1.1集合的概念与表示(教师版)
人教课标A版数学必修一1.1.1集合的含义与表示教案
1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。
1.1集合及其表示方法(教师版)
(2){}2230,x x x x --=∈R 答:{}3,1- (3){}2230,x x x x -+=∈R 答:∅ 例6、用符号∈或∉填空:(1){}23____11x x < (2){}2*3____1,x x n n =+∈N (3)(){}21,1____y y x -= (4)()(){}21,1____,x y y x -= [说明]例4-例6都涉及到了集合的描述法表示,这也是本节课的最大的难点,题目不宜过多,可以从中选取一些;在例题中渗透有限集和无限集的概念.三、巩固练习:课本P7练习1.1四、课堂小结:集合的概念、表示方法五、作业布置:家庭作业六、教学设计说明1.通过许多实际的例子来让学生感知概念,然后在通过文字的归纳叙述让学生形成概念,再通过具体的例子来让学生理解文字描述的概念,由此层层深化概念。
2.由于本节课文字信息量较大,因此用制作课件,以简化板书工作,增加课堂教学的信息容量,保证学生的活动空间和思维空间,努力提高单位教学效益。
类型一 对集合概念的理解例1:判断下列各组对象能否组成一个集合:(1)9以内的正偶数;(2)篮球打得好的人;(3)2012年伦敦奥运会的所有参赛运动员;(4)高一(1)班所有高个子同学.练习1:有下列4组对象:(1)某校2015级新生;(2)小于0的自然数;(3)所有数学难题;(4)接近1的数.其中能构成集合的是________.练习2:(2014~2015学年度四川德阳五中高一上学期月考)下列各组对象中,不能组成集合的是( )A .所有的正数B .所有的老人C .不等于零的数D .我国古代四大发明类型二 集合中元素的特性例2:集合A 是含有两个不同实数a -3,2a -1的集合,求实数a 的取值范围.练习1:能够组成集合的是( )A .与2非常接近的全体实数;B .很著名的科学家的全体;C .某教室内的全体桌子;D .与无理数π相差很小的数练习2:若一个集合中的三个元素a ,b ,c 是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .等腰三角形C .钝角三角形D .直角三角形类型三:集合的表示方法例4:用列举法表示下列集合(1){}2A x Z x =∈≤; (2)(){},4,,M x y x y x N y N **=+=∈∈练习1:(2014~2015学年度上海复旦大学附属中学高一上学期期中测试)用列举法表示集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪65-a ∈N *,a ∈Z =__________.练习2:用列举法表示下列集合方程220x -=的所有实数根组成的集合为:__________________1.下列说法:①地球周围的行星能确定一个集合;②实数中不是有理数的所有数能确定一个集合;③我们班视力较差的同学能确定一个集合.其中正确的个数是( )A .0B .1C .2D .32.集合{y |y =x ,-1≤x ≤1,x ∈Z }用列举法表示是( )A .{-1,0,1}B .{0,1}C .{-1,0}D .{-1,1}3.满足不等式11219x <+<的合数组成的集合为 。
1.1集合的概念与表示方法课件(人教版)
{ X
| 1<X<5 , X∈z }
{ X∈z
| 1<X<5
}
二、描述法:一般地,设 A 是一个集合,把集合 A 中所有具
有共同特征 P(x)的元素 x所组成的集合表示为{x∈A|P(x)}.
例:
不等式x—1>0的整数解
{x|x > 1,n∈Z}
起来表示集合。
偶数集(合):
{0, 2, 4, 6, 8, 10
}
集合的表示方法
一、列举法:把集合的所有元素一一列举出来,并用花括号
“{}”括起来表示集合的方法叫做列举法.
例题:
元素之间逗号隔开
(1)大于 1 且小于 6 的整数组成的集合 A
A={2,3,4,5}
(2)方程 x2-9=0 的实数根组成的集合 B
③将小于 10 的自然数按从小到大的顺序排列和按从大到小的
顺序排列分别得到不同的两个集合.
练习2
若集合A={1,2m,-4},且2 = 4,则m的值为( D
)
A.4
B.-2
C.-2或2
D.2
常见数集
数集
非负整数集
(自然数集)
正整数集
整数集
有理数集
实数集
符号
N
N*或 N+
Z
Q
R
练习3
3、下列关系中正确的个数为( B
4
6
习题:
能正确表示集合 M={x∈R|0≤x≤2}和集合 N={x∈R|x2-x=0}
关系的Venn 图是(B)。
总结
集合
THANK YOU
专题09 集合的概念(教师版)-2024年新高一(初升高)数学暑期衔接讲义
D:倒数等于它自身的实数为 1 与﹣1,∴满足集合的定义,故正确.
故选:D.
变式 1.(2023·高一课时练习)下列各组对象不能构成集合的是( )
A.上课迟到的学生 C.所有有理数
B. 2020 年高考数学难题 D.小于 的正整数
【答案】B
【解析】根据集合中元素的三要素判断.上课迟到的学生属于确定的互异的对象,所以能构成集合;2020 年
若 a 1,则集合 a2, a, 0 {1,1, 0}不满足互异性,故舍去.
则只能为 a 1, b 0 . 则 a2019 b2020 1 . 故答案为: 1.
变式 5.(2023·高一课时练习)由 a, a, a , a2 构成的集合中,元素个数最多是______.
【答案】2
【解析】当 a 0 时, a a a a2 0 ,此时元素个数为 1;
C. 1 M
【答案】A
【解析】由题意知集合 M x | x x 1 0 {0,1} ,
D. 0 M
故 0 M ,故 A 正确,D 错误,1 M ,故 B 错误, 1 M ,故 C 错误, 故选:A
例 6.(2023·全国·高三专题练习)已知 A a 2,(a 1)2,a 2 3a 3 ,若1 A ,则实数 a 构成的集合 B 的元素
【题型归纳目录】
题型 1:集合与元素的含义 题型 2:元素与集合的关系
题型 3:集合中元素特性的简单应用 题型 4:列举法表示集合
题型 5:描述法表示集合
题型 6:集合表示的综合问题
【典例例题】
题型 1:集合与元素的含义
例 1.(2023·高一课时练习)下列语句中,正确的个数是( )
(1) 0 N ;(2) π Q ;(3)由 3、4、5、5、6 构成的集合含有 5 个元素;(4)数轴上由 1 到 1.01 间的线段的点
高中数学人教A版必修1《1.1.1集合的含义与表示》教案3
必修一《1.1.1集合的含义与表示》教学案教学目标1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.能选择不同的形式表示具体问题中的集合.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择适当的方法表示具体问题中的集合.教学过程导入新课思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就是本节课我们所要学习的内容.思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”推进新课新知探究提出问题①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?②全体自然数能否构成一个集合?如果能,这个集合由什么组成?③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?④你能否根据上述几个问题总结出集合的含义?讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.③能.这个集合由1,2两个数组成.④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.提出问题通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.①近视超过300度的同学能否构成一个集合?②“眼神很差”的同学能否构成一个集合?③比较问题①②,说明集合中的元素具有什么性质?④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?⑥问题④⑤说明集合中的元素具有什么性质?⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:①能.②不能.③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.④一次.⑤4个元素.e,v,r,y这四个字母.⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.提出问题①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?②大家能否从问题①中总结出元素与集合的关系?③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.讨论结果:①a是集合B中的元素,a不是集合A中的元素.②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作a∉A.因此元素与集合的关系有两种,即属于和不属于.③3∈A,4∉A.提出问题①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?②字母表示法中有哪些专用符号?③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!⑤能用列举法把下列集合表示出来吗?小于10的质数;不等式x-2>5的解集.⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!⑦集合的表示方法共有几种?讨论结果:①两种,自然语言法和字母表示法.②非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.③两种,列举法与描述法.④把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.⑦自然语言法、字母表示法、列举法、描述法.应用示例例1下列所给对象不能构成集合的是__________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生.活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.(2)能构成集合,其中的元素是某班级16岁以下的学生.(3)因为未规定大个子的标准,所以(3)不能组成集合.(4)由于(4)中的对象具备确定性,因此,能构成集合.答案:(1)(3)例2用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动探究:讲解例2的过程中,可以设计如下问题引导学生:针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{}”内,并用逗号隔开.解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示教学内容的严谨性和简洁性.例3试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动探究:讲解例3的过程中,可以设计如下问题引导学生:针对例3(1)——列举法①方程x2-2=0的解是什么?②如何用列举法表示方程x2-2=0的所有实数根组成的集合?针对例3(1)——描述法①描述法的定义是什么?②所求集合中元素有几个共同特征?分别是什么?③如何用描述法表示所求集合?针对例3(2)——列举法①大于10小于20的所有整数有哪些?②由大于10小于20的所有整数组成的集合用列举法如何表示?针对例3(2)——描述法①所求集合中元素有几个共同特征?分别是什么?②如何用描述法表示所求集合?解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-2,x2=2,因此,用列举法表示为A ={-2,2}.(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B ={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.知能训练课后练习1,2.【补充练习】1.考查下列对象能否构成集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.2.用适当的符号填空:(1)0__________N ,5__________N ,16__________N ;(2)-12__________Q ,π__________Q ,e __________C R Q (e 是个无理数);(3)2-3+2+3=__________{x |x =a +6b ,a ∈Q ,b ∈Q }.答案:(1)∈ ∉ ∈ (2)∈ ∉ ∈ (3)∈3.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值. 解:∵2∈A ,∴m =2或m 2-3m +2=2.若m =2,则m 2-3m +2=0,不符合集合中元素的互异性,舍去.若m 2-3m +2=2,求得m =0或3.m =0不合题意,舍去.∴m 只能取3.4.用适当方法表示下列集合:(1)函数y =ax 2+bx +c (a ≠0)的图象上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图象的交点组成的集合;(3)不等式x -3>2的解集;(4)自然数中不大于10的质数集.答案:(1)描述法:{(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)描述法:⎩⎨⎧ (x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =-2x +6=⎩⎨⎧ (x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =1y =4.列举法:{(1,4)}.(3)描述法:{x |x >5}(4)列举法:{2,3,5,7}.拓展提升问题1:设集合P ={x -y ,x +y ,xy },Q ={x 2+y 2,x 2-y 2,0},若P =Q ,求x ,y 的值及集合P ,Q .活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P ,Q 对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.解:∵P =Q 且0∈Q ,∴0∈P .若x +y =0或x -y =0,则x 2-y 2=0,从而Q ={x 2+y 2,0,0},与集合中元素的互异性矛盾,∴x +y ≠0且x -y ≠0;若xy =0,则x =0或y =0.当y =0时,P ={x ,x ,0},与集合中元素的互异性矛盾,∴y ≠0;当x =0时,P ={-y ,y ,0},Q ={y 2,-y 2,0},由P =Q 得⎩⎪⎨⎪⎧ -y =y 2,y =-y 2,y ≠0, ① 或⎩⎪⎨⎪⎧ -y =-y 2,y =y 2,y ≠0.②由①得y =-1,由②得y =1,∴⎩⎪⎨⎪⎧ x =0,y =-1或⎩⎪⎨⎪⎧ x =0,y =1,此时P =Q ={1,-1,0}.点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.问题2:已知集合A ={x |ax 2-3x +2=0},若A 中的元素至多只有一个,求a 的取值范围. 活动探究:讨论关于x 的方程ax 2-3x +2=0实数根的情况,从中确定a 的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.解:(1)a =0时,原方程为-3x +2=0,x =23,符合题意.(2)a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合(1)(2),知a =0或a ≥98.点评:“a =0”这种情况最容易被忽视,只有在“a ≠0”的条件下,方程ax 2-3x +2=0才是一元二次方程,才能用判别式Δ解决问题.问题3:设S={x|x=m+2n,m,n∈Z}.(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个x1,x2,则x1+x2,x1·x2是否属于S?活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+2n的形式;如果能,m和n分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1·x2是否是集合S中的元素.解:(1)a是集合S中的元素,a=a+2×0∈S.(2)不妨设x1=m+2n,x2=p+2q,m,n,p,q∈Z.则x1+x2=(m+2n)+(p+2q)=(m+p)+2(n+q),m,n,p,q∈Z.∴x1+x2∈S;x1·x2=(m+2n)·(p+2q)=(mp+2nq)+2(mq+np),m,n,p,q∈Z.∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.点评:本题考查集合的描述法以及元素与集合间的关系.课堂小结本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.课后作业习题1.1A组3,4.。
北师大版必修第一册--第1章-1.1-第1课时集合的概念--课件(35张)
分析:1∈A→a=1或a2=1→验证互异性
解:因为1∈A,所以a=1或a2=1,即a=±1,当a=1时,a=a2,集合A中
只有一个元素,所以a≠1;当a=-1时,集合A中含有两个元素1,-1,
符合互异性,所以a=-1.
