人教版七年级数学下册《第九章检测卷》(含答案)
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。
最新人教版七年级数学下册第九章单元检测(附答案)1
最新人教版七年级数学下册第九章单元检测(附答案)11.下列式子中,是不等式的有().①2x=7;②3x+4y;③-3<2;④2a-3≥0;⑤x>1;⑥a-b>1.答案:B2.若a<b,则下列各式正确的是().A.3a>3b;B.-3a>-3b;C.a-3>b-3;D。
ab < 3.答案:B3.“x与y的和的1/3不大于7”用不等式表示为().A。
(x+y)<7/3;B。
(x+y)>7/3;C。
11/3 x+y≤7;D。
3(x+y)≤7.答案:A4.下列说法错误的是().A.不等式x-3>2的解集是x>5;B.不等式x<3的整数解有无数个;C.x=0是不等式2x<3的一个解;D.不等式x+3<3的整数解是空集.答案:D5.(山东滨州中考)不等式组{2x-1≥x+1,x+8≤4x-1}的解集是(x≥3).答案:A6.(湖南娄底中考)不等式组{x-1≤2x+4>0}的解集在数轴上表示为(-∞,5/3].答案:B7.不等式-3<x≤2的所有整数解的代数和是0.答案:A8.已知关于x的方程ax-3=0的解是x=2,则不等式-(a+3/2)x≤1的解集是(x≥-1).答案:A9.已知关于x的不等式组{x-a≥4-x>1}的整数解共有5个,则a的取值范围是(-3≤a<-1).答案:B10.不等式组{2x>-3,x-1≤8-2x}的最小整数解是(-1).答案:A11.用适当的符号表示:x的与y的的差不大于-1为(x-y≤1).12.不等式3x+2≥5的解集是{x≥1}.13.不等式组{2x>10-3x,5+x≥3x}的解集为{x≥5}.14.已知关于x的不等式组{x-a>0,1-x>0}的整数解共有3个,则a的取值范围是(0<a≤2).15.若代数式3x-11-5x的值不小于56,则x的取值范围是{x≤-15}.16.若点(1-2m,m-4)在第三象限内,则m的取值范围是(m>5).17.不等式组{x>a+2,x<a+3}的解集为(a<x<a+3).17.若不等式组无解,则a的取值范围为a。
人教版七年级数学下册第九章检测试题(附答案)
人教版七年级数学下册第九章检测试题(附答案)一、单选题1.关于的不等式组有解,那么的取值范围为()A. B. C. D.2.若a>b,则下列不等式中变形正确的是()A. 3a<3bB. a> bC. -a-1>-b-1D.3.不等式3x>5x-6的正整数解是A. 0,1,2B. 1,2C. 1,2,3D. 0,1,2,34.不等式组的解集,在数轴上表示正确的是( )A. B.C. D.5.已知不等式2x+a<3x的解为x>1,则a的值为()A. 1B. 0C. ﹣1D. ﹣26.把不等式组的解集表示在数轴上,下列不符合题意的是()A. B.C. D.7.若a>b,则下列不等式成立的是( )A. a+1<b+1B. a-5<b-5C. -3a>-3bD. >8.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A. 小于8km/hB. 大于8km/hC. 小于4km/hD. 大于4km/h9.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊买了两条鱼,平均每条b元,后来他又以每条的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )A. a>bB. a<bC. a=bD. 与a和b的大小无关10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A. 10B. 9C. 8D. 711.从﹣3,﹣1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A. ﹣2B. ﹣3C. -D.12.若不等式有解,则实数最小值是()A. 1B. 2C. 4D. 6二、填空题13.不等式的解集为________.14.列一元一次不等式解应用题时,应注意抓住题中的关键词.用不等号表示下列关键词:不大于: ________,不少于: ________,不超过: ________,至多: ________,至少: ________.15.宝宇小区王先生准备装修新居,装修公司派来甲工程队完成此项工程.甲工程队单独完成此项工程需50天,由于工期过长,王先生要求装修公司再派一工程队与甲队共同工作,乙单独完成此项工程需30天.甲、乙工程队每天施工费分别为800元和1000元,王先生要求装修工程施工费用不能超过34000元,甲工程队至多参加工作________天.16.若,则________ (填“>”或“<”).17.不等式1﹣2x≥3的解是________.18.不等式组的解集为________.19.若数a使关于x的分式方程的解为非负数,且使关于y的不等式组的解集为,则符合条件的所有整数a的积为________20.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+ ,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若()=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有________(填写所有正确的序号).三、计算题21.解不等式组:22.求不等式组的所有整数解.23.解不等式,并写出非负整数解.四、解答题24.解不等式组:,并把解集在数轴上表示出来.25.“六一”期间,各商场举行“六一欢乐购”的促销活动,其中甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场一次性购物超过100元,超过部分8折优惠;在乙商场一次性购物超过50元,超过部分9折优惠,顾客到那家商场购物花费少?26.某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表(2)安排生产A、B两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.27.某市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求到明年年底控制电动车拥有量不超过11.9万辆,如果每年底报废的电动车数量是上一年年底电动车拥有量的10%,且每年新增电动车数量相同,问:从今年年初起每年新增电动车数量最多是多少万辆?28.在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?答案一、单选题1. D2. D3. B4. B5. A6. A7. D8.B9. A 10. B 11.A 12. C二、填空题13.x<1 14. ≤;≥;≤;≤;≥ 15.20 16. > 17.x≤﹣1 18. 19. 40 20. ①③④三、计算题21. 解:由①得x 2由②得x ∴原不等式的解为2 ≤x<22. 解:解不等式①得:x>1,解不等式②得:x≤4,所以,不等式组的解集为1<x≤4,故不等式组的整数解为2,3,423. 解:去分母得:12x-2(x+2)≥6(2x-1),去括号得:12x-2x-4≥12x-6,移项合并同类项得:-2x≥-2,系数化为1:x≤1.∴x的非负整数解为1,0四、解答题24. 解:,解不等式①得:,解不等式②得:∴原不等式组的解集为-3<x≤1解集在数轴上表示为:25. 解:设购物为x元,(1)当x≤50时,在甲、乙都不享受优惠,因此到两商场购物花费一样。
人教版初一数学下册《第九章单元试卷》(详尽答案版)
人教版初一数学下册第九章检测题一、选择题1.(2013·永州)若实数a,b,c在数轴上对应的点如图9-7所示,则下列式子中正确的是()图9-7A.a-c>b-cB.a+c<b+cC.ac>bcD.错误!未找到引用源。
<错误!未找到引用源。
2.下列说法中,正确的是()A.若-a>b>0,则ab<0B.若a>b,c≠0,则ac>bcC.若ab>0,则a>0,b>0D.若错误!未找到引用源。
>1,则a>b3.(2013·孝感)使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A.3,4B.4,5C.3,4,5D.不存在4.(2013·眉山)不等式组错误!未找到引用源。
的解集在数轴上表示为()5.(2013·雅安)不等式组错误!未找到引用源。
的整数解有()A.1个B.2个C.3个D.4个6.(2013·南通)若关于x 的方程mx-1=2x 的解为正实数,则m 的取值范围是( )A.m ≥2B.m ≤2C.m>2D.m<27.若关于x 的不等式2x-a ≤-1的解集如图9-8所示,则a 的值是( )图9-8A.0B.-3C.-2D.-18.若不等式组错误!未找到引用源。
有解,则a 的取值范围是( )A.a ≤3B.a<3C.a<2D.a ≤29.(2013·宜昌)地球正面临第六次生物大灭绝!据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝.2012年底,长江江豚数量仅剩约1 000头,其数量年平均下降的百分率在13%~15%范围内.由此预测,2013年底剩下的数量可能为( )A.970头B.860头C.750头D.720头10.(2013·资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同.若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( )A.10人B.11人C.12人D.13人二、填空题11.(2013·白银)不等式2x+9≥3(x+2)的正整数解是 .12.若点 P (a ,a-3)在第四象限,则a 的取值范围是 .13.(2013·株洲)一元一次不等式组错误!未找到引用源。
人教版七年级数学下册 第九章不等式与不等式组 达标检测卷(含详细解答)
人教版七年级数学下册 第九章 达标检测卷(考试时间:120分钟 满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5D .1x-3x ≥0 2.将不等式3x -2<1的解集表示在数轴上,正确的是 ( )3.如果a<b ,那么下列不等式中一定成立的是 ( )A .a 2<abB .ab<b 2C .a 2<b 2D .a -2b<-b4.下列说法中正确的是 ( )A .y =3是不等式y +4<5的解B .y =3是不等式3y<11的解集C .不等式3y<11的解集是y =3D .y =2是不等式3y ≥6的解5.解不等式2x -12 -5x +26-x ≤-1,去分母,得( ) A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-16.(雅安中考)不等式组⎩⎪⎨⎪⎧x -1≥0,1-12x <0 的最小整数解是 ( )A .1B .2C .3D .47.(椒江区期末)某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x 分钟,以下所列不等式正确的是 ( )A .90×3+2x ≥480B .90×3+2x ≤480C .90×3+2x <480D .90×3+2x >4808.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >0 9.(德州中考)若关于x 的不等式组⎩⎪⎨⎪⎧2-x 2>2x -43,-3x>-2x -a的解集是x<2,则a 的取值范围是 ( )A .a ≥2B .a<-2C .a>2D .a ≤210.★(合肥期末)某种品牌毛巾原零售价为每条8元,凡一次性购买三条及以上,可享受商家推出的两种优惠销售办法中的任意一种.第一种:三条按原价,其余享七折优惠;第二种:全部享原价的八折优惠.若想在购买相同数量的情况下,使第一种销售办法比第二种销售办法得到的优惠多,最少要购买毛巾( )A .8条B .9条C .10条D .11条第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.x 的12与5的差不小于3,用不等式可表示为 . 12.若不等式(a -3)x<a -3的解集为x >1,则a 的取值范围是 .13.已知:2k -3x 2+2k >1是关于x 的一元一次不等式,则k = .14.(河南中考)已知关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .15.定义新运算:对于任意实数a ,b ,都有a ⊕b =a(a -b)+1,其中等式右边是加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x<13的解集为 .16.