高中物理竞赛-动力学例题精选 4

合集下载

高中物理奥林匹克竞赛专题——质点动力学(37张)

高中物理奥林匹克竞赛专题——质点动力学(37张)

t1 t2
I
t1
Fd t p2p1
2
t2
I Fd t p2p1
t1
上式表明: 质点所受合外力的冲量等于质点动量 的增量。这一结论称为质点动量定理(积分形式)。
适用条件:惯性系
注意:
恒I力 Ft
1、力的冲量是矢量:
变力I
t2
Fdt
t1
在碰撞、冲击、爆炸等现象中,冲力大,作用时间
短,常用平均冲力。
代入下式就得
y 2
30o
o
x
30o
1
F
mt (2
1
)
m
m2co s30 o j
3m
j
t
t
30o 30o 1
2
大小: F 3 m ,方向: j (y轴正方向)。
t
8
例题 煤粉自高h=0.8m处的料斗口自由落在传送带 A上。设料斗口连续卸煤的流量为qm=40kg/s, 传送带A
的速度=3m/s。求卸煤的过程中,煤粉对传送带A的
平均作用力的大小和方向。(不计相对传送带静止的煤 粉质量,取g=10m/s2)
解 煤粉下落h时的速度 o 2gh4m/s
取在时间dt内落下的煤粉dm=qmdt 为研究对象,由动量定理有
dm :Fd dt m d m 0 h
dm
平 dt q均 m : F 4 0,4 冲 ( 0 力 0)
0
mi
M
zcm 1zm 11m m 2z22 ... .. .m m ii zi. .....o
ri rc
mi zi
x
m1 y
24
M
质心坐标为:
mi xi
mi yi

全国高中物理竞赛第16动力学试题集锦含答案

全国高中物理竞赛第16动力学试题集锦含答案

全国中学生高中物理竞赛第16届—22届预赛动力学试题集锦(含答案)一、第16届预赛题. (15分)一质量为M 的平顶小车,以速度0v 沿水平的光滑轨道作匀速直线运动。

现将一质量为m 的小物块无初速地放置在车顶前缘。

已知物块和车顶之间的动摩擦系数为μ。

1. 若要求物块不会从车顶后缘掉下,则该车顶最少要多长?2. 若车顶长度符合1问中的要求,整个过程中摩擦力共做了多少功? 参考解答1. 物块放到小车上以后,由于摩擦力的作用,当以地面为参考系时,物块将从静止开始加速运动,而小车将做减速运动,若物块到达小车顶后缘时的速度恰好等于小车此时的速度,则物块就刚好不脱落。

令v 表示此时的速度,在这个过程中,若以物块和小车为系统,因为水平方向未受外力,所以此方向上动量守恒,即0()Mv m M v =+ (1) 从能量来看,在上述过程中,物块动能的增量等于摩擦力对物块所做的功,即2112mv mg s μ= (2) 其中1s 为物块移动的距离。

小车动能的增量等于摩擦力对小车所做的功,即22021122Mv mv mgs μ-=- (3) 其中2s 为小车移动的距离。

用l 表示车顶的最小长度,则21l s s =- (4) 由以上四式,可解得22()Mv l g m M μ=+ (5)即车顶的长度至少应为202()Mv l g m M μ=+。

2.由功能关系可知,摩擦力所做的功等于系统动量的增量,即22011()22W m M v Mv =+- (6)由(1)、(6)式可得22()mMv W m M =-+ (7)二、第16届预赛题.(20分)一个大容器中装有互不相溶的两种液体,它们的密度分别为1ρ和2ρ(12ρρ<)。

现让一长为L 、密度为121()2ρρ+的均匀木棍,竖直地放在上面的液体内,其下端离两液体分界面的距离为34L ,由静止开始下落。

试计算木棍到达最低处所需的时间。

假定由于木棍运动而产生的液体阻力可以忽略不计,且两液体都足够深,保证木棍始终都在液体内部运动,未露出液面,也未与容器相碰。

物理竞赛力学典型题目汇编(含答案)

物理竞赛力学典型题目汇编(含答案)

第一讲 平衡问题典题汇总类型一、物体平衡种类的问题一般有两种方法解题,一是根据平衡的条件从物体受力或力矩的特征来解题,二是根据物体发生偏离平衡位置后的能量变化来解题。

1、如图1—4所示,均匀杆长为a ,一端靠在光滑竖直墙上,另一端靠在光滑的固定曲面上,且均处于Oxy 平面内.如果要使杆子在该平面内为随遇平衡,试求该曲面在Oxy 平面内的曲线方程.分析和解:本题也是一道物体平衡种类的问题,解此题显然也是要从能量的角度来考虑问题,即要使杆子在该平面内为随遇平衡,须杆子发生偏离时起重力势能不变,即杆子的质心不变,y C 为常量。

又由于AB 杆竖直时12C y a =, 那么B 点的坐标为 sin x a θ=111cos (1cos )222y a a a θθ=-=- 消去参数得222(2)x y a a +-=类型二、物体系的平衡问题的最基本特征就是物体间受力情况、平衡条件互相制约,情况复杂解题时一定要正确使用好整体法和隔离法,才能比较容易地处理好这类问题。

例3.三个完全相同的圆柱体,如图1一6叠放在水平桌面上,将C 柱放上去之前,A 、B 两柱体之间接触而无任何挤压,假设桌面和柱体之间的摩擦因数为μ0,柱体与柱体之间的摩擦因数为μ,若系统处于平衡,μ0与μ必须满足什么条件?分析和解:这是一个物体系的平衡问题,因为A 、B 、C 之间相互制约着而有单个物体在力系作用下处于平衡,所以用隔离法可以比较容易地处理此类问题。