1.本例中若去掉条件“1∈A”,其他条件不变,则实数a的取值范
围是什么?
解:由题意a和a2组成含有两个元素的集合,则a≠a2,解得a≠0且
A.0∈A B.a∉A C.a∈A D.a=A
解析:∵集合A中只含有一个元素a,
∴a属于集合A,即a∈A.
答案:C
)
3.由x2,x3组成一个集合A,A中含有两个元素,则实数x的取值可
以是(
)
A.0 B.-1 C.1 D.-1或1
解析:验证法:若x=0,x2=0,x3=0,不合题意;
若x=1,x2=1,x3=1,不合题意;
(1)1
N+;(2)-3
(3)
(5)-
Q;(4)
N;
Q;
R.
答案:(1)∈ (2)∉ (3)∈ (4)∉ (5)∈
【思考辨析】
判断下列说法是否正确,正确的在它后面的括号里画“ ”,错
误的画“×”.
(1)如果小明的身高是1.78 m,那么他应该是由高个子学生组
成的集合中的一个元素.( × )
么是,要么不是,两者必居其一,且仅居其一,故“等边三角形的
全体”能组成集合;同理可得,(2)能组成集合;(3)能组成集合;
(4)“聪明的人”没有明确的判断标准,对于某个人算不算聪明
无法客观判断,因此“聪明的人”不能组成集合;同理可得,(5)不能 Nhomakorabea成集合.
1.1.1集合的概念及表示方法
教师:张友蛟
1.1集合及其运算
1.1.1集合的概念及表示方法
集合
举例1: (1)小于5的自然数,0,1,2,3,4,5; (2)中国古典四大名著; (3)云南医药健康职业学院护理x班的全体学生; (4)到线段两端距离相等的点;
举例2: 某商店进了一批货,包括:面包、牛奶、汉堡、彩笔、
例1 下列对象能否组成集合? (1)所有小于10的自然数; (2)某班个子高的同学; (3)方程 x2 1 0的所有解; (4)不等式 x 2 0的所有解;
(三)集合的分类:
由方程的所有解组成的集合叫做这个方程的解集; 由不等式的所有解组成的集合叫做这个不等式的解集; 元素个数有限的集合叫做有限集; 元素个数无限的集合叫做无限集; 像平面上与原点 O 的距离为2厘米的所有点组成的集合那样,由平 面内的点组成的集合叫做平面点集; 由数组成的集合叫做数集,方程的解集与不等式的解集都是数集
• ①很小的数
②不超过 30的非负实数
• ③直角坐标平面的横坐标与纵坐标相等的点
• ④的近似值 ⑤高一年级优秀的学生
• ⑥所有无理数 ⑦大于2的整数
• ⑧正三角形全体
• A.⑥⑦
D. ②③⑤⑥⑦⑧
• 练习1.下列指定的对象,能构成一个集合的是 (B)
• ①很小的数
水笔、橡皮、果冻、薯片、裁纸刀、尺子。那么如何将这 些商品放在指定的篮筐里? 食品篮筐:
面包、牛奶、汉堡、果冻、薯片; 文具篮筐:
彩笔、水笔、橡皮、裁纸刀、尺子
(一)集合的概念
1.集合
由某些确定的对象组成的整体叫做集合,简称 “集”。
组成集合的每一个对象叫做这个集合的元素。
• 练习1.下列指定的对象,能构成一个集合的是 ()
学年人教版高中数学必修一 教师用书word文件
1.1集__合1.1.1 集合的含义与表示 第一课时 集合的含义集合的概念[提出问题] 观察下列实例: (1)某公司的所有员工;(2)平面内到定点O 的距离等于定长d 的所有的点;(3)不等式组⎩⎪⎨⎪⎧x +1≥3,x 2≤9的整数解;(4)方程x 2-5x +6=0的实数根; (5)某中学所有较胖的同学.问题1:上述实例中的研究对象各是什么? 提示:员工、点、整数解、实数根、较胖的同学. 问题2:你能确定上述实例的研究对象吗? 提示:(1)(2)(3)(4)的研究对象可以确定.问题3:上述哪些实例的研究对象不能确定?为什么?提示:(5)的研究对象不能确定,因为“较胖”这个标准不明确,故无法确定. [导入新知] 元素与集合的概念 定义表示元素 一般地,我们把研究对象统称为元素 通常用小写拉丁字母a ,b ,c ,…表示 集合把一些元素组成的总体叫做集合(简称为集)通常用大写拉丁字母A ,B ,C ,…表示[化解疑难]准确认识集合的含义(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.元素的特性及集合相等[提出问题]问题1:“知识点一”中的实例(3)组成的集合的元素是什么?提示:2,3.问题2:“知识点一”中的实例(4)组成的集合的元素是什么?提示:2,3.问题3:“知识点一”中的实例(3)与实例(4)组成的集合有什么关系?提示:相等.[导入新知]1.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.集合元素的特性集合元素的特性:确定性、互异性、无序性.[化解疑难]对集合中元素特性的理解(1)确定性:作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(2)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如由1,2,3构成的集与3,2,1构成的集合是同一个集合.元素与集合的关系及常用数集的记法[提出问题]某中学2017年高一年级20个班构成一个集合.问题1:高一(6)班、高一(16)班是这个集合中的元素吗?提示:是这个集合的元素.问题2:高二(3)班是这个集合中的元素吗?为什么? 提示:不是.高一年级这个集合中没有高二(3)班这个元素. [导入新知]1.元素与集合的关系(1)如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . (2)如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A . 2.常用的数集及其记法常用的数集 自然数集正整数集 整数集 有理数集实数集 记法NN *或N +ZQR[化解疑难]1.对“∈”和“∉”的理解(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a 与一个集合A 而言,只有“a ∈A ”与“a ∉A ”这两种结果.(2)“∈”和“∉”具有方向性,左边是元素,右边是集合,形如R ∈0是错误的. 2.常用数集关系网集合的基本概念[例1] (1)上到点A 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数是( )A .2B .3C .4D .5(2)判断下列说法是否正确,并说明理由. ①某个公司里所有的年轻人组成一个集合; ②由1,32,64,⎪⎪⎪⎪-12,12组成的集合有五个元素;③由a ,b ,c 组成的集合与由b ,a ,c 组成的集合是同一个集合.[解] (1)选A “接近于0的数”“比较小的正整数”标准不明确,即元素不确定,所以①②不是集合.同样,“2的近似值”也不明确精确到什么程度,因此很难判定一个数,比如2是不是它的近似值,所以⑤也不是一个集合.③④能构成集合.(2)①不正确.因为“年轻人”没有确定的标准,对象不具有确定性,所以不能组成集合. ②不正确.由于32=64,⎪⎪⎪⎪-12=12,由集合中元素的互异性知,这个集合是由1,32,12这三个元素组成的.③正确.集合中的元素相同,只是次序不同,但它们仍表示同一个集合. [类题通法]判断一组对象能否组成集合的标准及其关注点(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.[活学活用]判断下列每组对象能否构成一个集合. (1)著名的数学家;(2)某校2017年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解; (5)平面直角坐标系内第一象限的一些点.解:(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合.(2)与(1)类似,也不能构成集合.(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)类似于(3),也能构成集合.(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.元素与集合的关系[例2](1)设集合A只含有一个元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A(2)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2C.3 D.4[解析](1)由元素与集合的关系可知,a∈A.(2)①π∈R显然是正确的;②3是无理数,而Q表示有理数集,∴3∉Q,正确;③N*表示不含0的自然数集,∴0∉N*,③错误;④|-4|=4∈N*,④错误,所以①②是正确的.[答案](1)C(2)B[类题通法]判断元素与集合间关系的方法判断一个对象是否为某个集合的元素,就是判断这个对象是否具有这个集合的元素具有的共同特征.如果一个对象是某个集合的元素,那么这个对象必具有这个集合的元素的共同特征.[活学活用]给出下列说法:①R中最小的元素是0;②若a∈Z,则-a∉Z;③若a∈Q,b∈N*,则a+b∈Q.其中正确的个数为()A.0B.1C.2 D.3解析:选B实数集中没有最小的元素,故①不正确;对于②,若a∈Z,则-a也是整数,故-a∈Z,所以②也不正确;只有③正确.集合中元素的特性及应用[例3]已知集合A中含有两个元素a和a,若1∈A,求实数a的值.[解]若1∈A,则a=1或a2=1,即a=±1.当a =1时,a =a 2,集合A 中有一个元素,∴a ≠1. 当a =-1时,集合A 中含有两个元素1,-1,符合互异性.∴a =-1. [类题通法]关注元素的互异性根据集合中元素的确定性,可以解出字母的所有可能取值,但要时刻关注集合中元素的三个特性,尤其是互异性,解题后要注意进行检验.[活学活用]已知集合A 中含有三个元素1,0,x ,若x 2∈A ,求实数x 的值.解:∵x 2∈A ,∴x 2是集合A 中的元素.又∵集合A 中含有3个元素,∴需分情况讨论:①若x 2=0,则x =0,此时集合A 中有两个元素0,不符合互异性,舍去;②若x 2=1,则x =±1.当x =1时,此时集合A 中有两个元素1,舍去;当x =-1时,此时集合A 中有三个元素1,0,-1,符合题意;③若 x 2=x ,则x =0或x =1,不符合互异性,都舍去.综上可知,x =-1.1.警惕集合元素的互异性[典例] 若集合A 中有三个元素x ,x +1,1,集合B 中也有三个元素x ,x 2+x ,x 2,且A =B ,则实数x 的值为________.[解析] ∵A =B ,∴⎩⎪⎨⎪⎧ x +1=x 2,1=x 2+x 或⎩⎪⎨⎪⎧x +1=x 2+x ,1=x 2.解得x =±1.经检验,x =1不适合集合元素的互异性,而x =-1适合. ∴x =-1. [答案] -1 [易错防范]1.上面例题易由方程组求得x=±1后,忽视对求出的值进行检验,从而得出错误的结论.2.当集合中元素含字母并要求对其求值时,求出的值一定要加以检验,看是否符合集合元素的互异性.[成功破障]若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:①若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.②若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.③若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由②知不合题意.综上可知a=0或a=1.答案:0或1[随堂即时演练]1.下列选项中能构成集合的是()A.高一年级跑得快的同学B.中国的大河C.3的倍数D.有趣的书籍解析:选C根据集合的定义,选项A,B,D都不具备确定性.2.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是() A.