高三数学第二轮专题讲座复习:函数的连续及其应用
高考数学难点突破_难点33__函数的连续及其应用
高考数学难点突破_难点33__函数的连续及其应用函数的连续及其应用是高考数学中的一个重要难点,对于很多学生来说,理解和掌握这个知识点是比较困难的。
本文将分为三个部分进行讲解,首先是函数连续的概念和定义;其次是连续函数的性质和判断方法;最后是函数连续的应用。
一、函数连续的概念和定义在数学中,函数连续是指函数在一些点上没有突变、断层,即在该点上没有跳跃,也没有突变的现象。
具体来说,对于函数f(x)在点x=a处连续,需要满足以下三个条件:1.函数在点x=a处存在;2.函数在点x=a处的左极限和右极限存在且相等;3.函数在点x=a处的极限等于函数在该点的函数值。
符号化表示如下:f(a-)=f(a+)=f(a)二、连续函数的性质和判断方法1.连续函数的四则运算性质:如果函数f(x)和g(x)在点x=a处连续,则它们的和、差、积、商也在点x=a处连续。
2.连续函数的复合函数性质:如果函数f(x)在点x=a处连续,函数g(x)在点x=b处连续,并且a是g(x)的定义域内特定点的函数值,则复合函数f(g(x))在点x=b处连续。
3.连续函数的初等函数性质:初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数等,它们在其定义域上都是连续的。
对于函数连续的判断方法,可以通过根据定义依次检查函数是否满足连续的条件,也可以利用函数的性质进行判断。
三、函数连续的应用1.函数连续与导数的关系:对于连续函数f(x),在其定义域内的每个点上都有导数存在。
2.函数连续与极值的关系:对于连续函数f(x),在闭区间[a,b]上,如果f(x)在内部点取得最大值或最小值,则必然在[a,b]的边界点或者内部存在极值。
3.函数连续与介值定理的关系:对于连续函数f(x),如果[a,b]上f(a)和f(b)异号,那么在(a,b)内必然存在一些点c,使得f(c)=0。
4.函数连续与零点存在性的关系:对于连续函数f(x),如果f(a)和f(b)异号,则在(a,b)内必然存在一些点c,使得f(c)=0。
高三数学函数的连续性与导数的概念_课件a
如果函数在区间内的每一点都连续, 则函数在该区间上连续。
Байду номын сангаас
函数连续性的性质
01
连续函数的和、差、积、商(分母不为零)仍为连 续函数。
02
连续函数的复合函数仍为连续函数。
03
连续函数的反函数仍为连续函数(反函数的定义域 和值域需满足条件)。
函数连续性的判定
判断函数在某一点是否连续,可以通 过计算该点的极限值并与该点的函数 值进行比较。
导数还可以用来确定函数的极值点,当一阶导数在该点由正变负或由负变正时,该点即为函数的极值 点。
详细描述
在极值点处,函数的导数等于0或不存在。通过求函数的二阶导数并分析其正负,可以判断该极值点 是极大值还是极小值。
导数与函数的拐点
总结词
导数还可以用来寻找函数的拐点,即函数图像的凹凸分界点。通过求函数的二阶导数并分析其正负,可以确定拐 点的位置。
在弹性力学中,连续性和导数用于描述物体的弹性和应力分布。
热传导
在热传导问题中,连续性和导数用于描述温度随时间和空间的变化 。
经济问题中的应用
供需关系
通过连续性和导数分析商品的价格与需求量、供应量之间的关系 。
投资回报
连续性和导数用于计算投资回报率,评估投资风险和收益。
经济增长
连续性和导数用于分析经济增长的速率和趋势。
求函数$f(x) = sin(x) + cos(x)$的最小正周 期。
综合习题
综合习题1
求函数$f(x) = x^2 + sin(x)$在区间$[0, 2pi]$上 的零点个数。
综合习题2
证明函数$f(x) = e^x - x - 1$在$R$上只有一个 零点。
高三数学第二轮专题复习系列(2)-- 函数
高三数学第二轮专题复习系列(2)-- 函数一、本章知识结构:二、高考要求(1)了解映射的概念,理解函数的概念.(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.(3)了解反函数的概念及互为反函数的函数图像间关系,会求一些简单函数的反函数. (4)理解分数指数的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质. (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、热点分析函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题。
在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新。
以基本函数为背景的应用题和综合题是高考命题的新趋势。
考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象。
②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点。
③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想。
四、复习建议1. 认真落实本章的每个知识点,注意揭示概念的数学本质①函数的表示方法除解析法外还有列表法、图象法,函数的实质是客观世界中量的变化的依存关系;②中学数学中的“正、反比例函数,一次、二次函数,指数、对数函数,三角函数”称为基本初等函数,其余的函数的解析式都是由这些基本初等函数的解析式形成的. 要把基本初等函数的图象和性质联系起来,并且理解记忆;③掌握函数单调性和奇偶性的一般判定方法,并能联系其相应的函数的图象特征,加强对函数单调性和奇偶性应用的训练;④注意函数图象的变换:平移变换、伸缩变换、对称变换等;函数的三要素函数的表示法 函数的性质 反函数 函数的应用 初等函数基本初等函数: 指数函数 对数函数对数指数映射函数射⑤掌握复合函数的定义域、值域、单调性、奇偶性;⑥理解掌握反函数的概念,会求反函数,弄清互为反函数的两个函数的定义域、值域、单调性的关联及其图像间的对称关系。
高三数学二轮复习教学案一体化:函数的性质及应用(2)
专题1 函数的性质及应用(2)高考趋势1.函数历来是高中数学最重要的内容,不仅适合单独命题,而且可以综合运用于其它内容.函数是中学数学的最重要内容,它既是工具,又是方法和思想.在江苏高考文理共用卷中,函数小题(不含三角函数)占较大的比重,其中江苏08年为3题,07年为4题.2.函数的图像往往融合于其他问题中,而此时函数的图像有助于找出解决问题的方向、粗略估计函数的一些性质。
另外,函数的图像本事也是解决问题的一种方法。
这些高考时常出现。
图像的变换则是认识函数之间关系的一个载体,这在高考中也常出现。
通过不同途径了解、洞察所涉及到的函数的性质。
在定义域、值域、解析式、图象、单调性、奇偶性、周期性等方面进行考察。
在上述性质中,知道信息越多,则解决问题越容易。
考点展示1. “龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是B2.函数xy 1=的图像向左平移2个单位所得到的函数图像的解析式是 21+=x y3. 函数)(x f 的图像与函数2)1(2---=x y 的图像关于x 轴对称,则函数)(x f 的解析式是2)1(2+-x4. 方程223x x -+=的实数解的个数为 25. 函数)1(x f y+=的图像与)1(x f y -=的图像关于 x=0 对称函数图象对称问题是函数部分的 一个重要问题,大致有两类:一类是同一个函数图象自身的对称性;一类是两个不同函数之间的对称性。
定理1 若函数y=f(x) 对定义域中任意x 均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线2a bx +=对称。
定理2 函数()y f a x ω=+与函数()y f a x ω=-的图象关于直线2b ax ω-=对称特殊地,函数y=f(a+x)与函数y=f(b-x)的图象关于直线2b ax -=对称。
【高三数学】二轮复习:专题二 第1讲 三角函数的图象与性质
)
A.sin x + 3
B.sin 3 -2x
C.cos 2x + 6
D.cos
5
-2x
6
答案 BC
解析 由题中函数图象可知2 =
2π π
+
3 6
x=
2
5π
5π
π
2π
= 2,则 T=π,所以 ω= =
3π
2π
=2,当
π
2π
= 12时,y=-1,所以 2× 12+φ= 2 +2kπ(k∈Z),解得 φ=2kπ+ 3 (k∈Z),所
看图比较容易得出,困难的是求ω和φ,常用如下两种方法
(1)由ω= 2 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或
T
下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入图象中已知点的坐标,将一些已知点(最高点、最低点或“零点”)坐
标代入解析式,再结合图象解出ω和φ,若对A,ω的符号或对φ的范围有要求,
高考数学
专题二
第1讲 三角函数的图象与性质
1.“1”的变换
1=sin 2α+cos 2α=cos 2α(1+tan2α).