设每个圆柱的重力均为G ,首先隔离C 球,受力分析如 图1一7所示,由∑Fc y =0可得111)2N f G += ① 再隔留A 球,受力分析如图1一8所示,由∑F Ay =0得1121022N f N G +-+= ② 由∑F Ax =0得211102f N N -= ③ 由∑E A =0得12f R f R = ④ 由以上四式可得12f f ===112N G =,232N G =而202f N μ≤,11f N μ≤0μ≥2μ≥类型三、物体在力系作用下的平衡问题中常常有摩擦力,而摩擦力F f 与弹力F N 的合力凡与接触面法线方向的夹角θ不能大于摩擦角,这是判断物体不发生滑动的条件.在解题中经常用到摩擦角的概念.例4.如图1一8所示,有两根不可伸长的柔软的轻绳,长度分别为1l 和2l ,它们的下端在C 点相连接并悬挂一质量为m 的重物,上端分别与质量可忽略的小圆环A 、B 相连,圆环套在圆形水平横杆上.A 、B 可在横杆上滑动,它们与横杆间的动摩擦因数分别为μ1和μ2,且12l l <。

高中物理竞赛-动力学例题精选

高中物理竞赛-动力学例题精选

1.如图3—80所示,C 为一放在固定的粗糙水平桌面上的双斜面,其质量c m =6.5kg,顶端有一定滑轮,滑轮的质量及轴处的摩擦皆不可计。

A 和B 是两个滑块,质量分别为A m =3.0kg,B m =0.50kg,由跨过定滑轮的不可伸长的轻绳相连。

开始时,设法抓住A 、B 和C ,使它们都处于静止状态,且滑轮两边的轻绳恰好伸直。

今用一等于26.5N 的水平推力F 作用于C ,并同时释放A 、B 和C ,若C 沿桌面向左滑行,其加速度a =3.02/m s ,B 相对于桌面无水平方向的位移(绳子一直是绷紧的)。

试求C 与左面间的动摩擦因素μ。

(图中a =37°,β=53°,已知sin37°=0.6,重力加速度g=102/m s )图3—80解:设A a 、B a 与'A a 、'B a 分别为A 、B 相对于桌面的加速度的大小和相对于C 的加速度的大小,设水平向右的x 轴的正方向,竖直向上的y 轴的正方向。

因为B 开始时相对于桌面静止,以后相对于桌面无水平方向的位移,可知B a 沿水平方向的分量为0,即Bx a ='Bx a -a =0由此得'Bx a =a =32/m s因此绳不可伸长,又不是绷紧的,固有'A a ='B a 。

它们的方向分别沿所在的斜面,方向如图3—81所示。

各分量的大小为xy37°a ’B图3—81'Bx a ='B a cos53°'By a ='B a sin53°'Ax a ='A a cos37°'Ay a =-'A a sin37°由此得'B a ='A a =52/m s ,'By a =42/m s 。

'Ax a =42/m s'Ay a =-32/m s 。

(完整版)高中物理竞赛_话题4:曲率半径问题

(完整版)高中物理竞赛_话题4:曲率半径问题

话题4:曲率半径问题一、曲率半径的引入在研究曲线运动的速度时,我们作一级近似,把曲线运动用一系列元直线运动来逼近。

因为在0t ∆→ 的极限情况下,元位移的大小和元弧的长度是一致的,故“以直代曲”,对于描述速度这个反映运动快慢和方向的量来说已经足够了。

对于曲线运动中的加速度问题,若用同样的近似,把曲线运动用一系列元直线运动来代替,就不合适了。

因为直线运动不能反映速度方向变化的因素。

亦即,它不能全面反映加速度的所有特征。

如何解决呢?圆周运动可以反映运动方向的变化,因此我们可以把一般的曲线运动,看成是一系列不同半径的圆周运动,即可以把整条曲线,用一系列不同半径的小圆弧来代替。

也就是说,我们在处理曲线运动的加速度时,必须“以圆代曲”,而不是“以直代曲”。

可以通过曲线上一点A 与无限接近的另外两个相邻点作一圆,在极限情况下,这个圆就是A 点的曲率圆。

二、曲线上某点曲率半径的定义在向心加速度公式2n v a ρ=中ρ为曲线上该点的曲率半径。

圆上某点的曲率半径与圆半径相等,在中学物理中研究圆周运动问题时利用了这一特性顺利地解决了动力学问题。

我们应该注意到,这也造成了对ρ意义的模糊,从而给其它运动的研究,如椭圆运动、抛体运动、旋轮线运动中的动力学问题设置了障碍。

曲率半径是微积分概念,中学数学和中学物理都没有介绍。

曲率k 是用来描述曲线弯曲程度的概念。

曲率越大,圆弯曲得越厉害,曲率半径ρ越小,且1kρ=。

这就是说,曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数。

二、曲线上某点曲率半径的确定方法1、 从向心加速度n a 的定义式2n v a ρ=出发。

将加速度沿着切向和法向进行分解,找到切向速度v 和法向加速度n a ,再利用2n v a ρ=求出该点的曲率半径ρ。

例1、将1kg 的小球从A 点以10/m s 的初速度水平抛出,设重力加速度210/g m s =,求:(1)在抛出点的曲率半径; (2)抛出后1s 时的曲率半径。

高二物理奥赛培训题《动力学》

高二物理奥赛培训题《动力学》

动力学考试1、长为2L 的轻杆竖直地立在光滑地面上,杆上固定着两个质量均为m 的小球A 和B ,A 与B 、B 与地面的距离均为L 。

现给它们一个轻微的扰动,使杆沿顺时针方向倒下。

不计一切阻力,并设杆与地面始终保持接触,试求A 球运动的轨迹方程。

2、一辆邮车以u = 10m/s 的速度沿平直公路匀速行驶,在离公路d = 5.0m 处有一邮递员,当他与邮车的连线和公路的夹角α= arctg 41时沿直线匀速奔跑。

