ANSYS.ICEM-CFD教程
ICEM CFD 使用手册
信息:菜单包括几何信息、面的面积、最大截面积、曲线长度、网格信息、单 元体信息、节点信息、位置、距离、角度、变量、分区文件、网格报告。
设置:菜单包括常规、求解七、显示、选择、内存、远程、速度、重启、网格 划分。
帮助:启动帮助、启动用户指南、启动使用手册、启动安装指南、有关法律。
(a)几何菜单 几何菜单包括编辑、修改几何图形的功能。 功能及作用: 生成点、生成/修改线、生成/修改面、生成体、修改几何图形、转化图形、删除 点、删除线、删除面、删除体积点及删除实体。 (b)网格菜单 网格菜单包括 ANSYS ICEM CFD 网格工具的模块。 以下按钮可以导入不同 ANSYS ICEM CFD 支持和开发的网格划分模块。 设置全局网格尺寸、设置表面网格尺寸、设置曲线网格尺寸、创建加密区、创建 单元、表面网格、四面体、金字塔、六面体(旧界面)、六面体分区网格及拖拽网 格。 点击这些按钮调用网格工具模块。 (c)块操作菜单 创建块、分割块、合并顶点、编辑块、对应、移动顶点、块转换、编辑边、前期 网格参数、前期网格质量、块检查、删除块。 (d)编辑网格菜单 编辑网格菜单包括高级网格编辑必需的工具:粗化、平滑、合并网格。 通过这个菜单可执行的操作包括: 创建单元、创建中间节点、网格检查、计算和显示质量、平滑全局网格、平滑 六面体网格、修改网格、合并节点、分割网格、移动节点、偏移网格、转化网格、 网格类型转化、调整网格密度、重新编号网格、网格重新自适应、删除中间节点、 删除节点及删除单元。 (e)输出菜单 输出菜单通过装配求解器、写求解器输入文件、启动求解器来控制边界条件的 编辑。输出菜单包括以下几个功能键: 选择求解器、边界条件、编辑参数、写输入文件。 图标功能菜单: 打开工程、保存工程、打开几何文件、打开属性文件(定义在几何体中的边界条 件)、打开块文件、适合窗口、放大、测距离、当地坐标系、刷新。 回退:还原到上一步操作 前进:重返到下一步操作 框架显示:使几何图形显示框架状视图 阴影显示:使几何图形固体(不透明)显示
ANSYS ICEM CFD从入门到精通三维模型结构网格划分管内叶片模型详解
ANSYS v11.0
面网格尺寸
#1
#2
• Mesh > Set Meshing Params by Parts
• 按照提示设置大小
• Apply 并且 Dismiss
• Blocking > Pre-Mesh Params
• 接受默认值 Update Sizes 并且单击 Apply
• 在模型树中使 Pre-Mesh 可见,当提示重新计算是 单击Yes
– 键入‘a’ 选则全部物体或是
#3
在Select geometry 栏中单击
‘all entities’
9/9/05
ANSYS ICEMCFD V10
Workshop
Inventory #002277
D5-5
ANSYS v11.0
对顶点建立关联
#1
#2
Workshop
• 把一个顶点和一个几何点建立关联后, 块的顶点就会移动到那个点上
+Y
• 选择 Split Block > Split Block
• Split Method 是 Screen Select
• 单击左键并且拖住其中的一条边如图所示– 它变成红色的高 亮线
– 移动鼠标直到新的分割线的位置大体上在叶片的一端时 放开鼠标
– 中键确认分割位置
• 重复操作在中心和另一端进行分割
ANSYS ICEMCFD V10
Inventory #002277
D5-6
ANSYS v11.0
对边进行关联
#1
#2
Workshop
• 选择 Associate > Associate Edge to Curve – 在管的一侧选择4条边 – 在同一侧选择4条曲线
ANSYS ICEM CFD 网格划分教程2
48Modeling and Meshing a Chemical Vapor Deposition ReactorFigure 1.3.5:Creating copies ofupcyl5.Begin renaming the newly created objects by first highlightingupcyl.1 from the tree. Click right mouse button and opt for EditObject. > inl1 and Sides family > inlet (this must be manuallyentered)7.Select Update and then Done to complete the operation.8.Highlight upcyl.2from tree.9.Change Name to docyl and press Apply.The model will now consist of three cylinders on top of each other.The sides of the central cylinder form the inlet. The intended flowis depicted in Figure 1.3.6.Modeling and Meshing a Chemical Vapor Deposition Reactor 49Figure 1.3.6:The intended flow forthe CVD reactor1.3.4: Creating ObjectsCreating CylindersCreate additional Cylinders by choosing Create cylinders iconfrom the top menu bar from each of following.Outduct1.Name > outduct 2.Plane > xz 3.C enter coordinates: (0.5, 0, 0.5)4.Height: 0.355.Radius: 0.156.Type > fluidNote: The changes are automatically implemented once the objectType is selected.Susceptor > susceptor2.Plane > xz3.C enter coordinates:(0.5, 0, 0.5)50Modeling and Meshing a Chemical Vapor Deposition Reactor4.Height: 0.375.Radius: 0.036.Type > hollowSusceptor Top > susc-top2.Plane > xz3.C enter coordinates: (0.5, 0.37, 0.5)4.Height: 0.035.Radius: 0.26.Type > hollowThe Cylinders created so far are shown in Figure 1.3.7.Figure 1.3.7:View of theCylinders created sofarCreating CirclesInlet1.Select Create circles icon from the top menu bar to create acircle. Select it from the tree and choose for Edit object uponclicking right mouse button. Together you get screen as shownin Figure 1.3.8.Modeling and Meshing a Chemical Vapor Deposition Reactor512.Change the Name to top-inl, signifying that this object will bethe top inlet to the reactor.3.Plane > X-Z4.C enter coordinates: (0.5, 0.5, 0.5)5.Radius: 0.036.Face family > inlet7.Press Update to complete the modifications.Figure 1.3.8:Circles edit windowwith specificationsfor top-inlNow create the remaining Circles using Create circles icon fromthe top menu barSubstrate > substrate2.Plane > X-Z3.C enter coordinates: (0.5, 0, 0.5)4.Radius: 0.25.Select Update and Done to complete the operation.Outlet > outlet52Modeling and Meshing a Chemical Vapor Deposition Reactor2.Plane > X-Z3.C enter coordinates: (0.5, 0, 0.5)4.Radius: 0.155.Face family > outlet (The user should enter this manually).6.Press Update and Done.The geometry for the CVD Reactor is now complete (Figure 1.3.9). Figure 1.3.9:Complete CVDreactor, with thecreated Circlesactivated1.3.5: Mesh GenerationCreating Cartesian Mesh1.From the AutoHexa viewing window, select Model > Gener-ate mesh to open the Mesh control window shown in Figure1.3.10. This is where all the mesh utilities are accessible.2.Select Mesh type > Cartesian to create a grid that is alignedwith the coordinate axes and quickly generated. Using thedefault parameters, select Generate mesh.Modeling and Meshing a Chemical Vapor Deposition Reactor53 Figure 1.3.10:Mesh controlwindow with thedefault parameters forthis tutorialCut planes1.Begin by Orienting the model to the Home position.2.Toggle on Mesh control > Display > Cut plane > Set position> Vertical - screen select.3.Click the left-mouse button in the center of the Domain in theAutoHexa viewing window.4.Orient > Orient positive X, and then select Mesh control >Display > Display mesh to obtain the diagram shown by Fig-ure 1.3.11.54Modeling and Meshing a Chemical Vapor Deposition ReactorFigure 1.3.11:Mesh cut plane asseen from thepositive X view usingdefault parametersLimiting Element Size1.The large element size may be controlled by adjusting the Uni-form spacing. Select Mesh control > Generate > Uniformspacing > (X count, Y count, Z count) > (50, 50, 50).2.Press Generate mesh to recalculate the mesh with the modi-fied counts. The new mesh should yield much finer mesh (i.e.50x50x50 nodes in a regular grid).3. Refer to Figure 1.3.12 to see the newly defined mesh cut plane. Figure 1.3.12:Diagram of the meshcut plane with newlyspecified X, Y, and Zcounts and higherelement count thanwhile using defaultparametersModeling and Meshing a Chemical Vapor Deposition Reactor55 Surface Elements1.To view the mesh on various parts of the reactor itself, first turnoff the Mesh control > Display > Cut plane utility for aclearer view.2.Select Display tab and turn on Surface and Current type. Thiscreates a mesh on the current object type that is selected fromthe Model menu. In this situation, the current object type isCircle. The mesh will appear as in Figure 1.3.13.Figure 1.3.13:Reactor with Surfaceelements meshdisplayed on currentobject type Circles.3.Select File > Save project from the AutoHexa viewing win-dow to save both the model and the mesh.56Modeling and Meshing a Chemical Vapor Deposition Reactor57Tutorial Example 1.4: Modeling and Meshing a LabOverview This tutorial, like the first tutorial, will focus on creating alaboratory for analyzation of the airflow through the room.Ventilation ducts on one side of the lab will supply air to the room,and a large fan on the other side of the lab will act as an outlet vent.The air will need to travel through the room, over and around thecreated obstructions, and depart through the exit vent. Thissimulation will illustrate the flow distribution inside of the room,allowing us to place the ventilation ducts at optimal locations thatare most beneficial to the occupant.Operations introduced in this example Starting a New Project•Initializing AutoHexa and beginning the projectCreating Objects•Developing the model, utilizing Domain, Hexas, Cylinders, Polygons, Circles andQuadsCopying Objects•Creating multiple entities by copy ing previously createdgeometryCreating Groups of Objects•Placing multiple objects into one Group, easing the copy ingprocessMoving Objects•Utilizing the Move function to translate geometrical entitiesinto new locationsMesh Generation•Generating Hexa mesh•Modifying the Per-object params•Generating Tetra meshConfiguration Options•Altering the Minimum object separation•Sorting the object edit lists, AlphabeticallyPrinting Screen•Doing Annotation, adding markers and getting a hardcopy ofthe modelSummary Creation•Accessing a summary of the specifications used in the cre-ation of the model1.4.1: Starting the Project1.Load ICEM CFD to open the main Mesh Editor viewingscreen, as well as the MED messages window and the Displaywindow. A File selection window should also appear, with theprompt to Select an ICEM CFD project to open,2.Type the new project name as tutorial-4 and pressAccept.3.Meshing > AutoHexa will initialize the AutoHexa modelingsystem.1.4.2: Creating ObjectsCreating the