这是针对函数中的单个变量x
2.三角函数图象变换
而言的
三角函数y=sin ωx的图象向左或向右平移φ(φ>0)个单位长度,得到的图象
对应函数解析式是y=sin[ω(x+φ)]或y=sin[ω(x-φ)],而不是y=sin(ωx+φ)或
以函数的解析式为 y=sin 2 +
高三数学第二轮专题讲座复习:函数的连续及其应用
在点 x0 处的函数值 f ( x0) 就可以了,即 lim f ( x)= f ( x0) x x0
典型题例示范讲解
例 1 已知函数
x2 f(x)=
4 ,
x2
(1)求 f(x)的定义域,并作出函数的图象;
(2)求 f (x)的不连续点 x0;
(3)对 f(x)补充定义,使其是 R 上的连续函数
命题意图 函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映
(2)f(x)中,区间 (-∞ ,- 1),[- 1,1],(1,5]上的三个函数都是初等函数,因此 续点 x=±1 外,再也无不连续点,
所以 f ( x) 的连续区间是 ( -∞ , - 1), [- 1,1 ]和 (1,5 ] 学生巩固练习
f(x)除不连
1
若 f(x)= 1 31
x x
1 在点 x=0 处连续,则 f(0) 等于 ( 1
(1) lim f(x)存在; f (x0)存在,但 lim f (x)≠ f( x0);
x x0
x x0
(2 ) lim f (x)存在,但 f(x0)不存在 (3) lim f(x)不存在
x x0
x x0
3 由连续函数的定义, 可以得到计算函数极限的一种方法
如果函数 f ( x) 在其定义区
间内是连续的, 点 x0 是定义区间内的一点, 那么求 x→ x0 时函数 f ( x) 的极限, 只要求出 f ( x)
x
a bx
x 0 处处连续,则 a 的值为 _________ x0
1
2x 1 5 已知函数 f(x )= 1
2x 1
1
(x 0) (x 0)
(1)f(x)在 x=0 处是否连续?说明理由; (2)讨论 f(x)在闭区间[- 1,0]和[ 0,1]上的连续性
(新人教A)高三数学第二轮复习第二讲函数的图像与性质
第二讲 函数(二)一、函数的图象1,图象的变换 (1)平移变换①函数(),y f x a =+的图象是把函数()y f x =的图象沿x 轴向右(0a >)或向右(0a <)平移||a 个单位得到的;②函数)0(,)(<+=a a x f y 的图象是把函数轴的图象沿y x f y )(=向上(0a >)或向下(0a <)平个单位得到的移a 。
(2)对称变换①函数)(x f y =与函数)(x f y -=的图象关于直线x=0对称;函数)(x f y =与函数)(x f y -=的图象关于直线y=0对称;函数)(x f y =与函数)(x f y --=的图象关于坐标原点对称; ②函数)(x a f y +=与函数)(x a f y -=的图象关于直线a x =对称。
③如果函数)(x f y =对于一切,R x ∈都有=+)(a x f )(a x f -,那么)(x f y = 的图象关于直线a x =对称。
④设函数y=f(x)的定义域为R ,满足条件f(a+x)=f(b -x),则函数y=f(x)的图像关于直线x=2ba +对称。
(3)伸缩变换①)0(),(>=a x af y 的图象,可将)(x f y =的图象上的每一点的纵坐标伸长)1(>a 或缩短)10(<<a 到原来的a 倍。
②)0(),(>=a ax f y 的图象,可将)(x f y =的图象上的每一点的横坐标伸长)10(<<a 或缩短)1(>a 到原来的a1倍。
例1.将下列变换的结果填在横线上: (1)将函数xy -=3的图象向右平移2个单位,得到函数 的图象;(2)将函数)13(log 2-=x y 的图象向左平移2个单位,得到函数 的图象;(3)将函数3)2(-=x y 的图象各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数 的图象. 解析:(1)关键是答案为23--=x y ,还是)2(3--=x y ,可以取一个点检验,将函数xy -=3的图象向右平移2个单位后点(-1,3)变为(1,3),故答案为)2(3--=x y ,即xy -=23(2)关键是答案为)213(log 2+-=x y ,还是]1)2(3[log 2-+=x y ,注意到)13(log 2-=x y 的图象向左平移2个单位后(1,1)变为点(-1,1),所以后者正确,故答案为)53(log 2+=x y ;(3)函数3)2(-=x y 的图象经过变换后,点(3,0)变为(9,1),故答案为3)131(-=x y .评析:总结上述解答,应该明白一个函数)(x f 的图象的各种变换都是针对基本变量x (或y )进行的,所以变换后发生的变化都应该紧随着变量x (或y )的后面,应认真总结这些经验.注意,函数图象变换的规律也可以应用到曲线方程表示的图形的变换. 例2.已知函数,1-=x xy 给出下列三个命题中正确命题的序号是 ①函数的图象关于点(1,1)对称; ②函数的图象关于直线x y -=2对称; ③将函数图象向左平移一个单位,再向下平移一个单位后与函数xy 1=重合. .答案:①、②、③.(提示:111y x =+-) 例3.将奇函数)(x f y =的图象沿着x 轴的正方向平移2个单位得到图象C ,图象D 与C 关于原点对称,则D对应的函数是( )A .)2(--=x f yB .)2(-=x f yC .)2(+-=x f yD .)2(+=x f y答案D .(提示:)2()2()(---=⇒-=⇒=x f y x f y x f y ,即).2(+=x f y例4.已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____.分析:由f(x +199)的解析式求f(x)的解析式运算量较大,但这里我们注意到,y=f(x +100)与y=f(x),其图象仅是左右平移关系,它们取得的最大值和最小值是相同的,由2214434()22y x x x =++=++,立即求得f(x)的最小值即f(x +199)的最小值是2. 2.利用图象解决函数问题熟练掌握函数图象的有关知识是学习函数以及解决函数问题的重要基本技能,在学习时要抓住下面两个要点:(1)学习函数图象的最基本的能力是熟练掌握所学过的基本初等函数(如正、反比例函数,二次函数,指数、对数函数,三角函数)的图象;(2)“数形结合”是一种很重要的数学方法,在解决许多函数、方程、不等式及其它与函数有关的问题时,常常运用“数形结合”的方法解答问题或帮助分析问题,运用“数形结合”解答问题需要有下述能力与经验:1)必须有能力准确把握问题呈现的全部图象特征;2)必须能够列出等价的数学式子表达问题的图象特征。
高三数学二轮复习专题讲解14 函数与导数
高三数学二轮复习专题讲解 第14讲 易错点-函数与导数专题综述函数与导数是高考中的重点和难点,各种题型都有考查,也有一定的计算量!但我们要必拿选择填空的中等题分数,主要考查的知识点有函数的概念(函数的定义域、解析式、值域)、性质(单调性、奇偶性、对称性)、图象,导数的概念及其几何意义;对这些知识理解不到位或把握不全面或对题意理解不准确,就容易造成会而不对、对而不全的结果专题探究探究1:函数性质掌握不牢致错函数的单调性、奇偶性、周期性等在考题中不限制于以课本的定义给出,我们要关注它们等价变形形式和相关结论,如单调性的等价变形形式有: (1)若[]12,,x x a b ∀∈,12x x ≠,()()()12120x x f x f x -->⎡⎤⎣⎦()()12120f x f x x x -⇔>-()f x ⇔在[],a b 上是增函数;()()()12120x x f x f x --<⎡⎤⎣⎦()()12120f x f x x x -⇔<-()f x ⇔在[],a b 上是减函数.(2) 若12x x ≠,且()()1212f x f x k x x ->-,则()y f x kx =-是增函数.奇偶性的相关结论有:(1)()f x 是偶函数⇔()()()()()()0f x f x f x f x f x f x =-⇔=⇔--=; (2)()f x 是奇函数⇔()()()()0f x f x f x f x -=-⇔+-=; (3)若函数()f x 在0x =处有意义,则()00f =;(4)()f x a +是偶函数,则()()f x a f x a +=-+,()f x 是偶函数,则()()f x a f x a +=-+. 利用函数的对称性与奇偶性会推导函数的周期性:(1)函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =;若()f x 为偶函数,则其周期为2T a =.(2)函数()y f x =()x ∈R 的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;函数()y f x =()x ∈R 的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数.(2022江苏联考)已知函数(1)y f x =-的图象关于直线1x =-对称,且对x R ∀∈有()() 4.f x f x +-=当(0,2]x ∈时,() 2.f x x =+则下列说法正确的是(). ()f x 的最小正周期是8 . ()f x 的最大值为5 . (2022)0f = . (2)f x +为偶函数 【规范解析】解:.A 因为(1)y f x =-的图象关于直线1x =-对称,所以()f x 关于直线2x =-对称;即有()(4)f x f x =--,()(4)f x f x -=-,又()()4f xf x +-=,所以(4)(4)4f x f x --++=,即()(4)4f x f x ++=,所以()4(f x f x =-+,又()4f x f x=--,()(4)(4)f x f x f x -=+=-,所以()(8)f x f x =+,所以()f x 的周期8T =,故 正确; .由 知(2022)(20228)f f =-(202288)(6)(2)4(2)440f f f f =--===-=-=-=,故 正确; .由 知()(4)f x f x -=+所以(2)(2)f x f x +=-+,则(2)f x +为偶函数,故 正确; .当(0,2]x ∈时,()2f x x =+,结合以上知函数图象大致为则()f x 的最大值为4,故 错误.故答案选:.ACD(2022福建联考)已知定义在 上的函数()f x ,对任意实数x 有(4)()f x f x +=-,函数(1)f x +的图象关于直线1x =-对称,若当(0,1]x ∈时()f x x =,则()A. ()f x 为偶函数B. ()f x 为周期函数C. (2023)1f =-D. 当[3,4)x ∈时,()f x =探究2:函数图象识别时不细致致错函数图象是函数性质的直观反映,由函数表达式识别函数图象时由于我们平时形成的一些错误的认识,还有惯性思维,不做深入的研究,导致得出错误的结论.我们在辨别图象时可从奇偶性、单调性、特殊值等方面来排除不合适的,从而得到正确答案.(2022福建联考)函数31()cos (66)31x x f x x x -=-+剟的图象大致为()A. B. C. D.【规范解析】解:函数31()cos (66)31x x f x x x -=-+剟,满足3113()cos()cos ()3113x xx x f x x x f x -----=-==-++,()f x ∴为奇函数,()f x 的图象关于原点对称,排除 ,.B 当x π=时,13()013f πππ-=<+,排除.C 故选.D (2022福建省福州市期中)我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.观察以下四个图象的特征,试判断与函数()1sin ,(,0)f x x x x x x ππ⎛⎫=--≠ ⎪⎝⎭剟相对应的图象是()A. B. C.D.