试问:(1)如果他的速度大小v = 5.0m/s ,他应朝什么方向跑,才能与邮车相遇?(2)如果速度v 大小不限定,他可以选择的v 的最小值是多少?3、在竖直平面内建立图示直角坐标,在坐标系中有光滑的抛物线轨道,轨道对应方程y = Ax 2 。

轨道的顶点O 处有一小球,受轻微扰动后无初速沿轨道右方滑下。

试问:小球是否会中途脱离轨道?4、与水平面成α角的钢丝两端固定,其上套有一质量为m 1的小环,小环借助一根轻绳与质量为m 2的小球相连。

不计一切摩擦,试问:(1)当环和球的系统从铅直位置开始释放时,绳子的内张力多大?(2)绳子与铅直方向成多大角度开始释放时,可以确保系统滑动时不会发生摆动?5、质量为m 、倾角分别为α和β的双斜面体放在水平面上,另有质量分别为m 1和m 2的滑块通过轻滑轮跨过双斜面(两边的绳子和斜面平行)。

不计一切摩擦,静止释放整个系统,试求双斜面体....的加速度。

《动力学考试》提示与答案1、提示:整体质心无水平位移。

建右图所示的坐标,并引入参数θ ,然后消去即可。

答案:22)2L (x + 22)L 2(y = 1 ,轨迹为椭圆。

2、提示——(1)对图示的灰色三角形用正弦定理,有βsin ut = αsin vt 得 β = arcsin 17172 (2)以β为未知,看v (β)函数 v = βαsin sin u 显然 v min = usin α答案:(1)与公路夹角θ = arctg 41+ arcsin 17172(约14.0°+ 29.0°= 43.0°);(2)2.43m/s 。

高中物理竞赛复赛

高中物理竞赛复赛

高中物理竞赛复赛
题目一:动力学之争
背景:小明和小红参加了一场物理竞赛的复赛,他们将在以下几个问题中展开较量。

问题一:速度的计算(10分)
小明骑着一辆自行车,经过10秒钟,行驶了100米。

请问小明的平均速度是多少?
问题二:斜抛运动(15分)
小红用一个角度为45°的斜抛将一块石头抛出,石块的起始速度为20m/s。

请问石块从抛出到重新着地所用的时间是多少?(忽略空气阻力)
问题三:动量守恒(20分)
小明和小红在光滑水平桌面上进行了一次弹性碰撞实验。

小明的质量是40kg,速度为2m/s;小红的质量是50kg,速度为-1m/s。

请问碰撞后两人的速度分别是多少?
问题四:电磁感应(25分)
小红持续将一根长度为1m的磁铁棒快速入射进小明手中的线圈,变化的磁通量大小为1.5×10^-3 Wb/s。

线圈中的导线电阻为4 Ω。

请问线圈中将产生多大的感应电动势?
问题五:声音传播(30分)
小红正在做一道实验,她发出一个频率为400 Hz的声音,传播在空气中速度为340 m/s。

请问,该声音在空气中的波长是多少?
注意:本竞赛真实性为虚构,其中的人物和情景纯属虚构。

高中物理竞赛习题集03(动力学word)

高中物理竞赛习题集03(动力学word)

第三章 动力学例题:如图所示,光滑斜面倾角为θ,在水平地面上加速运动。

斜面上用一条与斜面平行的细绳系一质量为m 的小球,当斜面加速度为a 时(a <cot θ),小球保持相对斜面静止。

求此时绳子的拉力T 。

解一、沿加速度a 方向建x 轴,与a 垂直的方向上建y 轴ΣFx = ma ,即Tx - Nx = maΣFy = 0 , 即Ty + Ny = mg代入数据,以上两式成为T cos θ-N sin θ = ma T sin θ + Ncos θ = mg解两式得:T = mgsin θ + ma cos θ解二、将正交分解的坐标选择为:x ——斜面方向,y ——和斜面垂直的方向。

这时,在分解受力时,只分解重力G 就行了,但值得注意,加速度a 不在任何一个坐标轴上,是需要分解的。

T - mg sin θ = m acos θ显然,独立解T 值是成功的。

结果与解法一相同。

T= mgsin θ + ma cos θ注意:当a >cot θ时,从支持力的结果N = mgcos θ-ma sin θ看小球脱离斜面的条件,脱离斜面后,θ条件已没有意义。

此时,T = m 22a g +例题:如图,二物之间的摩擦因数为μ,地面光滑。

(1)、二物相对静止的F 的条件 (2)、二物相对滑动时的系统牛顿第二定律 (3)、如果地面不光滑,二处的摩擦因数分别为1μ和2μ。

分析在不同F 下的运动情况解:(1)设二物相对静止。

则()12/a F m m =+静摩擦力 1112m Ff m a m m ==+最大静摩擦力 1m f m g μ=∵m f f ≤ ∴1112m Fm g m m μ+≥相对静止的条件 ()12F m m g μ+≤(2) 1122122F m a m a m g m a μ=+=+ (3)m 1和m 2之间的最大静摩擦力 111m f m g μ= m 2和地面之间的最大静摩擦力 ()2212m f m m g μ=+ 当2m F f ≤时,m 1和m 2均静止。

【预赛自招】2021年高中物理竞赛习题专题:刚体动力学(含答案)

【预赛自招】2021年高中物理竞赛习题专题:刚体动力学(含答案)

