碳纤维复合材料性能参数
三种T700级碳纤维及其复合材料性能比较-宇航材料工艺
0 引言 聚丙烯腈基碳纤维具有高比强度、高比模量、耐
高温、耐腐蚀、抗疲劳和低热胀系数等优异特性ꎬ是发 展先进 一 代 运 载 火 箭、 战 略 导 弹 的 关 键 性 基 础 材 料[1-3] ꎮ 根据拉伸性能指标ꎬ聚丙烯腈基碳纤维可以 分为通用标模型( T300 级) 、高强标模型( T700 级) 、 高强中模型( T800 级) 及高模型碳纤维ꎮ 国外航天结 构系统已经实现采用高强型 T700 级碳纤维取代通用 型 T300 级碳纤维应用于制备复合材料主承力结构 件[4-5] ꎮ 目前ꎬ我国也突破了 T700 级碳纤维工程化
收稿日期:2016 - 04 - 29 作者简介:李桂洋ꎬ1985 年出生ꎬ博士ꎬ主要从事耐高温热固树脂的设计与合成及先进树脂基复合材料成型工艺研究ꎮ E-mail:guiyang_lee@ outlook.com
— 32 —
宇航材料工艺 http: / / www.yhclgy.com 2016 年 第 4 期
LI Guiyang LI Jianfang YANG Yunhua GUO Hongjun SUN Hongjie
( Aerospace Research Institute of Materials & Processing Technologyꎬ Beijing 100076)
三种 T700 级碳纤维及其复合材料性能比较
李桂洋 李健芳 杨云华 郭鸿俊 孙宏杰
( 航天材料及工艺研究所ꎬ北京 100076)
文 摘 对 MT700、T700-A 及 T700-B 三种碳纤维拉伸性能、表面形貌、单向板力学性能及网格加筋圆筒
碳纤维复合材料的制备和性能研究
碳纤维复合材料的制备和性能研究复合材料作为一种新型材料,由于其具有结构轻、强度高、耐腐蚀、抗疲劳等优良性能,在航空、航天、汽车、船舶等众多领域得到广泛应用。
碳纤维复合材料是其中一种材料,由于其高强度、低密度、高刚度和优良的热稳定性等特点,已经广泛应用于各种高端产品,如飞机、汽车、大型模具、船舶制造等领域。
本文主要介绍碳纤维复合材料的制备和性能研究方面的进展和成果,对于进一步研究这种材料的应用前景和发展具有参考价值。
一、碳纤维复合材料的制备碳纤维复合材料的制备是一个复杂的过程,需要对材料的性质进行深入的了解,并结合实际生产情况进行设计和试验。
一般来说,碳纤维复合材料的制备分为以下几个步骤:1、预制备碳纤维碳纤维是制备碳纤维复合材料的关键组成部分,其质量对复合材料的性能起到至关重要的作用。
碳纤维的质量受到多种因素的影响,如选择的原料、生产工艺、热处理方式等。
通常采用纤维束成型、碳化及氧化等工艺制备碳纤维,确保碳纤维的品质。
2、浸渍树脂将预制的碳纤维放入树脂中,使其充分浸泡。
树脂中的成分可以根据需要调整,以达到预期的力学性能。
3、热固化热固化是碳纤维复合材料制备的关键步骤之一。
材料通过温度和时间的控制,让树脂变成固体,并在碳纤维表面形成一层牢固的化学键连接。
通过这一步工艺,可以提高碳纤维复合材料的强度和刚度。
4、精加工精加工是制备碳纤维复合材料的最后步骤。
通过对材料进行切割、抛光、打磨、胶接等方式,可以获得一定形状、尺寸和光泽度的制品。
精加工过程中需要注意不要损伤材料的表面和内部结构,保证材料性能的完好。
以上是碳纤维复合材料制备的主要步骤,整个制备过程需要物理学、化学、材料学等多学科的知识和技术的支持,且需要结合多种因素综合评估生产效果。
二、碳纤维复合材料的性能研究碳纤维复合材料具有优良的力学性能、热性能和热膨胀性等特点,但其性能亦受制备过程中的各种因素影响。
为了更好地应用这种材料,需要对其性能进行全面研究和分析。
碳纤维树脂复合材料
碳纤维树脂复合材料引言。
碳纤维树脂复合材料是一种具有优异性能的新型材料,它由碳纤维和树脂组成,具有轻质、高强度、耐腐蚀、耐磨损等特点,被广泛应用于航空航天、汽车工业、体育器材等领域。
本文将介绍碳纤维树脂复合材料的制备工艺、性能特点和应用领域。
一、碳纤维树脂复合材料的制备工艺。
碳纤维树脂复合材料的制备工艺主要包括预浸料制备、层叠成型和固化三个步骤。
1. 预浸料制备。
预浸料是碳纤维树脂复合材料的基础材料,其制备过程是将碳纤维与树脂进行预浸润,使得碳纤维表面均匀地覆盖一层树脂。
这一步骤的关键是控制预浸料的树脂含量和固化剂的添加量,以确保预浸料具有适当的流动性和固化性。
2. 层叠成型。
层叠成型是将预浸料按照设计要求层叠在一起,形成复合材料的结构。
在这一步骤中,需要注意控制每层预浸料的厚度和方向,以确保最终复合材料具有良好的力学性能和表面质量。
3. 固化。
固化是将层叠好的预浸料放入固化炉中进行加热固化,使树脂完全固化,形成最终的碳纤维树脂复合材料。
固化温度和时间的控制对于复合材料的性能至关重要,需要根据树脂的种类和厚度进行合理的设定。
二、碳纤维树脂复合材料的性能特点。
碳纤维树脂复合材料具有一系列优异的性能特点,主要包括轻质、高强度、耐腐蚀、耐磨损、抗冲击等。
1. 轻质。
碳纤维树脂复合材料的密度比金属材料要低很多,因此具有很轻的重量,适合用于要求重量轻的领域,如航空航天。
2. 高强度。
碳纤维树脂复合材料的强度是普通金属材料的数倍甚至数十倍,具有极高的拉伸强度和弯曲强度,可以替代钢铁等材料。
3. 耐腐蚀。
碳纤维树脂复合材料具有良好的耐腐蚀性能,不易受到酸碱、盐水等腐蚀介质的侵蚀,适合用于海洋工程等恶劣环境。
4. 耐磨损。