Domain1.Begin the creation of the territory of the laboratory by selectingModel > Domain from the tree.2.Resize the Domain with the following assignments: S tartpoints > (xS, yS, zS) -> (0, 0, 0) and E nd points > (xE, yE, zE)-> (10, 5, 6)3.Press Apply to activate the changes.4.Notice that the Domain is larger than the viewing window --select Orient > Isometric view to achieve a better view asshown in Figure 1.4.1.Figure 1.4.1:The modified domainCreating the HexasThe Divider1.To begin creation of the divider, select Create hexas icon fromthe top menu bar. > divider3.S tart points: (1, 0, 2.5) and E nd points: (6,4.5, 2.6)4.Select the object Type > hollow, since it is unnecessary to sim-ulate the heat transfer within the divider.Note: The changes are automatically activated when the objectType is assigned.5.Upon examination of the model, the user should notice that thedivider does not touch the wall on the low end of the X-axis.This entity may be moved by selecting Options > Interactiveediting from the tree. Toggle off Y and Z (Figure 1.4.2). Thisrestricts the motion of the divider to only along the X-axis. Figure 1.4.2:Restricting themotion of the divider6.Move the cursor to an edge of the divider. While holding theshift key down, press the middle mouse button, and drag thedivider towards the low end of the X axis, so that the divider isagainst the wall (Figure 1.4.3). The new S tart points are (0, 0,2.5), and the E nd points are (5, 4.5, 2.6).Figure 1.4.3:The new position ofthe dividerThe Worktable1.Click on Create hexas icon to create a new Hexa. > wktable3.S tart points: (6, 0, 3) and E nd points: (10, 1, 4)4.Type > solid5.Press ApplyThe Machine1. Click on Create hexas icon to create a new Hexa. > machine3.S tart points: (7, 1, 3.25) and E nd points: (10, 1.5, 3.75)4.Type > solid5.Press ApplyThe Person1.To begin creation of a person standing in front of the machine,click on Create hexas icon to create a new Hexa. > body3.S tart points: (6, 0,4.25) and E nd points: (7, 1.25, 4.5)4.Type > solid5.Press Apply6.To create the person’s head, click on Create hexas icon to cre-ate a new Hexa. > head8.S tart points: (6.25, 1.75, 4.25) and E nd points: (6.75, 2, 4.5)9.Type > solid10.Press Apply11.The person’s body and head is now complete. Refer to Figure1.4.4 to see the completed geometry created so far.Figure 1.4.4:The completegeometry created sofar1.4.3: Copying ObjectsThe Drawers1.The user will now add a file cabinet with three drawers to themodel. Click on Create hexas icon to create a new Hexa. > drawer13.S tart points: (0, 0, 0) and E nd points: (1, 0.5, 0.5)4.Type > solid5.The remaining drawers will have identical dimensions to thefirst drawer. To begin the Copy ing process, highlight drawer1from the Tree, click right mouse button on it and select Copyobject to obtain the Copy objects window, as shown in Figure1.4.5. Enter the following values.6.Number of copies > 27.Translate > Y offset > 0.5Figure 1.4.5:Copy panel8.Press Apply to create the remaining drawers. Proceed to pressDone.9.Highlight drawer1.1 from the tree and change its Name todrawer2. Select Apply when complete.10.Highlight drawer1.2 from the tree and change its Name todrawer3. Press Apply to update the change.Figure 1.4.6:The Hexas list can bemodifiedNote: Any of the three drawer s may be temporarily removed fromthe model in order to vary the conditions for the simulated flow.This is achieved by first selecting the desired object from the tree,pressing right button and then unselecting the Active option.Toggling on Active from the Inactive group from the tree, willreactivate the entity. To permanently remove an object from themodel, the user should first highlight the desired entity, and thenproceed to select Delete. This object then would show under Trashin the tree. The Undo option, however, can cancel the last action.1.4.4: Creating ObjectsCreating the PolygonThe Chair1.The user will now create a chair located next to the file cabinet.Click on Create polygons icon to create a new polygon.(Refer to Figure 1.4.7). > chair3.Plane > xy4. Height > 0.755.Highlight vert1 > (x1, y1, z1) -> (0, 1.25, 1)6.Highlight vert2 > (x2, y2, z2) -> (1.5, 0, ~)7.Highlight vert3 > (x3, y3, z3) -> (0, 0, ~)8.Type > solid9.Press Apply.Figure 1.4.7:Creation of chairusing polygons.10.Highlight vert1, as shown in Figure 1.4.711.Press Add once to create another vertex, vert2, and assign (x2,y2, z2) the values of (0.75, 0.5, ~).12.Press Add once again, creating vert3. (x3, y3, z3) > (1.5, 0.5, ~)13.To complete the chair and update the changes, select Apply.Refer to Figure 1.4.8 for the final shape of the chair.Figure 1.4.8:The final chairCreating the CylindersThe Table-legs1.Click on Create cylinders icon to create a new cylinder tobegin creation of the table-legs. > tleg13.Plane > xz4.C enter coordinates: (xC, yC, zC) > (2.25, 0, 0.5)5.Height: 0.756.Radius: 0.057.Type > solid8.To create tleg2, the user will copy tleg1. Highlight tleg1 fromthe tree,click right mouse button on it and select Copy object.This will open the Copy objects window.9.Number of copies > 110.Translate > X offset -> 1 > Y offset -> 0 > Z offset -> 011.Select Apply to create the copy, and then Done.12.Highlight tleg1.1 from the tree and change the Name to tleg2.13.Select Apply when complete with renaming the copied table-leg. Refer to Figure 1.4.9Figure 1.4.9:Geometry with Finaltable legs1.4.5: Creating Groups of Objects1.To place tleg1 and tleg2 into a group, access the tree. Clickright mouse button on Groups there and choose Create. > tlegs3.Select Orient > Orient negative Y. This will adjust the view,making tleg1 and tleg2 easily accessible.4.Right click on Groups > tlegs and choose Add > ScreenSelect.5.With the shift - left mouse button, select tleg1 and tleg2, turningthe entities red in color. Their names will appear under the treeas shown in Figure 1.4.10. Press shift - right mouse button toexit out of this selection mode.Figure 1.4.10:The tree6.To create the remaining table legs, the user should copy thenewly established group. In the tree, highlight tlegs underGroups, right click and then select Copy group. This willopen the Copy group tlegs window.7.Number of copies > 18.Translate > X offset -> 0 > Y offset -> 0 > Z offset -> 19.Press Apply to add the remaining table legs, and then Done.10.Highlight tleg1.1 from the tree, and change the Name to tleg3.Select Apply to activate the change.11.Highlight tleg2.1 from the tree, and change the Name to tleg4.Select Apply to activate the change.1.4.6: Creating ObjectsCreating the QuadsThe Table-top1.Click on Create quads icon to create a new quad. > ttop3.Plane > xz4.S tart points: (2, 0.75, 0.25) and E nd points: (3.5, ~, 1.75)5.Press Apply to complete the operationThe Inlet vents1.Click on Create quads icon to create a new quad > inl13.Plane > xy4.S tart points: (1, 0, 6) and E nd points: (4, 1, ~)5.Select this object from the tree, click right mouse button andchoose Edit object. Go to Properties and say Face family > inlet (The user will need to manually enter this assignment).6.Select Done to complete the first inlet.7.To create inl2, the user will need to copy inl1. Highlight inl1from the tree, click right mouse button and select Copy object to open the Copy objects window.8.Number of copies > 19.Translate > X offset -> 5 > Y offset -> 0 > Z offset -> 010.Select Apply > Done,11.Highlight inl1.1 and change the Name from inl1.1 to inl212.Select Apply to complete the operation. Refer to Figure 1.4.11for the completed quads.Figure 1.4.11:Geometry withcompleted quads1.4.7: Moving ObjectsThe air will enter the room via the inlet and exit via outlet fan thatwill be constructed during this section.Creating the CirclesThe Outlets1.Click on Create circles icon to create a new circle. > out13.Plane > xy4.C enter coordinates: (2.5, 2.5, 0)5.Radius: 0.756.Select this object from the tree, click right mouse button andchoose Edit object.Go to Properties and say Face family >outlet (The user will manually enter this assignment).7.Select Done to complete the outlet.8.Observing the configuration, the user should notice that out1 ispoorly situated behind the room divider. Alter its location byselecting Move object up on clicking right mouse button onout1 in the tree.9.Translate > X offset -> 5 > Y offset -> 0 > Z offset -> 010.Select