高中物理竞赛习题专题:刚体动力学1.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是()(A)角速度从小到大,角加速度不变(B)角速度从小到大,角加速度从小到大(C)角速度从小到大,角加速度从大到小(D)角速度不变,角加速度为零2.假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的()(A)角动量守恒,动能守恒(B)角动量守恒,机械能守恒(C)角动量不守恒,机械能守恒(D)角动量不守恒,动量也不守恒(E)角动量守恒,动量也守恒3.水分子的形状如图所示,从光谱分析知水分子对AA′轴的转动惯量JAA′=1.93×10-47 kg·m2,对BB′轴转动惯量JBB′=1.14×10-47kg·m2,试由此数据和各原子质量求出氢和氧原子的距离D和夹角θ.假设各原子都可当质点处理.4.用落体观察法测定飞轮的转动惯量,是将半径为R的飞轮支承在O点上,然后在绕过飞轮的绳子的一端挂一质量为m的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).5.质量为m1和m2的两物体A、B分别悬挂在图(a)所示的组合轮两端.设两轮的半径分别为R和r,两轮的转动惯量分别为J1和J2,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.6.如图所示,一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C为一常量.若转动部分对其轴的转动惯量为J,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?7.如图所示,一长为2l的细棒AB,其质量不计,它的两端牢固地联结着质量各为m的小球,棒的中点O焊接在竖直轴z上,并且棒与z轴夹角成α角.若棒在外力作用下绕z轴(正向为竖直向上)以角直速度ω=ω0(1-e-t)转动,其中ω0为常量.求(1)棒与两球构成的系统在时刻t对z轴的角动量;(2)在t=0时系统所受外力对z轴的合外力矩.8.在光滑的水平面上有一木杆,其质量m1=1.0kg,长l=40cm,可绕通过其中点并与之垂直的轴转动.一质量为m2=10g的子弹,以v=2.0×102m·s-1的速度射入杆端,其方向与杆及轴正交.若子弹陷入杆中,试求所得到的角速度.9.半径分别为r1、r2的两个薄伞形轮,它们各自对通过盘心且垂直盘面转轴的转动惯量为J1和J2.开始时轮Ⅰ以角速度ω0转动,问与轮Ⅱ成正交啮合后(如图所示),两轮的角速度分别为多大?10.一质量为1.12kg,长为1.0m的均匀细棒,支点在棒的上端点,开始时棒自由悬挂.以100N的力打击它的下端点,打击时间为0.02s.(1)若打击前棒是静止的,求打击时其角动量的变化;(2)棒的最大偏转角.(3)打击瞬间O点杆收到的作用力。

专题04 动力学经典问题(Word版,含答案)

专题04 动力学经典问题(Word版,含答案)

2020年高三物理寒假攻关---备战一模第一部分考向精练专题04 动力学经典问题1.已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿第二定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况.2.已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的某个力.可用程序图表示如下:3.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁。

4.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变量最大时,两端连接体的速率相等.【例1】(2019·四川雅安一模)如图所示,质量为1 kg的物体静止于水平地面上,用大小为6.5 N的水平恒力F作用在物体上,使物体由静止开始运动50 m后撤去拉力F,此时物体的速度为20 m/s,物体继续向前滑行直至停止,g取10 m/s2。

求:(1)物体与地面间的动摩擦因数;(2)物体运动的总位移;(3)物体运动的总时间。

【思路点拨】(1)先做初速度为零的匀加速直线运动,再做匀减速直线运动直到速度为零。

(2)两段运动过程衔接处的速度相同。

【答案】(1)0.25(2)130 m(3)13 s【解析】(1)在拉力F作用下,物体的加速度大小为:a1=v2 2x1对物体,由牛顿第二定律有:F-μmg=ma1,联立解得:μ=0.25。

(2)撤掉拉力F后的加速度大小为:a2=μg=2.5 m/s2撤掉拉力F后的位移为:x2=v22a2=80 m全程总位移为:x =x 1+x 2=50 m +80 m =130 m 。

动力学例题(供参考)

动力学例题(供参考)

匀加速直线运动时。
解:(1)小车水平加速 y
运动时,摆锤的受力如图。 在如图坐标系中有
T1 m m
a1
x方向: T1 sin ma1 O
x
mg
y方向: T1 cos mg 0
T1 m g 2 a12
解得
tan a1
g
arctan
a1 g
当a1 0时, 0;当a1较大时,较大。
于平衡,其平衡方程的法向分
量式为
T+dT
(T dT )sin d T sin d N 0(1)
2
2
切向分量式为
N f
d
T
(T dT) cos d T cos d f 0(2)
2
2
由于dθ很小,可取sin(dθ/2)=dθ/2,cos(dθ/2)=1, 再略去高价无穷小量,上述两式变为
N Td (3)
F0 mg
2L
2g
(2n / 60)2 L
2g
4 2 400 2 5.97
2 9.8 60 2
534
g cos
g cos
若α=0,a2=a1,即为情况(1)T2 T1, 。
若a2= -gsinα,即为小车沿斜面自由下滑的情况,
此时 T2 mg cos mg, ,
可见此时悬线方向与斜面垂直。
利用一个系统中的单摆悬线的取向,可测定这个系 统直线运动时的加速度。
例题2.如图所示,在水平转台上放置一质量为M=2kg 的小物块A,物块与转台间的静摩擦系数μ=0.2,一条 光滑的绳子一端系在物块A上,另一端则由转台中心 处的小孔穿下并悬一质量为m=0.8kg的物块B。转台 以ω=4πrad/s的角速度绕竖直中心轴转动,求:转台 上面的物块A与转台相对静止时,物块转动半径的最 大值和最小值。

高中物理动力学精心整理题目

高中物理动力学精心整理题目

动力学专题训练2015年4月30日 【第1题】一个质量为2kg 的物体,在六个恒定的共点力作用下处于平衡状态.现同时撤去大小分别为15N 和20N 的两个力而其余力保持不变,则此后该物体运动的说法中正确的是( ) A .一定做匀变速直线运动,加速度大小可能是5m/s 2 B .可能做匀减速直线运动,加速度大小是2m/s 2 C .一定做匀变速运动,加速度大小可能是15m/s 2 D .可能做匀速圆周运动,向心加速度大小可能是5m/s 2【第2题】如图所示,竖直放置在水平面上的轻质弹簧上放着质量为2kg 的物体A 处于静止状态。