小华将若干个苹果放进若干个筐子里,若每个筐子放4个苹果,还剩20个苹果未放完;若每个筐子放8个苹果,则还有一个筐子没有放满,那么小华原来共有苹果 .个.17.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2 有解,则m 的取值范围是 . 18.★已知有理数x 满足:3x -12 -73 ≥x -5+2x 3,若|3-x|-|x +2|的最小值为a ,最大值为b ,则ab = .三、解答题(共66分)19.(6分)(1)解不等式:2x +42 <x +33-1;(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),②并在数轴上表示其解集.20.(8分)当x 取哪些整数值时,不等式4(x +1)>2x -1与12 x ≤2-32x 成立?21.(8分)已知点A(m -1,4m +6)在第二象限.(1)求m 的取值范围;(2)我们把横纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A ”.22.(8分)要使关于x 的方程3m -x 2 =x -2m 3+1的解满足关于x 的不等式组⎩⎪⎨⎪⎧2x +14<2-x 2,-x +2(2x -3)>-3,求m 的取值范围.23.(10分)阅读下列材料,并解答问题.例题:解不等式(3x -2)(2x +1)>0.解:由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎪⎨⎪⎧3x -2>0,2x +1>0 或②⎩⎪⎨⎪⎧3x -2<0,2x +1<0.解不等式组①,得x >23; 解不等式组②,得x <-12. ∴原不等式的解集为x >23 或x <-12. 仿照上面的解法解下列不等式:(1)求不等式(2x +1)(x -1)≥0的解集;(2)求不等式-(x -3)(x +1)≥0的解集.24.(12分)(宁夏中考)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A ,B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A,B两种防疫物品每件各多少元;(2)现要购买A,B两种防疫物品共600件,总费用不超过7 000元,那么A种防疫物品最多购买多少件?25.(14分)学校为了奖励九年级优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则平板电脑最多购买多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍,请问有哪几种购买方案?哪种方案最省钱?参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列各式中,是一元一次不等式的是 ( C)A .5+4>8B .2x -1C .2x ≤5D .1x -3x ≥0 2.将不等式3x -2<1的解集表示在数轴上,正确的是 ( D )3.如果a<b ,那么下列不等式中一定成立的是 (D ) A .a 2<ab B .ab<b 2 C .a 2<b 2 D .a -2b<-b4.下列说法中正确的是 (D ) A .y =3是不等式y +4<5的解B .y =3是不等式3y<11的解集C .不等式3y<11的解集是y =3D .y =2是不等式3y ≥6的解5.解不等式2x -12 -5x +26 -x ≤-1,去分母,得 (C ) A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-1 6.(雅安中考)不等式组⎩⎪⎨⎪⎧x -1≥0,1-12x <0 的最小整数解是 ( C )A .1B .2C .3D .47.(椒江区期末)某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x 分钟,以下所列不等式正确的是 ( A ) A .90×3+2x ≥480 B .90×3+2x ≤480 C .90×3+2x <480 D .90×3+2x >4808.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( A ) A .m >92 B .m <0 C .m <92 D .m >09.(德州中考)若关于x 的不等式组⎩⎪⎨⎪⎧2-x 2>2x -43,-3x>-2x -a的解集是x<2,则a 的取值范围是 ( A ) A .a ≥2 B .a<-2 C .a>2 D .a ≤210.★(合肥期末)某种品牌毛巾原零售价为每条8元,凡一次性购买三条及以上,可享受商家推出的两种优惠销售办法中的任意一种.第一种:三条按原价,其余享七折优惠;第二种:全部享原价的八折优惠.若想在购买相同数量的情况下,使第一种销售办法比第二种销售办法得到的优惠多,最少要购买毛巾 ( C )A .8条B .9条C .10条D .11条第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.x 的12 与5的差不小于3,用不等式可表示为__12 x -5≥3__.12.若不等式(a -3)x<a -3的解集为x >1,则a 的取值范围是__a<3__.13.已知:2k -3x2+2k>1是关于x 的一元一次不等式,则k =__-12__.14.(河南中考)已知关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为__x>a__.15.定义新运算:对于任意实数a ,b ,都有a ⊕b =a(a -b)+1,其中等式右边是加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x<13的解集为__x>-1__.16.小华将若干个苹果放进若干个筐子里,若每个筐子放4个苹果,还剩20个苹果未放完;若每个筐子放8个苹果,则还有一个筐子没有放满,那么小华原来共有苹果__44__个.17.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围是__m >23__.18.★已知有理数x 满足:3x -12 -73 ≥x -5+2x3 ,若|3-x|-|x +2|的最小值为a ,最大值为b ,则ab =__5__. 三、解答题(共66分)19.(6分)(1)解不等式:2x +42 <x +33 -1;解:去分母,得3(2x +4)<2(x +3)-6, 去括号,得6x +12<2x +6-6, 移项,合并,得4x<-12, 系数化为1,得x<-3.(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),② 并在数轴上表示其解集.解:解不等式①,得x>-1. 解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4. 其解集在数轴上表示如图所示.20.(8分)当x 取哪些整数值时,不等式4(x +1)>2x -1与12 x ≤2-32 x 成立?解:依题意,有⎩⎪⎨⎪⎧4(x +1)>2x -1,12x ≤2-32x ,解得-52 <x ≤1.∵x 取整数值, ∴x =-2,-1,0,1. 即当x 为-2,-1,0和1时,不等式4(x +1)>2x -1与12 x ≤2-32 x 成立.21.(8分)已知点A(m -1,4m +6)在第二象限. (1)求m 的取值范围;(2)我们把横纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A ”.解:(1)由题意,得⎩⎪⎨⎪⎧m -1<0,①4m +6>0,②由①,得m<1,由②,得m>-32 ,∴m 的取值范围是-32 <m<1.(2)∵m 是整数, ∴m 取-1,0.∴符合条件的“整数点A ”有(-2,2),(-1,6).22.(8分)要使关于x 的方程3m -x 2 =x -2m3 +1的解满足关于x 的不等式组⎩⎪⎨⎪⎧2x +14<2-x 2,-x +2(2x -3)>-3,求m 的取值范围.解:解方程,得x =13m -65 .解不等式组,得1<x<74 ,∴1<13m -65 <74,∴1113 <m<5952 .23.(10分)阅读下列材料,并解答问题. 例题:解不等式(3x -2)(2x +1)>0.解:由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎪⎨⎪⎧3x -2>0,2x +1>0 或②⎩⎪⎨⎪⎧3x -2<0,2x +1<0. 解不等式组①,得x >23 ;解不等式组②,得x <-12.∴原不等式的解集为x >23 或x <-12 .仿照上面的解法解下列不等式: (1)求不等式(2x +1)(x -1)≥0的解集; (2)求不等式-(x -3)(x +1)≥0的解集.解:(1)由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎪⎨⎪⎧2x +1≥0,x -1≥0 或②⎩⎪⎨⎪⎧2x +1≤0,x -1≤0.解不等式组①,得x ≥1;解不等式组②,得x ≤-12 ;∴原不等式的解集为x ≥1或x ≤-12.(2)由有理数的乘法法则“两数相乘,异号得负”可得①⎩⎪⎨⎪⎧x -3≥0,x +1≤0 或②⎩⎪⎨⎪⎧x -3≤0,x +1≥0. 解不等式组①,得无解; 解不等式组②,得-1≤x ≤3; ∴原不等式组的解集为-1≤x ≤3.24.(12分)(宁夏中考)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A ,B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A ,B 两种防疫物品每件各多少元;(2)现要购买A ,B 两种防疫物品共600件,总费用不超过7 000元,那么A 种防疫物品最多购买多少件?解:(1)设A 种防疫物品每件x 元,B 种防疫物品每件y 元,依题意,得⎩⎪⎨⎪⎧60x +45y =1 140,45x +30y =840, 解得⎩⎪⎨⎪⎧x =16,y =4.答:A 种防疫物品每件16元,B 种防疫物品每件4元.(2)设购买A 种防疫物品m 件,则购买B 种防疫物品(600-m)件,依题意,得 16m +4(600-m)≤7 000, 解得m ≤38313 ,又∵m 为正整数, ∴m 的最大值为383.答:A 种防疫物品最多购买383件.25.(14分)学校为了奖励九年级优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则平板电脑最多购买多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍,请问有哪几种购买方案?哪种方案最省钱?解:(1)设购买平板电脑a台,则购买学习机(100-a)台,由题意,得3 000a+800(100-a)≤168 000.解得a≤40.答:平板电脑最多购买40台.(2)设购买平板电脑a台,则购买学习机(100-a)台.根据题意,得100-a≤1.7a,解得a≥37127.又∵a为正整数且a≤40,∴a=38,39,40,则学习机依次买:62台,61台,60台.因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.。
初中七年级数学下册第九章《不等式与不等式组》测试卷3套含答案
A
B
C
D
3.若 a b>0 ,且 b<0 ,则 a , b , a , b 的大小关系为( )
A. a< b<b<a
B. -a<b< b<a
C. -a<b<a<-b
D. b< a< b<a
4.如图,数轴上表示的关于 x 的一元一次不等式的解集为( )
A. x≤1
B. x≥1
C. x<1
D. x>1
(2)设小亮答对了
y
道题,依题意,得
C. 3
7.一元一次不等式组
2x>x 1
1 2
x≤1
的解集是(
)
A. x> 1
B. x≤2
C. 1<x≤2
2x a>3
8.若不等式组
x
2b<1
的解集是
2<x<3
,则
3ab
等于(
)
A. 3
B.3
C. 6
D D.无解 D.4 个 D. 4
D. x> 1 或 x≤2 D.6
9.对于不等式组
1 2
21.【答案】解:
2x
1 2
(
x
3≥ 3 2a) 1
2
① x<0
,解不等式①,得 x≤3 , ②
解不等式②,的 x<a .∵ a 是不等于 3 的常数, ∴当 a>3 时,不等式组的解集为 x≤3 . 当 a<3 时,不等式组的解集为 x<a . 22.【答案】解:(1)设小明答对了 x 道题,依题意,得 5x 3(20 x) 68 ,解得 x 16 . 答:小明答对了 16 道题.