Apply to move out1 to its new position, thus enabling itto remove hot air more efficiently.11.Select Done to complete the operation, and notice that the xCcenter coordinate in the Edit window has increased by 5 unitsto 7.5, as shown in Figure 1.4.12.Figure 1.4.12:New center positionof the circleThe Exhausting Create circles icon, the user will create an exhaust fan.Click on Create circles icon to create a new circle. > exhaust3.Plane > yz4.C enter coordinates: (10, 4, 3.5)5.Radius: 0.26.Select Apply to update the parameters.Creating the CylindersThe Tube1.The user will now create the tube needed to transport the hot airmoved by the exhaust fan, through the machine. Click on Cre-ate cylinders icon to create a new cylinder. > tube3.Plane > yz4.C enter coordinates: (7, 1.25, 3.5)5.Height: 1.256.Radius: 0.27.Type: fluid8.Select Apply to complete the task.Creating the CirclesThe Inlet Fan1.Click on Create circles icon to create a new circle. > inlfan3.Plane > yz4.C enter coordinates: (8.25, 1.25, 3.5)5.Radius: 0.26.Select this object from the tree, click right mouse button andchoose Edit object. Go to Properties and say Face family >source (The user will need to manually enter this assignment)7.Press Done to activate the modifications.When complete, the laboratory model should appear as in Figure1.4.13.Figure 1.4.13:Solid model of thelaboratory1.4.8: Mesh GenerationThe Hexa Mesh1.To begin mesh creation, select Model > Generate mesh. TheMesh control window depicted in Figure 1.4.14 will appear.2.Making sure that Mesh type > Hexa unstructured is selected,select Generate mesh, using the default parameters.Figure 1.4.14:Mesh ControlwindowNote: The mesh comes pretty decent in this geometry. Lessdistortion of the element quality means higher quality of mesh,providing the solver with an easier time with convergence. Checkthe AutoHexa messages window, and notice that there are nosignificantly distorted elements with a quality between 0 and0.25. There are a few between 0.25-0.5. To see where theseelements are located, go to Mesh control > Quality, replot thehistogram from 0.25 to 0.5 and then select the bars in the histogramto display the elements on the screen.1.4.9: The Tetra Meshing the same model, create a Tetra mesh by selecting Model> Generate mesh will open Mesh control window. From thiswindow select Generate > Mesh Type > Tetra. Unselect Maxtetra size, as well as Per-object params, as shown in Figure1.4.15.Figure 1.4.15:Tetra parameterwindow2.Continue by selecting Generate mesh. When complete, thenewly created tetra mesh should consist of approximately184000 elements and 42000 nodes.3.Select Display > Display mesh > Surface.4.Press Close to exit the Mesh control window.5.Select File > Save project to save the model and mesh.1.4.10: Configuration OptionsBefore a mesh is actually generated, AutoHexa will check themodel for gaps existing between objects that may interfere with thecreation of a uniform mesh.1.To modify the default Minimum object separation, selectOptions > Settings from the tree which will open the Config-uration options window seen in Figure 1.4.16.This feature is especially useful in cases where small gaps maypervade throughout the model, in which case AutoHexaautomatically closes any gaps that are larger than the specifiedMinimum object separation.Figure 1.4.16:ConfigurationOptions window2.The color of all the objects, text, and mesh lines are modifiableunder the Options > Graphical options.3.Since there were many Hexa objects created in this tutorial, itmay be beneficial to sort the object list alphabetically. From themain menu, select Tree > Sort > Alphabetical. Figure 1.4.17illustrates the difference between the two object lists.Figure 1.4.17:Left: before sorting,right: after sorting1.4.11: Hardcopy Creation1.At this point, it may be useful to print out a diagram of the finalmodel. Select File > Print screen to open the Print optionswindow shown in Figure 1.4.18Figure 1.4.18:Print options window2.The user may select Full screen or Mouse selection or Pixellocation.3.Select Color Mode > Color.4.Continuing on in the Print options window, select Print to getthe hardcopy.5.The user can change the Title of the project. In the tree go toProblem setup > Title/notes to get a window as shown in Fig-ure 1.4.19.Figure 1.4.19:Title/notes window6.The appearance of the printout may be further customized byaccessing the View > Add Marker from top menu bar. This willopen the Add Marker window shown in Figure 1.4.20. Thisallows the user to add text to the display at a specified location. Figure 1.4.20:Add marker window7.You can do the annotations on the screen by opting for Edit >Annotations from the top menu bar. This will open up a win-dow as shown in Figure 1.4.21.Figure 1.4.21:Annotations window1.4.12: Summary CreationAlong with a hardcopy of the model itself, a hardcopysummarizing the specifications you have used in its creation maybe useful. A printout of this information is accessible by selectingEdit > Summary from the top menu bar. This will open theParameter summary window as shown in Figure 1.4.22.78Modeling and Meshing a Lab Figure 1.4.22:Parameter summarywindow79Tutorial Example 1.5: Modeling and Meshing a WingOverview This tutorial will guide the user through creating a wing-shapedobject inside of a room in order to analyze the airflow over, under,and around the wing. On one side of the room, an inlet vent permitsair to flow into a duct that channels the airflow directly towards thewing. The airflow will pass by the wing and head directly towardthe outlet vent on the opposing room wall, passing over, under, andaround the wing during its travel.Operations introduced in this example Starting a New Project•Initializing AutoHexa and beginning the projectCreating Objects•Developing the model with the following geometrical entities: Domain, Ellipsoidal cylinders, Ellipsoids, Polygons andQuadsCopying Objects•Making modifications in the Copy window, copying the poly-gons80Modeling and Meshing a WingMesh Generation•Creating Tetra meshCreating a Cut Plane•Utilizing Cut plane techniques to obtain a clearer view of thetetra mesh around the wing1.5.1: Starting the Project1.Load ICEM CFD to open the main Mesh Editor viewingscreen, as well as the MED messages window and the Displaywindow. A File selection window should also appear, with theprompt to Select an ICEM CFD project to open.2.Type the new project name as tutorial-5 and pressAccept.3.Meshing > AutoHexa will initialize the AutoHexa modelingsystem.1.5.2: Creating ObjectsCreating the Domain1.Begin the creation of room by selecting Model > Domain fromthe tree.2.Resize the Domain with the following assignments: S tartpoints > (xS, yS, zS) -> (0, 0, 0) and E nd points > (xE, yE, zE)-> (100, 50, 40)3.Press Apply to activate the changes.4.Notice that the Domain is larger than the viewing window --select Orient > Isometric view to achieve a better view, asshown in Figure 1.5.1.Modeling and Meshing a Wing81 Figure 1.5.1:The Isometric viewof the modifiedDomainCreating the Ellipsoidal CylindersUtilizing an ellipsoidal cylinder will allow the user to create themain wing shape. Ellipsoidal cylinders are specified by twoellipses that are the ends of the object. Each end has a C entercoordinate (C1 on one end, and C2on the other), and twocorresponding radius vectors (vec1 and vec2 -- both assignedvalues at the Top and the Bottom of the wing.) If needed, theOnline Reference Manual provides a more detailed description ofthe ellipsoidal cylinder objects.1.From the AutoHexa top menu bar, select Create e. cylindersicon. Then proceed to select oval.1 from the right side tree,press right mouse button and choose option Edit object asshown in Figure 1.5.2.82Modeling and Meshing a WingFigure 1.5.2:E. cylinders editwindow with thespecified parameters2.Change the Name from oval.1 to wing13.Enter the bottom center (Bot cent) X, Y and Z coordinates as(48, 25, 0)4.Enter the top center (Top cent) X, Y and Z coordinates as (50,25, 18.25).5.(Bot vec1 x, Bot vec2 x, Top vec1 x, Top vec2 x) > (0, 4, 0, 2)6.(Bot vec1 y, Bot vec2 y, Top vec1 y, Top vec2 y) > (1, 0, 0.25,0)7.