碳纤维树脂复合材料具有良好的耐磨损性能,不易受到摩擦和磨损的影响,适合用于制造耐磨损零部件。
5. 抗冲击。
碳纤维树脂复合材料具有良好的抗冲击性能,不易发生断裂和破损,适合用于制造抗冲击的器材。
碳纤维复合材料研究报告
碳纤维价值链
原材料
PAN纤维
碳化
复合
测试
应用
PAN
高柔韧性热
树脂设计 结构设计
预浸 编织 预成型 实验设计和 样板测试
汽车 风力
军工 航空 基础设施 石油和 天然气
溶液纺丝
TEXTILE PAN
处理 等离子技术 微波技术
POLYOLEFIN
熔体纺丝
UGNIN
先进表面
成型 缠绕
固化
处理
3.市场需求分析
24880
30450 192780
27000
34840 215620
30440
38960 238030
31760
40630 248900
35870
41290 275280
37140
44850 298740
40770
44580 321440
Source: Composites Forecasts and Consulting LLC
66%
三菱 14%
东邦 23%
东丽
东邦
三菱
CYTEC
台塑
HEXCEL
ZOLTEK
SGL
Fotafil
Aldila
东丽
1. PAN基碳纤维产品主要以日本为代表的小丝束碳纤维(1K-24K)和以美国为代表的大丝束碳纤维(48K-480K)两 大类。 2. 全球小丝束碳纤维生产基本上被日本碳纤维生产厂家控制,主要是东丽,东邦和三菱三大企业 3. 全球大丝束碳纤维由美国Fortafil和美国Zoltek公司商品化。主要大丝束碳纤维厂家是美国Fortafil、Zoltek和Aldila 三大公司,生产能力综合占世界总量的75%。 Source:复材在线,上市公司年报
碳素纤维复合材料
碳素纤维复合材料
碳素纤维是碳的一种形态,具有非常高的比强度和比模量。
它由纯碳
纤维的细丝组成,每根纤维直径约为5-10微米。
碳素纤维具有轻质、高
强度、高模量和耐腐蚀等特点,是目前公认的世界上最优秀的纤维增强材
料之一
碳素纤维复合材料的优点之一是其高强度和高模量。
碳素纤维的优越
性能使得复合材料具有较高的抗拉、抗压和弯曲强度,是常规金属材料的
几倍甚至几十倍。
它的高模量使得材料在受力时能保持较小的形变,提高
了材料的刚度。
另一个优点是碳素纤维复合材料的低密度。
由于纤维具有轻质的特点,复合材料的密度远远低于金属材料。
这使得使用碳素纤维复合材料制造的
产品可以减少质量,提高能源利用效率。
然而,碳素纤维复合材料也存在一些缺点。
首先,它的制造成本相对
较高。
由于纤维的制造和复合材料的加工工艺较为复杂,需要高昂的设备
和技术支持,导致了生产成本的增加。
其次,碳素纤维复合材料易碎。
虽然纤维具有很高的强度,但在受到
挤压、冲击或剪切等作用力时,会出现纤维断裂或脱层的情况。
因此,在
一些特定环境下,需要对复合材料进行优化设计和使用。
总的来说,碳素纤维复合材料是一种具有很高应用价值的材料,它的
优点远远超过了缺点。
随着技术的不断进步,制造成本的降低和性能的改进,碳素纤维复合材料将会有更广泛的应用前景。
碳纤维复合材料热导率
碳纤维复合材料热导率摘要碳纤维复合材料是一种新型的材料,具有优异的机械性能和热导性能。
本文将分析碳纤维复合材料的热导性能,并探讨其在工程领域的应用。
首先介绍了碳纤维复合材料的基本结构和材料性能,然后分析了其热导率以及影响热导率的因素。
最后针对碳纤维复合材料的热导性能进行了展望和总结。
引言碳纤维复合材料是一种由碳纤维和树脂基体组成的复合材料,具有高强度、高模量、低密度等优异的机械性能,因此在航空航天、汽车、船舶、体育器材等领域具有广泛的应用。
与此同时,碳纤维复合材料还具有良好的热导性能,对于一些需要高温稳定性的应用具有重要的意义。
因此,研究碳纤维复合材料的热导性能及其影响因素,对于进一步提高其性能和拓展应用领域具有重要意义。
一、碳纤维复合材料的基本结构和材料性能碳纤维复合材料由碳纤维和树脂基体组成,碳纤维是由石墨化聚丙烯纤维经高温处理而成,具有高强度、高模量、低密度等优异的机械性能;树脂基体是由环氧树脂、酚醛树脂、环氧树脂等高分子材料组成,具有较好的耐热性和耐腐蚀性。
碳纤维和树脂基体相互作用,形成了一种强度和刚度较高的复合材料。
由于碳纤维本身是导电材料,因此碳纤维复合材料具有良好的热导性能。
二、碳纤维复合材料的热导率碳纤维复合材料的热导率是指在单位温度梯度下,单位厚度的材料内传热的能力。
一般来说,导热系数越大,对热的传导能力越强。
碳纤维复合材料的热导率主要受到以下几个因素的影响:1.碳纤维的取向和密度:碳纤维的取向和密度对于热导率有很大影响。
通常情况下,碳纤维的取向越好,密度越大,热导率越高。
2.树脂基体的类型和含量:树脂基体的类型和含量对于热导率也有很大的影响。
通常情况下,树脂基体含量越少,热导率越高。
3.温度和压力:温度和压力对于热导率也有很大的影响。
通常情况下,温度和压力越大,热导率也越大。
4.材料的内部结构:材料的内部结构对于热导率也有很大的影响。
通常情况下,内部结构越均匀,热导率也越高。
两种国产T800级碳纤维界面状态及复合材料力学性能研究