23.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买 A , B 两种奖品以鼓励抢 答者.如果购买 A 种 20 件, B 种 15 件,共需 380 元;如果购买 A 种 15 件, B 种 10 件,共需 280 元. (1) A , B 两种奖品每件各多少元?
人教版七年级数学下册第九单元测试题及答案
七年级数学下册第九单元测试题及答案The document was prepared on January 2, 2021(第1题)甲乙(40千克)甲丙(50千克)(第8题)七年级数学第九章不等式与不等式组单元测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题每小题3分,共30分1、不等式的解集在数轴上表示如下,则其解集是A、x≥2B、x>-2C、x≥-2D、x≤-22、若0<x<1,则x、x2、x3的大小关系是A、x<x2<x3B、x<x3<x2C、x3<x2<xD、x2<x3<x3、不等式8-x>2的正整数解的个数是A、4B、1C、2D、34、若a为实数,且a≠0,则下列各式中,一定成立的是A、a2+1>1B、1-a2<0C、1+a1>1 D、1-a1>15、如果不等式⎩⎨⎧-byx<>2无解,则b的取值范围是A、b>-2B、b<-2C、b≥-2D、b≤-26、不等式组⎩⎨⎧++≥--8321)23(3xxx<的整数解的个数为A、3B、4C、5D、67、把不等式⎩⎨⎧-≥-3642>xx的解集表示在数轴上,正确的是A、C、8支点在中点处则甲的体重x的取值范围是A、x<40B、x>50C、40<x<50D、40≤x≤509、若a<b,则ac>bc成立,那么c应该满足的条件是A、c>0B、c<0C、c≥0D、c≤010、某人从一鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条2ba+元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是A、a>bB、a<bC、a=bD、与ab大小无关二、填空题每小题3分,共18分11、用不等式表示:x的3倍大于4__________________________.12、若a>b,则a-3______b-3 -4a______-4b填“>”、“<”或“=”.13、当x ______时,代数式213-x -2x 的值是非负数. 14、不等式-3≤5-2x <3的正整数解是_________________.15、某射击运动员在一次训练中,打靶10次的成绩为89环,已知前6次射击的成绩为50环,则他第七次射击时,击中的环数至少是______环.16、某县出租车的计费规则是:2公里以内3元,超过2公里部分另按每公里元收费,李立同学从家出发坐出租车到新华书店购书,下车时付车费9元,那么李立家距新华书店最少有______公里.三、解下列等式组,并将解集在数轴上表示出来.每题5分,共15分 17、21-x +1≥x 18、⎩⎨⎧-++-148112x x x x >< 19、3≤37x -6≤6四、解答题每题6分,共18分20、求不等式组 ⎪⎩⎪⎨⎧+≤-4210112x x x > 的整数解. 21、当a 在什么范围取值时,方程组 ⎩⎨⎧--=+123232a y x a y x >的解都是正数22、若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a -3|+b -4=0,c 是不等式组⎪⎪⎩⎪⎪⎨⎧++--21632433x x x x <> 的最大整数解,求△ABC 的周长. 五、第23题9分,第24题10分,共19分23、足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.一支足球队在某个赛季共需比赛14场,现已比赛了8场,输了一场,得17分,请问: 1前8场比赛中,这支球队共胜了多少场2这支球队打满14场,最高能得多少分3通过对比赛形势的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标24、双蓉服装店老板到厂家购A 、B 两种型号的服装,若购A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元.1求A 、B 两种型号的服装每件分别为多少元2若销售一件A 型服装可获利18元,销售一件B 型服装可获利30元,根据市场需要,服装店老板决定:购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后可使总的获利不少于699元,问有几种进货方案如何进货参考答案一、1、C ;2、C ;3、D ;4、A ;5、D ;6、B ;7、A ;8、C ;9、B ;10、A 二、11、3x >4; 12、>,<;13、x ≤-1;14、2,3,4;15、9环;16、8. 三、17、 x ≤1;18、x <2;19、1≤x ≤2四、20、6,7,8;21、a >73;22、3,4,4. 五、23、解:1设球队在前8场比赛中胜x 场,则平8-1-x =7-x 场,由题意得3x +7-x =17,解得x =52最后得分n 满足n ≤17+3×14-8=35.3球队要想达到预期目标,必须在余下14-8场比赛中得到29-17=12分,显然,胜4场比赛可积12分,从而实现目标,而6场比赛胜3场可积9分,余下3场每场均得1分,同样可得12分实现目标,所以球队要想实现目标,至少胜3场.24、解:1设A 种型号的服装每件x 元,B 种型号的服装每件y 元.依题意得:⎩⎨⎧=+=+18808121810109y x y x 解得:⎩⎨⎧==10090y x 2设B 型服装购进m 件,则A 型服装购进2m +4件,依题意得:⎩⎨⎧≤+≥+2842699)42(18m m 解得:219≤x ≤12.因为m 为正整数,所以m =10、11、12,2m +4=24、26、28.所以有三种进货方案:第一种:B 型服装购进10件,A 型服装购进24件;第二种:B 型服装购进11件,A 型服装购进26件;第三种:B 型服装购进12件,A 型服装购进28件;。
人教版数学七年级下册第九章不等式与不等式组测试卷附解析
人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。
【3套精选】人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案解析)
人教版七年数学下册第九章《不等式与不等式》培(二)一.(共10小,每小 3 分,共 30 分)1.不等式 3(x 2)⋯x 4 的解集是 ()A.x⋯5B.x⋯3C.x, 5D.x⋯5 2.若点P(1m,m) 在第二象限,(m 1)x 1m 的解集 () A.x 1B.x 1C.x 1D.x 1 3.假如a b ,以下不等式必定建立的是 ()A.1 a 1 b B. a b22D.a 2 b 2 C.ac bc4.已知两个不等式的解集在数上如表示,那么个解集()A.x⋯1B.x 1C. 3 x, 1D.x35.已知对于x的不等式(2 a )x1; a 的取范是()1的解集是 x2aA.a 0B.a 0C.a 2D.a 26.把不等式x1⋯3中每个不等式的解集在同一条数上表示出来,正2x64确的 ()A .B .C .D .7.若方程3m( x1)1m(3x)5x 的解是数,m的取范是 () A.m 1.25B.m 1.25C.m 1.25D.m 1.258.某种出租的收准:起步价7 元(即行距离不超 3 千米都需付 7 元),超 3 千米后,每增添 1 千米,加收 2.4 元(不足 1 千米按 1 千米).某人乘种出租从甲地到乙地共付19 元,那么甲地到乙地行程的最大是 ()A.5 千米B.7 千米C.8 千米D.15 千米9.对于 x 的不等式组2x 4 的所有整数解是 () 3x 5 1A .0,1B . 1,0,1C .0,1,2D . 2 ,0,1,210.如图,天平右盘中的每个砝码的质量为 10g ,则物体 M 的质量 m(g ) 的取值范围在数轴上可表示为 ()A .B .C .D .二.填空题 (共 8 小题,每题3 分,共 24 分)11. x 与 5 的差不小于 3 ,用不等式表示为.12.不等式x 1 的正整数解是.313.若代数式3 x1的值不小于代数式1 5x的值,则 x 的取值范围是.5614.小马用 100 元钱去购置笔录本和钢笔共 30 件,已知每本笔录本2 元,每支钢笔 5 元,那么小马最多能买支 钢笔.15.已知实数 x , y , a 知足 x 3 y a 4 , x y 3a0 .若 1剟a 1,则2xy 的取值范围是.16.同时知足 3x10和16x 10 4x 的整数解是.317.若对于 x 的不等式组xm, 0无解,则 m 的取值范围是 .1 x 018.武汉东湖高新开发区某公司新增了一个项目,为了节俭资源,保护环境,该公司决定购置 A 、 B 两种型号的污水办理设施共8 台,详细状况以下表:A 型B 型价钱(万元 / 台)1210月污水办理能力(吨 / 月)200160经估算,公司最多支出 89万元购置设施,且要求月办理污水能力不低于1380吨.设购置 A 种型号的污水办理设施x台,可列不等式组.三.解答题(共 7 小题,满分 46 分,此中 19、20、21 每题 6 分,22 题 9 分,23题 6分,24题 8分,25题5分)19.解不等式组,并将解集在数轴上表示出来.2x 7 3 x 1 ,①15x 4 ⋯x ②220.已知不等式1( x m) 2m .3( 1)若其解集为x 3 ,求m的值;( 2)若知足x 3 的每一个数都能使已知不等式建立,求m 的取值范围.21.方程组xy3的解为负数,求 a 的范围.x 2 y a 322.为了抓住梵净山文化人教版七年级数学下册第九章不等式与不等式组检测题(word 版,含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题题一、1.以下法不必定建立的是()A. 若 a>b, a+c>b+ cB. 