(Bot vec1 z, Bot vec2 z, Top vec1 z, Top vec2 z) > (0, 0, 0, 0)8.Family Type > Hollow from Properties9.Sides family > wing (manually typed)10.Select Update and Done to activate the changes as shown inFigure 1.5.3Modeling and Meshing a Wing83 Figure 1.5.3:wing1 with thelabeled top andbottom vectorsCreating the EllipsoidTo create the rounded tip of the wing, the user will implement anellipsoid object. An ellipsoid is a 3-dimensional ellipse where allthree axes are aligned to the coordinate axes. Like Hexa objects,Ellipsoids are specified by a bounding box. The Online ReferenceManual provides more information on ellipsoids.1.From the top menu bar, select Create ellipsoids icon. > wing-tip3.S tart points: (48, 24.75, 18) and E nd points: (52, 25.25, 18.5)4.Press Apply to confirm the changes.5.For a clearer view of the newly created Ellipsoid object, deacti-vate the wing by clicking right mouse button on wing1 fromthe tree and de-selecting Active. This temporarily removeswing1 from the display.6.Zoom in on the Ellipsoid object that is visible on the screenwith the right-mouse button.7.In the tree highlight wing-tip to apply more changes.8.Once in the Ellipsoid frame (Figure 1.5.4), unselect Corners >xyz, Xyz, xYz, XYz. Only half of the Ellipsoid is necessary torepresent the wing-tip.9.Type > hollow84Modeling and Meshing a WingFigure 1.5.4:Ellipsoids object editwindow with thespecifications10.Set the Outside family to wing from the edit window. Get thatwindow by clicking right mouse button on wing-tip in the treeand opting for Edit object.11.Press Update to activate the modifications, and then Done toclose the edit window. This should yield the model displayed inFigure 1.5.5.Figure 1.5.5:Close-up view of thewing-tip after settingthe parameters.12.Reactivate wing1 by toggling on Activate from Inactive groupfrom the tree to achieve Figure 1.5.6.。
ansys workbench 14.0调用icem-cfd
对于习惯使用icem做六面体网格的朋友,更希望在workbench中使用(本文参考网络视例)1、首先建立dm模型,或在三维软件中建立三维模型,导入到workbench中
2、双击model,进入设置界面。
观察模型树中,记下Geometry下模型的名字Part 1。
3、右击mesh,设置如下网格选项。
右击mesh,产生网格,则自动调出icem,进入icem界面。
4、进入icem中,系统自动分块,而这个分块是我们不想要的,因此删除块,重新分块,生产新块时,注意手动选择part名称,保证与2中名字一致。
(part 1,这里是part_1_1_1)
5、icem中划分网格,结果如下
6、产生结构网格,File-Mesh-From....,保存网格,点击yes
7、进行简单的设置,简单的做了个计算,如图所示:。
ansys icem cfd网格划分技术实例详解纪
ansys icem cfd网格划分技术实
例详解纪
ANSYS ICEM CFD网格划分技术实例详解纪:
1、首先,选择你要建立的几何图形,如某个物体的外形、内部结构等;
2、选择网格划分的方法,可以使用Tetrahedron、Hexahedron、Prism等划分方法;
3、设定网格划分的精度,即划分后各三角形面或者正方体面的边长,一般可以根据不同类型的流动情况来调整精度;
4、确定各个区域的网格密度,一般需要在边界层提高网格数量,以更好地模拟流体的运动情况;
5、检查网格的质量,消除网格中的闭合面,以保证网格的准确性;
6、计算流场,对网格进行求解,并作图显示。
ANSYS ICEM CFD中文教程
ANSYS.ICEM-CFD中文教程ICEM CFD 工程Tutorials目录中每个工程是一个次级子目录。
每个工程的目录下有下列子目录:import, parts, domains, mesh, 和transfer。
他们分别代表:• import/: 要导入到ICEMCFD中的集合模型交换文件,比如igs,STL等;• parts/: CAD模型• domains/: 非结构六面体网格文件(hex.unstruct), 结构六面体网格分区文件(domain.n), 非结构四面体网格文件(cut_domain.1)• mesh/: 边界条件文件(family_boco, boco),结构网格的拓扑定义文件(family_topo, topo_mulcad_out), 和Tetin几何文件(tetin1).• transfer/: 求解器输入文件(star.elem), 用于Mom3d.的分析数据mesh目录中Tetin文件代表将要划分网格的几何体。
包含B-spline曲面定义和曲线信息,以及分组定义Replay 文件是六面体网格划分的分块的脚本鼠标和键盘操作第二章ICEM CFD Mesh Editor界面The Mesh Editor, 创建修改网格的集成环境,包含三个窗口• The ICEM CFD 主窗口• 显示窗口• The ICEM CFD 消息窗口主窗口主窗口中除了图形显示区域,外,还有6个radio按钮:File, Geometry, Meshing, Edit Mesh and Output.The File MenuThe File menu 包含• Open, Save, Save as, Close, Quit, Project dir, Tetin file,Domain file, B.C file, Import geo, Export geo, Options, Utilities,Scripting, Annotations, Import mesh, DDN part.The Geometry MenuThe Geometry menu 模型修补和编辑,边界条件的设置,调用ICEM CFD DDN。
ICEM_CFD基础入门教程操作界面中文
ICEM_CFD基础入门教程操作界面中文ICEM_CFD是一款常用的计算流体力学(CFD)前处理软件,它可以用来进行几何建模、网格生成以及网格质量改进等操作。
本教程将介绍ICEM_CFD软件的基础入门操作界面,并详细说明其主要功能和使用方法。
1.工作窗口:-图层窗口:用于管理不同的几何元素和网格单元。
可以将几何模型和网格分别分配到不同的图层中,便于管理和操作。
2.工具栏:-文件操作:包括新建、打开、保存和导出等文件操作。
-网格操作:包括网格划分、网格改进、网格质量检查和网格参数设置等操作。
-显示选项:可以选择显示几何模型、网格和图层等,方便用户对模型进行观察和分析。
-操作模式:设置不同的操作模式,如选择模式、移动模式、旋转模式和缩放模式等,方便用户进行几何模型和网格的操作和调整。
3.属性窗口:-几何模型属性:可以设置几何模型的名称、颜色和透明度等属性。
-网格生成属性:可以设置网格单元类型、边界条件和网格参数等属性。
-网格质量属性:可以设置网格质量检查和改进的参数和标准。
-显示属性:可以设置几何模型和网格的显示方式、颜色和透明度等属性。
4.建模流程:在ICEM_CFD中,进行建模和网格生成的一般流程如下:-导入CAD几何模型:可以通过导入现有的CAD几何模型文件,如STEP、IGES或者CATIA等文件格式,或者直接在ICEM_CFD中手动创建几何模型。
-网格划分:在几何模型的基础上进行网格划分,可以使用不同的网格划分算法和参数设置,生成合适的网格。
-网格改进:对生成的网格进行质量检查和改进,可以使用网格质量检查工具来查看和修复网格质量问题,并采用网格平滑和网格形变等操作来改进网格质量。
-边界条件设置:在网格上设置边界条件,包括流动边界条件、壁面边界条件和入出口边界条件等。
- 导出网格:将生成的网格导出为适用于CFD计算的文件格式,如ANSYS Fluent、OpenFOAM等格式。
通过上述步骤,可以完成几何建模和网格生成的基本操作和流程。
ICEM-CFD基础教程入门
• 对不完整的几何体有容错能力
2023/10/21
ICEMCFD/AI*Environment 5.0
9
特性: 六面体网格划分
• 强大的六面体网格生成能力 • 自顶向下或自底向上分块方法 • 复杂模型网格的快速生成 • 快速重复操作
– 弹性分块适合相似几何模型 – 对几何尺寸改变后的几何模型自动重划分网格
22
模型树
• 设定窗口显示的图形 • 包含5个主要项目; Geometry几何, Mesh网格,
Properties属性, Parts部分 and Subsets子集 • 单击模型树分枝上的眼镜图标控制可见与否
– 红 X 图标表示 这一分枝(包含所有子分枝) 不显示
– 整个眼镜图标表示这一分枝下所有可显示项均可见
率
• Tri (STL-like):
– 生成三角面面网格 – 没有内部点
2023/10/21
ICEMCFD/AI*Environment 5.0
11
特性: 混合网格
• 棱柱层
– 在四面体网格中提高边界层计算结果
• 六面体和四面体区域交界处采用棱锥体 网格
2023/10/21
ICEMCFD/AI*Environment 5.0
21
视图操作
1 使用键盘: H – 主视图
Shift X - +X视图 Shift Y - +Y视图
Shift Z - +Z视图
2 单击视图中坐标图标
3 View > View Control
例如: 单击 Y 轴 使Y 轴 垂直屏幕
保存视图
2023/10/21
ICEMCFD/AI*EnvironmenEMCFD/AI*Environment 5.0
ICEM CFD 操作小技巧
ICEM CFD 操作小技巧0快捷键左键单击选择,左键拖拉旋转;中键单击确认,中键拖拉平移;滚轮缩放;右键单击取消。
1导入几何一般用PROE建模,在PROE中将画好的几何模型另存为IGES或STP格式输出,然后再将其导入ICEM CFD 中(File →Import Geometry →STEP/IGES →选择几何文件→点击Apply 按钮)。
2使用注意事项在打开ICEM CFD之前必须关闭翻译软件,否则按左键旋转观察时,就会相当于点了一个命令按钮,老是弹出选择窗口,十分烦人。
不能随意修改GUI窗口背景颜色,因为修改后很难再恢复默认背景颜色。
3查看几何的单位在模型树中右击Model →Geometry Units(可以查看或修改几何的单位)4改变工作目录File →Change Working Directory(注意工作路径名必须全为英文)右击桌面上ICEM CFD软件图标→在“起始位置”后的方框内输入工作路径名5创建新工程File →New Project →命名工程(注意工程名必须为英文)→保存6透明显示几何点击勾选模型树中Geometry下的Surface并右击→Transparent(透明的)→在功能按钮中点选Solid Simple Display按钮7自带求解器功能标签中的Cart3D(ANSYS 12)是三维空气动力场求解器(ANSYS 14中已经删除了这个功能,ICEM CFD变成纯粹的网格处理工具,没有任何求解功能)。
8导出网格图片View →Save Picture> Output prefix(图片名称)> Format(图片格式,可选JPEG和TIFF)> Quality(图片质量,默认DPI为75)→点击Apply按钮9文件格式Tetin (.tin)文件(几何文件,包括几何实体、材料点、几何元素的Part归类、全局和实体网格参数,只是没有块的拓扑结构数据)Domain file(.uns)(网格文件,非结构化网格)Blocking file (.blk)(块文件,保存有块的拓扑结构数据)Attribute file(.fbc)(属性文件,边界条件、局部参数及单元类型)Parameter file (.par)(参数文件,模型及单元参数)Journal file (.jrf)(日志文件,(echo file) 操作过程记录文件)。
7-ICEM cfd 基础教程
– 可能是合法的内部薄壁
9/9/05
ANSYS ICEMCFD V10
Inventory #002277
F1-249
显示网格质量
9/9/05
• 诊断单个单元的质量
• 多种评判标准
– 包括全面 Quality
• Minimum value of several other lumped criteria
– Smooth Parts/Subsets光顺PART/子集
实体/线框显示
– Subset 将会把相同的单元放到一个网 格的子集中,可以在模型树中激活/关闭 或是在需要时编辑
ANSYS ICEMCFD V10
Inventory #002277
F1-253
显示网格质量
• 另外的质量显示方式
– Color by Quality
• 在模型树中的Shells处单击右键显示选项 • 光谱范围从红 (最差) 到蓝 (最理想)
– Possible Problems – “未被清除干净的表面网格” • 不需要的单元 • 不需要的孔或是间隙 • 可能导致不正确的结果
– 可以在任何时候检测errors/possible问题,用户可以选任何需要检测的选项 • 单独选择 • 点击Error或是Possible Problems 上的按钮将可以选择栏中的所有选 项– 在一次按相同的按钮将取消选择 • Set Defaults 缺省之将会选择大多数情况下的诊断标准
多连接边的单元
隙或是一个尖角跳到另一个面上
• Stand-Alone Surface Mesh:不合体网格 • Unconnected Vertices:检查并移除不与任何
单元分享面的面网格单元
ICEM CFD教程
ICEM CFD教程四面体网格⏹对于复杂外形,ICEM CFD Tetra具有如下优点:✓根据用户事先规定一些关键的点和曲线基于8叉树算法的网格生成,生成速度快,大约为1500 cells/second✓无需表面的三角形划分,直接生成体网格✓四面体网格能够合并到混合网格中,并实施平滑操作✓单独区域的粗化和细化✓ICEM CFD的CAD(CATIA V4, UG, ProE, IGES, and ParaSolid, etc)接口,保留有CAD几何模型的参数化描述,网格可以在修改过的几何模型上重新生成这是生成的燃烧室四面体网格,共有660万网格,生成时间约为50分钟⏹八叉树算法Tetra网格生成是基于如下的空间划分算法:这种算法需要的区域保证必要的网格密度,但是为了快速计算尽量采用大的单元。
1.在几何模型的曲线和表面上规定网格尺寸2.构造一个初始单元来包围整个几何模型3.单元被不断细分来达到最大网格尺寸(每个维的尺寸按照1/2分割,对于三维就是1/8)4.均一化网格来消除悬挂网格现象5.构造出最初的最大尺寸单元网格来包围整个模型6.节点调整以匹配几何模型形状7.剔除材料外的单元8.进一步细分单元以满足规定的网格尺寸要求9.通过节点的合并、移动、交换和删除进行网格平滑,节点大小位于最大和最小网格尺寸之间⏹ 非结构化网格的一般步骤1. 输入几何或者网格所有几何实体,包括曲线、表面和点都放在part 中。
通过part 用户可以迅速打开/关掉所有实体,用不同颜色区分,分配网格,应用不同的边界条件。
几何被收录到通用几何文件.tin 中,.tin 文件可以被ANSYS ICEM CFD’s 所有模块1.1输入几何体Import Geometry✓ 第三方接口文件:ParaSolid 、STEP 、IGES 、DWG 、GEMS 、ACIS …✓ 直接接口:Catia 、Unigraphics 、Pro/E 、SolidWorks 、I-deas… 几何变化网格可以直接随之变化导入几何体之后,ICEM 自动生成B-spline 曲线和曲面,并在预先规定的点上设置顶点。
ANSYS+ICEM+CFD教程
Patch Independent :忽略小特征 ShrinkWrap:自动化消除特征 Delanney(beta) : 从表面到内部逐渐粗化 AutoBlock :2D正交,网格贴近几何表面
• Compute Mesh-Surface Mesh Only(可
更改划分方法),检查网格质量Edit Mesh-Display Mesh
ICEM中 块的合并
Autodyn中
H 网格的合并
47
结构网格的索引与合并
索引空间
H
48
结构网格的索引与合并
H
49
详细步骤
• 1.准备几何模型(.X_T,.dwg等),建立工作 文件夹(路径及文件名全英文)。
• 2.启动软件,定位工作路径(File-Change Working Directory)。
H
39
3D网格1
M1 M2
H
40
3D网格2 ->自下而上(从小到大)建块
H
41
3D网格3 ->简化模型特征,抽象块
H
42
H
43
1
分析块->模仿与创新 块
网格
2
H
44
分析块->弹壳
H
45
结构网格的索引与合并->减少总块数,加速求解
关键:统一索引
y/ j
索引
空间
索引 空间
H x /i
46
结构网格的索引与合并
• 功能强大,能输出结构和非结构网格;
H
3
主窗口
修非构 网
改结造 格
几构块 修
何网
补
格
划
分
非结 结构 构网 网格 格输 输出 出
ANSYS ICEMCFD 10 的安装说明
ANSYS ICEMCFD 10 的安装安装之前,要做以下两个工作一.记录你的计算机名称,可以根据以下步骤获得:鼠标右键单击我的电脑->属性->网络标识-〉完整的计算机名称.二.记录你的网卡的ID,每个网卡有自己唯一的网卡ID,Ansys 安装过程中需要你的网卡ID:在Win2000/WinXp中,点开始->程序->附件->C:命令提示符: IPCONFIG /ALL 。