探究3:比较大小时没有选对方法致错在比较数与式的大小时常利用指数函数、幂函数及对数函数单调性比较大小.若比较指数式与对数式的大小,或同是指数式(对数式)但底数不相同,这些情况下常利用中间量比较大小,常用的中间量是0,1,1-,有时也可借助13,2,22等中间量来比较大小.若两个式子结构比较复杂,但结构类似,这种情况下常利用式子的结构构造函数,然后利用函数单调性比较大小.(2022江苏联考)如果01a <<,那么下列不等式中正确的是()A. 1132(1)(1)a a ->- B. (1)log (1)0a a -+>C. 32(1)(1)a a ->+D. 1(1)1a a +->【规范解析】解:由题意 01a <<,所以()()10,1a -∈,()()11,2a +∈,得()1xy a =-为R 上的减函数,又1123>,所以()()113211a a ->-,10(1)(1=)1a a a +-<-而(1)log a y x -=单调递减,(1)(1)log (1)log 1=0a a a --+<, 32(1)1(1)a a -<<+,故选:.A(2022安徽省池州市单元测试)已知函数(2)y f x =-的图象关于直线2x =对称,在(0,)x ∈+∞时,()f x 单调递增.若ln3(4)a f =,(2)eb f -=,1(ln)(c f π=其中e 为自然对数的底数,π为圆周率),则a ,b ,c 的大小关系为()A. a c b >>B. a b c >>C. c a b >>D. c b a >>探究4:混淆两类切线致错求曲线的切线方程一定要注意区分“过点A 的切线方程”与“在点A 处的切线方程”的不同.虽只有一字之差,意义完全不同,“在”说明这点就是切点,“过”只说明切线过这个点,这个点不一定是切点,求曲线过某点的切线方程一般先设切点把问题转化为在某点处的切线,求过某点的切线条数一般也是先设切点,把问题转化为关于切点横坐标的方程实根个数问题.(2022山东模拟)已知直线y kx =是曲线x y e =的切线,也是曲线ln y x m =+的切线,则实数k =__________,实数m =__________. 【规范解析】解:设y kx =与x y e =和ln y x m =+的切点分别为11(,)x x e ,22(,ln )x x m +,x y e =的导数xy e '=,1x e k ∴=,且11x k x e=,解得11x =,k e ∴=;ln y x m =+的导数1y x'=,21k e x ∴==,21x e ∴=,又22ln kx x m =+,11ln 2.m e e e∴=⨯-=故答案为 ;2.(2022河南信阳月考)若曲线2y x =与ln()y x a =-有一条斜率为2的公切线,则()a =A. 1ln 22- B. 1ln 22C. ln 2-D. ln 2探究5:混淆导数与单调性的关系致错研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零.若研究函数的单调性可转化为解不等式()()()()1200a x x x x x --><>或0,首先根据a 的符号进行讨论,当a 的符号确定后,再根据12,x x 是否在定义域内讨论,当12,x x 都在定义域内时在根据12,x x 的大小进行讨论.(2022福建省福州市期中)已知函数()ln nx f x x mx xe =+-(1)当0n =时,讨论函数()f x 在区间(0,3)的单调性【规范解析】解:(1)当0n =时,函数()ln (03)f x x mx x x =+-<<,1(1)1()1m x f x m x x-+'=+-=当1m …时,(0,3)x ∈,()0f x '>,()f x ∴在(0,3)上单调递增, 当1m <时,令1()0,1f x x m'==-, ①当131m <-时,即23m <时, 由()0f x '>得:101x m <<-,由()0f x '<得:131x m<<-, ∴当23m <时,函数()f x 在1(0,)1m -上单调递增,在1(,3)1m-上单调递减. ②当131m-…时,即213m <…时,由03,()0x f x <<'>得03x <<,∴当213m <…时,函数()f x 在(0,3)上单调递增,综上所述:当23m …时,函数()f x 在(0,3)上单调递增;当23m <时,函数()f x 在1(0,)1m -上单调递增,在1(,3)1m -上单调递减.(2022河北联考)已知函数()ln sin f x a x x x =-+,其中a 为非零常数.(1)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围;探究6:混淆导数与极值的关系致错对于可导函数f (x ):x 0是极值点的充要条件是在x 0点两侧导数异号,且0()0f x '=,即0()0f x '=是x 0为极值点的必要而不充分条件.对于给出函数极大(小)值的条件,一定要既考虑0()0f x '=,又考虑检验“左正右负”或“左负右正”,防止产生增根.(2022河北省张家口市期中)已知函数()f x 的导函数()f x '的图象如图,则下列叙述正确的是()A. 函数()f x 只有一个极值点B. 函数()f x 满足(4)(1)f f -<-,且在4x =-处取得极小值C. 函数()f x 在2x =处取得极大值D. 函数()f x 在(),4-∞-内单调递减【规范解析】解:由导函数的图象可得,当2x <时,()0f x '≥,函数()f x 单调递增;当2x >时,()0f x '<,函数()f x 单调递减.所以函数()f x 的单调递减区间为()2,+∞, 只有当2x =时函数取得极大值,无极小值. 故选:.AC(2022湖南联考)已知函数()(3)2.x f x x e x -=++(1)证明:()f x 恰有两个极值点;探究7:函数零点与方程的根不会转化致错确定函数零点所在区间、零点个数或已知函数零点情况求参数,常通过数形结合转化为两个函数图象的交点个数问题,所以研究函数与方程问题不要得“意”忘“形”.(2022河北期中)已知函数,()e ,x xx a f x x x a⎧⎪=⎨⎪<⎩…,若存在不相等的1x ,2x ,3x ,满足123()()()f x f x f x ==,则实数a 的取值范围是__________.【规范解析】解:由题意可知,对于()xx f x e=,则1().x xf x e -'=当1x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减,当1x =时,函数()f x 取得最大值为1(1)f e =,如图,分别画出函数x xy e =和y x =在 上的图象,用一条平行于x 轴的直线y m =截图象,有3个交点时,即存在1x ,2x ,3x ,使得123()()()f x f x f x m ===,当(1,)a ∈+∞或(,0]a ∈-∞时,最多有2个交点,所以不成立;当(0,1)a ∈时,存在3个交点,所以a 的取值范围是(0,1). 故答案为:(0,1)(2022福建月考)函数()ln (),0()(2),(0)x x f x x x x ⎧-<=⎨-⎩…,若关于x 的方程22()()10f x af x -+=有6个不相等的实数根,则a 的取值范围是__________.专题升华函数的定义域是研究函数图象与性质的第一要素,性质是函数的基本属性,图象是其性质的外在表现;把握各性质的定义和等价表达式是根本;导数是研究函数性质的的根本工具,遇到参数时要紧记“分类讨论”;导函数图象与原函数图象的关系不能混淆!复合函数要会分解,定义域先行,内层函数的值域是外层函数的定义域,要清醒对待两者的身份!【答案详解】变式训练1【答案】.ABD【解析】由函数(1)f x +的图象关于直线1x =-对称可知,函数()f x 的图象关于 轴对称, 故()f x 为偶函数.选项 正确;由(4)()f x f x +=-,得(44)(4)()f x f x f x ++=-+=,()f x ∴是周期8T =的偶函数,(2023)(25381)(1)(1) 1.f f f f ∴=⨯-=-==选项 正确,选项 错误;设[3,4)x ∈,则4[1,0),4(0,1],x x -∈--∈()f x 为偶函数,(4)(4)f x f x ∴-=-,由(0,1]x ∈时,()f x =,得(4)(4.f x f x -=--又(4)()f x f x +=-,()(4)f x f x ∴=--=选项 正确.故选:.ABD变式训练2【答案】【解析】因为()1sin ,(,0)f x x x x x x ππ⎛⎫=--≠ ⎪⎝⎭剟,所以()()1sin f x x x f x x ⎛⎫-=-+=- ⎪⎝⎭,所以()f x 为奇函数,其图象关于原点中心对称,故排除 、 选项; 又0x π<<时,()10f =,令6x π=,则6sin 0666f ππππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭,故排除 选项.故选:.D变式训练3【答案】【解析】根据题意,函数(2)y f x =-的图象关于直线2x =对称,则函数()f x 的图象关于 轴对称,即函数()f x 为偶函数,满足()()f x f x -=,则1(l n )(l n )c f f ππ==,ln31444ln ln 120e e π->=>>=>>, 又由(0,)x ∈+∞时,()f x 单调递增,则有a c b >>;故选:.A变式训练4【答案】【解析】由2y x =得2y x '=,令22y x '==,解得1x =,由点斜式得切线方程:12(1)y x -=-,即21y x =-,由l n ()y x a =-,得1y x a '=-,令12y x a '==-,解得12x a =+,代入ln()y x a =-得:ln 2y =-,将1(,ln 2)2a +-代入21y x =-,得:11ln 22()1ln 222a a -=+-⇒=-,故选:.A变式训练5【解析】(1)由题知()cos 1(0)af x x x x'=-+>,若0a >,因为0x >,1cos 0x -…,则()0f x '>,所以()f x 在(0,)+∞上单调递增,若0a <,则当0,2a x ⎛⎫∈- ⎪⎝⎭时,2a x <-,从而11 / 11 ()2cos 1(1cos )0f x x x '<--+=-+…,所以()f x 在0,2a ⎛⎫- ⎪⎝⎭上单调递减,不满足题意,综上分析,a的取值范围是(0,).+∞变式训练6【解析】(1)证明:依题意()f x 的定义域为 ,()(2)2x f x x e -'=-++,令()(2)2x m x x e -=-++,()(1).x m x x e -'=+当(1,)x ∈-+∞时,()0m x '>,所以()f x '在(1,)-+∞单调递增;当(,1)x ∈-∞-时,()0m x '<,所以()f x '在(),1-∞-单调递减.又因为(1)20f e '-=-<,(0)0f '=,(2)20f '-=>,所以()f x '在(),1-∞-恰有1个零点0x ,在()1,-+∞恰有1个零点0,且当0(,)x x ∈-∞时,()0f x '>,当0(,0)x x ∈时,()0f x '<,当(0,)x ∈+∞时,()0.f x '>所以()f x 在0(,)x -∞单调递增,在0(,0)x 单调递减,在(0,)+∞单调递增.所以()f x 恰有一个极大值点0x 和一个极小值点0,即()f x 恰有两个极值点.变式训练7【解析】函数()f x 的图象如图所示,令()t f x =,结合图象可知,若关于x 的方程22()()10f x af x -+=有6个不等的实数根,则关于 的方程2210t at -+=在[0,1)有两个不等实数根,因为221y t at =-+的图象过点(0,1),则280014210a a a ⎧∆=->⎪⎪<<⎨⎪-+>⎪⎩,解得3.a <<故答案为:。
函数的连续性PPT课件
是第_____类间断点 .