若将一个质量为3kg 的物体B 竖直向下轻放在A 上的 一瞬间,则B 对A 的压力大小为(g=10m/s 2)( )A.30NB. 0C. 15ND. 12N【第3题】在真空中上、下两个区域均为竖直向下的匀强电场,其电场线分布如图所示,有一带负电的微粒,从上边区域沿平行电场线方向以速度v0匀速下落,并进入下边区域(该区域的电场足够广),在下图所示的速度一时间图象中,符合粒子在电场内运动情况的是(以v0 方向为正方向)( )【第4题】如图所示,足够长的水平传送带以速度v 沿顺时针方向运动,传送带的右端与光滑曲面的底部平滑连接,曲面上的A 点距离底部的高度h =0.45 m .一小物块从A 点静止滑下,再滑上传送带,经过一段时间又返回曲面.g 取10 m/s2,则下列说法正确的是( ) A .若v =1 m/s ,则小物块能回到A 点 B .若v =2 m/s ,则小物块能回到A 点 C .若v =5 m/s ,则小物块能回到A 点D .无论v 等于多少,小物块均能回到A 点【第5题】一质点在xoy 平面内从o 点开始运动的轨迹如图所示则质点的速度( )A .若x 方向始终匀速,则y 方向先加速后减速B .若x 方向始终匀速,则y 方向先减速后加速C .若y 方向始终匀速,则x 方向先减速后加速D .若y 方向始终匀速,则x 方向先加速后减速v【第6题】在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,则( ) A .如果油滴带正电,则油滴从M 点运动到N 点 B .如果油滴带正电,则油滴从N 点运动到M 点 C .如果电场方向水平向右,则油滴从N 点运动到M 点 D .如果电场方向水平向左,则油滴从N 点运动到M 点【第7题】当t=0时,甲乙两车从相距70Km 的两地开始相向行驶,它们的v-t 图像如图所示,忽略汽车调头所用的时间,下列对汽车运动的状况的描述正确的是:( )A 、在第1小时末,乙车改变运动方向B 、在第2小时末,甲乙两车相距10KmC 、在前4小时内,乙车运动的加速度大小总比甲车大D 、在第4小时末,甲乙两车相遇【第8题】有两个光滑固定的斜面AB 和BC ,A 和C 两点在同一水平面上,斜面BC 比斜面AB 长(如图(a )所示)。

高中物理竞赛力学试题

高中物理竞赛力学试题

高中物理竞赛力学试题一、选择题(每题3分,共15分)1. 一个物体在水平面上受到一个恒定的拉力,如果拉力的方向与物体运动方向相同,那么物体的加速度大小将:A. 保持不变B. 逐渐减小C. 逐渐增大D. 先增大后减小2. 在无摩擦的水平面上,一个物体受到一个大小不变的水平推力,物体的加速度将:A. 保持不变B. 逐渐减小C. 逐渐增大D. 先增大后减小3. 一个物体从静止开始自由下落,其加速度大小为:A. 0B. 9.8 m/s²C. 10 m/s²D. 11 m/s²4. 一个物体在斜面上匀速下滑,斜面与水平面的夹角为θ,物体与斜面之间的动摩擦因数为μ,那么物体所受的摩擦力大小为:A. mg sinθB. mg cosθC. μmg cosθD. μmg sinθ5. 一个物体在竖直方向上做简谐振动,其振动周期与振幅无关,这是由于:A. 物体的质量B. 物体的振幅C. 振动的频率D. 振动的阻尼二、填空题(每空2分,共10分)6. 根据牛顿第二定律,力的单位是________。

7. 一个物体在水平面上受到一个大小为F的力,其质量为m,那么它的加速度大小为________。

8. 根据能量守恒定律,一个物体从高度h自由下落到地面,其重力势能转化为________。

9. 一个物体在斜面上匀速下滑时,其摩擦力与________成正比。

10. 简谐振动的周期公式为T=2π√(________)。

三、计算题(每题10分,共30分)11. 一个质量为2kg的物体在水平面上受到一个大小为10N的恒定拉力,求物体在5秒内的位移。

12. 一个质量为5kg的物体从10米高处自由下落,忽略空气阻力,求物体落地时的速度。

13. 一个物体在斜面上以初速度v₀=3m/s下滑,斜面与水平面的夹角为30°,物体与斜面之间的动摩擦因数为0.1,求物体在斜面上滑行的最大距离。

四、简答题(共5分)14. 请简述牛顿第三定律的内容,并给出一个生活中的例子。

高中物理竞赛(力学)练习题解

高中物理竞赛(力学)练习题解

1、(本题20分)如图6所示,宇宙飞船在距火星表面H 高度处作匀速圆周运动,火星半径为R R 。

当飞。

当飞船运行到P 点时,点时,在极短时间内向外侧点喷气,在极短时间内向外侧点喷气,在极短时间内向外侧点喷气,使飞船获得一径向速度,使飞船获得一径向速度,使飞船获得一径向速度,其大小为原来速度的其大小为原来速度的α倍。

因α很小,所以飞船新轨道不会与火星表面交会。

飞船喷气质量可以不计。

(1)试求飞船新轨道的近火星点A 的高度h 近和远火星点B 的高度h 远 ;(2)设飞船原来的运动速度为v 0 , ,试计算新轨道的运行周期试计算新轨道的运行周期T T 。