例如:00-90-96-17-22-BD就是我的网卡的Physical Address,也就是网卡的ID。
在Ansys 安装过程中,将上述ID要写成如下形式:0090961722BD,即去掉中间的横线。
以上两步如果有WinhostId.exe程序可直接双击获得。
现在开始安装:1.用记事本打开该文件夹下的ansys.dat对于第一行"SERVER host 000000000000 1055" 运行虚拟后安装盘里的WinHostId 可执行文件,用hostname的值代替上述“host”,flexid的值代替000000000000,保存。
比如某人hostname为“iwantppmm”flexid为“888888888888”则他的第一行改为SERVER iwantppmm 888888888888 10552.运行keygen.bat,生成license 然后将之重命名为“license.dat”3.安装ansys和flexlm,在安装flexlm时,需Browser to the license.dat,将license的路径指向你的license.dat的位置,完成。
注意:在安装完ansys时,它默认继续安装flexlm,随后的第一个对话框是license模式之类的对话框,默认是否,为了能够使用下面的说明,一定要选是。
简单的记为只要出现对话框(两个)就选是。
4 设置环境变量:右击我的电脑---属性——高级——环境变量----系统变量(注:不是用户变量)——新建变量名:ANSYSLMD_LICENSE_FILE 变量值:1055@name (注:name是你的计算机名称)5. Copy生成的license.dat文件到c:\Program Files\Ansys Inc\Shared Files\Licensing\Intel\下(即你的安装目录)6. 从开始>程序>ANSYS FLEXl LicenseManager运行FLEXlm LMTOOLS Utility,进行如下设置:(1)从config services中将三个文件的地址从目录中寻找出来:c:\Program Files\Ansys Inc\Shared Files\Licensing\Intel\Lmgrd.exe C:\Program Files\Ansys Inc\SharedFiles\Licensing\Intel\license.dat 将这个目录直接拷贝到第三个栏里C:\ProgramFiles\Ansys Inc\Shared Files\Licensing\intel \license.log(注:这个常常只指明路径就行,不用找,即你的安装目录)然后点击save service;(2)然后选中Start/Stop/Reread,请点击按钮Start Server 2次以上,应该出现Server Start Failed. The Server May Already Be Running!!,这意味着LicenseServer成功安装,如果还不保险,请接着选中Server Status 请点按钮Perform Status Enquiry,应该有License server UP的提示,表示License安装成功. 终于OK! Enjoy Your Ansys。
ICEM_CFD_网格划分入门
WorkBench ICEM CFD 网格划分入门111AnsysWB里集成了一个非常重要的工具:ICEM CFD。
它是一个建模、划分网格的集成工具,功能非常强大。
我也只是蜻蜓点水的用了几次,感觉确实非常棒,以前遇到复杂的模型,用过几个划分网格的工具。
但这是我觉得最方便和最具效率的。
网格划分很大程度上影响着后续的仿真分析——相信各位都有所体会。
而ICEM CFD特别长于划分六面体网格,相信无论是结构或流体(当然铁别是流体),都会得益于它的威力。
ICEM CFD建模的能力不敢恭维,但划分网格确实有其独到之处。
教程开始前,作一个简单的原理介绍,方面没有使用过ICEM CFD的朋友理解主要的任务:111如下图:1:白色的物体是我们需要划分网格的,但是它非常不规则。
2:这时候你一定想:怎么这个不规则呢,要是它是一个方方正正的形状多好(例如红色的那个形状)01111于是有了这样一种思想:1:对于异型,我们用一种规则形状去描述它。
2:或者说:如果目标形状非常复杂,我们就用很多规则的,简单的形状单元合成在一起,去描述它。
之后,将网格划分的设置,做到规则形状上。
最后,这些规则,通过最初的“描述”关系,自动的“映射”到原先的复杂形状上——问题就得到了解决!!!ICEM CFD正是使用了这种思想。
如下是一个三通管,在ProE里做得02在ProE里面直接启动WB进入WB后,选择如下图:03111如下:1:代表工作空间里的实体2:代表某实体的子实体,可以控制它们的开关状态3:控制显示的地方04下面需要创建一个Body实体这个实体代表了真实的物体。
这个真实的物体的外形由我们导入的外形来定义。
——我们导入的外形并不是真实的实体。
这个概念要清楚。
但是今后基本上不会对这个真实的实体作什么操作。
这种处理方式主要是为工作空间内有多个物体的时候准备的。
051:点击“创建Body”2、3:点选这两个点4:于是创建出一个叫“Body”的实体操作中,左键选择,中键确认,右键完成并退出——类似的操作方法很多地方用到,要多练习,今后就不特别说明了06下面需要创建我们最需要的东西:那个“规则的形状”ICEM CFD里,这个实体叫 Block可以如下方式创建之:07注意到我们现在多了一个黑框,怎么样,够规则吧?呵呵,开个玩笑。
3-ICEM cfd 基础教程
Workshop
几何表面网格大小影响其附近 区域的体网格大小
线段上网格的大 小和width影响线 段上的网格及生 长的层数
在球阀区域由密 度盒控制网格大 小
9/9/05
全局最大网格参数控制区域内的网格大小,一 般小于该值
ANSYS ICEMCFD V10
Inventory #002277
C2-90
四面体网格自动生成 实例 3
棱柱 – 全局参数Global Parameters
全局棱柱参数
– Growth law 增长规律
• exponential: 指数
h(r)(n-1) [n 为层]
• linear: 线性
h(1+(n-1)(r-1))
– Initial height 初始高度
h
• 不指定时自动计算
– Number of layers 层数
注:如果体网格为tet/hex混和网格, 则在六面体侧,棱柱生成时仅切割第一层六面体
– Mesh -> Volume Mesh -> Tet + Prism • 直接创建四面体网格,并在壁面几何附近创建棱柱 • 从几何和/或表面网格
9/9/05
ANSYS ICEMCFD V10
Inventory #002277 C4-97
– 察看面网格 – 寻找扭曲或尖锐结构的网格 – 诊断并不能揭示所有的网格问题
– 确认 part定义正确
– 检查是否存在应属于一个part一些单元,却分散到其他part – 避免一些孤立单元的拉伸(会临近单元很可能破坏) – 修改不合适单元的par分配
9/9/05
ANSYS ICEMCFD V10
Inventory #002277 C4-99
4-ICEM cfd 基础教程
#1
#2
切割首层棱柱
#3
– Edit Mesh -> Split Mesh -> Split Prisms
– 复选 Split only specified layers
– 设 Layer numbers 为 0 (首层)
– Apply
Workshop
#4
仅把首层(layer 0)
#5
分成3层
9/9/05
按适当的过渡插入hexa-core 单元
• From surface mesh 将首先在体中插入hexa-core 单元,然后逐步过渡到表面单元
9/9/05
ANSYS ICEMCFD V10
Inventory #002277
C6-127
练习 FinConfig 实例
自动体网格 – 实例 3
Tetra + Prism + Hexa-Core
9/9/05
ANSYS ICEMCFD V10
Workshop
A
FLUID_MATL
B
Inventory #002277
C7-131
全局网格尺寸Global Mesh Size
Workshop
全局网格尺寸 – Mesh -> Set Global Mesh Size -> General Parameters – 设 Scale factor 为 1.0 – 设 Max element 为 32 – 勾选Display 显示刚设定尺寸的表征四面体 – 保留 Natural Size 不选 – Apply
Workshop
9/9/05
ANSYS ICEMCFD V10
Inventory #002277
ICEM_CFD 基础入门教程 操作界面 中文
1 使用键盘: H – 主视图
Shift X - +X视图 Shift Y - +Y视图
Shift Z - +Z视图
2 单击视图中坐标图标
3 View > View Control
例如: 单击 Y 轴 使Y 轴 垂直屏幕
保存视图
9
模型树
• 设定窗口显示的图形 • 包含5个主要项目; Geometry几何, Mesh网格,
icemcfd入门课程用户界面布局图形窗口数据录入面板模型树消息窗口工具图标功能标签栏直方图窗口撤销恢复主菜单filemenu文件editmenu编辑viewmenu视图infomenu信息settingsmenu设置helpmenu帮助功能标签mesh网格设置网格尺寸选择生成面网格四面体六面体棱柱体网格block初始化块分割修改块生成结构化网格editmesh编辑网格检查平滑细化合并移动geometry几何创建修改几何创建质点properties属性设定密度杨氏弹性模量泊松比fea网格
• 指定实体 (点, 线, 面) 到 几何数据库: – 聚合实体到 Parts
• 指定网格尺寸 – 模型网格参数 (全局) – 单独实体网格参数
• 定义体 – 质点
任务: ICEM CFD GUI 或通过 CAD 接口
结果: Tetin 文件
15
ICEMCFD/AI*Environment 工作流程
ICEMCFD 入门课程
用户界面布局
撤销/恢复 工具图标 数据录入面板
模型树
功能标签栏
图形窗口
消息窗口
直方图窗口
2
主菜单
File Menu 文件
Edit Menu 编辑
Info Menu 信息
ANSYS ICEM CFD User Manual 14.5
Table of ContentsIntroduction to ANSYS ICEM CFDOverall ProcessOpening/Creating a ProjectCreating/Manipulating the GeometryCreating the MeshChecking/Editing the MeshGenerating the Input for the SolverThe ANSYS ICEM CFD GUIGUI ComponentsUsing the Help SystemCAD RepairClose HolesRemove HolesFill, Trim and Blend in Stitch/Match EdgesMatch in Stitch/Match EdgesTetra MeshingIntroductionTetra Mesh GenerationInput to TetraTetra Generation StepsRepairing the GeometryGeometry Details RequiredSizes on Surfaces and CurvesMeshing Inside Small Angles or in Small Gaps Between ObjectsDesired Mesh RegionThe Octree Mesh MethodImportant Features in TetraCurvature/Proximity Based RefinementTetrahedral Mesh SmootherTetrahedral Mesh CoarsenerTriangular Surface Mesh SmootherTriangular Surface Mesh CoarsenerTriangular Surface Editing ToolsCheck MeshSmooth Mesh GloballyQuality MetricsAdvanced Options for Smoothing MeshPrism MeshPrism Mesh ProcessPrism Mesh PreparationSmoothing Tetra/Prism MeshHexaIntroductionFeatures of HexaMesh Generation with HexaThe Hexa DatabaseIntelligent Geometry in HexaUnstructured and Multi-block Structured MeshesUnstructured Mesh OutputMulti-Block Structured Mesh OutputBlocking StrategyHexa Block TypesSplitMergeAutomatic O-grid generationUsing the Automatic O-gridImportant Features of an O-gridEdge Meshing ParametersSmoothing TechniquesRefinement and CoarseningRefinementCoarseningReplay FunctionalityGenerating a Replay FileAdvantage of the Replay FunctionUsing Variables in the Replay ScriptPeriodicityApplying the Periodic RelationshipPre-Mesh QualityDeterminantAngleVolumeWarpageMost Important Features of HexaPropertiesCreate Material PropertySave MaterialOpen MaterialDefine TableDefine Element PropertiesConstraintsCreate Constraint / DisplacementDefine ContactDefine Single Surface ContactDefine Initial VelocityDefine Planar Rigid wallLoadsForcePressureTemperatureSolve OptionsSetup Solver ParametersSetup Analysis TypeSetup Sub-CaseWrite/View Input fileSubmit Solver RunFEA Solver SupportWorkbench IntegrationContains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Introduction to ANSYS ICEM CFDANSYS ICEM CFD provides advanced geometry acquisition, mesh generation, and mesh optimization tools to meet the requirement for integrated mesh generation for today’s sophisticated analyses.Maintaining a close relationship with the geometry during mesh generation, ANSYS ICEM CFD is used especially in engineering applications such as computational fluid dynamics and structural analysis.ANSYS ICEM CFD’s mesh generation tools offer the capability to parametrically create meshes from geometry in numerous formats:●Multiblock structured●Unstructured hexahedral●Unstructured tetrahedral●Cartesian with H-grid refinement●Hybrid meshes comprising hexahedral, tetrahedral, pyramidal and/or prismatic elements●Quadrilateral and triangular surface meshesANSYS ICEM CFD provides a direct link between geometry and analysis. In ANSYS ICEM CFD, geometry can be input from just about any format, whether from a commercial CAD design package, 3rd party universal database, scan data or point data. Beginning with a robust geometry module which supports the creation and modification of surfaces, curves and points, ANSYS ICEM CFD’s open geometry database offers the flexibility to combine geometric information in various formats for mesh generation. The resulting structured or unstructured meshes, topology, inter-domain connectivity and boundary conditions are then stored in a database where they can easily be translated to input files formatted for a particular solver.