x, x 1
二、研究函数 f ( x)
的连续性,并画出函数
1, x 1
的图形 .
2021/8/2
函数与极限
23
第23页/共27页
三、指出下列函数在指定范围内的间断点,并说明这些
间断点的类型,如果是可去间断点,则补充或改变
函数的定义使它连续 .
1、
f
(
x)
x 3
1, x,
3.第二类间断点 如果 f ( x)在点x0处的左、
右极限至少有一个不存在, 则称点x 为函数 0
f ( x)的第二类间断点.
例6
讨论函数
f
(x)
1 x
,
x 0,在x 0处的连续性.
x, x 0,
y
解 f (0 0) 0, f (0 0) ,
x 1为函数的第二类间断点. 这种情况称为无穷间断点.
x x
1在 1
x
R
上
.
2、 f ( x) x ,在x R 上 . tan x
四、讨论函数f( x Nhomakorabea lim n
1 1
x 2n x 2n
的连续性,若有间断
点,判断其类型 .
五、试确定 a, b 的值,使 f ( x) e x b , ( x a)( x 1)
(1)有无穷间断点x 0 ;(2)有可去间断点x 1 .
★
f
(
x)
1, 1,
当x是有理数时 , 当x是无理数时 ,
在定义域 R内每一点处都间断, 但其绝对值处 处连续.
判断下列间断点类型:
y
y f x
2021/8/2
x1 o
高三数学专题 函数连续性问题
高三数学专题函数连续性问题函数连续性是高中数学中一个重要的专题,它和函数的性质有着密切的关系。
函数连续性问题主要包括函数的连续性、间断点和间断性等内容。
下面将重点介绍函数连续性问题的相关概念和解题方法。
1. 函数的连续性函数的连续性是指函数在定义域内的每一个点都存在极限,并且函数在这些点上的极限等于函数在这些点上的函数值。
也就是说,如果函数在某一点的左极限和右极限存在且相等,那么函数在这一点就是连续的。
函数的连续性可以用数学定义来表示,如下所示:定义:设函数 $f(x)$ 在点 $x=a$ 的某一个邻域内有定义,如果 $\lim_{x \to a} f(x)=f(a)$,则称函数 $f(x)$ 在点 $x=a$ 连续。
设函数 $f(x)$ 在点 $x=a$ 的某一个邻域内有定义,如果 $\lim_{x \to a} f(x)=f(a)$,则称函数 $f(x)$ 在点 $x=a$ 连续。
2. 间断点和间断性当函数在某一点上不连续时,该点就被称为间断点。
间断点的种类有三种:1. 可去间断点:也称为去除不连续点,指的是在某一点上存在极限,只需要对函数在该点进行修正或定义,就可以使函数连续。
2. 跳跃间断点:也称为绝对不连续点,指的是在某一点上的左极限和右极限存在,但两者不相等。
3. 无穷间断点:指的是在某一点上的左极限或右极限为无穷大,或者两者中至少有一个不存在。
3. 解题方法在解决函数连续性问题时,可以采用以下方法:1. 观察函数的定义域和值域,找出函数可能的间断点;2. 分析间断点的性质,并确定其类型;3. 运用极限的相关定理或其他相关数学知识,来判断函数在间断点是否连续;4. 根据函数在不同区间的连续性情况,综合判断函数的连续性。
需要注意的是,解决函数连续性问题时,可以利用函数在不连续点附近的局部性质来分析,同时还需要注意避免除数为零等数学错误。
结论函数连续性问题是高中数学中的重要内容之一,它涉及到函数的连续性、间断点和间断性等概念。
《函数连续性说》课件
03
函数连续性的应用
在微积分中的应用
极限理论
函数连续性是微积分中的基本概念,极限理论中的许多概念和定理都与连续性密切相关。 例如,连续函数的极限性质、闭区间上连续函数的性质等。
导数与微分
连续函数在某一点的导数定义为该点附近函数值的增量与自变量增量的比值。如果函数在 某点可导,则该点必连续。同时,连续函数的微分也是其导数的近似值,这在近似计算和 误差估计中具有重要应用。
不定积分与定积分
不定积分是求原函数的过程,而原函数的存在性要求被积函数必须是连续的。定积分则是 求某个区间上函数的面积,而连续函数在该区间上的定积分存在且唯一。
在实数理论中的应用
实数完备性
实数理论中的许多重要定理都与连续性有关。例如,实数完备性定理指出,实 数集具有完备性,即实数集上的任何有界序列都存在极限。这个定理的证明过 程中涉及到了连续函数的性质。
《函数连续性说》ppt课件
• 函数连续性的定义 • 函数连续性的判定 • 函数连续性的应用 • 函数连续性的扩展
01
函数连续性的定义
函数连续性的数学定义
函数在某点连续的定义
如果函数在某点的极限值等于函数值,则函数在该点连续。
函数在区间上连续的定义
如果函数在区间的每一点都连续,则函数在该区间上连续。
函数连续性的几何意义
01
连续函数的图像是连绵不断的曲 线,没有间断点。
02
在直角坐标系中,连续函数的图 像是一条光滑的曲线。
函数连续性的性质
连续函数的和、差、积、商(分母不 为零)仍然为连续函数。
连续函数在闭区间上具有最大值和最 小值,分别在区间的端点和极值点取 得。
02
函数连续性的判定
高三数学第二轮专题讲座复习:函数的连续及其应用
高三数学第二轮专题讲座复习:函数的连续及其应用高考要求 函数的连续性是新增加的内容之一 它把高中的极限知识与大学知识紧密联在一起 在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点 本节内容重点阐述这一块知识的知识结构体系 重难点归纳 1 深刻理解函数f (x )在x 0处连续的概念等式lim 0x x →f (x )=f (x 0)的涵义是(1)f (x 0)在x =x 0处有定义,即f (x 0)存在;(2)lim 0x x →f (x )存在,这里隐含着f (x )在点x =x 0附近有定义;(3)f (x )在点x 0处的极限值等于这一点的函数值,即lim 0x x →f (x )=f (x 0) 函数f (x )在x 0处连续,反映在图象上是f (x )的图象在点x =x 0处是不间断的 2 函数f (x )在点x 0不连续,就是f (x )的图象在点x =x 0处是间断的 其情形(1)lim 0x x →f (x )存在;f (x 0)存在,但lim 0x x →f (x )≠f (x 0);(2)lim 0x x →f (x )存在,但f (x 0)不存在 (3) lim 0x x →f (x )不存在 3 由连续函数的定义,可以得到计算函数极限的一种方法 如果函数f (x )在其定义区间内是连续的,点x 0是定义区间内的一点,那么求x →x 0时函数f (x )的极限,只要求出f (x )在点x 0处的函数值f (x 0)就可以了,即lim 0x x →f (x )=f (x 0) 典型题例示范讲解例1已知函数f (x )=242+-x x ,(1)求f (x )的定义域,并作出函数的图象;(2)求f (x )的不连续点x 0;(3)对f (x )补充定义,使其是R 上的连续函数 命题意图 函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映 因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法 知识依托 本题是分式函数,所以解答本题的闪光点是能准确画出它的图象 错解分析 第(3)问是本题的难点,考生通过自己对所学连续函数定义的了解 应明确知道第(3)问是求的分数函数解析式 技巧与方法 对分式化简变形,注意等价性,观察图象进行解答 解 (1)当x +2≠0时,有x ≠-2因此,函数的定义域是(-∞,-2)∪(-2,+∞)当x ≠-2时,f (x )=242+-x x =x -2,其图象如上图(2)由定义域知,函数f (x )的不连续点是x 0=-2(3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 22-=-→-→x x f x x =-4因此,将f (x )的表达式改写为f (x )=⎪⎩⎪⎨⎧-=--≠+-2)( 4)2( 242x x x x 则函数f (x )在R 上是连续函数例2求证 方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b 命题意图 要判定方程f (x )=0是否有实根 即判定对应的连续函数y =f (x )的图象是否与x 轴有交点,因此根据连续函数的性质,只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可 本题主要考查这种解题方法 知识依托 解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正 错解分析 因为本题为超越方程,因而考生最易想到画图象观察,而忽视连续性的性质在解这类题目中的简便作用 证明 设f (x )=a sin x +b -x ,则f (0)=b >0,f (a +b )=a ·sin(a +b )+b -(a +b )=a [sin(a +b )-1]≤0,又f (x )在(0,a +b ]内是连续函数,所以存在一个x 0∈(0,a +b ],使f (x 0)=0,即x 0是方程f (x )=0的根,也就是方程x =a ·sin x +b 的根因此,方程x =a sin x +b 至少存在一个正根,且它不大于a +b例3已知函数f (x )=⎪⎩⎪⎨⎧≤<-≤≤-+-<)51( )1(log )11( )1()1( 32x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性;(2)求f (x )的连续区间 解 (1)lim 1--→x f (x )=3, lim 1+-→x f (x )=-1,所以lim 1-→x f (x )不存在,所以f (x )在x =-1处不连续,但lim 1-→x f (x )=f (-1)=-1, lim 1--→x f (x )≠f (-1),所以f (x )在x =-1处右连续,左不连续lim 1-→x f (x )=3=f (1), lim 1+→x f (x )不存在,所以lim 1→x f (x )不存在,所以f (x )在x =1不连续,但左连续,右不连续 又lim 0→x f (x )=f (0)=0,所以f (x )在x =0处连续(2)f (x )中,区间(-∞,-1),[-1,1],(1,5]上的三个函数都是初等函数,因此f (x )除不连续点x =±1外,再也无不连续点,所以f (x )的连续区间是(-∞,-1),[-1,1]和(1,5 学生巩固练习 1 若f (x )=11113-+-+x x 在点x =0处连续,则f (0)等于( )A 23 B 32C 1D 02 设f (x )=⎪⎪⎩⎪⎪⎨⎧<<=<<21 11 2110 x x x x 则f (x )的连续区间为( )A (0,2)B (0,1) C (0,1)∪(1,2)D (1,2)3 x x x x arctan 4)2ln(lim 21--→ =_________ 4 若f (x )=⎪⎩⎪⎨⎧≥+<--0 0 11x bx a x x x 处处连续,则a 的值为_________ 5 已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧=≠+-)0( 1)0( 121211x x x x (1)f (x )在x =0处是否连续?