2,(20分)有一个摆长为l 的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O 的距离为x 处(x <l )的C 点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l 一定而x 取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O 点),然后放,然后放 手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x 的最小值.的最小值.3,(20分)如图所示,如图所示,一根长为一根长为L 的细刚性轻杆的两端分别连结小球a 和b ,它们的质量分别为m a 和 m b . 杆可绕距a 球为L/4处的水平定轴O 在竖直平面内转动.在竖直平面内转动.初始时杆处于竖直位置.初始时杆处于竖直位置.初始时杆处于竖直位置.小球小球b 几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m 的立方体匀质物块,图中ABCD 为过立方体中心且与细杆共面的截面.现用一水平恒力F 作用于a 球上,使之绕O 轴逆时针转动,求当a 转过a 角时小球b 速度的大小.设在此过程中立方体物块没有发生转动,且小球b 与立方体物块始终接触没有分离.不计一切摩擦.离.不计一切摩擦.4、把上端A 封闭、下端B 开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1厘米,大气压强P 0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计.(1)求玻璃管内外水面的高度差h. (2)用手拿住玻璃管并缓慢地把它压入水中,当管的A 端在水面下超过某一深度时,放手后玻璃管不浮起.求这个深度. (3)上一小问中,放手后玻璃管的位置是否变化?如何变化?(计算时可认为管内空气的温度不变) 5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右图).一条长度为l 的绳(质量不计),一端的位置固定在圆锥体的顶点O 处,另一端拴着一个质量为m 的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v 绕圆锥体的轴线做水平匀速圆周运动(物体和绳在上图中都没画出). a b A B C D F 6、(13(13分分) ) 一辆车通过一根跨过定滑轮的绳一辆车通过一根跨过定滑轮的绳一辆车通过一根跨过定滑轮的绳PQ PQ PQ提升井中质量为提升井中质量为提升井中质量为m m 的物体的物体,,如图所示绳的绳的P P 端拴在车后的挂钩上后的挂钩上,Q ,Q ,Q端拴在物体上端拴在物体上端拴在物体上..设绳的总长不变设绳的总长不变,,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计都忽略不计. .开始时开始时,,车在车在A A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为左侧绳长为H.H.H.提升时提升时提升时,,车加速向左运动运动,,沿水平方向从沿水平方向从A A 经过经过B B 驶向驶向C.C.C.设设A 到B 的距离也为的距离也为H,H,H,车过车过车过B B 点时的速度为点时的速度为v v B .求在车由求在车由A A 移到移到B B 的过程中的过程中,,绳Q 端的拉力对物体做的功端的拉力对物体做的功. .7.7.在两端封闭、内径均匀的直玻璃管内在两端封闭、内径均匀的直玻璃管内,有一段水银柱将两种理想气体a 和b 隔开隔开..将管竖立着将管竖立着,,达到平衡时达到平衡时,,若温度为若温度为T,T,T,气柱气柱气柱a a 和b 的长度分别为的长度分别为l l a 和l b ;若温度为若温度为T T ',长度分别为长度分别为l l 抋和抋和l l 抌.然后将管平放在水平桌面上后将管平放在水平桌面上,,在平衡时在平衡时,,两段气柱长度分别为两段气柱长度分别为l l 攁和攁和l l 攂.已知已知T T 、T 挕8.如图所示,质量为Kg M9=的小车放在光滑的水平面上,其中AB 部分为半径R=0.5m 的光滑41圆弧,圆弧,BC BC 部分水平且不光滑,长为L=2m L=2m,一小物块质量,一小物块质量m=6Kg m=6Kg,由,由A 点静止释放,刚好滑到C 点静止(取g=102s m ),求:,求:①物块与BC 间的动摩擦因数间的动摩擦因数②物块从A 滑到C 过程中,小车获得的最大速度9.9..如图所示,在光滑水平面上放一质量为.如图所示,在光滑水平面上放一质量为M 、边长为l 的正方体木块,木块上搁有一长为L 的轻质光滑棒,棒的一端用光滑铰链连接于地面上O 点,棒可绕O 点在竖直平面内自由转动,另一端固定一质量为m 的均质金属小球.开始时,棒与木块均静止,棒与水平面夹角为a 角.当棒绕O 点向垂直于木块接触边方向转动到棒与水平面间夹角变为b 的瞬时,求木块速度的大小.H R GM+2220)v (v a +21a +HR GM+mRωθ rA F θv 0r P = v A r A ④解①②③④四式可得:解①②③④四式可得: r A =a++1H R同理,对P 和B 用能量关系和开普勒第二定律,可得:r B =a-+1HR 椭圆的长半轴:椭圆的长半轴:a = a =2rrBA+=21HR a -+最后对圆轨道和椭圆轨道用开普勒第三定律可得椭圆运动的周期。

高中物理竞赛试题及答案

高中物理竞赛试题及答案

高中物理竞赛试题及答案1. 题目:一物体从静止开始做匀加速直线运动,第3秒内通过的位移为15米,求物体的加速度。

答案:根据匀加速直线运动的位移公式,第3秒内的位移为\(\frac{1}{2}a(3^2) - \frac{1}{2}a(2^2) = 15m\),解得\(a =4m/s^2\)。

2. 题目:一个质量为2kg的物体在水平面上以10m/s的速度做匀速直线运动,若受到一个大小为5N的水平力作用,求物体的加速度。

答案:根据牛顿第二定律,\(F = ma\),所以\(a = \frac{F}{m} =\frac{5N}{2kg} = 2.5m/s^2\)。

3. 题目:一个质量为1kg的物体从10m高处自由下落,忽略空气阻力,求物体落地时的速度。

答案:根据自由落体运动的公式,\(v^2 = 2gh\),代入\(g =9.8m/s^2\)和\(h = 10m\),解得\(v = \sqrt{2 \times 9.8 \times 10} = 14.1m/s\)。

4. 题目:一物体在水平面上以10m/s的速度做匀速圆周运动,半径为5m,求物体所受的向心力。

答案:根据向心力公式,\(F = \frac{mv^2}{r}\),代入\(m = 1kg\),\(v = 10m/s\),\(r = 5m\),解得\(F = \frac{1 \times 10^2}{5}= 20N\)。