●Overall ProcessThe ANSYS ICEM CFD GUIContains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Overall ProcessThe generic working process involves the following:1.Open/Create a project.2.Create/Manipulate the geometry.3.Create the mesh.4.Check/Edit the mesh.5.Generate the input for the solver.Figure 1: The Overall ProcessContains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved. Opening/Creating a ProjectAll the files required for a particular analysis are contained within a Project. You can either open an existing project or create a new project. The Project directory typically contains one or more of the following file types:Tetin (*.tin)contains geometry entities, material points, part association, and global and entity mesh sizes.Project Settings (*.prj)contains the project settings.Domain (*.uns)contains the unstructured mesh.Blocking (*.blk)contains the blocking topology.Boundary Conditions (*.fbc)contains boundary conditions.Attributes (*.atr)contains attributes, local parameters, and element types.Parameters (*.par)contains model parameters and element types.Journal (*.jrf)contains a record of operations performed (echo file).Replay (*.rpl)contains the replay script.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Creating/Manipulating the GeometryANSYS ICEM CFD includes a wide range of tools for creating new and/or manipulating existing geometry. You can either alter complex geometry or create simple geometry without having to go back to the original CAD. This can be done for CAD (NURBS surfaces) and triangulated surface data. The ANSYS ICEM CFD Direct CAD Interfaces provide the bridge between parametric geometry creation tools available in CAD systems and the computational mesh generation and mesh optimization tools available in ANSYS ICEM CFD, allowing users to operate in their native CAD systems. ANSYS ICEM CFD currently supports Direct CAD Interfaces for CATIA, I-deas, Creo Parametric, and Unigraphics.The ANSYS ICEM CFD environment can combine CAD surface geometry and triangulated surface data into a single geometry database (tetin file) using the geometry interfaces. All geometry entities, including surfaces, curves and points are tagged or associated to a grouping called a part. With this part association, you can enable or disable all entities within the parts, visualize them with a different color, assign mesh sizes on all entities within the part and apply different boundary conditions by part.Although most of the meshing modules within ANSYS ICEM CFD allow minor gaps and holes in the geometry, in some cases it is necessary to find and close large gaps and holes without returning to the original CAD software. ANSYS ICEM CFD provides tools for such operations on either CAD or triangulated surfaces. Finally, curves and points can be automatically created to capture certain key features in the geometry. These curves and points will act as constraints for the mesher, forcing nodes and edges of the elements to lie along them, and thus capturing the feature.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Creating the MeshThe meshing modules available include the following:TetraThe ANSYS ICEM CFD Tetra mesher takes full advantage of object-oriented unstructured meshing technology. With no tedious up-front triangular surface meshing required to provide well-balanced initial meshes, ANSYS ICEM CFD Tetra works directly from the CAD surfaces and fills the volume with tetrahedral elements using the Octree approach. A powerful smoothing algorithm provides the element quality. Options are available to automatically refine and coarsen the mesh both on geometry and within the volume. A Delaunay algorithm is also included to create tetras from an existing surface mesh and also to give a smoother transition in the volume element size.HexaThe ANSYS ICEM CFD Hexa mesher is a semi-automated meshing module which allows rapid generation of multi-block structured or unstructured hexahedral volume meshes. ICEM CFD Hexa represents a new approach to grid generation where the operations most often performed by experts are automated and made available at the touch of a button. Blocks can be built and interactively adjusted to the underlying CAD geometry. This blocking can be used as a template for other similar geometries for full parametric capabilities. Complex topologies, such as internal or external O-grids can also be generated automatically.PrismANSYS ICEM CFD Prism generates hybrid tetrahedral grids consisting of layers of prism elements near the boundarysurfaces and tetrahedral elements in the interior for better modeling of near-wall physics of the flow field. Compared to pure tetrahedral grids, this results in smaller analysis models, better convergence of the solution and better analysis results.Hybrid MeshesThe following types of hybrid meshes can be created:●Tetra and Hexa meshes can be united (merged) at a common interface in which a layer of pyramids is automaticallycreated at a common interface to make the two mesh types conformal. These meshes are suitable for models where it is preferred to have a “structured” hexa mesh in one part and is easier to create an “unstructured” tetra mesh in anothermore complex part.●Hexa-Core meshes can be generated where the majority of the volume is filled with a Cartesian array of hexahedralelements essentially replacing the tetras. This is connected to the remainder of a prism/tetra hybrid by automaticcreation of pyramids. Hexa-Core allows for reduction in number of elements for quicker solver run time and betterconvergence.Shell MeshingANSYS ICEM CFD provides a method for rapid generation of surface meshes (quad and tri), both 3D and 2D. Mesh types can be All Tri, Quad w/one Tri, Quad Dominant, or All Quad. The following methods are available:●Mapped based shell meshing (Autoblock): Internally uses a series of 2D blocks, resulting in a mesh better lined upwith geometry curvature.●Patch based shell meshing (Patch Dependent): Uses a series of “loops” which are automatically defined by theboundaries of surfaces and/or a series of curves. This method gives the best quad dominant quality and capturing ofsurface details.●Patch independent shell meshing (Patch Independent): Uses the Octree method. This is the best and most robustmethod for unclean geometry.●Shrinkwrap: Used for quick generation of mesh. As it is used as the preview of the mesh, hard features are notcaptured.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Checking/Editing the MeshThe mesh editing tools in ANSYS ICEM CFD allow you to diagnose and fix problems in the mesh. You can also improve the mesh quality. A number of manual and automatic tools are available for operations such as conversion of element types, refining or coarsening the mesh, smoothing the mesh, etc.The process typically involves the following:1.Check the mesh for problems such as holes, gaps, overlapping elements using the diagnostic checks available. Fix theproblems using the appropriate automatic or manual repair methods.2.Check the elements for bad quality and use smoothing to improve the mesh quality.3.If the mesh quality is poor, it may be appropriate to fix the geometry instead or recreate the mesh using more appropriate sizeparameters or a different meshing method.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Generating the Input for the SolverANSYS ICEM CFD includes output interfaces to various flow and structural solvers, producing appropriately formatted files that contain complete mesh and boundary condition information. After selecting the solver, you can modify the solver parameters and write the necessary input files.More information about the ANSYS ICEM CFD Output Interfaces is available from the Help menu. The Output Interfaces option opens the ANSYS ICEM CFD Output Interfaces information in a browser. For information about a specific interface, refer to the Table of Supported Solvers and click the name of the interface.