若 a+ c>b+ c, a>bC. 若 a>b, ac2>bc2D. 若 ac2>bc2, a>b2.如是对于x的不等式2x-a≤-1的解集,a的取是()A. a≤- 1B. a≤- 2C. a=- 1D. a=- 23.以下解不等式2+ x>2x-1的程中,出的一步是()35①去分母,得 5(x+ 2)>3(2x- 1);②去括号,得 5x+ 10> 6x-3;③移,得 5x-6x>- 10-3;④归并同、系数化 1,得 x>13.A. ①B. ②C. ③D. ④4.不等式组的解集表示在数轴上正确的选项是()5.在对于x,y的方程组中,未知数知足x≥ 0,y> 0,那么 m 的取值范围在数轴上应表示为()6.若不等式组A. m= 22x- 1>3( x- 1), x<m 的解集是x< 2,则B. m>2C. m<2m 的取值范围是(D. m≥ 2)7.假如对于x 的不等式组无解,那么m 的取值范围为()A. m≤- 1B. m<- 1C. - 1< m≤ 0D. -1≤ m< 08.若对于x 的不等式组的解集中起码有 5 个整数解,则正数 a 的最小值是()2A. 3B. 2C. 1D.39.“一方有难,八方增援”,雅安芦山4?20地震后,某单位为一中学捐献了一批新桌椅,学校组织初一年级 200 名学生搬桌椅 .规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A. 60B. 70C. 80D. 9010.某市出租车的收费标准是:起步价8 元(即行驶距离不超出 3 千米都需付8 元车资 ),超过 3 千米此后,每增添 1 千米,加收 2.6 元 (不足 1 千米按 1 千米计 ).某人打车从甲地到乙地经过的行程是x 千米,出租车资为21 元,那么x 的最大值是()A. 11B. 8C. 7D. 5二、填空题。
人教版七年级下册数学第九章检测卷(附答案)
⼈教版七年级下册数学第九章检测卷(附答案)⼈教版七年级下册数学第九章检测卷(附答案)⼀、单选题(共12题;共24分)1.不等式-3x+6≥9 的解集在数轴上表⽰正确的是()A. B.C. D.2.若关于x的不等式mx-n>0 的解集为,则关于x的不等式(m+n)x>m-n 的解集为()A. B. C. D.3.⼩华拿27元钱购买圆珠笔和练习册,已知⼀本练习册2元,已知圆珠笔1元,他买了4本练习册,x⽀圆珠笔,则关于x的不等式表⽰正确的是()A. 2×4+x<27B. 2×4+x≤27C. 2x+4≤27D. 2x+4≥274.某乒乓球馆有两种计费⽅案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4 ⼩时,经服务⽣测算后,告知他们包场计费⽅案会⽐⼈数计费⽅案便宜,则他们参与包场的⼈数⾄少为()A. 9B. 8C. 7D. 65.不等式6-4x≥3x-8 的正整数解为()A. 2 个B. 3 个C. 4 个D. 5 个6.下列各数中,能使不等式x-1>0 成⽴的是()A. 1B. 2C. 0D. -27.如果不等式ax < b 的解集是x < ,那么a 的取值范围是()A. a≥0B. a≤0C. a>0D. a<08.如果a>b,则下列各式中不成⽴的是()A. -3a>-3bB. 2+3a>2+3bC. a-6>b-6D. a+4>b+49.若实数a 是不等式2x-1>5 的解,但实数b 不是不等式2x-1>5 的解,则下列选项中,正确的是()A. a<bB. a>bC. a≤bD. a≥b10.若3x>-3y,则下列不等式中⼀定成⽴的是()A. x+y>0B. x-y>0C. x+y<0D. x-y<011.运⾏程序如图所⽰,从“输⼊实数x”到“结果是否<18”为⼀次程序操作,若输⼊x 后程序操作仅进⾏了三次就停⽌,那么x 的取值范围是()A. B. C. D.12.已知关于x的不等式组恰有5个整数解,则t的取值范围是()A. 9B. 9≤t<C. 9D. 9≤t≤⼆、填空题(共8题;共16分)13.当x________时,代数式14-2x 的值是⾮负数.14.不等式3x-3m≤-2m 的正整数解为1,2,3,4,5,则m 的取值范围是________.15.不等式6x+8>3x+17 的解集是________.16.出租车按分段累加的⽅法收费:3公⾥以内(含3公⾥)收5元;超过3公⾥且不超过10公⾥的部分每公⾥收2元;超过10公⾥的部分每公⾥收3元.每次坐车另加燃油附加费1元,不⾜1公⾥以1公⾥计算.若⼩明从学校坐出租车到家⽤了38元的钱,设⼩明家到学校的距离为x公⾥,则x的取值范围是________.17.不等式3x-2≥4(x-1)的所有⾮负整数解的和为________.18.当a=________时,关于x 的不等式2x-a>-3 的解集如图.19.已知关于x 的不等式ax+b>0 的解集为,则不等式bx+a<0 的解集是________ .(结果中不含a、b)20.已知关于x的不等式(1-a)x>3的解集为则a的取值范围是________.三、解答题(共2题;共20分)21.解不等式组,并将解集在数轴上表⽰出来.22.为了“创建⽂明城市,建设美丽家园”,我市某社区将辖区内的⼀块⾯积为1000m2的空地进⾏绿化,⼀部分种草,剩余部分栽花,设种草部分的⾯积为x(m2),种草所需费⽤y1(元)与x(m2)的函数关系式为,其图象如图所⽰:栽花所需费⽤y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费⽤为W(元),请利⽤W与x的函数关系式,求出绿化总费⽤W的最⼤值;(3)若种草部分的⾯积不少于700m2,栽花部分的⾯积不少于100m2,请求出绿化总费⽤W的最⼩值.四、计算题(共2题;共10分)23.列式计算:求使的值不⼩于的值的⾮负整数x.24.解不等式组五、综合题(共2题;共30分)25.已知关于x 的不等式(1)当m=1 时,求该不等式的解集;(2)当m=1 时,求该不等式的解集;(3)m 取何值时,该不等式有解,并求出解集.(4)m 取何值时,该不等式有解,并求出解集.26.某公司有A、B两种型号的客车,它们的载客量、每天的租⾦如表所⽰:已知某中学计划租⽤A、B两种型号的客车共10辆,同时送七年级师⽣到沙家参加社会实践活动,已知该中学租车的总费⽤不超过5600元.(1)求最多能租⽤多少辆A型号客车?(2)若七年级的师⽣共有380⼈,请写出所有可能的租车⽅案.答案⼀、单选题1. D2. C3. B4. B5. A6. B7. C8. A9. B 10. A 11. C 12. C⼆、填空题13. ≤7 14. 15≤m<18 15. x>3 16. 15<x≤16 17. 3 18. 1 19. x<2 20. a>1三、解答题21. 解:解不等式2x﹣4≥3(x﹣2),得:x≤2,解不等式4x>,得:x>﹣1,则不等式组的解集为﹣1<x≤2,将解集表⽰在数轴上如下:22. (1)解:将x=600、y=18000代⼊y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代⼊y2=k2x+b,得:,解得:(2)解:当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最⼤值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增⼤⽽减⼩,∴当x=600时,W取最⼤值为32400,∵32400<32500,∴W取最⼤值为32500元(3)解:由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增⼤⽽减⼩,∴当x=900时,W取得最⼩值。
人教版七年级数学下册第九章不等式与不等式组单元测试卷(含答案)
人教版七年级数学下册单元测试卷第九章 不等式与不等式组一、单选题(共30分,每小题3分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x≤5D .1x-3x≥0 2.不等式324x -<中,x 可取的最大整数值是( )A .0B .1C .2D .3 3.下列说法中错误的是( )A .不等式23x +≤的整数解有无数个B .不等式45x +<的解集是1x <C .不等式3x <的正整数解有限个D .0是不等式21x <-的解 4.如图在数轴上表示是哪一个不等式的解( )A .1x ≥-B .1x ≤-C . 2.5x ≥-D . 2.5x ≤- 5.已知关于x 的不等式21x a +≤与22x -≥的解集相同,则a 的值为( ) A .3 B .2 C .1 D .无法确定 6.若a <b ,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b ->-D .22a b <7.已知方程组2420x ky x y +=⎧⎨-=⎩有正数解,则k 的取值范围是( ) A .4k < B .4k > C .4k <- D .4k >- 8.若a 、b 是有理数,则下列说法中正确的是( )A .若a b >则22a b >B .若22a b >则a b >C .若||||a b >则22a b >D .若a b 则22a b ≠9.若关于x 的不等式组3122x m x x ->⎧⎨->-⎩无解,则m 的取值范围是( ) A .2m >- B .2m ≥- C .2m <- D .2m ≤- 10.某次篮球联赛中,火炬队与月亮队要争夺一个出线权,火炬队目前的战绩是17胜13负(其中有1场以4分之差负于月亮队),后面还要比赛6场(其中包括再与月亮队比赛1场);月亮队目前的战绩是15胜16负,后面还要比赛5场.如果火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么它在后面的其他比赛中至少胜( )场就一定能出线?A .1B .2C .3D .4二、填空题(共24分,每小题3分)11.不等式312x -≤-的解集是______. 12.不等式组5234x x -≤-⎧⎨-<⎩的解集是______________. 13.点P(x -2,x +3)在第一象限,则x 的取值范围是___.14.