。
3. 若集合D={x | x是偶数},集合E={x | x是3的倍数},求D∩E(D和E的交集)。
二、集合运算4. 集合F={1, 2, 3, 4},集合G={2, 3, 5, 6},计算F∩G(F和G的交集)。
5. 集合H={x | x是5到10之间的整数},求H的补集(相对于自然数集N)。
6. 集合I={x | x是小于20的质数},集合J={2, 3, 5, 7, 11, 13, 17, 19},判断I和J是否相等,并说明理由。
三、集合的包含关系7. 集合K={1, 3, 5},集合L={1, 2, 3, 4, 5, 6},判断K是否是L的子集。
8. 集合M={x | x是4的倍数},集合N={x | x是8的倍数},判断M和N的包含关系。
9. 集合P={x | x是小于15的正整数},集合Q={1, 2, 3, ..., 14},判断P和Q是否相等。
四、集合的幂集10. 集合R={a, b},求R的幂集,并说明幂集中元素的个数。
11. 集合S={1, 2, 3},求S的幂集,并计算幂集中包含{1, 2}的子集个数。
五、集合的笛卡尔积12. 集合T={1, 2},集合U={x, y},求T×U(T和U的笛卡尔积)。
13. 集合V={a, b},集合W={0, 1},计算V×W,并说明结果中元素的个数。
六、集合的等价关系14. 集合X={1, 2, 3, 4},定义关系R={(x, y) | x和y同奇偶},判断R是否是等价关系,并说明理由。
15. 集合Y={x | x是小于20的正整数},定义关系S={(x, y) | x和y的和能被5整除},判断S是否是等价关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.给定集合A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合,给出如下三个结论:
①集合A={-4,-2,0,2,4}为闭集合;
②集合A={n|n=3k,k∈Z}为闭集合;
③若集合A1,A2为闭集合,则A1∪A2为闭集合.
答:m的取值范围为m≤4.
【训练2】已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.
答案4
【例3】►设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁UA)∩B=∅,则m的值是________.
其中正确结论的序号是________.
6.已知集合A= ,B={x|x2-2x-m<0},若A∩B={x|-1<x<4},则实数m的值为________.
7.(13分)(2012·衡水模拟)设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.
(1)求(∁IM)∩N;
(2)记集合A=(∁IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求实数a的取值范围.
A.2 014 B.0 C.-2 014 D.ln 2 014+e2 014
答案B
习题
1.(2011·广东)已知集合A={(x,y)|x,y是实数,且x2+y2=1},B={(x,y)|x,y是实数,且y=x},则A∩B的元素个数为().
A.0B.1C.2D.3
2.(2012·潍坊二模)设集合A= ,B={y|y=x2},则A∩B=().
A.[-2,2]B.[0,2]
C.[0,+∞)D.{(-1,1),(1,1)}
3.(2012·浙江)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁RB)=
().
A.(1,4)B.(3,4)
C.(1,3)D.(1,2)∪(3,4)
4.(2012·长春名校联考)若集合A={x||x|>1,x∈R},B={y|y=2x2,x∈R},则(∁RA)∩B=().
答案1或2
【训练3】(1)(2012·陕西)集合M={x|lgx>0},N={x|x2≤4},则M∩N=().
A.(1,2) B.[1,2) C.(1,2] D.[1,2]
(2)(2012·山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA)∪B为().
A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}
答案A
【真题探究2】►(2012·新课标全国)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为().
A.3 B.6 C.8 D.10
[答案]D
【试一试2】定义集合运算:AB={z|z=xy,x∈A,y∈B},设A={-2 014,0,20 14},B={lna,ea},则集合AB的所有元素之和为().
答案(1)C(2)C
【真题探究1】►(2012·北京)已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=().
A.(-∞,-1) B. C. D.(3,+∞)
[答案]D
【试一试1】已知全集U={y|y=log2x,x>1},集合P= ,则∁UP=().
A. B. C.(0,+∞) D.(-∞,0)∪
答案1.C2.B 3.B 4.C 5.②6. 8
7.解(1) (∁IM)∩N={2}.
(2)a的取值范围是{a|a≥3}.
第1讲 集合的概念和运算
【例1】►已知a∈R,b∈R,若 ={a2,a+b,0},则a2 014+b2 014=________.
答案1
【训练1】集合 中含有的元素个数为().
A.4 B.6 C.8 D.12
答案B
【例2】►已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B ⊆A,求实数m的取值范围.