第1期纤维复合材料㊀No.1㊀32024年3月FIBER ㊀COMPOSITES ㊀Mar.2024两种国产T800级碳纤维界面状态及复合材料力学性能研究王㊀涵,周洪飞,张㊀路,李是卓(中航复合材料有限责任公司,北京100000)摘㊀要㊀研究了两种国产T800级碳纤维界面状态及复合材料力学性能,结果表明,与B 类纤维相比,A 类纤维表面形貌粗糙度高约23%㊁O /C 含量高约7.4%㊁活性C 含量高约20%,微观剪切强度高约10%,A 类纤维增强的复合材料冲击后压缩强度比B 类纤维高约8%㊂A 类纤维与树脂形成更好的化学与物理结合,界面结合作用较好㊂关键词㊀T800级碳纤维;界面;表面活性;力学性能Study on the Interface State of Different Domestic T 800Carbon Fibers and the Mechanical Properties of CompositesWANG Han,ZHOU Hongfei,ZHANG Lu,LI Shizhuo(AVIC Composites Co.,Ltd.,Beijing 100000)ABSTRACT ㊀The interface state and mechanical properties of two kinds of domestic T800carbon fibers were studied.The results showed that compared with class B fibers,the surface roughness of class A fibers was about 23%higher,the O /C content was about 7.4%higher,the active C content was about 20%higher,and the microscopic shear strength was about 10%higher.The compressive strength of Class A fiber reinforced composites after impact is about 8%higher than that of class B fiber.Class A fiber and resin form a better chemical and physical bond,and the interface bond is better.KEYWORDS ㊀T800carbon fiber;interface;surface activity;mechanical properties项目支持:国家重点研发计划资助(2022YFB3709100)通讯作者:周洪飞,男,研究员㊂研究方向为先进树脂基复合材料㊂E -mail:wanghan6583@1㊀引言碳纤维复合材料是由增强体碳纤维和基体树脂复合而成,具有明显优于原组分性能的一类新型材料[1],具有较高的比强度㊁高比模量和优异的耐腐蚀的性能,被广泛的应用于航空㊁船舶㊁航天等领域㊂在碳纤维复合材料里,碳纤维起到增强作用,承接作用力和传递载荷,树脂作为基体通过界面作用将载荷传递到纤维㊂因此当复合材料受到外力作用时,界面起到传递载荷的作用就显得尤为重要,界面的性质和状态直接影响复合材料的综合力学性能[2],是影响复合材料力学性能的关键点,也是近期国内外学者研究的热点之一㊂碳纤维增强树脂基复合材料的界面不是特指增纤维复合材料2024年㊀强体纤维和基体树脂之间的单纯几何层,而是泛指纤维与树脂之间的包括几何层在内的界面层[3]㊂在该结构层内,增强体纤维与基体树脂的微观结构与性质都存在不同程度的差异,这不仅取决于纤维与树脂的结构和性质,还受到复合材料固化工艺㊁成型工艺等其他因素影响,如碳纤维在出厂前会进行上浆处理,上浆剂的浓度㊁厚度及种类都会大大影响纤维与树脂的界面结合㊂目前国内外学者对纤维与树脂的界面结合提出几种理论,如化学键结合理论㊁机械啮合理论㊁树脂浸润理论等[4]㊂经过大量的实验研究,结果表明,纤维与树脂的界面结合不是由某一种理论完全解释的,这是多种作用相互协调㊁共同作用的结果[5]㊂Thomsomn等人[6]通过对比多种纤维与多种树脂的界面结合实验,认为纤维与树脂复合使得纤维表面的分子链活动受到限制,根据界面浸润理论,纤维经过树脂浸润后,纤维选择性吸收树脂组分,而后表面形成一层具有刚性结构的界面层,当纤维增强复合材料经过一定温度㊁压力条件下固化成型后,界面层会变得非常复杂,界面层显得更加尤为重要[7]㊂而化学键理论认为,纤维与树脂结合的过程中,主要是范德华力起主导作用[8]㊂目前对于纤维与树脂的界面表征主要包括纤维微观结构㊁纤维表面活性以及纤维与树脂的界面结合强度㊂纤维微观结构可以通过扫描电镜㊁原子力纤维镜等手段实现,纤维表面活性可以通过IGC直接测得纤维活化能,也可以通过间接方式XPS对纤维表面元素及官能团表征计算,从而间接获得纤维活化能;或者通过接触角实验,纤维与不同极性和非极性溶剂接触,通过接触力衡量纤维表面活性㊂纤维与树脂的界面结合强度主要有微脱粘实验和复合材料层间剪切强度,前者是单丝级别,后者是宏观力学级别,数据可靠度都很高,也是目前国内外大量学者常用的表征纤维与树脂界面的方式㊂本文首先通过观察纤维表面形貌㊁测试纤维表面原子含量和纤维与树脂微观结合力,对比两种国产T800级碳纤维界面状态,并制备了复合材料层合板,目的为国产T800级碳纤维应用及其增强的复合材料界面性能研究提供一定的数据支撑和参考意义㊂2㊀实验材料及方法2.1㊀原材料实验采用两种同级别但不同界面的国产A类碳纤维和B类碳纤维,两种纤维的具体信息如表1所示,实验所用树脂为某国产高性能高温环氧类树脂㊂表1㊀两种纤维基本信息批次拉伸强度/MPa拉伸模量/GPa断裂伸长率/%线密度/(g/km)体密度/(g/cm3)直径/mm长㊁短径比A6324300 