“x 的13与4的差是负数”用不等式表示:_____. 15.当m ________时,代数式342423m m +--的值是非负数. 16.382x -的值不大于7x -的值,x 的取值范围是________. 17.不等式23510x x -≥-的正整数解________.18.已知等腰三角形的周长为12cm ,则这个等腰三角形的腰长x 的范围是________.三、解答题(共66分)19.解下列不等式,并把它们的解集在数轴上表示出来:(16分)(1)3(27)23+>x ; (2)124(31)2(216)x x --≤-;(3)325153x x +-<-; (4)213153212x x ---≥.20.求不等式27336105x x x ---≤<+的整数解.(5分)21.解不等式组131722324334x x x x x ⎧+<-⎪⎪⎨--⎪≥+⎪⎩,并写出它的所有整数解.(5分)22.解不等式组()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③,(6分)请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是: .(2)解不等式③,得 .(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 . 23.35x +的值能否同时大于23x +和1x -的值?说明理由.(8分)24.已知关于x 、y 的二元一次方程组354538x y m x y -=⎧⎨-=⎩,(8分) (1)若方程组的解满足6-=x y ,求m 的值;(2)若方程组的解满足x y <-,求m 的取值范围.25.已知关于x 、y 的方程组1173x y m x y m -=-⎧⎨+=-⎩中,x 为非负数、y 为负数.(8分) (1)试求m 的取值范围;(2)当m 取何整数时,不等式3mx +2x >3m +2的解集为x <1.26.2020年春节前夕,突如其来的新型冠状病毒肺炎疫情造成口罩紧缺,为满足社会需求,某工厂现需购买一批材料,用于生产甲、乙两种型号的口罩,已知生产乙型口罩所需的材料费比生产甲型口罩所需的材料费每件多100元,且生产甲型口罩40件和生产乙型口罩30件需购买材料的费用相同.(10分)(1)求生产甲、乙两种型号口罩所需的材料费每件各多少元?(2)若工厂购买这批材料的资金不超过135000元,且需生产两种口罩共400件,求至少能生产甲种口罩多少件?参考答案:1.C2.B3.D4.A5.A6.D7.D8.C9.B10.A11.1x≤12.-1<x≤313.x>214.13x-4<015.4≥-16.6x≤17.1和218.3cm6cmx<<19.(1)13x>;(2)3x≥;(3)7x>;(4)310x≤-,20.2-21.该不等式组的解集是435x-≤<,它的所有整数解为0,1,2.22.(1)x≥﹣3、不等式的性质3;(2)x<2;(3)略;(4)﹣2<x<2.23.不能,24.(1)10;(2)2m>25.(1)9 22m-<≤(2)x<126.(1)甲为300元,乙为400元.(2)250件答案第1页,共1页。
人教版数学七年级下册第九章测试卷(含答案)
初中数学人教版七年级下学期 第九章测试卷一、单选题(共6题;共12分)1. ( 2分 ) 下列不等式变形中不正确的是( )A. 由 a >b ,得 b <aB. 由 −a >−b ,得 a <bC. 由 −ax >a ,得 x >−1D. 由 −12x <y ,得 x >−2y 2. ( 2分 ) 若 a >b ,则下列不等式中成立的是( )A. a +2<b +2B. a -2<b -2C. 2a <2bD. -2a <-2b3. ( 2分 ) 如图 所示的不等式的解集是( )A. a >1B. a <1C. a≥1D. a≤14. ( 2分 ) 不等式 −3x >6 的解集是( )A. x >−2B. x <−2C. x >2D. x <25. ( 2分 ) 运行程序如图所示,规定:从“输入一个值x”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数x 的和为( )A. 30B. 35C. 42D. 396. ( 2分 ) 关于x 的不等式组 {2x <3(x −3)+13x+24>x +a 有四个整数解,则a 的取值范围是( ) A. ﹣ 114 <a≤﹣ 52 B. ﹣ 114 ≤a <﹣ 52 C. ﹣ 114 ≤a≤﹣ 52 D. ﹣ 114 <a <﹣ 52 二、填空题(共4题;共4分)7. ( 1分 ) 若 x >y , (a −3)x <(a −3)y ,则 a 的取值范围为________.8. ( 1分 ) 如图,数轴上所表示的关于 x 的不等式是________.9. ( 1分 ) 某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过160 分.设他答对了 x 道题,则根据题意可列不等式________.10. ( 1分 ) 出租车按分段累加的方法收费:3公里以内(含3公里)收5元;超过3公里且不超过10公里的部分每公里收2元;超过10公里的部分每公里收3元.每次坐车另加燃油附加费1元,不足1公里以1公里计算.若小明从学校坐出租车到家用了38元的钱,设小明家到学校的距离为x 公里,则x 的取值范围是________.三、计算题(共1题;共20分)11. ( 20分 ) 解不等式(组),并把解集表示在数轴上。
七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)
七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)一、选择题(本大题共6个小题,每小题3分,共18分.)1.已知实数a ,b ,若a >b ,则下列结论正确的是( ).A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a >3b2.不等式3(x -1)≤5-x 的非负整数解有( ).A .1个B .2个C .3个D .4个 3.关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为( ). A .14 B .7 C .-2 D .2 4.不等式组⎩⎪⎨⎪⎧2x +13-3x +22>1,3-x ≥2的解集在数轴上表示正确的是( ).5.如果关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x <m 的解集为x <3,那么m 的取值范围为( ).A .m =3B .m >3C .m <3D .m ≥36.某种毛巾原零售价为每条6元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折付款”;第二种:“全部按原价的八折付款”.若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾( ). A .4条 B .5条 C .6条 D .7条二、填空题(本大题共6小题,每小题3分,共18分)7.不等式组⎩⎪⎨⎪⎧x ≤3x +2,3x -2(x -1)<4的解集为________.8.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.9.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x <13的解集为________.10.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围是________.11.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为________.12.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.三、解答题 (本大题共5小题,每小题6分,共30分)13.解不等式(组):(1)2x -1>3x -12; (2)⎩⎪⎨⎪⎧2x +5>3(x -1)①,4x >x +72②.14.解不等式4x -13-x >1,并把它的解集在数轴上表示出来.15.解不等式组⎩⎪⎨⎪⎧x -3(x -2)≥4,2x -15<x +12,并将它的解集在数轴上表示出来.16.x 取哪些整数值时,不等式4(x +1)≥2x -1与12x ≤2-32x 都成立?17.若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12x -mx =6的解,求m 2-2m -11的值.四、(本大题共3小题,每小题8分,共24分).18.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =3a +9,x -y =5a +1的解都为正数,求a 的取值范围.19.旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时3千米,摩托艇在静水中的速度是每小时18千米.为了使参观时间不超过4小时,旅游者最远可走多少千米?20.已知关于x 的不等式组⎩⎪⎨⎪⎧-x -1≥-2x +1,12(x -2a )+12x <0,其中实数a 是不等于2的常数,请依据a 的取值情况求出不等式组的解集.五、(本大题共2小题,每小题9分,共18分).21.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有三个整数解,求实数a 的取值范围.22.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数).六、(本大题共12分)23. 为解决中小学大班额问题,东营市各县区今年将扩建部分中小学,某县计划对A 、B 两类学校进行扩建,根据预算,扩建2所A 类学校和3所B 类学校共需资金7800万元,扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划扩建A 、B 两类学校共10所,扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的扩建资金分别为每所300万元和500万元.