梯形B.平行四边形C.菱形D.矩形解析:选A由于a,b,c,d四个元素互不相同,故它们组成的四边形的四条边都不相等.3.有下列说法:①集合N与集合N*是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的有________(填序号).解析:因为集合N*表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④4.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.解析:代入验证,若a=2,则6-2=4∈A,符合题意;若a=4,则6-4=2∈A,符合题意;若a=6,则6-6=0∉A,不符合题意,舍去.所以a=2或a=4.答案:2或45.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.解:因为集合A,B相等,则x=0或y=0.①当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.②当y=0时,x=x2,解得x=0或x=1.由①知x=0应舍去.综上知x=1,y=0.[课时达标检测]一、选择题1.下列判断正确的个数为()(1)所有的等腰三角形构成一个集合.(2)倒数等于它自身的实数构成一个集合.(3)素数的全体构成一个集合.(4)由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3 D.4解析:选C(1)正确;(2)若1a=a,则a2=1,∴a=±1,构成的集合为{1,-1},∴(2)正确;(3)也正确,任何一个素数都在此集合中,不是素数的都不在;(4)不正确,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故选C.2.设不等式3-2x <0的解集为M ,下列正确的是( ) A .0∈M,2∈M B .0∉M,2∈M C .0∈M,2∉MD .0∉M,2∉M解析:选B 从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M .3.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x ≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于选项A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而选项B ,C ,D 中元素不相同,所以P 与Q 不能表示同一个集合.4.已知集合M 中的元素x 满足x =a +b 2,其中a ,b ∈Z ,则下列实数中不属于集合M 中元素的个数是( )①0;②-1;③32-1;④23-22;⑤8;⑥11-2. A .0 B .1 C .2 D .3解析:选A 当a =b =0时,x =0;当a =-1,b =0时,x =-1;当a =-1,b =3时,x =-1+32;23-22=2(3+22)(3-22)(3+22)=6+42,即a =6,b =4;当a =0,b =2时,x=22=8;11-2=1+2(1-2)(1+2)=-1-2,即a =-1,b =-1.综上所述:0,-1,32-1,23-22,8,11-2都是集合M 中的元素.5.由实数-a ,a ,|a |,a 2所组成的集合最多含有________个元素.( ) A .1 B .2 C .3D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a ≠0时,a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,-a ,a <0,所以一定与a 或-a 中的一个一致.故组成的集合中最多有两个元素.二、填空题6.方程x 2-2x -3=0的解集与集合A 相等,若集合A 中的元素是a ,b ,则a +b =________.解析:∵方程x 2-2x -3=0的解集与集合A 相等, ∴a ,b 是方程x 2-2x -3=0的两个根, ∴a +b =2. 答案:27.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ______A ,ab _____A .(填“∈”或“∉”)解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A . 答案:∉ ∈8.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A ,且3a ∈A ,则a 的值为________.解析:∵a ∈A ,且3a ∈A ,∴⎩⎪⎨⎪⎧a <6,3a <6, 解得a <2. 又∵a ∈N , ∴a =0或a =1. 答案:0或1 三、解答题9.已知集合M 由三个元素-2,3x 2+3x -4,x 2+x -4组成,若2∈M ,求x . 解:当3x 2+3x -4=2时,即x 2+x -2=0,x =-2或x =1,经检验,x =-2,x =1均不合题意;当x 2+x -4=2时,即x 2+x -6=0,x =-3或x =2,经检验,x =-3或x =2均合题意.∴x =-3或x =2.10.设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解:(1)由集合中元素的互异性可知,x ≠3,且x ≠x 2-2x ,x 2-2x ≠3. 解得x ≠-1且x ≠0,且x ≠3. (2)∵-2∈A ,∴x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, ∴x =- 2.11.数集M 满足条件:若a ∈M ,则1+a1-a∈M (a ≠±1且a ≠0).若3∈M ,则在M 中还有三个元素是什么?解:∵3∈M , ∴1+31-3=-2∈M , ∴1+(-2)1-(-2)=-13∈M ,∴1+⎝⎛⎭⎫-131-⎝⎛⎭⎫-13=2343=12∈M .又∵1+121-12=3∈M ,∴在M 中还有元素-2,-13,12.12.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面两小题的解答过程中,你能悟出什么道理?并大胆证明你发现的这个“道理”.解:根据已知条件“若a ∈A ,则11-a ∈A (a ≠1)”逐步推导得出其他元素.(1)其他所有元素为-1,12.(2)假设-2∈A ,则13∈A ,则32∈A .其他所有元素为13,32.(3)A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1.证明如下:由已知,若a ∈A ,则11-a ∈A 知,11-11-a =a -1a ∈A ,11-a -1a =a ∈A .故A 中只能有a ,11-a,a -1a 这3个元素.下面证明三个元素的互异性:若a =11-a ,则a 2-a +1=0有解,因为Δ=1-4=-3<0,所以方程无实数解,故a ≠11-a. 同理可证,a ≠a -1a ,11-a≠a -1a .结论得证.第二课时 集合的表示列举法[提出问题] 观察下列集合:(1)中国古代四大发明组成的集合; (2)20的所有正因数组成的集合.问题1:上述两个集合中的元素能一一列举出来吗?提示:能.(1)中的元素为造纸术、印刷术、指南针、火药,(2)中的元素为1,2,4,5,10,20. 问题2:如何表示上述两个集合? 提示:用列举法表示.[导入新知]列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.[化解疑难]使用列举法表示集合的四个注意点(1)元素间用“,”分隔开,其一般形式为{a1,a2,…,a n};(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含有有限个元素且个数较少的集合,采取该方法较合适;若元素个数较多或有无限个且集合中的元素呈现一定的规律,在不会产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.描述法[提出问题]观察下列集合:(1)不等式x-2≥3的解集;(2)函数y=x2-1的图象上的所有点.问题1:这两个集合能用列举法表示吗?提示:不能.问题2:如何表示这两个集合?提示:利用描述法.[导入新知]描述法(1)定义:用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[化解疑难]1.描述法表示集合的条件对于元素个数不确定且元素间无明显规律的集合,不能将它们一一列举出来,可以将集合中元素的共同特征描述出来,即采用描述法.2.描述法的一般形式它的一般形式为{x∈A|p(x)},其中的x表示集合中的代表元素,A指的是元素的取值范围;p(x)则是表示这个集合中元素的共同特征,其中“|”将代表元素与其特征分隔开来.一般来说,集合元素x 的取值范围A 需写明确,但若从上下文的关系看,x ∈A 是明确的,则x ∈A 可以省略,只写元素x .用列举法表示集合[例1] (1)设集合A ={1,2,3},B ={1,3,9},若x ∈A 且x ∉B ,则x =( ) A .1 B .2 C .3D .9(2)用列举法表示下列集合:①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[解] 选B (1)∵x ∈A , ∴x =1,2,3.又∵x ∉B ,∴x ≠1,3,9,故x =2.(2)①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集合是{0,2,4,6,8,10}.②方程x 2=x 的实数解是x =0或x =1,所以方程x 2=x 的所有实数解组成的集合为{0,1}. ③将x =0代入y =2x +1,得y =1,即交点是(0,1),故直线y =2x +1与y 轴的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.[类题通法]用列举法表示集合的步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.[活学活用]已知集合A={-2,-1,0,1,2,3},对任意a∈A,有|a|∈B,且B中只有4个元素,求集合B.解:对任意a∈A,有|a|∈B.因为集合A={-2,-1,0,1,2,3},由-1,-2,0,1,2,3∈A,知0,1,2,3∈B.又因为B中只有4个元素,所以B={0,1,2,3}.用描述法表示集合[例2](1)①A={x|x2-x=0},则1____A,-1____A;②(1,2)________{(x,y)|y=x+1}.(2)用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.[解](1)①将1代入方程,成立;将-1代入方程,不成立.故1∈A,-1∉A.②将x=1,y=2代入y=x+1,成立,故填“∈”.(2)①偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,故限定n∈N*,所以正偶数集可表示为{x|x=2n,n∈N*}.②设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故x=3n+2,n∈N.所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.③坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.[答案](1)①∈∉②∈[类题通法]利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x ∈R|x <1}不能写成{x <1}.