2.10450 1.8 5.10 1.04 B6334297 2.13453 1.8 5.13 1.02㊀㊀2.2㊀试样制备2.2.1㊀碳纤维去上浆剂碳纤维在出厂前会在表面涂刷一层上浆剂,目的减少纤维在后续使用过程中造成的磨损㊁打结和并丝现象发生,提高纤维集束性,增加纤维与树脂的浸润性,保护纤维[9]㊂为了更加直观清晰的观察和研究碳纤维本征性能与碳纤维增强树脂基复合材料界面之间的关系,需要对已经上过浆的碳纤维进行去剂㊂本实验按照国标中索式萃取试验方法对两种不同界面的国产T800级A类碳纤维和B类碳纤维进行去剂处理㊂首先将一定长度的碳纤维放置在温度23ʃ2ħ㊁相对湿度50ʃ10%的标准环境下调湿6h以上,将调湿后的碳纤维放置于索氏提取器中,并加入足量的丙酮以确保回流循环,调节加热炉功率,使索氏提取器2h至少完成8次循环,而后萃取36h,关掉加热炉㊂经过一定时间萃取后的碳纤维从索氏提取器中取出,冷却10min,放置于105ʃ5ħ的鼓风烘箱内干燥5h,最后再放入干燥器中进行冷却,温度降至室温即可㊂2.2.2㊀微脱粘制样制备将单根碳纤维(单丝)从碳纤维试样丝束中分离出来,将其拉直并粘贴在回型支架上,如图1所示,高性能高温环氧类树脂在烘箱内50ħ保温30 min,再与二氯乙烷10ʒ1的比例配制树脂液,并迅速搅拌均匀,将配制好的树脂液常温下在真空烘箱里抽真空20min,取出树脂,用大头针蘸取少量配制好的树脂液,轻涂抹于碳纤维单丝上,将试样放于鼓风烘箱里在130ħ下固化30min㊂4㊀1期两种国产T800级碳纤维界面状态及复合材料力学性能研究图1㊀微脱粘试样示意图2.3㊀测试与表征使用Quanta 450FEG 场发射扫描电子显微镜(SEM)两种不用界面的T800级碳纤维表面形貌㊂将一束碳纤维用手术刀平齐切断,分别用导电胶带将平齐切断的碳纤维垂直粘贴在铝制载物台上,对粘在导电胶上的纤维表面喷金,经过两次喷金后放入SEM 内观察,电子加速电压为20~50kV,束流1pA,放大倍数50~8000X㊂采用Dimension ICON 原子力显微镜(AFM)观察碳纤维三维立体形貌,通过探针针尖与样品微弱作用力获取纤维表面粗糙度,扫描面积为5μm ˑ5μm,扫描频率为1.0Hz㊂采用X 射线光电子能谱仪(美国ThermoFisch-er,ESCALAB 250Xi)测试碳纤维表面元素组成及化学官能团,分析室真空度8ˑ10-10Pa,激发源采用Al ka 射线(hv =1486.6eV),工作电压12.5kV,灯丝电流16mA,进行5~10次循环的信号累加㊂通过微脱粘试验测试纤维与树脂的微观剪切性能㊂将带有已经固化好的尺寸均匀且正圆的树脂小球碳纤维固定在微脱粘仪器上,移动卡刀,使其将其中一个树脂小球从左右两侧卡住,移动回形架使得纤维匀速自下而上移动,直至卡刀恰好将树脂小球剥落,此时仪器会记录纤维与树脂小球分离瞬间的最大结合力,如何计算纤维与树脂的微观界面结合强度如公式(1)所示㊂IFSS =F max ΠDL(1)式中,IFSS 为纤维与树脂微观界面剪切强度;F 为树脂与纤维剥离时的最大剪切力;L 为纤维迈入树脂球的长度㊂碳纤维增强树脂基复合材料力学性能在Intron 公司的Instro5967万能力学试验机上进行㊂复合材料冲击后压缩强度按照ASTMD7137开展㊂3㊀结果与讨论3.1㊀碳纤维表面形貌两种不同界面的国产T800纤维去除上浆剂后的表面形貌SEM 如图2所示,由图A (a)和A (b)看出未上浆的A 类碳纤维表面整体光滑,但具有相对明显的沿着轴向排列均匀分布的较浅沟槽,由A (c)可看出,纤维截面致密,形状呈正圆形,具有明显的干喷湿纺纺丝工艺特征,干喷湿纺工艺生产的碳纤维兼具了拉伸强度和机械啮合的优势[10]㊂与A 类纤维相比,B 类纤维表面明显沟槽更浅,根据界面机械啮合理论,纤维表面沟槽的数量越小㊁深度越浅,纤维与树脂的界面结合面积越小,界面结合强度越弱㊂图2㊀两种碳纤维表面形貌图5纤维复合材料2024年㊀㊀㊀为了进一步对比两种碳纤维界面状态,采用AFM 对其观察三维立体形貌,如图3所示,由图3可以看出,A㊁B 类纤维表面存在明显的沿着纤维轴向排列的深浅不一沟槽,但A 类沟槽深度更深,数量更多,对两类碳纤维随机抽取三个试样进行粗糙度测试,数据如表2所示,A 类纤维平均粗糙度要高于B 类纤维约23%,根据界面机械啮合理论,纤维表面积越大,粗糙度越高,纤维与树脂结合越牢固㊂图3㊀两种纤维三维表面形貌图表2㊀两种纤维表面粗糙度序号A B 130524622972513303237平均值/nm302245CV1.382.90㊀㊀3.2㊀碳纤维表面元素及含氧官能团通过XPS 表征测试两种碳纤维表面化学特性,如图4所示,对XPS 图谱分峰处理,纤维表面主要存在C㊁O㊁Si㊁N 四种元素,纤维表面原子含量具体如表3所示,数据显示A 类纤维O /C 含量略高于B 类,约7.4%㊂而经过阳极氧化处理过的碳纤维表面O 含量越高,表面活性越高,纤维与树脂的界面结合越牢固㊂图4㊀两种碳纤维XPS 峰图6㊀1期两种国产T800级碳纤维界面状态及复合材料力学性能研究表3㊀两种碳纤维表面原子含量样品Si2p /%C1s /%N1s /%O1s /%102.02eV 284.49eV 399.48eV 532.23eV Si㊁N 总量/%O /C /%A (a) 3.1373.24 3.6819.95 6.8127.24A (b) 2.3774.31 3.4619.86 5.8326.73A (c) 2.2975.22 3.1719.32 5.4625.68B (a) 3.8174.25 4.117.857.9124.04B (b) 2.4774.96 3.818.76 6.2725.03B (c)2.6975.223.7718.32 6.4624.36㊀㊀利用C1s 电子XPS 窄扫描,并对测试后的C1s 图谱进行分峰处理,分峰图如图5所示,碳纤维含C 官能团具体含量如表4所示,其中C -O㊁C =O 为活性C,C -C 为非活性C,活性C 占比越高,纤维表面活性越高,整体来看,与B 类纤维相比,A 类纤维表面原子中活性C 含量更高,即其表面活性更高,根据界面化学键结合理论,这意味着A 类碳纤维与树脂的界面结合强度较高㊂图5㊀两种碳纤维C1s 分峰图表4㊀C1s 分峰结果样品C -C /%C -O /%C =O /%284.8eV 286.39eV 288.85eV 活性碳比例/%A (a)67.3729.94 2.6948.43A (b)64.3133.46 2.2355.50A (c)67.530.32 2.1848.15B (a)73.3719.467.1736.30B (b)68.6129.36 2.0345.75B (c)69.6128.36 2.0343.66㊀㊀3.3㊀单纤维/树脂微脱粘采用微脱粘法从微观角度测试两种不同界面的T800级碳纤维与树脂的界面结合作用,具体数据如表5所示,数据显示A 类纤维与高性能环氧树脂的界面剪切力高于B 类纤维约10%,即A 类纤维与该树脂界面结合作用更强㊂㊀㊀3.4㊀复合材料宏观力学性能制备A㊁B 类纤维增强复合材料层合板,并按照ASTM D7137(6.67J /mm)进行冲击后压缩强7纤维复合材料2024年㊀度测试,测试结果如表6所示,表中数据显示两类纤维增强树脂基复合材料均具有较高的冲击后压缩强度,但相比与B类纤维,A类纤维增强树脂基复合材料冲击后压缩强度要高于B类约8%,这可能归功于A类纤维与树脂的界面结合牢固所致㊂表5㊀两批次T800级碳纤维与某高温环氧树脂界面剪切强度样品界面剪切强度平均值/MPa CV/%A(a)120.15 5.03A(b)118.358.08A(c)119.357.61B(a)112.04 4.41B(b)110.37 4.48B(c)103.23 5.36表6㊀纤维增强复合材料冲击后压缩强度序号A类纤维复合材料/MPa B类纤维复合材料/MPa 1348313 2330299 3338318 4326311 5335311 6342321平均值337312CV/% 2.38 2.434㊀结语实验选取了两种不同界面的国产T800级碳纤维及复合材料力学性能,通过对其界面状态和复合材料力学研究,结果表明,相同级别的T800级国产碳纤维,A类纤维表面形貌粗糙度高于B类约23%㊁O/C含量高约7.4%㊁活性C含量高约20%,微观剪切强度高约10%㊂A类纤维增强的复合材料冲击后压缩强度比B类纤维高约8%㊂即A 类纤维与树脂形成更好的化学与物理结合,界面结合作用较好㊂参考文献[1]贺福.碳纤维及其应用.北京:化学工业出版社,2004.[2]梁春华.高性能航空发动机先进风扇和压气机叶片综述[J].航空发动机,2006(03):48-52.[3]王运英,孟江燕,陈学斌,白杨.复合材料用碳纤维的表面技术.处理技术,36(3):53-57.[4]陈祥宝,张宝艳,邢丽英.先进树脂基复合材料技术发展及应用现状.中国材料进展,2009,28(6):2-11. [5]易楠,顾轶卓,李敏.碳纤维复合材料界面结构的形貌与尺寸表征[J].复合材料学报,2010,27(5):36-40. [6]Thomson A W,Starzl T E.New Immunosuppressive Drugs:Mecha-nistic Insights and Potential Therapeutic Advances[J].Immunolog-ical Reviews,1993,136(1):71-98.[7]张巧蜜.聚丙烯腈基碳纤维[M].东华大学出版社,2005-7.[8]何宏伟.碳纤维/环氧树脂复合材料改性处理[M].国防工业出版社,2014.[9]谢云峰,王亚涛,李顺常.碳纤维工艺技术研究及发展现状[J].可化工新型材料,2013,41(5)-27. [10]张焕侠.碳纤维表面和界面性能研究及评价[D].东华大学, 2014.8。
碳纤维增强陶器基复合材料性能实验表征
碳纤维增强陶器基复合材料性能实验表征【引言】碳纤维增强陶器基复合材料具有轻质、高强度、高硬度、抗磨损、耐高温等优异的性能,因此在航空航天、汽车工业、船舶制造等领域有着广泛的应用。
为了更好地了解和掌握碳纤维增强陶器基复合材料的性能特点,对其进行实验表征是十分必要的。
本文将从力学性能、热稳定性、耐磨性和导热性能四个方面进行详细的介绍和分析。
【力学性能表征】碳纤维增强陶器基复合材料的力学性能包括弹性模量、抗拉强度、屈服强度和断裂韧性等指标。
通过拉伸试验和弯曲试验可以得到这些指标。
实验结果显示,碳纤维增强陶器基复合材料具有较高的弹性模量和抗拉强度,同时具有良好的断裂韧性,这使得该材料在工程结构领域具有较大的应用潜力。
【热稳定性表征】热稳定性是碳纤维增强陶器基复合材料的关键性能之一。
提高材料的热稳定性能可以增加其在高温环境下的使用范围。
实验研究表明,碳纤维增强陶器基复合材料在高温下仍然能够保持结构的完整性和性能的稳定性。
这得益于碳纤维和陶瓷基质的互补作用,碳纤维能够抵抗高温氧化和热膨胀,而陶瓷基质能够提供良好的耐热性能。