请问共有哪几种扩建方案?参考答案一、选择题(本大题共6个小题,每小题3分,共18分.)1. D ; 2. C ; 3. D ; 4. B ; 5. D.; 6.D.二、填空题(本大题共6小题,每小题3分,共18分)7.-1≤x <2; 8. 0; 9. x >-1; 10. a >-1;11. x >32;12.131或26或5或45三、解答题 (本大题共5小题,每小题6分,共30分.)13.解:(1)去分母得2(2x -1)>3x -1,解得x >1.(2)解不等式①得x <8, 解不等式②得x >1.所以不等式组的解集为1<x <8.14.解:去分母,得4x -1-3x >3.移项、合并同类项,得x >4.在数轴上表示不等式的解集如图所示:15.解:⎩⎪⎨⎪⎧x -3(x -2)≥4,①2x -15<x +12.②由①得-2x ≥-2,即x ≤1. 由②得4x -2<5x +5,即x >-7. 所以原不等式组的解集为-7<x ≤1. 在数轴上表示不等式组的解集为:16.解:依题意有⎩⎪⎨⎪⎧4(x +1)≥2x -1,12x ≤2-32x , 解得-52≤x ≤1∵x 取整数值,∴当x 为-2,-1,0和1时,不等式4(x +1)≥2x -1与12x ≤2-32x 成立.17.解:解不等式3(x +1)-1<4(x -1)+3,得x >3.它的最小整数解是x =4.把x =4代入方程12x -mx =6,得m =-1,∴m 2-2m -11=-8.四、(本大题共3小题,每小题8分,共24分).18.解:解方程组,得⎩⎪⎨⎪⎧x =4a +5,y =-a +4.∵解都为正数,∴⎩⎪⎨⎪⎧4a +5>0,-a +4>0. 解得-54<a <4.19.解:设旅游者可走x 千米.根据题意,得x 18+3+x 18-3≤4,解得x ≤35. 答:旅游者最远可走35千米. 20.解:⎩⎪⎨⎪⎧-x -1≥-2x +1,①12(x -2a )+12x <0.② 解不等式①,得x ≥2. 解不等式②,得x <a .故当a >2时,不等式组的解集为2≤x <a ;当a <2时,不等式组无解.五、(本大题共2小题,每小题9分,共18分).21.解:⎩⎪⎨⎪⎧5x +2>3(x -1)①,12x ≤8-32x +2a ②.解不等式①,得x >-52,解不等式②,得x ≤4+a ,∴原不等式组的解集为-52<x ≤4+a .∵原不等式组有三个整数解, ∴0≤4+a <1, ∴-4≤a <-3.22.解:(1)设这个月有x 天晴天,由题意得:30x +5(30-x )=550, 解得x =16.(4分) 答:这个月有16天晴天.(2)设需要y 年可以收回成本,由题意得: (550-150)·(0.52+0.45)·12y ≥40000, 解得y ≥8172291.∵y 是整数,∴至少需要9年才能收回成本.六、(本大题共12分)23.解:(1)设扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意得:⎩⎪⎨⎪⎧2x +3y =7800,3x +y =5400, 解得⎩⎪⎨⎪⎧x =1200,y =1800.答:扩建一所A 类学校所需资金为1200万元,扩建一所B 类学校所需资金为1800万元. (2)设今年扩建A 类学校a 所,则扩建B 类学校(10-a )所,由题意得:⎩⎪⎨⎪⎧(1200-300)a +(1800-500)(10-a )≤11800,300a +500(10-a )≥4000, 解得3≤a ≤5 ∵a 取整数, ∴a =3,4,5.即共有3种方案:方案一:扩建A 类学校3所,B 类学校7所;方案二:扩建A类学校4所,B类学校6所;方案三:扩建A类学校5所,B类学校5所.。
人教版七年级数学下册第九章测试题(附答案)
人教版七年级数学下册第九章测试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题1.不等式组:12(21)51xx x+⎧⎨-≤+⎩的最大整数解为()A.1 B.﹣3 C.0 D.﹣12.“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8 B.2x﹣3≥8 C.2x﹣3<8 D.2x﹣3>8 3.若不等式组的解集为x<0,则a的取值范围为()A.a>0 B.a=0 C.a>4 D.a=44.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是()A.5千米 B.7千米 C.8千米 D.15千米5.不等式组1xx-⎧⎨⎩>02<4的解是()A.x>1 B.x<2 C.1<x<2 D.无解6.不等式组31xx-≤⎧⎨⎩>的解集在数轴上表示正确的是()7.不等式组的最小正整数解为()A.1 B.2 C.3 D.48.不等式3(x﹣2)<7的正整数解有()A.2个B.3个C.4个D.5个9.不等式组4xx m>⎧⎨>⎩的解集是4x>,那么m的取值范围是()A.m≥4B.m≤4C. 3≤x<4D. 3<x≤410.不等式组312114x xx-⎧⎪⎨⎪⎩<≤的解集在数轴上表示正确的是()A .B .C .D .11.如图是测量一颗玻璃球体积的过程:(1)将300cm 3的水倒进一个容量为500 cm 3的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在( )A .20cm 3以上,30cm 3以下B .30cm 3以上,40cm 3以下C .40cm 3以上,50cm 3以下D .50cm 3以上,60cm 3以下12.不等式3(2)4x x -≤+的非负整数解有( )个 A .4 B .5 C .6 D .无数 评卷人得分二、填空题13.不等式>+2的解是 .14.已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,则a 的取值范围是 .15.不等式5x ﹣3<3x+5的最大整数解是 .16.不等式组的解集是 .17.若点P (2m ﹣1,13m+)在第三象限,则常数m 的取值范围是 .18.x 与23的差的一半是正数,用不等式表示为______ 19.若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.20.当x 取正整数______时,不等式2110x -<成立.(只需填入一个符合要求的值即评卷人得分 三、解答题21.解不等式组,并把它的解集用数轴表示出来..22.若m 是整数,且关于x 、y 的方程组的解满足x ≥0,y <0,试确定m 的值.23.星期天,崇仁二中初二(15)班团支部,组织团员到李大爷家帮忙做家务,之后,李大爷把一篮苹果分给几个学生吃,如果每人分4个,则剩下3个;如果每人分6个,则最后一个学生最多得2个.求学生人数和苹果数.24.(本题满分6分)解不等式组() 326 {4113x xxx--≥-+>评卷人得分四、计算题25.解不等式组:并写出它的所有的整数解.26.解不等式组3(2)64113x xxx--⎧⎪-⎨+⎪⎩≥>.并写出它的整数解.27.解不等式组:253(2)123x xx x++⎧⎪-⎨⎪⎩≤<答案1.C.2.A3.B4.C5.C.6.A.7.A8.C9.B10.C11.C.12.C.13.x>﹣314.-3<a≤-2.15.316.≤x<217.m<﹣119.,a<0,a=b21.﹣2≤x <,见解析22.m=﹣1,0,1,2,3.23.解:设学生人数为x人,则苹果有(4x+3)个,依题意得,解得:3.5≤x≤4.5,∵学生人数应该为整数,∴x=4,∴苹果数为:4×4+3=19(个),答:学生4名,苹果19个.24.解:()326 {4113x xxx--≥-+>①②由①得x≥2,由②得x<4,∴不等式组的解集为2≤x<4.25.解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.26.2≤x<4;2、327.-1≤x<3。
新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)
人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版年级数学下册第九章 不等式与不等式组单元测试题 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b ;④b 2>ab ,其中正确的不等式有( ) A .1个B .2个C .3个D .4个2.已知,下列式子不成立的是( )A .B .C .D .如果,那么3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组中,若未知数、满足,则的取值范围是( )A .B .C .D .5.某市自来水公司按如下标准收取水费:若每户每月用水不超过,则每立方米收费元;若每户每月用水超过,则超过部分每立方米收费元,小颖家某月的水费不少于元,那么她家这个月的用水量(吨数为整数)至少是( ) A .B .C .D .6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( ) A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________. 2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:a b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________.三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.②(1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案: 一、选择题。