(2)所有描述的内容都要写在花括号内.例如,{x ∈Z|x =2k },k ∈Z ,这种表达方式就不符合要求,需将k ∈Z 也写进花括号内,即{x ∈Z|x =2k ,k ∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R|x 2-2x +1=0},也可写成{x |x 2-2x +1=0}.(5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等. [活学活用] 下列三个集合: ①A ={x |y =x 2+1}; ②B ={y |y =x 2+1}; ③C ={(x ,y )|y =x 2+1}. (1)它们是不是相同的集合? (2)它们各自的含义分别是什么?解:(1)由于三个集合的代表元素互不相同,故它们是互不相同的集合.(2)集合A ={x |y =x 2+1}的代表元素是x ,且x ∈R ,所以{x |y =x 2+1}=R ,即A =R ;集合B ={y |y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以{y |y =x 2+1}={y |y ≥1}.集合C ={(x ,y )|y =x 2+1}的代表元素是(x ,y ),是满足y =x 2+1的数对.可以认为集合C 是坐标平面内满足y =x 2+1的点(x ,y )构成的集合,其实就是抛物线y =x 2+1的图象.集合表示的应用[例3] (1)集合A ) A .{x |x =2n ±1,n ∈N} B .{x |x =(-1)n (2n -1),n ∈N} C .{x |x =(-1)n (2n +1),n ∈N} D .{x |x =(-1)n -1(2n +1),n ∈N}(2)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪62+x ∈N .①试判断元素1,2与集合B 的关系; ②用列举法表示集合B .[解] 选C (1)观察规律,其绝对值为奇数排列,且正负相间,且第一个为正数,故应选C.(2)①当x =1时,62+1=2∈N ; 当x =2时,62+2=32∉N.所以1∈B,2∉B . ②∵62+x∈N ,x ∈N , ∴2+x 只能取2,3,6.∴x 只能取0,1,4.∴B ={0,1,4}. [类题通法]判断元素与集合间关系的方法(1)用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .(2)用描述法给出的集合,判断元素与集合的关系时就比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?…,其次要清楚元素的共同特征是什么,最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.[活学活用]用列举法表示集合A ={(x ,y )|y =x 2,-1≤x ≤1,且x ∈Z}. 解:由-1≤x ≤1,且x ∈Z ,得x =-1,0,1,当x =-1时,y =1;当x =0时,y =0;当x =1时,y =1. ∴A ={(-1,1),(0,0),(1,1)}.1.集合与方程的综合应用[典例] 集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,求a 的取值范围.[解]当a=0时,原方程变为2x+1=0,,符合题意;此时x=-12当a≠0时,方程ax2+2x+1=0为一元二次方程,当Δ=4-4a=0,即a=1时,原方程的解为x=-1,符合题意.故当a=0或a=1时,原方程只有一个解,此时A中只有一个元素.[多维探究]解答上面例题时,a=0这种情况极易被忽视,对于方程“ax2+2x+1=0”有两种情况:一是a=0,即它是一元一次方程;二是a≠0,即它是一元二次方程,也只有在这种情况下,才能用判别式Δ来解决问题.求解集合与方程问题时,要注意相关问题的求解,如:1.在本例条件下,若A中至多有一个元素,求a的取值范围.解:A中至多有一个元素,即A中有一个元素或没有元素.当A中只有一个元素时,由例题可知,a=0或a=1.当A中没有元素时,Δ=4-4a<0,即a>1.故当A中至多有一个元素时,a的取值范围为{a|a=0或a≥1}.2.在本例条件下,若A中至少有一个元素,求a的取值范围.解:A中至少有一个元素,即A中有一个或两个元素.由例题可知,当a=0或a=1时,A中有一个元素;当A中有两个元素时,Δ=4-4a>0,即a<1.∴A中至少有一个元素时,a的取值范围为{a|a≤1}.3.若1∈A,则a为何值?解:∵1∈A,∴a+2+1=0,即a=-3.4.是否存在实数a,使A={1},若存在,求出a的值;若不存在,说明理由.解:∵A={1},∴1∈A,∴a+2+1=0,即a=-3.又当a=-3时,由-3x2+2x+1=0,得x=-1或x=1,3即方程ax 2+2x +1=0存在两个根-13和1,此时A =⎩⎨⎧⎭⎬⎫-13,1,与A ={1}矛盾.故不存在实数a ,使A ={1}.[随堂即时演练]1.方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D 解方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧x =5,y =-4,故解集为{(5,-4)}.2.下列四个集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2}C .{2}D .{x |x 2-4x +4=0}解析:选B 集合{x =2}表示的是由一个等式组成的集合,其他选项所表示的集合都是含有一个元素2.3.给出下列说法:①平面直角坐标内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{2,-2}; ③集合{(x ,y )|y =1-x }与集合{x |y =1-x }是相等的. 其中正确的是________(填序号).解析:直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2,解为有序实数对(2,-2),解集为{(2,-2)}或⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧ x =2,y =-2,故②不正确; 集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,前者是有序实数对,后者是实数,因此这两个集合不相等,故③不正确.答案:①4.已知A={-1,-2,0,1},B={x|x=|y|,y∈A},则B=________.解析:∵|-1|=1,|-2|=2,且集合中的元素具有互异性,∴B={0,1,2}.答案:{0,1,2}5.用适当的方法表示下列集合:(1)一年中有31天的月份的全体;(2)大于-3.5小于12.8的整数的全体;(3)梯形的全体构成的集合;(4)所有能被3整除的数的集合;(5)方程(x-1)(x-2)=0的解集;(6)不等式2x-1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}.(2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}.(3){x|x是梯形}或{梯形}.(4){x|x=3n,n∈Z}.(5){1,2}.(6){x|x>3}.[课时达标检测]一、选择题1.下列集合的表示,正确的是()A.{2,3}≠{3,2}B.{(x,y)|x+y=1}={y|x+y=1}C.{x|x>1}={y|y>1}D.{(1,2)}={(2,1)}解析:选C{2,3}={3,2},故A不正确;{(x,y)|x+y=1}中的元素为点(x,y),{y|x+y =1}中的元素为实数y,{(x,y)|x+y=1}≠{y|x+y=1},故B不正确;{(1,2)}中的元素为点(1,2),而{(2,1)}中的元素为点(2,1),{(1,2)}≠{(2,1)},故D不正确.2.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M解析:选D 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M .当x ,y ,z 都小于零时,代数式的值为-4,所以-4∈M .当x ,y ,z 有两个为正,一个为负时,或两个为负,一个为正时,代数式的值为0.所以0∈M .综上知选D.3.集合{x ∈N *|x -3<2}的另一种表示法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:选B ∵x -3<2,x ∈N *, ∴x <5,x ∈N *, ∴x =1,2,3,4.4.已知集合A ={x |x =2m -1,m ∈Z},B ={x |x =2n ,n ∈Z},且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( )A .x 1·x 2∈AB .x 2·x 3∈BC .x 1+x 2∈BD .x 1+x 2+x 3∈A 解析:选D 集合A 表示奇数集,B 表示偶数集, ∴x 1,x 2是奇数,x 3是偶数,∴x 1+x 2+x 3应为偶数,即D 是错误的.5.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C 由题意知集合P *Q 的元素为点,当a =1时,集合P *Q 的元素为:(1,4),(1,5),(1,6),(1,7),(1,8)共5个元素.同样当a =2,3时,集合P *Q 的元素个数都为5个,当a =4时,集合P *Q 中元素为:(4,5),(4,6),(4,7),(4,8)共4个.因此P *Q 中元素的个数为19.二、填空题6.若集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则a -b =________.解析:由题意知a ≠0,a +b =0,b =1,则a =-1, 所以a -b =-2. 答案:-27.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉{x |2x +a >0}, ∴2×1+a ≤0,即a ≤-2. 答案:{a |a ≤-2}8.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________. 解析:由-5∈{x |x 2-ax -5=0},得(-5)2-a ×(-5)-5=0,所以a =-4,所以{x |x 2-4x +4=0}={2},所以集合中所有元素之和为2.答案:2 三、解答题9.已知集合A ={a +3,(a +1)2,a 2+2a +2},若1∈A ,求实数a 的值. 解:①若a +3=1,则a =-2,此时A ={1,1,2},不符合集合中元素的互异性,舍去. ②若(a +1)2=1,则a =0或a =-2. 当a =0时,A ={3,1,2},满足题意; 当a =-2时,由①知不符合条件,故舍去. ③若a 2+2a +2=1,则a =-1, 此时A ={2,0,1},满足题意. 综上所述,实数a 的值为-1或0. 10.用适当的方法表示下列集合: (1)比5大3的数;(2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10的图象上的所有点组成的集合. 解:(1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧x =2,y =-3,∴方程的解集为{(2,-3)}.(3)“二次函数y =x 2-10的图象上的所有点”用描述法表示为{(x ,y )|y =x 2-10}.11.