【耐磨性表征】耐磨性是评价碳纤维增强陶器基复合材料耐用性的重要指标之一。
实验表征耐磨性的常用方法包括滑动磨损试验和径向磨损试验等。
研究表明,碳纤维增强陶器基复合材料具有较好的耐磨性能,能够有效抵抗外界因素对材料表面的磨损。
这使得该材料在摩擦材料、切削工具等领域有着广泛的应用前景。
【导热性能表征】导热性能是碳纤维增强陶器基复合材料的重要性能之一,对于高温、高速工况下的工程应用至关重要。
实验测试可以得到材料的导热系数和热扩散系数等性能指标。
研究结果表明,碳纤维增强陶器基复合材料具有良好的导热性能,能够快速地传导热量,并且具备较低的热膨胀系数,这使得该材料在高温环境下具有较强的稳定性。
【总结】碳纤维增强陶器基复合材料具有出色的力学性能、热稳定性、耐磨性和导热性能。
在实验表征过程中,通过拉伸试验、弯曲试验、滑动磨损试验、径向磨损试验、导热系数测试等多种测试方法,可以准确地了解和评估碳纤维增强陶器基复合材料的性能特点。
碳纤维复合材料 冲击 astm 标准
碳纤维复合材料冲击 astm 标准碳纤维复合材料在工程领域中扮演着重要的角色,它具有轻质、高强度、耐腐蚀等优异性能,因此在航空航天、汽车制造、体育用品等领域得到广泛应用。
在实际应用中,碳纤维复合材料的耐冲击性能显得尤为重要。
ASTM标准作为评价材料性能的权威标准,对于评估碳纤维复合材料的冲击性能也起到了关键作用。
让我们来了解一下碳纤维复合材料的基本特性。
碳纤维是一种由碳原子构成的纤维,具有极高的强度和刚度,且比重轻、耐腐蚀、电磁性能好等优点,因此被广泛应用于航空航天和高端制造领域。
而碳纤维复合材料是将碳纤维与树脂基体复合而成的材料,通过不同比例和布局方式的碳纤维叠层,可以获得不同性能的复合材料。
对于碳纤维复合材料的冲击性能,ASTM标准为我们提供了评估的方法和指标。
其中,ASTM D7136标准是用来测试测定复合材料的冲击性能的标准试验方法。
在这一标准中,包括了试样的准备、冲击试验、损伤评价等内容,以及相应的数据处理和结果分析方法。
这为工程师和研究人员提供了客观、标准的测试手段,确保了对碳纤维复合材料冲击性能的客观评价,从而指导材料的设计和应用。
在实际工程应用中,了解碳纤维复合材料的冲击性能十分重要。
特别是在汽车制造和航空航天领域,碳纤维复合材料往往处于复杂多变的环境中,需要承受各种冲击载荷。
ASTM标准为工程设计和质量控制提供了重要的依据和支持,确保了碳纤维复合材料的安全可靠性。
除了了解标准和测试方法,我们还需思考碳纤维复合材料冲击性能的影响因素和发展方向。
纤维取向、树脂性能、复合材料层压方式等因素都对冲击性能有着重要影响。
随着碳纤维复合材料在工程领域中的广泛应用,对其冲击性能的要求也在不断提高。
通过对ASTM标准的深入理解和实际工程经验的积累,我们可以不断完善评价体系,提高碳纤维复合材料的冲击性能,推动材料的技术创新和应用拓展。
碳纤维复合材料的冲击性能在工程应用中具有重要意义,ASTM标准为我们提供了客观、标准的评价方法。
碳纤维复合材料的力学性能研究
碳纤维复合材料的力学性能研究碳纤维复合材料作为一种新型材料,由于其具有优异的力学性能而受到广泛关注。
其力学性能主要由材料本身的组分和制备工艺所决定,因此对碳纤维复合材料的力学性能进行深入研究具有重要意义。
本文重点从材料的组分和制备工艺两方面探讨了碳纤维复合材料的力学性能研究。
一、碳纤维复合材料的组分对力学性能的影响碳纤维是一种高强度、高模量、低密度的纤维材料,其与树脂、金属等材料复合可以形成具有优异力学性能的复合材料。
因此,碳纤维是碳纤维复合材料中最为重要的组分之一。
1.碳纤维碳纤维的纤维结构具有高度的有序性和结晶性,因此其力学性能十分优异。
碳纤维的强度、模量、韧性等因其晶格结构、纤维取向及加工工艺等因素而发生变化。
纤维晶格结构的完整性、纤维的取向度、纤维的径向外表面结构的缺陷等因素都会影响其断裂机制和力学性能。
2.树脂基体碳纤维复合材料中树脂基体一般采用环氧树脂、聚酰亚胺等高强度树脂。
树脂基体的性能与其化学特性、韧性等性能有关。
韧性指材料在断裂前承受塑性变形的能力,其取决于树脂分子的交联程度、分子链的粘度、分子基团的取向等多方面因素。
二、制备工艺对碳纤维复合材料的力学性能的影响制备工艺对碳纤维复合材料的力学性能影响非常大,特别是在复合界面处的影响尤为显著。
1.预处理工艺预处理工艺是指在材料的成型之前对碳纤维进行的处理,包括氧化、清洁、增强等。
预处理工艺往往会改变纤维表面结构和化学性质,降低复合件中纤维与基体之间的界面黏附强度,从而影响碳纤维复合材料的力学性能。
2.复合工艺复合工艺是指制备碳纤维复合材料时的成型方式和条件,包括层压成型、自动化制造等。
该工艺对成型质量及复合材料界面合抱力度的影响极大。
因此,复合工艺的影响应被充分考虑。
3.表面处理工艺在新一代碳纤维复合材料中,表面处理工艺尤为重要。
表面处理工艺可以增强复合件表面的润湿性和附着力,提高复合材料的界面黏附能力,增强其抗拉、抗剪、抗压、硬度等性能。
碳纤维复合材料泊松比
碳纤维复合材料泊松比
碳纤维复合材料泊松比是指在受到压缩或拉伸应力时,材料沿垂直方向(即横向)的收缩或伸长比例与其沿应力方向(即纵向)的伸长或收缩比例之间的比值。
泊松比是一个重要的力学参数,它可以反映出材料的柔韧性和稳定性。
由于碳纤维具有高强度、高刚度、轻量化等优异性能,在航空航天、汽车、体育用品等领域得到广泛应用。
本文将介绍碳纤维复合材料泊松比的相关知识,包括其定义、计算方法、影响因素以及实际应用等方面。
- 1 -。
碳纤维复合材料的性能.