人教版数学七年级下册第九章检测卷(含解析)
人教版数学七年级下册第九章检测卷一、选择题:(每小题3分,共30分) 1.(3分)如果不等式ax <b 的解集是x <,那么a 的取值范围是( )A .a ≥0B .a ≤0C .a >0D .a <02.(3分)若0<a <1,则下列四个不等式中正确的是( ) A .a <1< B .a <<1 C .<a <1 D .1<<a3.(3分)若不等式组的解集是x >3,则m 的取值范围是() A .m ≤3 B .m >3 C .m <3 D .m=34.(3分)关于x 的不等式2x ﹣a ≤﹣1的解集如图所示,则a 的取值是()A .0B .﹣3C .﹣2D .﹣15.(3分)不等式组的解集在数轴上表示为( ) A . B .C .D .6.(3分)不等式组的解集为( )A .﹣2<x <4B .x <4或x ≥﹣2C .﹣2≤x <4D .﹣2<x ≤4学校:班级:姓名:考号:7.(3分)已知ab=4,若﹣2≤b≤﹣1,则a的取值范围是()A.a≥﹣4 B.a≥﹣2 C.﹣4≤a≤﹣1 D.﹣4≤a≤﹣28.(3分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.9.(3分)王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有()人.A.40 B.41 C.42 D.4310.(3分)如果关于x的不等式组无解,那么m的取值范围是()A.m>1 B.m≥1 C.m<1 D.m≤1二、填空题:(每小题3分,共30分)11.(3分)一次函数y=﹣2x+b中,当x=1时,y<1,当x=﹣1时,y>0.则b 的取值范围是.12.(3分)不等式2(x﹣3)≤2a+1的自然数解只有0、1、2三个,则a的取值范围是.13.(3分)不等式组的解集是x≤3,那么a的取值范围.14.(3分)若不等式组的解集是x>3,则m的取值范围是.15.(3分)不等式的最小整数解是.16.(3分)若不等式组无解,则a的取值范围是.17.(3分)若不等式组的解集是﹣1<x<1,则(a+b)2012= .18.(3分)已知不等式组,x的整数解是1、2、3,则最大整数解b 和最小整数a的差为.19.(3分)若不等式组的解集是空集,则a,b的大小关系是.20.(3分)已知关于x的不等式组只有5个整数解,则a的取值范围是.三、解答题:(共60分)21.(8分)解不等式组:,把解集在数轴上表示出来并写出非负整数解.22.(8分)如果关于x的不等式组整数解仅为1、2、3,那么适合条件的有序整数对(a,b)共有多少个?23.(10分)奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?24.(10分)附加题:某校组织部分师生到甲地考察,学校到甲地的全程票价为25元,对集体购票,客运公司有两种优惠方案供选择:方案1:所有师生按票价的88%购票;方案2:前20人购全票,从第21人开始,每人按票价的80%购票.你若是组织者,请你根据师生人数讨论选择哪种方案更省钱?25.(12分)已知关于x、y的方程组,且它的解是一对正数.(1)试用含m的式子表示方程组的解;(2)求实数m的取值范围;(3)化简|m﹣4|+|m+1|.26.(12分)为了更好地治理水质,保护环境,我县污水处理公司决定购买10台污水处理设备,现有A、B两种设备可供选择,月处理污水分别为240m3/月、200m3/月,经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)若污水处理公司购买设备的预算资金不超过105万元,你认为该公司有哪几种购买方案?(2)若每月需处理的污水约2040m3,在不突破资金预算的前提下,为了节约资金,又要保证治污效果,请你为污水处理公司设计一种最省钱的方案.参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)如果不等式ax<b的解集是x<,那么a的取值范围是()A.a≥0 B.a≤0 C.a>0 D.a<0【考点】C3:不等式的解集.【分析】根据不等式的解集中不等号的方向不变进而得出a的取值范围.【解答】解:∵不等式ax<b的解集是x<,∴a>0,故选:C.【点评】此题主要考查了不等式的解集,利用不等式的解集得出a的符号是解题关键.2.(3分)若0<a<1,则下列四个不等式中正确的是()A.a<1<B.a<<1 C.<a<1 D.1<<a【考点】C2:不等式的性质.【分析】代入一个特殊值计算比较即可.【解答】解:当a=0.5时,=2,故选A.【点评】代入特殊值进行比较可简化运算.3.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m≤3 B.m>3 C.m<3 D.m=3【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】先解不等式组,然然后根据不等式的解集,得出m的取值范围即可.【解答】解:,解①得,x>3;解②得,x>m,∵不等式组的解集是x>3,则m≤3.故选A.【点评】本题考查了解一元一次不等式组,根据的法则是:大大取大,小小取小,大小小大中间找,大大小小找不到.4.(3分)关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0 B.﹣3 C.﹣2 D.﹣1【考点】C4:在数轴上表示不等式的解集.【专题】11 :计算题.【分析】首先根据不等式的性质,解出x≤,由数轴可知,x≤﹣1,所以,=﹣1,解出即可;【解答】解:不等式2x﹣a≤﹣1,解得,x≤,由数轴可知,x≤﹣1,所以,=﹣1,解得,a=﹣1;故选:D.【点评】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)不等式组的解集在数轴上表示为()A. B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】分别求出各不等式的解集,并求出其公共解集,在数轴上表示出来即可.【解答】解:,由①得,x≥1;由②得,x<2,故此不等式组的解集为:1≤x<2.在数轴上表示为:故选D.【点评】本题考查的是在数轴上表示不等式的解集及解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.6.(3分)不等式组的解集为()A.﹣2<x<4 B.x<4或x≥﹣2 C.﹣2≤x<4 D.﹣2<x≤4【考点】CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,解①得:x≥﹣2,解②得:x<4,∴不等式组的解集为:﹣2≤x<4,故选:C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)已知ab=4,若﹣2≤b≤﹣1,则a的取值范围是()A.a≥﹣4 B.a≥﹣2 C.﹣4≤a≤﹣1 D.﹣4≤a≤﹣2【考点】C2:不等式的性质.【分析】根据已知条件可以求得b=,然后将b的值代入不等式﹣2≤b≤﹣1,通过解该不等式即可求得a的取值范围.【解答】解:由ab=4,得b=,∵﹣2≤b≤﹣1,∴﹣2≤≤﹣1,∴﹣4≤a≤﹣2.故选D.【点评】本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.(3分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组;D1:点的坐标;P5:关于x轴、y轴对称的点的坐标.【专题】11 :计算题.【分析】先得出点M关于x轴对称点的坐标为(1﹣2m,1﹣m),再由第一象限的点的横、纵坐标均为正可得出关于m的不等式,继而可得出m的范围,在数轴上表示出来即可.【解答】解:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴,解得:,在数轴上表示为:.故选:A.【点评】此题考查了在数轴上表示不等式解集的知识,及关于x轴对称的点的坐标的特点,根据题意得出点M对称点的坐标是解答本题的关键.9.(3分)王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有()人.A.40 B.41 C.42 D.43【考点】C9:一元一次不等式的应用.【分析】首先设王老师和他的学生共有x人,由题意得:5×人数>5元×8折×人数,根据不等关系列出不等式,再解不等式即可.【解答】解:设王老师和他的学生共有x人,由题意得:5x>5×80%×50,解得:x>40,因此至少有41人,故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系,列出不等式.10.(3分)如果关于x的不等式组无解,那么m的取值范围是()A.m>1 B.m≥1 C.m<1 D.m≤1【考点】CB:解一元一次不等式组.【分析】根据已知得出关于m的不等式,求出即可.【解答】解:∵x的不等式组无解,∴m+1≤3﹣m,解得:m≤1,故选D.【点评】本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的解集的应用,解此题的关键是能得出关于m的不等式.二、填空题:(每小题3分,共30分)11.(3分)一次函数y=﹣2x+b中,当x=1时,y<1,当x=﹣1时,y>0.则b 的取值范围是﹣2<b<3 .【考点】F5:一次函数的性质.【分析】将x=1时,y<1及x=﹣1时,y>0分别代入y=﹣2x+b,得到关于b的一元一次不等式组,解此不等式组,即可求出b的取值范围.【解答】解:由题意,得,解此不等式组,得﹣2<b<3.故答案为﹣2<b<3.【点评】本题考查了一次函数的性质,将已知条件转化为一元一次不等式组是解题的关键.12.(3分)不等式2(x﹣3)≤2a+1的自然数解只有0、1、2三个,则a的取值范围是﹣1.5≤a<﹣0.5 .【考点】C7:一元一次不等式的整数解.【分析】首先求得不等式的解集,然后根据不等式的自然数解只有0、1、2三个,即可得到一个关于a的不等式,从而求得a的范围.