5. 题目:一物体从高度为20m的斜面顶端以10m/s的初速度滑下,斜面倾角为30°,求物体滑到斜面底端时的速度。

答案:根据能量守恒定律,\(mgh + \frac{1}{2}mv_0^2 =\frac{1}{2}mv^2\),代入\(g = 9.8m/s^2\),\(h = 20m\),\(v_0 = 10m/s\),\(\theta = 30°\),解得\(v = \sqrt{2gh\cos\theta + v_0^2} = \sqrt{2 \times 9.8 \times 20 \times\frac{\sqrt{3}}{2} + 10^2} = 22.6m/s\)。

【优质文档】高中物理竞赛动力学

【优质文档】高中物理竞赛动力学

动力学1、如图1所示,在光滑的固定斜面上,A 、B 两物体用弹簧相连,被一水平外力F 拉着匀速上滑。

某瞬时,突然将F 撤去,试求此瞬时A 、B 的加速度a A 和a B 分别是多少(明确大小和方向)。

已知斜面倾角θ= 30°,A 、B 的质量分别为m A = 1kg 和m B = 2kg ,重力加速度g = 10m/s 2。

(a A = 0 ;a B = 7.5m/s 2,沿斜面向下。

)2倾角为α的固定斜面上,停放质量为M 的大平板车,它与斜面的摩擦可以忽略不计。

平板车上表面粗糙,当其上有一质量为m 的人以恒定加速度向下加速跑动时,发现平板车恰能维持静止平衡。

试求这个加速度a 值。

3:光滑水平桌面上静置三只小球,m 1=1kg 、m 2=2kg 、m 3=3kg ,两球间有不可伸长的轻绳相连,且组成直角三角形,α=37°.若在m 1上突然施加一垂直于m 2、m 3连线的力F =10N ,求此瞬时m 1受到的合力,如图1所示.αa图 5mM4:图4所示。

为斜面重合的两楔块ABC及ADC,质量均为M,AD、BC两面成水平,E为质量等于m的小滑块,楔块的倾角为a,各面均光滑,系统放在水平平台角上从静止开始释放,求两斜面未分离前E的加速度。

5 长分别为l1和l2的不可伸长的轻绳悬挂质量都是m的两个小球,如图4所示,它们处于平衡状态。

突然连接两绳的中间小球受水平向右的冲击(如另一球的碰撞),瞬间内获得水平向右的速度v0,求这瞬间连接m2的绳的拉力为多少?图5 6:定滑轮一方挂有m1=5kg的物体,另一方挂有轻滑轮B,滑轮B两方挂着m2=3kg与m3=2kg的物体(图5),求每个物体的加速度。

7:如图9所示,两个木块A和B间的接触面垂直于图中纸面且与小平成θ角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦因数和动摩擦因数均为μ.开始时A、B都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B之间不发生相对滑动,则:(1)μ的数值应满足什么条件?(2)推力F的最大值不能超过多少?(只考虑平动,不考虑转动问题)8:如图11所示,C为一放在固定的粗糙水平桌面上的双斜面,其质量m c=6.5kg,顶端有一定滑轮,滑轮的质量及轴处的摩擦皆可不计.A和B是两个滑块,质量分别为m A=3.0kg,m B=0.50kg,由跨过定滑轮的不可伸长的轻绳相连.开始时,设法抓住A、B和C,使它们都处于静止状态,且滑轮两边的轻绳恰好伸直.今用一大小等于26.5N的水平推力F作用于C,并同时释放A、B和C.沿桌面向左滑行,其加速度a=3.0m/s2,B相对于桌面无水平方向的位移(绳子一直是绷紧的).试求C与桌面间的动摩擦因数μ.(图中α=37°,β=53°,已知sin37°=0.6,重力加速度g=10m/s2)9:如图2所示,质量为m的物体C用两根绳子系住,两绳分别跨过同一高度的滑轮O1和O2后与滑块A、B相连.滑块A的质量为m,滑块B的质量为2m,分别放在倾角为60°和30°的固定光滑斜面上.当系统平衡时,在物体C上无初速地放上另一质量也为m的物体D,并且C、D立刻粘在一起.试求刚放上D的瞬时物体A和B的加速度.。

高中动力学试题及答案

高中动力学试题及答案

高中动力学试题及答案一、选择题(每题3分,共30分)1. 质量为m的物体在水平面上受到一个水平方向的恒定力F作用,物体的加速度大小为a,若物体的质量增加到2m,而力F不变,则物体的加速度大小变为:A. a/2B. 2aC. 2a/3D. a2. 根据牛顿第二定律,作用在物体上的合力等于物体质量与加速度的乘积。

若物体的质量为m,加速度为a,则合力F的大小为:A. F = maB. F = m/aC. F = a/mD. F = a^2/m3. 一个物体从静止开始做匀加速直线运动,加速度为a,经过时间t 后,其速度v和位移s的关系为:A. v = atB. s = 1/2at^2C. v = 2s/tD. s = vt - 1/2at^24. 牛顿第三定律指出,作用力和反作用力大小相等、方向相反。

如果一个物体对地面施加了100N的力,地面对这个物体的反作用力大小为:A. 100NB. 50NC. 200ND. 0N5. 一个物体在水平面上做匀速直线运动,其受到的摩擦力为f,若物体速度增加,则摩擦力:A. 增加B. 减少C. 不变D. 无法确定6. 根据动能定理,一个物体的动能变化等于作用在物体上的合外力做的功。

如果一个物体的动能从E1增加到E2,则合外力做的功W为:A. W = E1 - E2B. W = E2 - E1C. W = (E1 + E2)/2D. W = E1 * E27. 一个物体从高度h处自由下落,忽略空气阻力,其下落过程中重力做的功W与物体的质量m和高度h的关系为:A. W = mgB. W = mghC. W = h/mD. W = g/mh8. 一个物体在斜面上做匀速直线运动,斜面的倾角为θ,物体的重力为G,摩擦力为f,则物体所受的合力为:A. G*sinθ - fB. G*cosθ - fC. G*sinθ + fD. G*cosθ + f9. 一个物体在水平面上做匀加速直线运动,其加速度为a,若物体的质量为m,作用力为F,则物体所受的合力为:A. F - maB. F + maC. maD. F10. 一个物体在竖直方向上做自由落体运动,其加速度大小为g,则物体的位移s与时间t的关系为:A. s = 1/2gt^2B. s = gt^2C. s = 2gtD. s = gt二、填空题(每题3分,共30分)1. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,其加速度大小为______ m/s^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(M1