二、碳纤维增强复合材料
尽管碳纤维可单独使用发挥某些功能, 然而, 它属 于脆性材料, 只有将它与基体材料牢固地结合在一 起时, 才能利用其优异的力学性能, 使之更好地承载 负荷。因此, 碳纤维主要还是在复合材料中作增强 材料。根据使用目的不同可选用各种基体材料和复 合方式来达到所要求的复合效果。碳纤维可用来增 强树脂、碳、金属及各种无机陶瓷, 而目前使用得 最多、最广泛的是树脂基复合材料。
1.2碳纤维的特点
碳纤维主要具备以下特性: 1.密度小、质量轻, 碳纤维的密度为1. 5~ 2 g /cm3, 相当于钢密度的 1 /4、 铝合金密度1/2; 2. 强度、弹性模量高, 其强度比钢大4~ 5倍, 弹性回复为100% ; 3. 热膨胀系数小, 导热率随温度升高而下降, 耐骤冷、急热, 即使从几 千 摄氏度的高温突然降到常温也不会炸裂 4.摩擦系数小, 并具有润滑性; 5.导电性好, 25℃ 时高模量碳纤维的比电阻为775Ω*cm , 高强度碳纤维 则为1 500Ω*cm ; 6.耐高温和低温性好, 在3 000℃ 非氧化气氛下不熔化、不软化, 在液氮 温度下依旧很柔软, 也不脆化; 7.耐酸性好, 对酸呈惰性, 能耐浓盐酸、磷酸、硫酸等侵蚀。除此之外, 碳纤维还具有耐油、抗辐射的特性
常用的有聚乙烯、尼龙、聚四氟乙烯以及聚醚醚酮等。 在碳纤维增强树脂基复合材料中, 碳纤维起到增强作用, 而树 脂基体则使复合材料成型为承载外力的整体, 并通过界面传 递载荷于碳纤维, 因此它对碳纤维复合材料的技术性能、成 型工艺以及产品价格等都有直接的影响。碳纤维的复合方式 也会对复合材料的性能产生影响。在制备复合材料时, 碳纤 维大致可分为两种类型: 连续纤维和短纤维。连续纤维增强 的复合材料通常具有更好的机械性能, 但由于其制造成本较 高,并不适应于大规模的生产。短纤维复合材料可采用与树脂 基体相同的加工工艺, 如模压成型、注射成型以及挤出成型 等。当采用适合的成型工艺时, 短纤维复合材料甚至可以具 备与连续纤维复合材料相媲美的机械性能并且适宜于大规模 的生产, 因此短纤维复合材料近年来得到了广泛的应用。
碳纤维复合材料树脂基复合材料性能
碳纤维复合材料树脂基复合材料性能力学性能是材料最重要的性能。
树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。
1、树脂基复合材料的刚度树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。
树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。
由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。
此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。
但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。
对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。
另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。
2、树脂基复合材料的强度材料的强度首先和破坏联系在一起。
树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。
各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。
树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。
对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。
单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。
其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。
实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。
碳纤维复合材料摩擦系数
碳纤维复合材料摩擦系数碳纤维复合材料是一种由碳纤维与树脂等基体混合制成的复合材料。
它具有轻量化、高强度、高模量、耐腐蚀性好等优点,因此被广泛应用于航空航天、汽车、体育器材等领域。
在这些应用中,摩擦是一个重要的考虑因素,而摩擦系数则是描述材料表面间摩擦力大小的参数。
摩擦系数是指两个物体相互接触时,由于摩擦而产生的阻力与垂直于接触面的压力之比。
对于碳纤维复合材料来说,其摩擦系数可以受到多种因素的影响。
首先,碳纤维复合材料的表面粗糙度对摩擦系数有影响。
一般来说,表面越光滑,摩擦系数越低;而表面越粗糙,摩擦系数越高。
这是因为光滑的表面可以减少接触点的数量,从而减小了摩擦力的大小。
而粗糙的表面则导致接触点增多,从而增加了摩擦力的大小。
因此,在碳纤维复合材料的制造过程中,可以通过改变表面处理方式来调节表面粗糙度,以控制摩擦系数。
其次,碳纤维复合材料的纤维取向对摩擦系数也有影响。