说明理由;(2)讨论f (x )在闭区间[-1,0]和[0,1]上的连续性 6 已知f (x )=⎪⎩⎪⎨⎧≥+<--)0()0(11x bx a x x x (1)求f (-x );(2)求常数a 的值,使f (x )在区间(-∞,+∞)内处处连续 7 求证任何一个实系数一元三次方程a 0x 3+a 1x 2+a 2x +a 3=0(a 0,a 1,a 2,a 3∈R ,a 0≠0)至少有一个实数根 8 求函数f (x )=⎪⎩⎪⎨⎧>-≤)1( )21(log )1( 2x x x x 的不连续点和连续区间 参考答案 1 解析 ]11][11)1()[11(]11)1()[11)(11()(3332332-+++++++++++-+++=x x x x x x x x x f 2311111)0(1111)1(323=+++=++++++=f x x x 答案 A 2 解析 11lim )(lim 11==++→→x x x f 21)1(1)(lim ,1lim )(lim 111=≠===→→→--f x f x x f x x x即f (x )在x =1点不连续,显知f (x )在(0,1)和(1,2)连续 答案 C 3 解析 利用函数的连续性,即)()(lim 00x f x f x x =→,π=--=--∴→11arctan 4)12sin(11arctan 4)2sin(lim 221x x x 答案π121,0)(lim )(lim 21111lim 11lim )(lim :.400000=∴=+==-+=--=++---→→→→→a bx a x f xx x x f x x x x x 解析答案 215 解 f (x )=⎪⎩⎪⎨⎧=≠+-)0( 1)0(12111x x x (1) lim 10-→x f (x )=-1, lim 0+→x f (x )=1,所以lim 0→x f (x )不存在,故f (x )在x =0处不连续(2)f (x )在(-∞,+∞)上除x =0外,再无间断点,由(1)知f (x )在x =0处右连续,所以f (x )在[-1,0]上是不连续函数,在[0,1]上是连续函数 6 解 (1)f (-x )=⎪⎩⎪⎨⎧≥-<-+)0( )0( 11x bx a x x x (2)要使f (x )在(-∞,+∞)内处处连续,只要f (x )在x =0连续,lim 0-→x f (x )= lim 0-→x x x --11=21111lim )11(lim 00=-+=-+--→→xx x x x x lim 0+→x f (x )=lim 0+→x (a +bx )=a ,因为要f (x )在x =0处连续,只要lim 0+→x f (x )= lim 0+→x f (x )= lim 0+→x f (x )=f (0),所以a =217 证明 设f (x )=a 0x 3+a 1x 2+a 2x +a 3,函数f (x )在(-∞,+∞)连续,且x →+∞时,f (x )→+∞;x →-∞时,f (x )→-∞,所以必存在a ∈(-∞,+∞),b ∈(-∞, +∞),使f (a )·f (b )<0,所以f (x )的图象至少在(a ,b )上穿过x 轴一次,即f (x )=0至少有一实根 8 解 不连续点是x =1,连续区间是(-∞,1),(1,+∞)。
高三数学第二轮复习专题讲座 人教版
高三数学第二轮复习专题讲座 人教版专题一 函数考点高考要求 1 映射的概念 了解 2 函数的概念 理解 3 函数的单调性的概念 了解 4 简单函数单调性的判断 掌握 5 函数的奇偶性 了解 6 反函数的概念了解 7 互为反函数的函数图象间的关系 了解 8 简单函数的反函数的求法 掌握 9 分数指数幂的概念 理解 10 有理数指数幂的运算性质 掌握 11 指数函数的概念、图象和性质 掌握 12 对数的概念 理解 13 对数的运算法制掌握 14 对数函数的概念、图象和性质 掌握 15运用函数的性质解决简单的实际问题掌握说明:1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中直接应用;2.理解和掌握:要求对所列知识内容有较为深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题;3.灵活和综合运用:要求系统的掌握知识的内在联系,能够运用所列知识分析和解决较为复杂的或综合性的问题.(以下两点分析主要针对的是2004年全国各地的高考试题,共15套) 二、高考考点分析:在2004年全国各地的高考题中,考查函数的试题或与函数有关的试题大约有56道,在150分中约占25分到30分.对函数,常常从以下几个方面加以考查.1知识点函数的解析式 定义域和值域(包括最大值和最小值) 函数的单调性 函数的奇偶性和周期性 函数的反函数 题量27335函数和一些分段函数,简单的函数方程为背景,难度以中等题和容易题为主,如: 例1.(重庆市)函数)23(log 21-=x y 的定义域是( D )A 、[1,)+∞B 、23(,)+∞C 、23[,1]D 、23(,1]例2.(天津市)函数123-=xy (01<≤-x )的反函数是( D )A 、)31(log 13≥+=x x yB 、)31(log 13≥+-=x x yC 、)131(log 13≤<+=x x yD 、)131(log 13≤<+-=x x y也有个别小题的难度较大,如 例3.(北京市)函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断:①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M ⋃=R ,则()()f P f M ⋃=R ④若P M R ⋃≠,则()()f P f M ⋃≠R 其中正确判断有( B )A 、 1个B 、 2个C 、 3个D 、 4个分析:若P M ⋂≠∅,则只有}0{=⋂M P 这一种可能.②和④是正确的.2.对数形结合思想、函数图象及其变换的考查.对图象的考查有6道试题,也以小题为主,难度为中等. 例4.(上海市)设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时f (x )的图象如右图,则不等式f (x )<0的解是]5,2()0,2( -. 例5.(上海市)若函数y =f (x )的图象可由函数y =lg(x +1)的图象绕坐标原点O 逆时针旋转2π得到,则f (x )为( A ) A 、10-x-1 B 、10x-1 C 、1-10-xD 、1-10x3.对函数思想的考查.利用函数的图象研究方程的解;利用函数的单调性证明不等式(常常利用函数的导数来判断和证明函数的单调性);利用函数的最值说明不等式恒成立等问题.在全部考题中,有7道小题考查了用函数研究方程或不等式的问题,有14道大题考查了函数与方程、不等式、数列等的综合问题. 例6.(1)(浙江省)已知⎩⎨⎧≥<-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是]23,(-∞.(2)(全国卷3)设函数2(1),1,()41, 1,x x f x x x ⎧+<⎪=⎨--≥⎪⎩则使得f (x )≥1的自变量x 的取值范围为( A )A 、(-∞,-2][0,10]B 、(-∞,-2][0,1]C 、(-∞,-2][1,10] D 、[-2,0][1,10]例7.(上海市)已知二次函数y =f 1(x )的图象以原点为顶点且过点(1,1),反比例函数y =f 2(x )的图象与直线y =x 的两个交点间距离为8,f (x )= f 1(x )+ f 2(x ). (1)求函数f (x )的表达式;(2)证明:当a >3时,关于x 的方程f (x )= f (a )有三个实数解.解:(1)由已知,设f 1(x )=ax 2,由f 1(1)=1,得a =1,故f 1(x )= x 2.设f 2(x )=xk(k >0),它的图象与直线y =x 的交点分别为A (k ,k )、B (-k ,-k ) 由AB =8,得k =8,故f 2(x )=x 8.所以f (x )=x 2+x8. (2)证法一:由f (x )=f (a )得x 2+x 8=a 2+a 8, 即x 8=-x 2+a 2+a 8.在同一坐标系内作出f 2(x )=x 8和f 3(x )= -x 2+a 2+a8的大致图象,其中f 2(x )的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线,f 3(x )的图象是以(0,a 2+a8)为顶点,开口向下的抛物线.因此,,f 2(x )与f 3(x )的图象在第三象限有一个交点,即f (x )=f (a )有一个负数解. 又因为f 2(2)=4,,f 3(2)= -4+a 2+a8 当a >3时,f 3(2)-f 2(2)= a 2+a8-8>0, 所以当a >3时,在第一象限f 3(x )的图象上存在一点(2,f (2))在f 2(x )图象的上方. 所以f 2(x )与f 3(x )的图象在第一象限有两个交点,即f (x )=f (a )有两个正数解. 因此,方程f (x )=f (a )有三个实数解. 证法二:由f (x )=f (a ),得x 2+x 8=a 2+a 8, 即(x -a )(x +a -ax8)=0,得方程的一个解x 1=a . 方程x +a -ax8=0化为ax 2+a 2x -8=0,由a >3,∆=a 4+32a >0,得 x 2=a a a a 23242+--, x 3=aa a a 23242++-,因为x 2<0, x 3>0, 所以x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a =aa a a 23242++-,则3a 2=a a 324+, a 4=4a ,得a =0或a =34,这与a >3矛盾,所以x 1≠ x 3. 