(1)已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪61+x ∈Z ,求M ;(2)已知集合C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎪⎪61+x∈Z x ∈N ,求C . 解:(1)∵x ∈N ,61+x ∈Z ,∴1+x 应为6的正约数. ∴1+x =1,2,3,6,即x =0,1,2,5. ∴M ={0,1,2,5}. (2)∵61+x ∈Z ,且x ∈N ,∴1+x 应为6的正约数,∴1+x =1,2,3,6,此时61+x 分别为6,3,2,1,∴C ={6,3,2,1}.12.若集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0有且只有一个元素,试求出实数k 的值,并用列举法表示集合A .解:当k =0时,方程组⎩⎪⎨⎪⎧ y =kx 2-2x -1,y =0可化为⎩⎪⎨⎪⎧y =-2x -1,y =0,解得⎩⎪⎨⎪⎧x =-12,y =0,此时集合A 为-12,0;当k ≠0时,要使集合A 有且只有一个元素,则方程kx 2-2x -1=0有且只有一个根,所以⎩⎪⎨⎪⎧k ≠0,Δ=(-2)2+4k =0,解得k =-1,代入⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0中得⎩⎪⎨⎪⎧y =-x 2-2x -1,y =0, 解得⎩⎪⎨⎪⎧x =-1,y =0,即A ={(-1,0)}.综上可知,当k =0时,A =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫-12,0;当k =-1时,A ={(-1,0)}.1.1.2 集合间的基本关系子 集[提出问题]具有北京市东城区户口的人组成集合A ,具有北京市户口的人组成集合B . 问题1:集合A 中元素与集合B 有关系吗? 提示:有关系,集合A 中每一个元素都属于集合B . 问题2:集合A 与集合B 有什么关系? 提示:集合B 包含集合A . [导入新知] 子集的概念定义一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集记法与读法记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”)图示结论(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,若A⊆B,且B⊆C,则A⊆C[化解疑难]对子集概念的理解(1)集合A是集合B的子集的含义是:集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A中存在着不是集合B的元素,那么集合A不包含于B,或B不包含A,此时记作A B或B⊉A.(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N,而不能写成{0}∈N;“∈”只能用于元素与集合之间,如0∈N,而不能写成0⊆N.集合相等[提出问题]设A={x|x是有三条边相等的三角形},B={x|x是等边三角形}.问题1:三边相等的三角形是何三角形?提示:等边三角形.问题2:两集合中的元素相同吗?提示:相同.问题3:A是B的子集吗?B是A的子集吗?提示:是.是.[导入新知]集合相等的概念如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.[化解疑难]对两集合相等的认识。
人教A版必修一 第一章 1.1.1集合的含义与表示方法 教案
方程x=x2
③由1到20以内的所有整数组成的集合。
所有正数
所有奇数
x-7<3的解集
y=x中y的取值组成的集合
y=1/x中x的取值组成的集合
一次函数y=x+3与y=-2x+6的图像的交点组成的集合
直角坐标系中,第一象限内所有的点组成的集合(不包括x轴y轴上的点)
对于③可以一一列举,但是20个数都写出来还是有点麻烦的;对于 如果用列举法,会出现省略号,要求读者找规律,才能知道这个集合表示的是正数集,奇数集。而至于 ,用列举法显然不适合。那有没有更好的办法呢?
4.集合的三种表示方法:自然语言,列举法,描述法
我们班所有的学生
我们班所有男生
③我们班所有高个子男生
我们班所有身高超过1米6的超级爱好DOTA游戏的男生。
我们班幸福的人
以上③ 都不是集合,因为它们所研究的对象都是不确定的,高个子?多高算高呢?每个人心中都有不一样的标准。超级爱好,幸福都是模棱两可的。
(三)集合元素的互异性,一个给定的集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的。(四)通常用大写的英文字母A,B,C……表示集合,用小写的啊,a,b,c……表示集合中的元素。如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作aA。
(六)集合的表示方法:列举法,描述法,Venn图
从上面例子,我们已经看到,可以用自然语言描述一个集合。除此之外Байду номын сангаас有什么方法呢?
列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。(强调花括号,元素之间用逗号隔开,无序性,互异性)说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序;集合中同一元素不能重复出现。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】1. 了解集合的概念,掌握集合的表示方法。
2. 能够运用集合的概念解决实际问题。
【教学内容】1. 集合的定义及表示方法。
2. 集合的性质。
3. 集合之间的基本关系。
【教学重点】1. 集合的概念及表示方法。
2. 集合的性质。
【教学难点】1. 集合的表示方法。
2. 集合之间的基本关系。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解集合的概念。
2. 讲解集合的定义及表示方法,如列举法、描述法等。
3. 讲解集合的性质,如无序性、确定性、互异性。
4. 讲解集合之间的基本关系,如子集、真子集、并集、交集等。
5. 课堂练习:让学生运用集合的概念解决实际问题。
1.2 集合之间的关系【教学目标】1. 掌握集合之间的基本关系,如子集、真子集、并集、交集等。
2. 能够运用集合之间的关系解决实际问题。
【教学内容】1. 集合之间的子集、真子集关系。
2. 集合之间的并集、交集关系。
3. 集合的补集概念。
【教学重点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学难点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学过程】1. 复习上节课的内容,引导学生理解集合之间的关系。
2. 讲解集合之间的子集、真子集关系。
3. 讲解集合之间的并集、交集关系。
4. 讲解集合的补集概念。
5. 课堂练习:让学生运用集合之间的关系解决实际问题。
第二章:函数与方程2.1 函数的概念【教学目标】1. 了解函数的概念,掌握函数的表示方法。
2. 能够运用函数的概念解决实际问题。
【教学内容】1. 函数的定义及表示方法。
2. 函数的性质。
【教学重点】1. 函数的概念及表示方法。
2. 函数的性质。
【教学难点】1. 函数的表示方法。
2. 函数的性质。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解函数的概念。
2. 讲解函数的定义及表示方法,如解析式、表格法等。
人教版数学必修一 第一章 1.1.1 集合的含义与表示
问题
如果用A表示高一( )班学生组成的集合, 表示高 如果用 表示高一(3)班学生组成的集合,a表示高 表示高一 一(3)班的一位同学,b表示高一(4)班的一位同 )班的一位同学, 表示高一( ) 表示高一 那么a、 与集合 分别有什么关系? 与集合A分别有什么关系 学,那么 、b与集合 分别有什么关系?由此看出元 那么 素与集合之间有什么关系? 素与集合之间有什么关系?
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数 的值. 求实数a的值 求实数 的值
回顾交流
今天我们学习了哪些内容? 今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性 元素与集合的关系: , 常用数集及其表示 集合的表示法:列举法、描述法
第12页 页 习题1.1 A组 第1、2、3、4题 习题 组 、 、 、 题
2.选择题 . ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数} (B) {a,b,c,d}与{c,d,b,a}是两个不同的集合 (C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
0, a, a 2 3a + 2 }中的元素, ⑵ 已知2是集合M={ 则实数 a 为( c )
判断0与N,N*,Z的关系? 课堂练习P5 第1题 解析:判断一个元素是否在某个集合中 关键在于 解析 判断一个元素是否在某个集合中,关键在于 判断一个元素是否在某个集合中 弄清这个集合由哪些元素组成的. 弄清这个集合由哪些元素组成的
集合的表示方法 如何表示“地球上的四大洋”组成的集合? 问题 (1) 如何表示“地球上的四大洋”组成的集合 (2) 如何表示“方程 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 的所有实数根” 的所有实数根 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2} 太平洋,大西洋,印度洋,北冰洋} } 把集合中的元素一一列举出来,并用花括号 并用花括号{ 把集合中的元素一一列举出来 并用花括号{}括起来表示 注意:元素与元素之间用逗号隔开) (注意:元素与元素之间用逗号隔开) 叫做列举法 集合的方法叫做列举法. 集合的方法叫做列举法 用列举法表示下列集合: 例1 用列举法表示下列集合: 一个集合中的元素 (1)小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 小于 的所有自然数组成的集合; 的书写一般不考虑 2 (2)方程 x = x 的所有实数根组成的集合; 顺 序 ( 集 合 中 元 素 的所有实数根组成的集合; 方程 的无序性). 的无序性 (3)由1~20以内的所有素数组成的集合 以内的所有素数组成的集合. 由 以内的所有素数组成的集合 解:(1)A={0,1,2,3,4,5,6,7,8,9}. , , , , , , , , , (2)B={0,1}. , (3)C={2,3,5,7,11,13,17,19}. , , , , , , , 1.确定性 确定性 2.互异性 互异性 3.无序性 无序性
高一数学课件:1.1 集合的含义与表示(新人教版必修1)
6.如果在集合I中,属于集合A的任意一个元素x都具有性质p(x), 而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合 特征性质 A的 . 7.描述法的表示形式为 {x∈I|p(x)} .
返回
学点一 集合的概念 下列各组对象能否组成集合. (1)小于10的自然数:0,1,2,3,…,9; (2)满足3x-2>x+3的全体实数; (3)所有直角三角形;
所以x∈R且x≠±1且x≠0.
【评析】解决这类问题的主要依据是集合元素的性质特征—
互异性,列出两两元素的关系式求解,通常要用到分类讨论.