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.The ANSYS ICEM CFD GUIThe ANSYS ICEM CFD GUI offers a complete environment to create and edit computational grids. The main menu is in the top left corner. Below it are utility icons for more commonly used functions such as Save and Open, as well as measure tools and view controls such as zoom extents. Along the top right of the window are function tabs. The function tabs are laid out from left to right in the order of a typical meshing process. Clicking on a tab brings its action icons to the fore front. Clicking on any of these icons will activate the associated Data Entry Zone (DEZ). The snapshot shows the Convert Mesh Type DEZ which also has a selection toolbar associated with it. The histogram is displayed in the lower-right corner. Simultaneously, the text histogram is displayed in the message window. The message window provides feedback and information for most commands and also serves as a text entry point. The upper left corner of the screen contains the Display tree, which you can use to modify the display of entities, modify properties and create subsets.Note: The default GUI style shown in Figure 2: ANSYS ICEM CFD GUI Components is the Workbench style. Formore information about the GUI Style options, refer to the Product-Selection settings.Figure 2: ANSYS ICEM CFD GUI ComponentsContains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.GUI ComponentsThe various GUI components are described in the following sections:●Main Menu●Utilities●Function Tabs●The Display Control Tree●The Message Window●The Histogram Window●The Data Entry Zone (DEZ)Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Main MenuFigure 3: The Main MenuThe Main Menu provides access to the following pull-down menus:File Menucontains options for creating new or opening existing projects, loading and saving files, importing and exporting geometry, and initializing scripting.Edit Menucontains Undo/Redo options, the option to open a shell window, and various internal mesh/geometry conversion commands.View Menucontains various options for the standard views, view controls, and annotations.Info Menuallows you to get various information regarding geometry, mesh and individual entities.Settings Menucontains default settings for performance, graphics, and other settings most likely to be used more than 90% of the time by a specific user.Help Menucontains links to Help Topics, tutorials, other documentation modules, and version information.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.UtilitiesFigure 4: UtilitiesThe Utilities are icon representations of some of the most commonly used functions in the Main Menu including opening/closing a project, undo/redo, and display options. They also include measurement and setup of local coordinate systems.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Function TabsFigure 5: Function TabsThe Function Tabs allow you to access the main functionality for the entire grid generation process. The function tabs include: Geometry, Mesh, Blocking, Edit Mesh, Properties, Constraints, Loads, Solve Options, and Output.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.The Display Control TreeFigure 6: The Display Control TreeThe Display Control tree, also referred to as the Display tree, along the upper left side of the screen, allows control of the display by part, geometric entity, element type and user-defined subsets. The tree is organized by categories. Each category can be enabled or disabled by selecting the check box. If the check mark is faded, some of the sub-categories are enabled and some disabled. Each category can be expanded by selecting the “+” symbol to reveal the sub-categories. Select “-“ to collapse the tree. Since some functions are performed only on the entities shown, the tree is an important feature to use when isolating the particular entities to be modified. Clicking on a particular category or type using the right-mouse button will reveal several display and modification options.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.The Message WindowFigure 7: The Message WindowThe Message Window contains all the messages that ANSYS ICEM CFD writes out to keep the user informed of internal processes. The Message Window displays the communication between the GUI and the geometry and meshing functions. Any requested information, such as measure distance, surface area, etc. will be reported in the message window. You can use the scroll bar to review the information from your entire session. Also, internal commands can also be typed and invoked from within the message window.The Save command will write all message window contents to a file. This file will be written to the folder from which ICEM CFD was launched. The Log check box allows only user-specified messages to be saved to a file.Note: The Log file is unique from the file created with the Save button. This file will be written to the startingdirectory, and it automatically updates as more messages are recorded. If the check box is disabled, you can appendto a file by enabling Log and accepting an existing file name. Log will then append to this file.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.The Histogram WindowFigure 8: The Histogram WindowThe Histogram Window shows a bar graph representing the mesh quality. The X axis represents element quality (usually normalized to between 0 and 1) and the Y axis represents the number of elements. Other functions which utilize this space will become pop-up menus if the quality or histogram is enabled.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.The Data Entry Zone (DEZ)The DEZ provides access to the parameters associated with a particular operation. The controls utilized by the DEZ are described here:ButtonA button is used to perform a function indicated by the button label.Check BoxA check box is used to enable/disable an item or action indicated by the check box label.Radio ButtonsRadio buttons are a set of check boxes with the condition that only one can be enabled at a time. When you click the left mouse button on a radio button, it will be enabled, while all others will be disabled.Drop-Down ListA drop-down list is a hidden single-selection list that shows only the current selection. Click the arrow button to display thelist.Text EntryText entries allow you to enter text associated with the label for the field.Number EntryNumber entries allow you to enter numerical values for the parameter indicated by the label for the field.Some number entry fields may have arrow buttons which allow you to increase or decrease the value in entry field.SelectionsSelection fields indicate the entities selected for a particular operation. Click the button adjacent to the selection field to invoke the selection mode. The selection toolbar associated with the operation will appear. After confirming the selections, the selected items will be listed in the selection field.Selection ToolbarThe selection toolbars contain some tools common to all select operations and some toggles for filtering entities for selection. Some controls are linked to the hotkeys available in the select mode.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Using the Help SystemThe product online help system provides easy access to the program documentation. The entire User Manual, Help Manual and other documentation modules are available through the graphical user interface. Click Help on the main menu and select the appropriate option from the menu.Figure 9: Help Menu OptionsOnline Help InterfaceFigure 10: The Online Help Interface●The help system is organized into different documentation modules which are further organized in sections, which are listedon the Contents tab. Click the document icon or topic title next to each section to display its content in the rightwindowpane.●The Search tab allows you to view topics that contain certain words or phrases you specify. When you execute a search, alltopics containing the search text display. To go to that topic, double-click the topic. To find out where you are in the help system, click the Contents tab. The highlighted entry in the table of contents indicates where the topic is.The Search tab in the Windows Help includes several capabilities to assist you in narrowing down information returned in your searches. Some of these capabilities are:Using quotes to search for literal phrases.Using Boolean operators (AND, OR, NOT, NEAR) to precisely define search expressions.Using wildcard characters (*, ?) to search for expressions with identical characters.Using parentheses to nest search expressions.The Search tab in the Help also includes check boxes located at the bottom of the panel that allow you to search previous results, match similar words, or search titles only.