故原方程f (x )=f (a )有三个实数解. 例8.(福建高考题)已知f (x )=2324()3x ax x x +-∈R 在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f (x )=3312x x +的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.解:(Ⅰ)f '(x )=4+2,22x ax - ∵f (x )在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x )=x 2-ax -2,方法一:① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ ⇔-1≤a ≤1,∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0∴A ={a |-1≤a ≤1}.方法二:①⇔ ⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1或-1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0, ∴A ={a |-1≤a ≤1}. (Ⅱ)由,02,0,3123242332=--=+=-+ax x x x x x ax x 或得 ∵△=a 2+8>0,∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a . ∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm +1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt +(m 2-2),方法一:②⇔ g (-1)=m 2-m -2≥0且g (1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}. 方法二:当m =0时,②显然不成立;当m ≠0时,②⇔m >0,g (-1)=m 2-m -2≥0 或m <0,g (1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}.说明:本题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力. 三、高考热点分析函数几乎贯穿了高中数学的始末,它与高中数学的每一部分内容几乎都有联系.对函数的认识,应该包含对函数的概念和性质的理解;对二次函数、指数函数、对数函数、三角函数等基本初等函数和分段函数的概念和性质的理解;函数图象的变换和应用;建立函数模型解决问题的意识等.在复习过程中,以下几点值得重视:1.重视对函数概念和基本性质的理解.包括定义域、值域(最值)、对应法则、对称性(包括奇偶性)、单调性、周期性、反函数、图象变换、基本初等函数(常常是载体)等.研究函数的性质要注意分析函数解析式的特征,同时要注意函数图象(形)的作用.对这部分知识的考查,除了一部分比较简单的小题直接考查函数某一方面的性质外,常常是对函数综合的类型较多(中等难度题,以小题和前三道大题为主),包括函数内部多种知识的综合,函数同方程、不等式、数列的综合.例1.(北京市)函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是( D )A . a ∈-∞(,]1B . a ∈+∞[,)2C . a ∈[,]12D . a ∈-∞⋃+∞(,][,)12 说明:涉及二次函数的单调性、反函数的概念、充分必要条件等知识.例2. (福建省)已知函数y =log 2x 的反函数是y =f —1(x ),则函数y = f —1(1-x )的图象是( C )例3.(全国高考题3)已知函数y =f (x )是奇函数,当x ≥0时,f (x )=3x -1,设f (x )的反函数是y =g (x ),则g (-8)=___-2_____.例4.(湖北省)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( B )A 、41B 、21 C 、2 D 、4例5.(北京市)在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最大 值(填“大”或“小”),且该值为-3.例6.(湖南省)设函数,2)2(),0()4(.0,2,0,)(2-=-=-⎩⎨⎧>≤++=f f f x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( C )A 、1B 、2C 、3D 、4例7.(江苏省)设k >1,f (x )=k (x -1)(x ∈R ) .在平面直角坐标系xOy 中,函数y =f (x )的图象与x 轴交于A 点,它的反函数y =f -1(x )的图象与y 轴交于B 点,并且这两个函数的图象交于P 点.已知四边形OAPB 的面积是3,则k 等于( B )A 、3B 、32C 、43D 、65例8.(上海市)记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1)求A ;(2)若B ⊆A , 求实数a 的取值范围. 解:(1)2-13++x x ≥0,得11+-x x ≥0, x <-1或x ≥1,即A =(-∞,-1) [1,+ ∞). (2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.因为a <1,所以a +1>2a ,故B =(2a ,a +1). 因为B ⊆A ,所以2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, 所以21≤a <1或a ≤-2,故当B ⊆A 时,实数a 的取值范围是(-∞,-2] [21,1).例9.(2003年全国理科高考题)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.解:函数xc y =在R 上单调递减.10<<⇔c不等式|2|1|2| 1.x x c R y x x c +->⇔=+-R 的解集为函数在上恒大于 22,2,|2|2,2,1|2|2.|2|121.211,,0.,, 1.(0,][1,).22x c x c x x c c x c y x x c c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞R 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为 2.重视利用导数研究函数的单调性等性质,进而证明一些不等式或转化一些不等式恒成立问题. 例10.(全国高考题1)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 分析:函数13)(23+-+=x x ax x f 在R 上递减等价于0)(≤'x f 恒成立.解:函数f (x )的导数:.163)(2-+='x ax x f当0)(≤'x f (x ∈R )时,)(x f 是减函数.23610()ax x x +-≤∈R .3012360-≤⇔≤+=∆<⇔a a a 且所以,所求a 的取值范围是(].3,-∞-说明:这类问题在2004年全国各地的高考题中大量出现,需重视. 例11.(重庆市)设函数()(1)(),(1)f x x x x a a =-->(1)求导数/()f x ;并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤成立,求a 的取值范围. 解:(1).)1(23)(2a x a x x f ++-='.0)(,;0)(,;0)(,:)())((3)(,,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(2)因故得不等式,0)()(21≤+x f x f :.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x ,代入前面不等式,两边除以(1+a ),并化简得.02522≥+-a a.0)()(,2,.)(212:21成立不等式时当因此舍去或解不等式得≤+≥≤≥x f x f a a a 例12.(2003年江苏高考题)已知n a ,0>为正整数. (Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意证明:(Ⅰ)因为nk knnC a x 0)(=∑=-k kn x a --)(,所以1)(--=-='∑k kn nk kn xa kC y nk n 0=∑=.)()(1111------=-n k k n k n a x n x a C (Ⅱ)对函数nn n a x x x f )()(--=求导数:nn n n n n n n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nx x f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1n n n n n a n n n a n n n n f --+>-+-++=+'+ ).()1())()(1(1n f n a n n n n n n n '+=--+>- 即对任意).()1()1(,1n f n n f a n n n '+>+'≥+四、二轮复习建议(正文用宋体五号字)1.进一步加强对基本概念、基础知识、基本方法的理解和训练(在函数性质和函数与其他知识的小综合上要多加训练,这是关键).2.在二轮复习过程中,做两件事情:一是分专题讲解“函数、导数与不等式”(重点)、“函数与数列”,二是在整个复习过程中,不断渗透函数的思想方法和数形结合的思想方法. 一些备选例题:1.(2000年春季)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( A )A 、b ∈(-∞,0)B 、 b ∈(0,1)C 、 b ∈(1,2)D 、 b ∈(2,+∞) 分析:显然,(想方程)方程f (x )=0的根为0、1、2,所以,可以设f (x )=ax (x -1)(x -2),与f (x )=ax 3+bx 2+cx +d 比较可得:b =-3a .