返回
集合{3,x,x2-2x}中,x应满足的条件是 【解析】 x≠3且x≠0且x≠-1根据构成集合的元素的 互异性,x应满足
.
x3 2 x 2x 3 x 2 2x x
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成
的集合.
返回
(1)由
2 x 3 y 14 3x 2 y 8
得
x4 y 2
方程组的解集为{(4,-2)}. (2)1 000以内被3除余2的正整数可以表示为x=3k+2,k∈N的 形式. 故所求的集合为{x|x=3k+2,k∈N,且x<1 000}.
③因为N中最小元素为0,故当a∈N,b∈N时,a+b的最小值为0,故 错误.
返回
学点三
集合中元素的性质
已知由1,x,x2三个实数构成一个集合,求x应满足的条件. 【分析】1,x,x2是集合中的三个元素,则它们是互不相等的. 【解析】根据集合中元素的互异性,得
x 1 2 x 1 x x 2
1 1 1 1 a
初升高数学衔接课程 第1讲 集合的概念(教师版含解析)
第1讲 集合的概念一、集合的有关概念1. 集合的概念:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,简称 集.2. 表示方法:一般用大写字母,,A B C ⋅⋅⋅或大括号{}表示集合,用小写字母,,a b c ⋅⋅⋅表示集合中的元素.3. 集合相等:构成两个集合的元素完全一样.4. 集合元素的特性:确定性、互异性、无序性.①确定性:给定一个集合,那么任何一个元素在或不在这个集合就确定了.例如:“1~10之间的偶数”构成集合,2,4,6,8,10是这个集合的元素,而1,3,5,7,9就不是它的元素;“较大的数”、“漂亮的花”不能构成集合,因为组成它的元素是不确定的. ②互异性:一个集合中的元素是互不相同的,即集合中的元素不重复出现.例如:方程()210x -=的解构成的集合是{}1,而不是{}1,1.③无序性:集合中的元素没有固定的顺序,元素可以任意排列.例如:{}1,2和{}2,1是同一个集合.5. 元素与集合的关系:(分“属于∈”与“不属于∉”两种)①如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈; ②如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.6. 集合的分类:::⎧⎪⎨⎪∅⎩有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含有任何元素的集合7. 常见数集的写法例1.下列指定的对象能构成集合的是 .①大于2的整数;②所有的正小数;③所有的小正数;④π的近似值;⑤高一年级优秀的学生;⑥方程210x +=的解;⑦3611,,2,,,0.5242--这6个数;【答案】①②⑥【解析】①②⑥中指定的对象满足集合元素的三个性质:确定性,互异性,无序性,能构成集合;③④⑤中指定的对象不满足集合元素的确定性,⑦中指定的对象不满足集合元素的互异性,不能构成集合. 例2.用“∈”或“∉”填空.①0 N ; ②π Q ; ③13Q ; ④ 1.2- Z ;R ; ⑥3- Z ; N +; ⑧3- N *. 【答案】①∈;②∉;③∈;④∉;⑤∈;⑥∈;⑦∈;⑧∉. 例3.(1)已知21,,x x 三个实数构成一个集合,求x 应该满足的条件.(2)已知集合P 的元素为21,,3m m m --,若2P ∈且1P -∉,求实数m 的值.【答案】(1)0x ≠且1x ≠±;(2)m =. 【解析】(1)由集合元素的互异性可得:2211x x x x ≠⎧⎪≠⎨⎪≠⎩,解得0x ≠且1x ≠±;(2)若2P ∈且1P -∉,则2231m m m =⎧⎨--≠-⎩或2132m m m ≠-⎧⎨--=⎩,解得12m ±=.二、集合的表示1. 列举法:把集合中的元素一一列举出来, 并用大括号“{}”括起来表示集合的方法.说明: ①书写时,元素与元素之间用逗号分开; ②一般不必考虑元素之间的顺序; ③集合中的元素可以是数,点,代数式等;④列举法可表示有限集,也可以表示无限集.当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示;⑤对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,像自然数集N 用列举法表示为{}1,2,3,4,5,⋅⋅⋅. 例4.用列举法表示下列集合:①小于4的正偶数组成的集合; ②绝对值小于5的所有整数的集合; ③小于6的所有自然数的集合;④方程20x x +=的所有实数根组成的集合; ⑤方程组21x x y =⎧⎨+=⎩的实数解组成的集合.【答案】①{}2;②{}4,3,2,1,0,1,2,3,4----;③{}0,1,2,3,4,5;④{}1,0-;⑤(){}2,1-.2. 描述法:用集合所含元素的共同特征表示集合的方法,称为描述法.一般格式:(){}x A p x ∈,例如:{}(){}2230,,1x x x y y x ->=+.说明:①弄清集合代表元素是数还是点、还是集合或其他形式?例如:(){}2,32x y y x x =++与{}232y y x x =++是两个不同的集合.②只要不引起误解,集合的代表元素也可省略,例如:{}整数即代表整数集Z .例5. 用描述法表示下列集合:①由大于2小于等于26的所有奇数组成的集合; ②不等式210x ->的所有解组成的集合; ③抛物线2y x =上的点组成的集合.【答案】①{}21226,x x k x k Z =+<≤∈且;②12x x ⎧⎫>⎨⎬⎩⎭;③(){}2,x y y x =.例6.设集合{}{}21,,,1,2,A x x x B x =-=,且A B =,求x 的值.【答案】1x =-.【解析】A B =,22x x x x =⎧∴⎨-=⎩或22x x x x =⎧⎨-=⎩,解得1x =-或2x =.当2x =时,B 中元素不满足互异性,故舍去,所以1x =-. 例7.已知{}2,P x x k x N =<≤∈,若集合P 中恰有4个元素,则( ) A. 67k << B.67k ≤< C.56k << D.56k ≤< 【答案】B.【解析】若集合P 中恰有4个元素,则这4个元素为3,4,5,6,所以67k ≤<. 例8.已知集合{}2320,A x ax x a R =-+=∈.(1)若A =∅,求a 的取值范围;(2)若A 中至多一个元素,求a 的取值范围. 【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2){}90,8⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)若A =∅,则方程2320ax x -+=无解,所以0a ≠且980a ∆=-<,解得98a >; (2)当0a =时,集合A 中只有一个元素,满足题意;当0a ≠时,若要使A 中至多一个元素,则980a ∆=-≤,解得98a ≥.综上,a 的取值范围为{}90,8⎡⎫+∞⎪⎢⎣⎭例9.设实数集S 满足下面两个条件:①1S ∉;②若a S ∈,则11S a∈-. (1)求证:若a S ∈,则11S a-∈;(2)若2S ∈,则在S 中必含有其它两个数,试求出这两个数;(3)求证:集合S 中至少有三个不同的元素.【答案】(1)见解析;(2)1-和12;(3)见解析. 【解析】(1)证明:若a S ∈,则11S a ∈-,则1111S a∈--,即11S a -∈;(2)若2S ∈,则1112S =-∈-,则()11112S =∈--; (3)由(1)知a S ∈,11S a ∈-,11S a-∈. 下证:11,,11a a a--三者两两互不相等. ①若11a a =-,则210a a -+=,无实数根,故11a a≠-; ②若11a a =-,则210a a -+=,无实数根,故11a a≠-; ③若1111a a =--,则210a a -+=,无实数根,故1111a a≠--. 综上所述,集合S 中至少有三个不同的元素.跟踪训练1. 下列说法正确的个数为( )①集合{}1,3,5,7与集合{}25-表示同一集合;②集合{}1x y x =-与集合{}1y y x =-不是同一集合;③集合{}21y y x =-与集合(){}2,1x y y x =-是同一个集合;④集合{}2,3和集合{}3,2是同一集合;⑤集合(){}2,3和集合(){}3,2是同一集合;⑥方程2560x x --=的解集为(){}6,1-. A.1个 B.2个 C.3个 D.4个【答案】C【解析】①正确,{}{}{}0251,3,7,51,3,5,7-==;②正确,{}1x y x R =-=,{}1y y x R =-=;③错误,前者是数集,后者是点集;④正确,集合元素具有无序性;⑤错误,两者均表示点集,但是点的坐标不同;⑥错误,方程2560x x --=的解为11x =-,26x =,故解集为{}1,6-.综上,正确个数为3个,选C.2. 用列举法表示下列集合: ①6,2xZ x N x ⎧⎫∈∈⎨⎬-⎩⎭; ②62Z x N x ⎧⎫∈∈⎨⎬-⎩⎭; ③(){},2,13,x y y x x x N =<≤∈.【答案】①{}0,1,3,4,5,8;②{}6,3,2,1,3,6----;③()(){}2,4,3,6.【解析】对于①②,要使62Z x ∈-,则0,1,3,4,5,8x =,对应的63,6,6,3,2,12x=-----,①中元素为x ,②中元素为62x -,所以{}6,0,1,3,4,5,82xZ x N x ⎧⎫∈∈=⎨⎬-⎩⎭,{}66,3,2,1,3,62Z x N x ⎧⎫∈∈=----⎨⎬-⎩⎭;③表示2,13,y x x x N =<≤∈上的点集,只有()()2,4,3,6两个点,所以(){}()(){},2,13,2,4,3,6x y y x x x N =<≤∈=.3. 用描述法表示下列集合: ①正偶数集; ②大于2的实数;③100以内能被3整除的正整数.【答案】①{}2,x x k k N *=∈;②{}2x x x R >∈且;③{}3100,x x k x k N *=<∈且.4. 已知{}0,1,2,3a ∈且{}1,2,3a ∉,则a 的值为( ) A.0 B.1 C.2 D.3【答案】A5. 已知集合{}2A x x x ==,那么( )A. 0A ∈B.1A ∉C.{}1A ∈D.{}0,1A ≠【答案】A6. 给出下列说法:①集合{}3x N x x ∈=用列举法表示为{}1,0,1-;②实数集可以表示为{}x x 为实数或{}R ;③方程组31x y x y +=⎧⎨-=-⎩的解组成的集合为{}1,2x y ==;其中不正确的有 .(把所有不正确的说法的序号都填上) 【答案】①②③【解析】①错误,{}{}30,1x N x x ∈==;②错误,正确的表示为{}x x 为实数或R ;③方程组31x y x y +=⎧⎨-=-⎩的解组成的集合正确的表示为(){}1,2或()1,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎪⎪⎩⎩⎭.7. 若集合{}210A x ax ax =-+<=∅,则实数a 的取值范围是 .【答案】[]0,4【解析】若集合{}210A x ax ax =-+<=∅,则不等式210ax ax -+<无解.当0a =时,原不等式无解,故符合题意;当0a ≠时,210ax ax -+<无实数解,所以240a a a >⎧⎨∆=-≤⎩,解得04a <≤. 综上所述,a 的取值范围是[]0,4.8. 设集合,P Q 是两个非空数集,定义集合{},P Q a b a P b Q +=+∈∈,若{}0,2,5P =,{}1,2,6Q =,则P Q +中元素的个数为( )A.9B.8C.7D.6【答案】B【解析】根据题意,{}1,2,3,4,6,7,8,11P Q +=,选B.9. 定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B *中所有元素之和为( ) A.0 B.2C.3D.6【答案】D【解析】根据题意,{}0,2,4A B *=,其所有元素之和为6,选D.。