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.CAD RepairBefore generating the mesh, you should confirm that the geometry is free of any flaws that would inhibit optimal mesh creation. Ifyou wish to save the changes in the native CAD files, the following checks should be performed in a direct CAD interface:●To create a mesh, the Tetra mesher requires that the model contains a closed volume. If there are any holes (gaps or missingsurfaces) in the geometry that are larger than the local tetras, the Tetra mesher will be unable to find a closed volume. Thus, if you notice any holes in the model prior to mesh generation, you should fix the surface data to eliminate these holes.●The Build Topology operation will find holes and gaps in the geometry. It should display yellow curves where there arelarge (in relation to a user-specified tolerance) gaps or missing surfaces.●During the Tetra process any leakage path (indicating a hole or gap in the model) will be indicated. The problem can eitherbe corrected on a mesh level, or the geometry in that vicinity can be repaired and the meshing process repeated. For further information on the process of interactively closing holes, see the section Tetra > Tetra Generation Steps > Useful Region of Mesh.Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Close HolesYou can use the Close Holes option if the hole is bounded by more than one surface. For example, in Figure 11: Hole Bounded by Multiple Surfaces, the yellow curves represent the boundary of the hole. It is clear that this hole is bounded by more than one surface.Figure 11: Hole Bounded by Multiple SurfacesFigure 12: Closed Hole shows the geometry after the Close Holes operation is completed. A new surface is created to close the hole.Figure 12: Closed HoleContains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Remove HolesYou can use the Remove Holes option if the hole lies entirely within a single surface, such as a trimmed surface. For example, in Figure 13: Hole Within a Single Surface, the two yellow curve loops represent the boundaries of the holes, which lie entirely in one surface.Figure 13: Hole Within a Single SurfaceFigure 14: After Remove Holes shows the geometry after the Remove Holes operation is completed for one of the holes. The existing surface is modified by removing the trim definition.Figure 14: After Remove HolesContains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Fill, Trim and Blend in Stitch/Match EdgesConsider the case of a geometry with a gap shown in Figure 15: Geometry With a Gap.Figure 15: Geometry With a GapFigure 16: Using the Fill Option shows the use of the Fill option. Figure 16: Using the Fill OptionFigure 17: Using the Trim Option shows the use of the Trim option. Figure 17: Using the Trim OptionFigure 18: Using the Blend Option shows the use of the Blend option. Figure 18: Using the Blend OptionContains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Match in Stitch/Match EdgesThe Match option is generally used in those cases where curves lie very close to each other, specifically when the two ends meet together (see Figure 19: Geometry With Mismatched Edges and Figure 20: Geometry After Using the Match Edges Option). You should have the two sets of curves within some tolerance for this option to work.Figure 19: Geometry With Mismatched EdgesFigure 20: Geometry After Using the Match Edges OptionContains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.ANSYS ICEM CFD 14.5 - © SAS IP, Inc. All rights reserved.Tetra MeshingAutomated to the point that you have only to select the geometry to be meshed, the Tetra mesher generates tetrahedral meshes directly from the CAD geometry or STL data, without requiring an initial triangular surface mesh.●Introduction●Tetra Generation Steps。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS.ICEM-CFD中文教程ICEM差价合约工程讲解目录中的每个项目都是一个子目录。
每个项目目录下都有以下子目录:导入,零件,域,网格,与转让。
他们代表:•进口/:导入到ICEMCFD的收集模型交换文件,例如igs,STL等;•部分/:CAD模型•域/:非结构六面体网格文件(hex.unstruct),结构六面体网格分区文件(domain.n),非结构四面体网格文件(cut_domain.1)•网状/:边界条件文件(family_boco,boco),结构网格的拓扑定义文件(family_topo,topo_mulcad_out),与特丁几何文件(tetin1)。
•转让/:求解器输入文件(star.elem),用于妈妈3d。
分析数据网状在目录中特丁该文件表示将被网格化的几何。
包含B样条曲面定义和曲线信息以及组定义重播文件为六面体网格的块脚本鼠标和键盘操作鼠标或键盘操作特征鼠标左键单击并拖动旋转模型鼠标中键单击并拖动翻译模型右键点击单击并上下拖动缩放模型右键点击单击并左右拖动围绕屏幕的Z轴旋转模型运行期间模型运动F9 按住F9,然后单击任何鼠标按钮F10 按F10 紧急图像重置第二章ICEM CFD网格编辑器接口网格编辑器,创建用于修改网格的集成环境,包括三个窗口•ICEM差价合约主视窗•展示窗•ICEM差价合约讯息视窗主视窗除了主窗口中的图形显示区域外,还有6个单选按钮:文件,几何,网格划分,编辑网格和输出量。
文件菜单的文件菜单包含•打开,保存,另存为,关闭,退出,项目目录,Tetin文件,域文件,B.C文件,导入地理位置,导出地理位置,选项,实用程序,脚本,注释,导入网格,DDN零件。
几何菜单的几何菜单模型修复和编辑,边界条件设置,调用ICEM CFD DDN。
它包含了•DDN工具,约束条件,修理,实用工具,全局设置。
模型编辑模式,由一行彩色组成单选按钮控制•表面,曲线,点,材料,密度,Loop。
他们有子菜单•创建,删除,修改,网格参数,换家庭,复制/移动。
网格划分菜单网格划分菜单包含ICEM差价合约各种网格划分模块。
只有用户拥有展馆模块的许可证,他才能使用此模块。
当前,ICEMCFD提供以下模块:•十六进制,利乐,全球,棱镜,四边形,汽车六角,穆尔卡德/帕达姆,立方按下不同的按钮将调用不同的模块。
编辑网格菜单的编辑网格菜单包含必要的网格编辑功能,粗略,平滑合并等。
具体操作为:•复制/移动,光滑,细化,Coarsen,合并,拉伸,诊断程序,解耦,带宽,变更类型,更改家庭,实用工具,编辑节点,编辑元素,编辑边缘,编辑积木,编辑子脸,修理输出菜单的输出量菜单设置不同求解器的边界条件。
另外,用户可以打电话妈妈3d与视觉3执行网格调整和可视化。
可用的功能有:•选择求解器,约束条件,解算器参数,求解器输入,运行求解器,视觉3,妈妈3d,蓝冰注意:的ICEM差价合约后处理模块视觉3,网格优化模块妈妈3d,与蓝冰内燃发动机电网接口必须具有另一个许可证公用事业集群这些功能位于主窗口的右上角:•救命:将用户连接到ICEM差价合约网上帮助•东方:控制显示坐标•视图:自定义显示属性•撤消:re悔行动•重做:撤销re悔•打印:打印•贝壳:调用X-Term命令窗口展示窗显示窗口,在屏幕右侧,允许按照家庭几何实体元素类型和用户定义的子集以显示。
重要:由于某些功能仅在实体上执行如图所示,“显示”窗口是一个非常重要的功能隔离要修改的特定实体。
家庭颜色编码和可自定义,按系列显示,如网格器界面,在此窗口中可用。
几何启用此按钮后,用户可以控制几何实体的显示。
每个旁边的“选项”按钮实体类型允许控制显示特征。
注意:根据所选的域文件,此切换按钮将被标记为“非结构化”或“结构化”,或不存在如果未指定任何域文件,则总共。
•结构化的要么非结构化:除了显示网格基于元件类型,更大的功率,ICEM CFD允许用户创建自定义子集;仔细展示这允许在网格操作中进行大量控制。
•显示子集:此切换按钮可让您定义子集基于一系列众多属性的模型元素类型,屏幕选择,坐标位置等第三章ICEM CFD Tetra四面体网格自动为CAD模型或STL模型生成四面体网格,而无需先生成曲面网格这是Tetra生成的四面体和四面体混合网格,包括550,000个四面体网格和12层330,000个棱柱形网格介绍利乐8树算法用于用四面体填充体积并生成曲面网格。
用户必须事先指定一些关键点和曲线。
利乐它具有强大的网格平滑算法以及局部自适应加密和粗化算法。
对于复杂的模型,ICEM CFD Tetra具有以下优点:•基于8进制树算法的网格生成•快速模型建立•网格和表面拓扑是独立的•无需表面三角剖分•网格生成可以直接从CAD模型和STL数据完成•正确CAD曲面和/或STL表示定义网格大小•控制体积内的网格大小•四面体的节点和曲线符合预定规则•使用自然大小单独确定几何特征上的四面体网格尺寸•体网格和曲面网格的平滑处理,节点合并和边交换•四面体网格可以合并为混合网格并进行平滑处理•个别区域的粗化•强制执行网格周期性旋转的和翻译的•曲面网格编辑和诊断工具•局部细化和粗化•为多种材料提供统一的网格•快速算法:1500格/秒ICEM CFD Tetra输入ICEM CFD Tetra输入方法是:•一组B样条曲线和修剪的B样条曲面规定点ICEM CFD Tetra智能几何ICEM差价合约CAD界面保留了CAD几何模型的参数描述,并且可以在修改后的几何模型上重新生成网格。
在CAD中选择的导入模型具有其他信息。
它们与主要几何模型一起存储。
更改几何模型的参数后,用户只需要重新生成网格即可。
文件>保存,可以立即重新计算非结构四面体网格。
八进制算法利乐网格生成基于以下空分算法:该算法要求面积以确保必要的网格密度,但是要进行快速计算,请尝试使用大单元。
1.在几何模型的曲线和曲面上指定网格大小2.构造一个初始元素以包围整个几何模型3.连续细分该单元以达到最大网格尺寸(每个尺寸的尺寸除以1/2,三个尺寸为1/8)4.均质化网格消除挂网现象5.构造初始最大尺寸像元网格以包围整个模型6.节点调整以匹配几何模型形状7.拒绝物料以外的单位8.进一步细分像元以满足指定的网格大小要求9.通过合并,移动,交换和删除节点进行网格平滑家庭建立,材料要点,规定点数在ICEMCFD中,可以将几何模型中的各种几何元素分组以形成不合理的形式家庭。
这允许用户为未连接的系列设置不同的参数。
除了为不熟悉的家庭设置边界条件外,用户还可以定义控制每个家庭的网格大小的参数:最大长度,初始高度和高度比。
此外,可以为单个曲线和曲面定义网格大小参数。
这样,用户可以通过预定的网格大小参数控制四面体节点和关键区域的边缘的位置。
如已经描述了上述八叉树算法。
当网格划分器调整网格节点以匹配几何模型的形状时,它首先匹配预定的点和曲线。
在拒绝单元步骤中,利乐需要在每种需要分析的不同材料中定义一种实质点。
对于差价合约,实质点可用于定义流体区域;对于结构有限元分析,可以用来定义实体区域;或对于耦合传热问题,可用于定义两个区域。
ICEM CFD Tetra重要功能自然大小如果为系列定义的最大四面体最大尺寸大于成员几何元素,则用户必须使用自然大小限制。
用户可以指定一个自然大小与参考四边形尺寸成比例;应该分配该值略小于模型中的最小间隙,这样网格器将进一步细分四面体以匹配这个几何特征。
的自然尺寸限制将是整个网格中的最小尺寸。
仅当用户在上定义了较小的最大尺寸时几何实体将利乐继续细分直到开会最大尺寸要求。
自然大小限制的作用是基于几何的网格适配。
四面体网格更光滑四面体平滑器计算每个单元的质量。
然后根据用户指定的质量要求进行平滑处理。
更光滑修改所有不符合标准的单位-节点被移动,合并,边缘交换或单元被删除。
重复此过程,直到满足要求或达到一定的迭代次数。
有时用户不’想要使家庭成员之间的联系更加顺畅。
ICEM差价合约利乐提供fix_families指定族的功能保持不变。
另外,另一个类似的功能fix_prisms,用于消除边缘单元的光滑度。
四面体网格粗磨机粗化这个过程类似于吸烟者。
此外,您还可以使用fix_families排除家庭的粗暴经营。
如果Coarsen在运营,size_check启用该选项后,生成的网格将满足所有几何元素上的预设尺寸标准。
和利乐全投影投影与平滑工具工具,以及单元的创建,删除,拆分,交换和统一执行方向。
三角形的表面网格更光滑为了最小化网格点,较粗的点会减小通过合并三角形,网格中的三角形数量。
此操作基于所得三角形中心的最大偏差从曲面,合并三角形的长宽比和合并三角形的最大尺寸。
三角形的表面编辑工具类ICEM CFD Tetra提供交互式网格编辑功能,可以实现几何模型表面上节点的移动,合并或删除。
三角形单元可以单独分段,并用不同的名称标记,并检查质量以进行评估。
表面网格诊断工具允许用户快速填充表面网格的“孔”以查找重叠的三角形和非流形顶点和检测单边/多边和重复元素。
棱镜层偏移对于支持非结构四面体和棱镜的混合网格的求解器,ICEM CFD Tetra的独特的功能棱镜能够在墙壁附近偏移棱镜层网格。
网格周期性周期性网格ICEM CFD Tetra网格可以很好地适应叶轮问题的分析。
第3章四面体网格划分演示1:三维管道回合在本演示中,我们将如图所示在三位圆管截面上执行四面体网格划分。
数字3.1.1本演示中介绍的操作是:几何•设置网格参数网格参数>模型与网格参数>家庭。
网格划分菜单•自动网格生成和平滑Tetra>从CAD批处理编辑网格菜单•检查网格质量诊断程序。
打开项目打开文件>打开,选择选择项目,选择3DpipeJunct项目,然后选择tetin1。
如果出现提示窗口,要求加载域,然后选择取消来开始一个新模型。
生成四面体网格定义家庭1个以防万一家庭它尚未定义,因此您首先需要对几何模型的不同区域进行分类以创建族。
最初,整个几何模型被设置为一个家族,名称为GEOM。
我们将按照图3.1.1如图所示,修改族设置。
表面族有INL,出,共青团1,共青团2和SYM。
2选择几何>曲面>更改族。
修改家庭设置3使用鼠标左键选择一个表面,然后使用鼠标中键确认选择,然后将显示族设置窗口。
为选定的面孔选择一个现有的家庭,或者在“新家庭”中输入新名称为该面孔创建一个家庭4将所有曲面设置为重命名后,请使用类似的操作继续曲线,点数,与用料进行设置。
5在几何>曲线>换家庭几何模型中的所有曲线将设置为UR。
用户可以按住鼠标左键并拖动以继续框选。
6所有点都放置PTS家庭。
将光标放在主窗口中,然后按”v”键,您可以选择所有点元素。