(想不等式)又x >2时,有f (x )>0,于是有a >0,故b <0.2.(2000年上海)已知函数f (x )=xax x ++22,x ∈[)+∞,1.(1)当a =21时,求函数f (x )的最小值; (2)若对任意的x ∈[)+∞,1,f (x )>0恒成立,试求a 的取值范围.分析:本题考查求函数的最值的方法,以及等价变换和函数思想的运用.当a =21时,f (x )=221++xx ≥222212+=+⋅x x ,当且仅当22,21==x x x 即时等号成立,而[)∞+∉122,也就是说这个最小值是取不到的. 解:(1)当a =21时,f (x )=221++xx ,函数f (x )在区间[)+∞,1上为增函数(证明略),所以当x =1时,取到最小值f (1)=3.5.(2)解法一:f (x )>0恒成立,就是x 2+2x +a >0恒成立,而函数g (x )=x 2+2x +a 在[)+∞,1上增函数,所以当x =1时,g (x )取到最小值3+a ,故3+a >0,得:a >-3.解法二:f (x )>0恒成立,就是x 2+2x +a >0恒成立,即a >-x 2-2x 恒成立,这只要a 大于函数-x 2-2x 的最大值即可.而函数-x 2-2x 在[)+∞,1上为减函数,当x =1时,函数-x 2-2x 取到最大值-3,所以a >-3.说明:函数、方程不等式之间有着密切的联系,在解题时要重视这种联系,要善于从函数的高度理解方程和不等式的问题,也要善于利用方程和不等式的知识解决函数的问题.3.某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W (吨)与时间t (小时,且规定早上6时t =0)的函数关系为W =100t .水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管,问进水量选择为第几级时,既能保证该厂的用水(水塔中水不空)又不会使水溢出?分析:本题主要考查由实际问题建立函数关系式、并利用函数关系解决实际问题.解本题时, 在建立函数关系式后,根据题意应有0<y ≤300对t 恒成立(注意区分不等式恒成立和解不等式的关系). 解:设进水量选第x 级,则t 小时后水塔中水的剩余量为y =100+10xt -10t -100t ,且0≤t ≤16.根据题意0<y ≤300,∴0<100+10xt -10t -100t ≤300.0 1 2 xy由左边得x >1+10(t t11-)=1+10〔-2)211(-t +41〕, 当t =4时,1+10〔-2)211(-t +41〕有最大值3.5.∴x >3.5.由右边得x ≤t t 1020++1,当t =16时,tt 1020++1有最小值4.75,∴x ≤4.75. 综合上述,进水量应选为第4级.说明:a 为实数,函数f (x )定义域为D ,若a >f (x )对x D ∈恒成立,则a >f (x )的最大值;若a <f (x )对x D ∈恒成立,则a <f (x )的最小值.4.设()x f 是定义在[-1,1]上的偶函数,()x g 与()x f 的图象关于直线01=-x 对称.且当[]3,2∈x 时,()()()()为实数a x x a x g 32422---⋅=(1)求函数()x f 的表达式;(2)在(]6,2∈a 或()+∞,6的情况下,分别讨论函数()x f 的最大值,并指出a 为何值时,()x f 的图像的最高点恰好落在直线12=y 上.分析:(1)注意到()x g 是定义在区间[]3,2上的函数,因此,根据对称性,我们只能求出()x f 在区间[]0,1-上的解析式,()x f 在区间[]1,0上的解析式,则可以根据函数的奇偶性去求.简答:()⎪⎩⎪⎨⎧≤≤+-≤≤-+-=1024012433x ax x x ax x x f(2)因为()x f 为偶函数,所以,()x f (11≤≤-x )的最大值,必等于()x f 在区间[]1,0上的最大值.故只需考虑10≤≤x 的情形,此时,()ax x x f 243+-=.对于这个三次函数,要求其最大值,比较容易想到的方法是:考虑其单调性.因此,可以求函数()x f 的导数.简答:如果()+∞∈,6a 可解得:8=a ; 如果(]6,2∈a ,可解得:61833>=a ,与(]6,2∈a 矛盾.故当8=a 时,函数()x f 的图像的最高点恰好落在直线12=y 上.说明:(1)函数的单调性为研究最值提供了可能;(2)奇偶性可以使得我们在研究函数性质时,将问题简化到定义域的对称区间上. 5.已知函数3211()(1)32f x x b x cx =+-+ (b 、c 为常数),(Ⅰ) 若()f x 在x =1和x =3处取得极值,试求b 、c 的值;(Ⅱ)若()f x 在12(,),(,)x x x ∈-∞+∞上单调递增且在12(,)x x x ∈上单调递减,又满足211x x ->,求证:22(2)b b c >+;(Ⅲ) 在(Ⅱ)的条件下,若1t x <,试比较2t bt c ++与1x 的大小,并加以证明. 解: (Ⅰ)'2()(1)f x x b x c =+-+,由题意得:1和3是方程2(1)0x b x c +-+=的两根,113,1 3.b c -=+⎧∴⎨=⨯⎩解得3,3.b c =-⎧⎨=⎩ (Ⅱ)由题得:当12(,),(,)x x x ∈-∞+∞时,'()0f x >;12(,)x x x ∈时, '()0f x <.12,x x ∴是方程2(1)0x b x c +-+=的两根,则12121,,x x b x x c +=-=222121212212122212(2)24[1()]2[1()]4()41() 1.b bc b b cx x x x x x x x x x x x ∴-+=--=-+--+-=+--=--211x x ->,2221()10,2(2)x x b b c ∴-->∴>+.(Ⅲ) 在(Ⅱ)的条件下,由上一问知212(1)()(),x b x c x x x x +-+=-- 即212()(),x bx c x x x x x ++=--+所以2112112()()()(1),t bt c x t x t x t x t x t x ++-=--+-=-+-2121111,10,0,0,x x t t x t x t x >+>+∴+-<<<∴-<又 2121()(1)0,.t x t x t bt c x ∴-+->++>即。
高三数学函数的极限函数的连续性PPT优秀课件
函数f(x)在[a,b]上连续的定义:
如果f(x)在开区间(a,b)内连续,在左端
点x=a处有 xlimaf(x)=f(a),在右端点x=b
处有
lim
xb
f(x)=f(b),就说函数f(x)在闭区
间[a,b]上连续,或f(x)是闭区间[a,
b]上的连续函数
最大值 f(x)是闭区间[a,b]上的连续函数,如果对 于任意x∈[a,b],f(x1)≥f(x),那么f(x)在 点x1处有最大值f(x1) 最小值 f(x)是闭区间[a,b]上的连续函数,如果对 于任意x∈[a,b],f(x2)≤f(x),那么f(x)在 点x2处有最小值f(x2) 最大值最小值定理 如果f(x)是闭区间[a,b]上的连续函数,那 么f(x)在闭区间[a,b]上有最大值和最小值
xx0
limCC
xx0
xl im x0 xx0
l i m f ( x ) a l i m f ( x ) l i m f ( x ) a
x x 0
x x 0
x x 0
其趋中近于xl xim 0x0时 f的(x左)极a限表,示当x从左侧
于xxl 0im 时x0的f(右x)极a限表示当x从右侧趋近
变量x取正值并且无限增大时,如果 函数f(x)无限趋近于一个常数a,就说当x趋 向于正无穷大时,函数f(x)的极限是a
记作:lim f(x)=a,或者当x→+∞时,f(x)→a x
(2)当自变量x取负值并且绝对值无限增大时, 如果函数f(x)无限趋近于一个常数a,就说当x 趋向于负无穷大时,函数f(x)的极限是a
22
例2求下列函数的极限:
lim 3x2 1 x (x 1)3
lim x2 1 x2 x2 x2
高考数学难点突破_难点33__函数的连续及其应用
高考数学难点突破_难点33__函数的连续及其应用函数的连续及其应用1.函数的连续性函数的连续性是指在其定义域上,函数在任意一点的左右极限存在且相等,即函数在这一点处没有跳跃或间断现象。
具体来说,函数f(x)在x=a处连续,是指当x无限接近于a时,f(x)无限接近于f(a)。
要判断函数的连续性,可以通过求函数的极限来进行判断。
设函数f(x)定义域为D,x=a是D的一个聚点,则函数f(x)在x=a处连续的充要条件是:lim┬(x→a)f(x)=f(a)在求函数的极限时,可以运用极限的性质,如四则运算、复合函数的极限、三角函数的极限等。
2.应用题在高考中,经常会出现与函数的连续性相关的应用题,下面我们通过例题来具体分析:例1:设函数f(x)在(-∞,+∞)上连续,且f(1)=2,f(2)=4,f(3)=5,则方程f(x)=3的根的个数为()。
解析:根据题目中给出的条件,我们知道函数f(x)在x=1、x=2和x=3处的函数值,而函数在这些点上连续。
由于函数在这些点的函数值没有间断现象,所以可以用插值法求解方程f(x)=3的根。
由于f(1)=2,f(2)=4,f(3)=5,我们可以直观地发现,函数在x=2和x=3之间有一个根,所以方程f(x)=3的根的个数为1例2:已知函数f(x)在[-1,1]上连续,且f(x)满足f(x^2)=f(x),则f(0)的值为()。
解析:根据题目中给出的条件,我们可以看出函数f(x)存在关于x的对称性,即函数关于x轴对称。
所以,我们只需要找到函数f(x)在[0,1]上的值即可。
由于函数在[-1,1]上连续,所以可以得到f(1)=f((-1)^2)=f(-1),即f(1)=f(-1)。
由对称性可得f(0)=f(1)=f(-1)。
所以f(0)的值为f(1)=f(-1)。
因此,f(0)的值在题目中是无法确定的。
通过以上两个例题的分析,我们可以看出,对于函数的连续性应用题,需要根据题目中给出的条件来进行具体分析。
高三数学函数的极限与连续性PPT精品课件
如果 li m f(x)=a 且 li m f(x)=a,那么就说当
x→+∞
x→-∞
x 趋向于无穷大时,函数 f(x)的极限是 a.记作
li m f(x)=a
___x→_∞__________.也记作当 x→∞时,f(x)→a.
对于常数函数 f(x)=C(x∈R),也有 li m f(x)=C.
x→∞
x→0
x→0
A.1 B.2
C.3 D.4
• 【解析】 ①②正 确.