高一数学人教版第一章集合与函数概念教案
第一章集合与函数概念§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)湖南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)洞口一中2007年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
集合概念及表示方法(教师版)
1.1集合的概念及表示方法一、教学目标:1、了解集合、元素的概念,掌握集合中元素的三大特征;2、理解元素与集合的“属于”与“不属于”的关系;3、了解集合的表示方法并能选择恰当的方法表示集合;二、教学重难点:教学重点:集合的基本概念与表示方法。
教学难点:集合的表示方法并选择恰当的表示方法。
三、新课引入引入:接下来的课程要坐很久,老师建议我们整个小班同学集合起来,小小的运动一下,简单的头部运动、伸展运动;提出问题:要求运动的对象是?四、知识呈现1、集合概念:一些研究对象的总体.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
【老师口头阐述】:(1)游戏:各种QQ头像混在一起(有人物的、动物的);创造集合并说明(多种)(2)判断以下是否组成集合。
(1)大于3小于11的偶数;(2)非负奇数;x+=的解;(3)方程210(4)巴蜀校2012级新生;(5)血压很高的人;(6)著名的数学家;2、关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
3、元素与集合的关系集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。
(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A 【老师口头阐述】例:我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A ,等等。
重庆主城中考考试科目组成的集合A ;计算机 A 。
所有亚洲国家组成的集合B ;中国 B ,美国 B ;印度 B ,英国 B 。
1.1集合的概念(教师用)
集合的概念讲义知能点全解:知能点一:集合与元素的概念1、定义:一般地,一定范围内某些确定的,不同的对象的全体构成一个集合,简称集。
集合中每一个对象称为该集合的元素,简称元。
2、集合通常用大写的字母表示,如……;元素通常用小写的字母表知能点二:集合中元素的特性1、确定性:设是一个给定的集合,是某一具体的对象,则或者是的元素,或者不是的元素,二者必居其一,不能模棱两可.例1:能够组成集合的是( C )A.与2非常接近的全体实数; B.很著名的科学家的全体;C.某教室内的全体桌子; D.与无理数相差很2、互异性: 对于一个给定的集合,它的任意两个元素是不能相同的。
集合中相同的元素只能算是一个。
如方程有两个重根,其解集只能记为,而不能记为。
例 2:已知,且,求。
解:∵ ∴或 解得:或又∵时,且 与集合中元素的互异性矛盾知能点三:元素与集合的关系一般地,如果是集合的元素,就说属于,记作;如果不是集合的元知能点四:集合的分类:1、按照集合中元素的个数是有限还是无限,集合可分为:有限集和无限集。
(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合(3)空集:特别地,不含任何元素的集合叫做空集,记作.空集是个特殊的集合,空集归入有限集。
如:。
2、按照集合中元素的形式,性质及属性,集合可分为:(1)单元素集:只含一个元素的集合;如,。
(2)数集:有一些数字组成的集合;(3)点集:由符合某一条件的点,组成的集合;(4)解集:由方程或方程组,不等式或不等式组的解组成的解的集合,简称解集。
如:方程的解集是:。
知能点五:常用数集及记法1、回顾初中关于数的关系:2、常用数集及记法:(1)非负整数集(自然数集):全体非负整数的集合。
记作:(2)正整数集:非负整数集内排除0的集。
记作:或(3)整数集:全体整数的集合。
记作:(4)有理数集:全体有理数的集合。
记作:(5)实数集:全体实数的集合。
记作:例 3:用符号和填空:1、 , , , , , 。
1.1集合的含义与表示(课堂使用)马凤英2013
四、常用数集及记法
思考:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
自然数集,正整数集,整数集,有理数集,实数 集等一些常用数集,分别用下列符号表示:
自然数集(非负整数集):记作 N 正整数集:记作 N *或 N 整数集:记作 Z 有理数集:记作 Q 实数集:记作 R
快速做答:
1.1
集合
一、集合的含义
集 合
“集合”是日常生活中的一个常用词, 现代汉语解释为:许多的人或物聚在一起.
思考:怎样理解数学中的“集合”?
新课引入 有一位牧民非常喜欢数学,但他怎么也想不明白集合的 意义,于是他请教一位数学家:“尊敬的先生,请你告诉我 集合是什么?”集合是不定义的概念,数学家很难回答.一 天,他看到牧民正在向羊圈里赶羊,等到牧民把羊全赶进羊 圈并关好门.数学家突然灵机一动,高兴地告诉牧民:“这 就是集合”.你能理解集合了吗?集合就是把需要的东西拿 到一起.
(3)我国从1991~2003年的13年内所发射的所有人造卫星。 (4)所有的正方形。
(5)高一(1)班全体同学。
(6)2004年1月1日之前与我国建立外交关系的所有国家。 ①以上各例(构成集合)有什么特点?请大家讨论. ②我们能否给出集合一个大体描述? ③上述六个例子中集合的元素各是什么?
1.集合: 一般地,把一些能够确定的不同的 对象看成一个整体,就说这个整体是由 这些对象的全体构成的集合(简称集)。 2.集合的元素: 构成集合的每个对象统称为元素。
y x2
x
o
课堂小结
1.集合的含义; 2.集合元素的性质:确定性,互 异性,无序性; 3.元素和集合的关系:属于,不属于 4.数集及有关记法; • 集合的表示方法:列举法、描述法、 Venn图 • 能灵活的用自然语言、列举法、和描 述法对集合进行等价转化。
1_1集合的含义与表示教案
1.1.1集合的含义及其表示一、知识与技能(1)理解集合的含义,掌握元素与集合的属于关系。
(2)理解常用数集及其专用记号。
(3)理解集合元中元素的确定性、互异性、无序性。
(4)观察集合的几组实例,并能举出一些集合的例子。
(5)通过实例,体会元素与集合的“属于”关系,准确的理解集合。
三、情感态度与价值观在学生使用集合语言的过程中,增强学生理解事物的水平,初步培养学生实事求是、扎实严谨的科学态度。
四、重点集合的概念,元素与集合的关系。
难点集合概念的理解五、教学过程:(一)导入新课1、问:我们初中学习都有哪些数集啊?生:有自然数集,有理数集等(老师讲解一下圆的概念,让同学温故知新产生兴趣)(二) 教学过程1、问:同学们对于课本上的8个例子,你们能发现出他们有什么共同特点吗?通过教材的例子等,给出集合概念的描绘性说明:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(质数:也称素数,指除1和自身外不能被其他自然数整除的数)只要是构成两个集合的元素是一样的,我们称这两个集合是相等的。
2、问:结合教材“思考”,通过举例观察例题(1)里面我们列举出的1~20的素数,这些元素之间有什么关系呢?(引导学生明确集合元素的性质—确定性、互异性、无序性)3、阐述元素与集合的关系。
“属于”记为“∈”;“不属于”记为“∉”。
一般地,元素用小写字母表示;集合用大写字母.4、常用数集及其记法记法:①全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集使称为正整数集,记作或N*或N+;②全体整数组成的集合称为整数集,记作Z;③全体有理数组成的集合称为有理数集,记作Q;④全体实数组成的集合称为实数集,记作R。
5、问:你能用列举法表例如1中的集合吗?思考一以下举法的特点,完成习题1.1A组第3 题。
师和学生一起讨论例2,教师讲解引导,让同学们探讨第4页的“思考”。
讨论理应如何根据问题选择适当的集合表示法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 新知识引入在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?<1>交大附中全体高一学生能否构成一个集合?<2>高一的所有女生能否构成一个集合?<3>剑桥英语词典的所有英语单词能否构成一个集合?其实,生活中有很多东西能构成集合,我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,你能给出集合的含义吗?结论:<1>能.<2>能.<3>能;我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”。
<4>如果用A 表示黄冈实验学校全体高一学生组成的集合,用a 表示黄冈实验学校高一学生中的一位同学,b 是高二年级的一位同学,那么a 、b 与集合A 分别有什么关系?由此可见元素与集合之间有什么关系? 结论:<4>a 是集合A 的元素,b 不是集合A 的元素.学生得出元素与集合的关系有两种:属于和不属于.用符号表示即为∈、∉.亦即A b A a ∉∈;.【注意】:我们一般用大写字母A 、B 、C 、...表示集合,用小写字母a 、b 、c 、...表示元素<5>大于3小于11的偶数能否构成集合?(引申:你能说出它们的元素吗)<6>我国的小河流能否构成集合?(引申:若不能,为什么?若能,你能说出它的元素吗?)<7>问题<5>、<6>说明集合中的元素具有什么性质?<8>由实数31、23、34、31组成的集合有几个元素?(你能说出原因吗?)<9>问题<8>说明集合中的元素具有什么性质?<10>由实数31、23、34组成的集合记为M ,由实数23、31、34组成的集合记为N ,这两个集合中的元序号:01-01高中数学备课组 教师: 年级:高一 日期:上课时间 学生:学生情况: 新授课 主课题: 1.1 集合的概念与表示教学目的:1.了解集合含义;理解元素与集合“属于”关系;熟记常用数集专用符号;2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题;3.能选择集合不同的语言形式描述具体的问题;教学重点:1. 集合与元素的定义;2. 常用数集合的概念;3. 会用列举法、描述法表示集合;教学难点:运用集合的列举法与描述法,正确表示一些简单的集合素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论? 结论:<5>能;<6>不能;<7>确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性;<8>3个;<9>互异性:一个给定集合的元素是互不相同的,即集合中的元素不重复出现,这就是集合的互异性;<10>集合M 和N 相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的,可以发现:如果两个集合中的元素完全相同,那么这两个集合相等。