M2

M3)g
N
要三个物体保持相对静止,还必须保证
M
2

M
3
之间无相对滑动,在
M
3
参照系中,
(M1+M2)a
M1 与 M 2 之间相对静止。故可作为一个整体
来处理,这个整体所受的外力如图 3—85 所示,
由此可得 N (M1 M 2 )g, f =(M1 M 2)a 。
同样,有 M 2 与 M3 之间无相对滑动的条件 f 2 N , 得
所以 sin 1 cos g cos +1 sin
将①两式代入以上式,得
F

sin 1 cos +1
cos sin
(M1

M2

M3)g
N1
若 较大时,则 M1
M1a
相对 M 2 有沿斜面向上滑
的趋势。在 M3 参照系中,
M1 的受力情况如图 3—84 所示,故有
将有关数值代入得 f =10N
系统在竖直方向上受到的外力是:桌面作用于 C 的弹力 N,方向竖直向下,因此有
N (mA mB mc )g Vt
mc VvCy mAVvAy mB VvBy,
代入有关数值,得 N=93N 故动摩擦因数为
=
f
10 =
0.11
N 93
2. 在光滑水平面上放着一块质量为 M 3 的板,板上叠放着一个斜面体和一个物体,如图
f
(M1+M2)g
图 3—85
对于由 A、B 和 C 组成的系统,在水平方向受到外力是桌面对 C 的摩擦力 f ,方向
向右;推力 F,方向向左。根据动量定理
( f F )Vt mAVvAx mB VvBx mc Vv,
或f
F

mA
vAx t

VvBx t
mc
v t
即f F mAaAx mBaBx mca
M1gsin M1a cos f1 0 N1 M1a sin M1g cos 0
由于 M 1 与 M 2 之间无相对滑动,则 f1 为静摩擦力,故有
f1 1N1 . 将②、③两式代入以上式,得 M1gsin M1a cos M1a1 sin +M1g1 cos .
图 3—80 解:设 aA 、 aB 与 a'A 、 a'B 分别为 A、B 相对于桌面的加速度的大小和相对于 C 的
加速度的大小,设水平向右的 x 轴的正方向,竖直向上的 y 轴的正方向。因为 B 开始时
相对于桌面静止,以后相对于桌面无水平方向的位移,可知 aB 沿水平方向的分量为 0, 即
aBx = a'Bx a =0
由此得 a'B = a'A =5 m / s2 , a'By =4 m / s2 。
a'Ax =4 m / s2 a'Ay = 3 m / s2 。 相对于各地面各加速度的分量的大小为 aAx = a'Ax a =1 m / s2 aAy = a'Ay = 3 m / s2 aBy = a'By =4 m / s2
高中物理竞赛——动力学例题精选
1.如图 3—80 所示,C 为一放在固定的粗糙水平桌面上的双斜面,其质量 mc =6.5kg,顶端 有一定滑轮,滑轮的质量及轴处的摩擦皆不可计。A 和 B 是两个滑块,质量分别为 mA =3.0kg, mB =0.50kg,由跨过定滑轮的不可伸长的轻绳相连。开始时,设法抓住 A、B 和 C,使它们都处于静止状态,且滑轮两边的轻绳恰好伸直。今用一等于 26.5N 的水平推 力 F 作用于 C,并同时释放 A、B 和 C,若 C 沿桌面向左滑行,其加速度 a =3.0 m / s2 ,B 相对于桌面无水平方向的位移(绳子一直是绷紧的)。试求 C 与左面间的动摩擦因素 。(图中 a =37°, =53°,已知 sin37°=0.6,重力加速度 g=10 m / s2 )
M1gsin f1 M1a cos 0, N1 M1a sin M1g cos 0.
f1 M1g
图 3—84


同样,有关系
f1

1N1 ,将⑤、⑥两式代入,可得

sin 1 cos cos 1 sin
g
将①式代入,得
F

sin 1 cos cos 1 sin
3—82 所示。斜面体和物体的质量分别为 M 2 和 M1 ,斜面体斜面的倾角为 。已知 M1
与 M 2 之间的摩擦系数为 1 ,M 2 与 M3 之间的摩擦系数为 2 ,现有一水平恒力 F 作用
在 M3 上,问:F 为多大时,三个物体相对静止? M1
M2 θ
M3
图 3—82
解:由题意知,三个物体运动时保持相对静止,即三者以相同加速度α运动,故将 三个物体看成一个整体,有
由此得
a
' Bx
=
a
=3
m
/
s
2
因此绳不可伸长,又不是绷紧的,固有
a'
A
=
a
' B
。它们的方向分别沿所在的斜面,
方向如图 3—81 所示。各分量的大小为
y
37°
x
a’B
a'Bx = a'B cos53° a'By = a'B sin53°ቤተ መጻሕፍቲ ባይዱ
图 3—81
a'Ax = a'A cos37° a'Ay = a'A sin37°
α=
F
M1 M2 M3
2
○1
f1
N1
下面分两种情况进行讨论:
(a) 1 <tan
M1a
在此条件下,如果保持 M 2 、
M3 静止,则 M 1 将沿 M 2 的斜面
M1g
滑下,可见,如果α不太大时,M 1
仍有沿斜面下滑的趋势。在这种
图 3—83
情况下,取(?)为参照系,则 M1 的受力情况如图 3—83 所示,故可得
相关文档
最新文档