• 【答案】 B
2021/02/25
12
• 3.若f(x)在区间[a,b]上连续,则 下列说法中不正确的是( )
• A.在(a,b)内每点都连续
• B.在a点处左连续
• C.在b点处左连续
• D.在[a,b]上有最大值
• 【解析】 f(x)在闭区间[a,b]上连
2021/02/25
7
4.函数的连续性的概念
(1)如果函数 y=f(x)在点 x=x0 处及其附近有定义, 而且 lix→mx0 f(x)=__f_(x_0_)_,就说函数 f(x)在点 x0 处连续.
(2)如果函数 f(x)在某一开区间(a,b)内每一点处都 连续,就说函数 f(x)在开区间(a,b)内_连___续___.
(3)对于闭区间[a,b]上的函数,如果 f(x)在开区间
(a,b)内连续,在左端点 x=a 处有 li m f(x)=f(a),
x→a+
在右端点 x=b 处有 li m f(x)=__f(_b_)__,就说函数
x→b-
f(x)在闭区间[a,b]上连续.
2021/02/25
8
5.最大值、最小值定理 如果函数 f(x)在闭区间[a,b]上是连续函数, 那 么 f(x) 在 闭 区 间 [a , b] 上 有 ______最__大__值__和__最__小__值__________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张喜林制
[选取日期]
高三数学第二轮专题讲座复习:函数的连续及其应用 高考要求 函数的连续性是新增加的内容之一 它把高中的极限知识与大学知识紧密联在一起 在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点 本节内容重点阐述这一块知识的知识结构体系 重难点归纳 1 深刻理解函数f (x )在x 0处连续的概念
等式lim 0
x x →f (x )=f (x 0)的涵义是
(1)f (x 0)在x =x 0处有定义,即f (x 0)存在;
(2)lim 0
x x →f (x )存在,这里隐含着f (x )在点x =x 0附近有定义;
(3)f (x )在点x 0处的极限值等于这一点的函数值,即lim 0
x x →f (x )=f (x 0) 函数f (x )在x 0处连续,
反映在图象上是f (x )的图象在点x =x 0处是不间断的 2 函数f (x )在点x 0不连续,就是f (x )的图象在点x =x 0处是间断的 其情形
(1)lim 0x x →f (x )存在;f (x 0)存在,但lim 0
x x →f (x )≠f (x 0); (2)lim 0x x →f (x )存在,但f (x 0)不存在 (3) lim 0
x x →f (x )不存在 3 由连续函数的定义,可以得到计算函数极限的一种方法 如果函数f (x )在其定义区间内是连续的,点x 0是定义区间内的一点,那么求x →x 0时函数f (x )的极限,只要求出f (x )在点x 0处的函数值f (x 0)就可以了,即lim 0
x x →f (x )=f (x 0) 典型题例示范讲解
例1已知函数f (x )=2
42+-x x , (1)求f (x )的定义域,并作出函数的图象;
(2)求f (x )的不连续点x 0;
(3)对f (x )补充定义,使其是R 上的连续函数 命题意图 函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映 因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法 知识依托 本题是分式函数,所以解答本题的闪光点是能准确画出它的图象 错解分析第(3)问是本题的难点,考生通过自己对所学连续函数定义的了解 应明确知道第(3)问是求的分数函数解析式 技巧与方法 对分式化简变形,注意等价性,观察图象进行解答 解 (1)当x +2≠0时,有x ≠-2
因此,函数的定义域是(-∞,-2)∪(-2,+∞)
当x ≠-2时,f (x )=2
42+-x x =x -2,
其图象如上图
(2)由定义域知,函数f (x )的不连续点是x 0=-2
(3)因为当x ≠-2时,f (x )=x -2,
所以)2(lim )(lim 2
2-=-→-→x x f x x =-4
因此,将f (x )的表达式改写为f (x )=⎪⎩
⎪⎨⎧-=--≠+-2)( 4)2( 242x x x x
则函数f (x )在R 上是连续函数
例2求证 方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b 命题意图 要判定方程f (x )=0是否有实根 即判定对应的连续函数y =f (x )的图象是否与x 轴有交点,因此根据连续函数的性质,只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可 本题主要考查这种解题方法 知识依托 解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正 错解分析 因为本题为超越方程,因而考生最易想到画图象观察,而忽视连续性的性质在解这类题目中的简便作用 证明 设f (x )=a sin x +b -x ,
则f (0)=b >0,f (a +b )=a ·sin(a +b )+b -(a +b )=a [sin(a +b )-1]≤0,
又f (x )在(0,a +b ]内是连续函数,所以存在一个x 0∈(0,a +b ],使f (x 0)=0,即x 0是方程f (x )=0的根,也就是方程x =a ·sin x +b 的根
因此,方程x =a sin x +b 至少存在一个正根,且它不大于a +b
例3已知函数f (x )=⎪⎩⎪⎨⎧≤<-≤≤-+-<)51( )1(log )11( )1()1( 32
x x x x x x
(1)讨论f (x )在点x =-1,0,1处的连续性;
(2)求f (x )的连续区间 解 (1)lim 1--→x f (x )=3, lim 1+-→x f (x )=-1,所以lim 1
-→x f (x )不存在,所以f (x )在x =-1处不连续, 但lim 1-→x f (x )=f (-1)=-1, lim 1
--→x f (x )≠f (-1),所以f (x )在x =-1处右连续,左不连续 lim 1-→x f (x )=3=f (1), lim 1+→x f (x )不存在,所以lim 1
→x f (x )不存在,所以f (x )在x =1不连续,但左连续,右不连续 又lim 0
→x f (x )=f (0)=0,所以f (x )在x =0处连续
(2)f (x )中,区间(-∞,-1),[-1,1],(1,5]上的三个函数都是初等函数,因此f (x )除不连续点x =±1外,再也无不连续点,
所以f (x )的连续区间是(-∞,-1),[-1,1]和(1,5] 学生巩固练习 1 若f (x )=11113-+-+x x 在点x =0处连续,则f (0)等于( )
A 23
B 32
C 1
D 0 2 设f (x )=⎪⎪⎩⎪⎪⎨⎧<<=<<21
11 2110 x x x x 则f (x )的连续区间为( ) A (0,2) B (0,1) C (0,1)∪(1,2) D (1,2) 3 x x x x arctan 4)2ln(lim 21--→ =_________ 4 若f (x )=⎪⎩
⎪⎨⎧≥+<--0 0 11x bx a x x x 处处连续,则a 的值为_________ 5 已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧=≠+-)0(
1)0( 1
21211
x x x x (1)f (x )在x =0处是否连续?说明理由;
(2)讨论f (x )在闭区间[-1,0]和[0,1]上的连续性 6 已知f (x )=⎪⎩
⎪⎨⎧≥+<--)0()0(11x bx a x x x (1)求f (-x );
(2)求常数a 的值,使f (x )在区间(-∞,+∞)内处处连续 7 求证任何一个实系数一元三次方程a 0x 3+a 1x 2+a 2x +a 3=0(a 0,a 1,a 2,a 3∈R ,a 0≠0)至少有一个实数根 8 求函数f (x )=⎪⎩
⎪⎨⎧>-≤)1( )21(log )1( 2x x x x 的不连续点和连续区间 参考答案 1 解析 ]11][11)1()[11(]
11)1()[11)(11()(3332332-+++++++++++-+++=x x x x x x x x x f
2
311111)0(1
11
1)1(323=+++=++++++=f x x x 答案 A
2 解析 11lim )(lim 11==++→→x x x f 21)1(1)(lim ,1lim )(lim 111=≠===→→→--f x f x x f x x x 即f (x )在x =1点不连续,显知f (x )在(0,1)和(1,2)连续 答案 C
3 解析 利用函数的连续性,即)()(lim 00
x f x f x x =→,
π=--=--∴→11arctan 4)12sin(11arctan 4)2sin(lim 221x x x 答案 π1
21,0)(lim )(lim 21111lim 11lim )(lim :.400000=∴=+==-+=--=++---→→→→→a bx a x f x x x x f x x x x x 解析 答案 2
1 5 解 f (x )=⎪⎩⎪⎨⎧=≠+-)0(
1)0(12111x x x
(1) lim 10-→x f (x )=-1, lim 0+→x f (x )=1,所以lim 0
→x f (x )不存在,故f (x )在x =0处不连续
(2)f (x )在(-∞,+∞)上除x =0外,再无间断点,由(1)知f (x )在x =0处右连续, 所以f (x )在[-1,0]上是不连续函数,在[0,1]上是连续函数 6 解 (1)f (-x )=⎪⎩
⎪⎨⎧≥-<-+)0( )0( 11x bx a x x x (2)要使f (x )在(-∞,+∞)内处处连续,只要f (x )在x =0连续,
lim 0-→x f (x )= lim 0-→x x x --11=21111lim )11(lim 00=-+=-+--→→x
x x x x x lim 0+→x f (x )=lim 0
+→x (a +bx )=a ,因为要f (x )在x =0处连续, 只要lim 0
+→x f (x )= lim 0+→x f (x )= lim 0+→x f (x )=f (0),所以a =2
1 7 证明 设f (x )=a 0x 3+a 1x 2+a 2x +a 3,函数f (x )在(-∞,+∞)连续,
且x →+∞时,f (x )→+∞;x →-∞时,f (x )→-∞,
所以必存在a ∈(-∞,+∞),b ∈(-∞,+∞),使f (a )·f (b )<0,
所以f (x )的图象至少在(a ,b )上穿过x 轴一次,即f (x )=0至少有一实根 8 解 不连续点是x =1,连续区间是(-∞,1),(1,+∞)。