二、 知识精要1.集合的概念一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
集合的概念可以从以下几个方面来理解:(1)集合是一个“整体”;(2)构成集合的对象必须具有“确定”且“不同”这两个特征.这两个特征不是模棱两可的.2.集合中元素的特性(1)确定性(2)互异性(3)无序性3.元素与集合的关系(1)当不涉及具体对象时,一般用大写的拉丁字母A ,B ,C …表示集合;用小写的拉丁字母a .,b ,c …表示元素.(2)元素和集合是两个不同概念,符号∈和∉用来表示元素和集合的“属于”和“不属于”关系.4.集合的表示方法我们可以用自然语言描述一个集合.除此之外,还可以用集合语言,即通过约定的数学符号来表示集合,常用的有列举法和描述法.(1)列举法把集合中的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.如:不超过100的自然数的全体构成的集合可表示为{0,1,2,3,…,100};正整数集可表示为N +={1,2,3,…}.(2)描述法用集合所含元素的共同特征表示集合的方法称为描述法,用符号来表示便是A ={x ∈I |p (x )},其中的x 表示集合中的代表元素,I 表示代表元素x 的取值范围,p (x )则表示代表元素x 的共同特征.注:一个集合的描述方法不单单是一种,有时候是可以用多种描述方法的,譬如方程x 2-4=0的解组成的集合,可以用列举法:{2,-2};可以用描述法:}04{2=-x x .5. 有限集与无限集(1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x 6. 常见数集的专用符号(1)自然数集:全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R三、 例题分析【例1】下列所给对象不能构成集合的是________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生;(5)1,2,3,1.答案:(1)(3)(5)【例2】设集合A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z }.若a ∈A ,b ∈B ,试判断a +b 与A ,B 的关系.解:∵a ∈A ,∴a =2k 1 (k 1∈Z ).∵b ∈B ,∴b =2k 2+1 (k 2∈Z ).∴a +b =2(k 1+k 2)+1.又∵k 1+k 2∈Z ,∴a +b ∈B ,从而a +b ∉A .【例3】已知x 2∈{1,0,x },求实数x 的值.解:若x 2=0,则x =0,此时集合为{1,0,0},不符合集合中元素的互异性,舍去.若x 2=1,则x =±1.当x =1时,集合为{1,0,1},舍去;当x =-1时,集合为{1,0,-1},符合.若x 2=x ,则x =0或x =1,不符合互异性,都舍去.综上可知:x =-1.【例4】选择适当的方法表示下列集合.(1)Welcome 中的所有字母组成的集合;(2)所有正偶数组成的集合;(3)二元二次方程组⎩⎪⎨⎪⎧ y =x y =x 2的解集;(4)所有正三角形组成的集合.解:(1)列举法:{W ,e ,l ,c ,o ,m}.(2)描述法:{x |x =2k ,k ∈N *}.(3)列举法:{(0,0),(1,1)}.(4)描述法:{x |x 是正三角形}.【例5】已知集合A ={x ∈R |mx 2-2x +3=0,m ∈R },且A 中只有一个元素,求m 的值.解:A 中元素只有一个,当m =0时,方程变为-2x +3=0,此时x =32, A 中只有一个元素32,即A =⎩⎨⎧⎭⎬⎫32; 当m ≠0时,方程mx 2-2x +3=0有两个相等的实根,由Δ=(-2)2-4m ×3=0,得m =13.综上所述,m 的值为0或13.四、 课堂练习1.给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N +;④|-3|∈Q .其中正确的个数为( ) A .1 B .2 C .3 D .4答案 B2.坐标轴上的点的集合可表示为( )A .{(x ,y )|x =0,y ≠0或x ≠0,y =0}B .{(x ,y )|x 2+y 2=0}C .{(x ,y )|xy =0}D .{(x ,y )|x 2+y 2≠0}答案 C3.已知2a .∈A ,a .2-a .∈A ,若集合A 含有2个元素,则下列说法中正确的是( )A .a 取全体实数B .a .取除去0以外的实数C .a .取除去3以外的所有实数D .a .取除去0和3以外的所有实数答案 D4.集合A ={一条边长是1且一个角是40°的等腰三角形}中元素个数为( )A .2B .3C .4D .无数个答案 C5.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |126-x ∈N ,用列举法表示集合A =____________. 答案 {0,2,3,4,5}6.-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________.答案 27.用适当的方法表示下列集合.(1)由所有小于20的既是奇数又是质数的正整数组成的集合;(2)由所有非负偶数组成的集合;(3)直角坐标系内第三象限的点组成的集合.解 (1){3,5,7,11,13,17,19}(2){x |x =2n ,n ∈N }(3){(x ,y )|x <0且y <0}8.下面三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}.(1)它们是不是相同的集合?(2)它们各自的含义是什么?解 (1)由于三个集合的代表元素互不相同,∴它们是互不相同的集合.(2)集合①{x |y =x 2+1}的代表元素是x ,满足条件y =x 2+1中的x ∈R ,∴实质上{x |y =x 2+1}=R ;集合②{y |y =x 2+1}的代表元素是y ,满足条件y =x 2+1中y 的取值范围是y ≥1,∴{y |y =x 2+1}={y |y ≥1};集合③{(x ,y )|y =x 2+1}的代表元素是(x ,y ),可以认为是满足y =x 2+1的有序数对(x ,y )的集合;也可以认为是坐标平面内的点(x ,y )构成的集合,且这些点的坐标满足y =x 2+1.9.已知集合A =⎩⎨⎧⎭⎬⎫x |x ∈N ,且910-x ∈N ,B =⎩⎨⎧⎭⎬⎫910-x |x ∈N ,且910-x ∈N ,试问集合A 与B 共有几个相同的元素,并写出由这些相同元素组成的集合.解 可以将集合A 、B 用列举法表示出来,然后再找出A 和B 的相同元素组成的集合.∵x ∈N ,且910-x∈N , ∴当x =1时,910-x=1; 当x =7时,910-x=3; 当x =9时,910-x=9. 因此,集合A ={1,7,9},集合B ={1,3,9}.∴集合A 、B 有两个相同元素1,9,它们组成的集合为{1,9}.五、 课后作业1.下列几组对象可以构成集合的是( )A .充分接近π的实数的全体B .善良的人C .某校高一所有聪明的同学D .某单位所有身高在1.7 m 以上的人答案 D2.下列四个说法中正确的个数是( )①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.A .0B .1C .2D .3答案 A3.由a .2,2-a .,4组成一个集合A ,A 中含有3个元素,则实数a .的取值可以是( )A .1B .-2C .6D .2答案 C4.已知集合S 的三个元素a .、b 、c 是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案 D5.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( ) A .0∉M B .2∈M C .-4∉M D .4∈M答案 D解析 分类讨论:x 、y 、z 中三个为正,两个为正,一个为正,全为负,此时代数式的值分别为:4,0,0,-4,∴4∈M .6.用“∈”或“∉”填空(1)-3______N ; (2)3.14______Q ; (3)13______Z ; (4)-12______R ; (5)1______N *; (6)0________N . 答案 (1)∉ (2)∈ (3)∉ (4)∈ (5)∈ (6)∈7.由实数x ,-x ,x 2,-3x 3所组成的集合里最多有________个元素.答案 28.由下列对象组成的集体属于集合的是________(填序号).①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考成绩在500分以上的学生.答案 ①④⑤9. 用适当方法表示下列集合:(1)函数y =a .x 2+bx +c (a .≠0)的图象上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图象的交点组成的集合;(3)不等式x -3>2的解集;(4)自然数中不大于10的质数集.解 (1){(x ,y )|y =a .x 2+bx +c ,x ∈R ,a .≠0}.(2)⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧ y =x +3y =-2x +6=⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧x =1y =4. 用列举法表示为:{(1,4)}.(3){x |x >5}(4){2,3,5,7}.10.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x .解 当3x 2+3x -4=2时,3x 2+3x -6=0,x 2+x -2=0,x =-2或x =1.经检验,x =-2,x =1均不合题意.当x 2+x -4=2时,x 2+x -6=0,x =-3或2.经检验,x =-3或x =2均合题意.∴x =-3或x =2.11.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?解 当a =0时,b 依次取1,2,6,得a .+b 的值分别为1,2,6;当a .=2时,b 依次取1,2,6,得a .+b 的值分别为3,4,8;当a .=5时,b 依次取1,2,6,得a .+b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个. 12.设A 为实数集,且满足条件:若a .∈A ,则a-11∈A (a .≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.证明 (1)若a .∈A ,则a-11∈A . 又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A . ∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12. (2)若A 为单元素集,则a =a -11, 即a .2-a .+1=0,方程无解.∴a .≠a-11,∴A 不可能为单元素集.六、课外阅读集合论的诞生集合论是德国著名数学家康托尔于19世纪末创立的.十七世纪数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.七、课堂总结。