纤维的主要承载方向决定了复合材料的力学性能,但同时也会影响摩擦性能。
一般来说,与纤维取向平行的方向摩擦系数较小,而与纤维取向垂直的方向摩擦系数较大。
这是因为在与纤维取向平行的方向上,纤维之间的接触点较少,摩擦力较小。
而在与纤维取向垂直的方向上,纤维之间的接触点增多,摩擦力增大。
因此,在实际应用中,需要根据具体情况选择合适的纤维取向,以满足摩擦性能的要求。
此外,碳纤维复合材料中树脂基体的类型及含量也会影响摩擦系数。
不同类型的树脂基体具有不同的化学特性和物理性能,从而对摩擦系数产生影响。
一般来说,含有少量的树脂基体的碳纤维复合材料摩擦系数较小,而含有大量树脂基体的复合材料摩擦系数较大。
这是因为树脂基体的存在可以填充纤维之间的空隙,减小了接触点的数量,从而降低了摩擦力。
因此,在碳纤维复合材料的设计和制造中,需要确定合适的树脂基体类型及含量,以达到所需的摩擦系数。
此外,温度和湿度等环境因素也会对碳纤维复合材料的摩擦系数产生影响。
一般来说,温度升高会使摩擦系数下降,而湿度的增加会使摩擦系数上升。
碳纤维增强复合材料的结构设计和性能研究
碳纤维增强复合材料的结构设计和性能研究碳纤维增强复合材料是一种轻量化、高强度、高刚度的新型材料,已经广泛应用于航空、航天、汽车、体育用品等领域。
本文将着重讨论碳纤维增强复合材料的结构设计和性能研究。
一、碳纤维增强复合材料的结构设计结构设计是碳纤维增强复合材料应用领域中至关重要的一环。
在碳纤维增强复合材料的设计中,一般需要考虑以下几个因素:1.纤维方向在复合材料中,碳纤维是承载力的主要成分,因此纤维方向对材料的性能影响极大。
一般情况下,纤维方向应与所受力的方向一致,从而最大化材料的强度和刚度。
2.纤维体积分数纤维体积分数指纤维在复合材料中所占的体积比例。
一般来说,纤维体积分数越高,复合材料的强度和刚度越高。
但是,在实际应用中,纤维体积分数过高会导致复合材料的成本增加、加工难度增大等问题。
3.纤维长度纤维长度是指碳纤维的长度。
在碳纤维增强复合材料的设计中,纤维长度不仅影响材料的强度和刚度,还会影响材料的加工难度和成本。
4.界面处理碳纤维和基体之间的界面是影响复合材料性能的重要因素之一。
在界面处理中,常用的方法包括化学表面处理、物理表面处理和界面增强。
二、碳纤维增强复合材料的性能研究碳纤维增强复合材料具有优异的性能,但是在实际应用中,其性能受到多种因素的影响,需要进行深入研究和分析。
1.力学性能力学性能是碳纤维增强复合材料的重要性能之一,包括弹性模量、屈服强度、拉伸强度等指标。
在碳纤维增强复合材料的力学性能研究中,常用的测试方法包括拉伸试验、弯曲试验、压缩试验等。
2.热性能热性能是碳纤维增强复合材料的重要性能之一,包括耐高温性、导热性等指标。
在碳纤维增强复合材料的热性能研究中,常用的测试方法包括热膨胀试验、热导率试验等。
3.耐腐蚀性能碳纤维增强复合材料的耐腐蚀性能是其在某些特殊环境下应用的重要性能之一。
在碳纤维增强复合材料的耐腐蚀性能研究中,常用的测试方法包括环境试验、电化学测试等。
4.疲劳性能碳纤维增强复合材料在使用过程中会受到多次往复负载作用,因此疲劳性能是其应用领域中的重要性能之一。
碳纤维复合材料 冲击 astm 标准
标题:深度探讨碳纤维复合材料的冲击性能及ASTM标准分析引言:碳纤维复合材料是一种广泛应用于航空航天、汽车、船舶等领域的先进材料,其具有高强度、低密度、耐腐蚀等优异性能。
在实际应用中,碳纤维复合材料的冲击性能对其安全可靠的使用至关重要。
ASTM国际标准作为全球公认的材料测试标准,对碳纤维复合材料的冲击性能测试提供了指导和规范。
本文将从深度和广度两个角度全面评估碳纤维复合材料的冲击性能及ASTM标准,旨在帮助读者更全面、深入地了解碳纤维复合材料在冲击条件下的表现及相关标准要求。
一、碳纤维复合材料的基本结构及性能特点碳纤维复合材料由碳纤维和树脂基体构成,其具有高强度、高模量、耐腐蚀、抗疲劳等特点。
在实际工程中,碳纤维复合材料的冲击性能直接关系到其在受外力作用下的表现和使用安全性。
1. 碳纤维复合材料的冲击性能碳纤维复合材料在受冲击载荷作用下会发生破损、开裂,甚至可能导致结构失效。
对其冲击性能的评估至关重要。
ASTM D7136标准对碳纤维增强复合材料冲击性能进行了规定,涵盖了冲击强度、损伤面积、破坏模式等参数的测试要求,能够全面揭示碳纤维复合材料在冲击条件下的性能特点。
2. ASTMD7136标准概述ASTM D7136标准是针对纤维增强复合材料冲击性能测试的标准,通过对冲击试样的遭受冲击加载后的力学性能进行测试和分析,以评估材料的抗冲击性能。
标准规定了试验样品的制备、试验设备、测试方法、试验过程中的数据记录和结果报告等方面的要求,为相关领域提供了具有实用价值的技术规范。
二、碳纤维复合材料冲击性能的深入分析碳纤维复合材料的冲击性能与其微观结构、纤维类型、树脂基体性能等有着密切的联系。
在实际的应用过程中,需要更深入地了解其在不同冲击条件下的性能表现,以便合理评估其可靠性。
1. 纤维类型对冲击性能的影响不同类型的碳纤维在复合材料中具有不同的增强效果,因此其冲击性能也会有所差异。
研究表明,炭化纤维具有较好的耐冲击性能,能够有效地抵抗外部冲击载荷的作用,减轻复合材料的损伤程度。