【解答】解:解不等式得:x≤a+3.5.不等式的自然数解只有0、1、2三个,则自然数解是:0,1,2.根据题意得:2≤a+3.5<3,解得:﹣1.5≤a<﹣0.5.故答案为﹣1.5≤a<﹣0.5.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.(3分)不等式组的解集是x≤3,那么a的取值范围a>1 .【考点】CB:解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解,然后根据不等式的同小取小列出不等式,然后求解即可.【解答】解:,解不等式②得,x≤3,∵不等式组的解集是x≤3,∴2a+1>3,解得a>1,∴a的取值范围a>1.故答案为:a>1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.(3分)若不等式组的解集是x>3,则m的取值范围是m≤3 .【考点】C3:不等式的解集.【专题】2B :探究型.【分析】根据“同大取较大”的法则进行解答即可.【解答】解:∵不等式组的解集是x>3,∴m≤3.故答案为:m≤3.【点评】本题考查的是不等式的解集,熟知“同大取较大”的法则是解答此题的关键.15.(3分)不等式的最小整数解是x=3 .【考点】CC:一元一次不等式组的整数解.【分析】先求出一元一次不等式组的解集,再根据x是整数得出最小整数解.【解答】解:,解不等式①,得x≥1,解不等式②,得x>2,所以不等式组的解集为x>2,所以最小整数解为3.故答案为:x=3.【点评】此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(3分)若不等式组无解,则a的取值范围是a≥2 .【考点】CB:解一元一次不等式组.【分析】根据“大大小小找不到(无解)”的法则求解,但是要注意当两数相等时,解集也是空集即无解,不要漏掉相等这个关系.【解答】解:不等式组无解,根据大大小小找不到(无解)可知:2a﹣1≥a+1,解得a≥2.故答案为:a≥2.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.但是要注意当两数相等时,解集也是空集即无解,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(3分)若不等式组的解集是﹣1<x<1,则(a+b)2012= 1 .【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】先求出两个不等式的解集,再根据解集列出方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:,解不等式①得,x<,解不等式②得,x>a+2,所以,不等式组的解集是a+2<x<,∵不等式组的解集是﹣1<x<1,∴a+2=﹣1,=1,解得a=﹣3,b=2,∴(a+b)2012=(﹣3+2)2012=1.故答案为:1.【点评】本题主要考查了一元一次不等式组解集的求法,根据不等式组的解集列出关于a、b的方程是解题的关键.18.(3分)已知不等式组,x的整数解是1、2、3,则最大整数解b 和最小整数a的差为30 .【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解进而求得a、b的取值范围,得出答案即可.【解答】解:不等式组解集为≤x≤,因为整数解为1、2、3,所以0<≤1,3≤<4,即0<a≤9,24≤b<32;所因此b的最大整数为31,a的最小整数为1,差为31﹣1=30.故答案为:30.【点评】此题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(3分)若不等式组的解集是空集,则a,b的大小关系是a≤b .【考点】C3:不等式的解集.【分析】因为不等式组的解集是空集,利用不等式组解集的确定方法即可求出答案.【解答】解:∵不等式组的解集是空集,∴a≤b.故答案为:a≤b.【点评】本题考查由不等式组解集的表示方法来确定a,b的大小,也可以利用数轴来求解.20.(3分)已知关于x的不等式组只有5个整数解,则a的取值范围是﹣4<a≤﹣3 .【考点】CC:一元一次不等式组的整数解.【分析】先解每一个不等式,再根据不等式组有5个整数解,确定含a的式子的取值范围.【解答】解:,解不等式①,得x≥a,解不等式②,得x<2,∵不等式组有5个整数解,即:1,0,﹣1,﹣2,﹣3,∴﹣4<a≤﹣3,故答案为:﹣4<a≤﹣3.【点评】本题考查了一元一次不等式组的整数解.关键是先解每一个不等式,再根据整数解的个数,确定含a的代数式的取值范围.三、解答题:(共60分)21.(8分)解不等式组:,把解集在数轴上表示出来并写出非负整数解.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【专题】11 :计算题.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x>﹣1;由②得:x≤4,则不等式组的解集为﹣1<x≤4,即不等式组的非负整数解为0,1,2,3,4.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.22.(8分)如果关于x的不等式组整数解仅为1、2、3,那么适合条件的有序整数对(a,b)共有多少个?【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式组的解,得出关于a、b的不等式组,求出整数a、b的值,即可得出答案.【解答】解:∵解不等式9x﹣a≥0得:x≥,解不等式8x﹣b<0得:x<,∴不等式组的解集是≤x<,∵关于x的不等式组整数解仅有1,2,3,∴0<≤1,3<≤4,解得:0<a≤9,24<b≤32,即a的值是1,2,3,4,5,6,7,8,9,b的值是25,26,27,28,29,30,31,32,即适合这个不等式组的整数a,b组成的有序数对(a,b)共有72个.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出a、b的值.23.(10分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?【考点】C9:一元一次不等式的应用.【专题】12 :应用题.【分析】本题可设1楼有x间房,则2楼有x+5间房,再根据题意可列出不等式:4x<48,5x>48,且3(x+5)<48,4(x+5)>48,再分别计算出x的取值,在数轴上表示出来,看相交的部分有哪些即为答案.【解答】解:设1楼有x间房,则2楼有x+5间房,根据题意有:4x<48,x<12,5x>48,x>9.6,且3(x+5)<48,即x<11,4(x+5)>48,x>7.在数轴上可表示为:所以9.6<x<11因此x=10答:一楼有10间房.【点评】本题考查的是一元一次不等式组的运用,解此类题目常常要结合数轴来判断.24.(10分)附加题:某校组织部分师生到甲地考察,学校到甲地的全程票价为25元,对集体购票,客运公司有两种优惠方案供选择:方案1:所有师生按票价的88%购票;方案2:前20人购全票,从第21人开始,每人按票价的80%购票.你若是组织者,请你根据师生人数讨论选择哪种方案更省钱?【考点】C9:一元一次不等式的应用.【专题】22 :方案型.【分析】方案1的收费=师生人数×25×88%,方案2的收费=20×25+(师生人数﹣20)×25×80%,将两者的收费进行比较,从而可根据师生人数确定选择何种方案.【解答】解:设师生人数为x人,则按方案1:收费为25×88%•x=22x按方案2收费为:25×20+25(x﹣20)80%=20x+100答:(1)由22x<20x+100得x<50,即当师生人数<50人时,选择方案1更省钱;(2)由22x=20x+100得x=50,即当师生人数等于50人时,两种方案所需的费用一样多;(3)由22x>20x+100得x>50,即当师生人数>50人时,选择方案2更省钱.【点评】本题主要是根据师生人数选择确定选择方案.方案设计的问题是中考数学中就可以.25.(12分)已知关于x、y的方程组,且它的解是一对正数.(1)试用含m的式子表示方程组的解;(2)求实数m的取值范围;(3)化简|m﹣4|+|m+1|.【考点】97:二元一次方程组的解;CB:解一元一次不等式组.【分析】(1)解方程组即可得出方程组的解,(2)由方程组的解是一对正数,列出不等式组求解即可.(3)利用m的取值范围求解.【解答】解:(1)解方程组得,(2)∵方程组的解是一对正数.∴解得<m<4.(3)∵<m<4.∴|m﹣4|+|m+1|=4﹣m+m+1=5.【点评】本题主要考查了二元一次方程组的解及解一元一次不等式组,解题的关键是利用解是一对正数求出m的取值范围.26.(12分)为了更好地治理水质,保护环境,我县污水处理公司决定购买10台污水处理设备,现有A、B两种设备可供选择,月处理污水分别为240m3/月、200m3/月,经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)若污水处理公司购买设备的预算资金不超过105万元,你认为该公司有哪几种购买方案?(2)若每月需处理的污水约2040m3,在不突破资金预算的前提下,为了节约资金,又要保证治污效果,请你为污水处理公司设计一种最省钱的方案.【考点】C9:一元一次不等式的应用.【分析】(1)设每台A型设备和每台B型设备各需要x万元、y万元,由题意得:买一台A型设备的价钱﹣买一台B型设备的价钱=2万元;购买3台B型设备﹣购买2台A型设备比=6万元.根据等量关系列出方程组,解方程组即可;再设应购置A型号的污水处理设备a台,则购置B型号的污水处理设备(10﹣a)台,由于要求资金不能超过105万元,即购买资金12a+10(10﹣a)≤105万元,根据不等关系列出不等式,再解不等式,求出非负整数解即可;(2)再设应购置A型号的污水处理设备m台,则购置B型号的污水处理设备(10﹣m)台,由于要求资金不能超过105万元,即购买资金12m+10(10﹣m)≤105万元,再根据“每台A型设备每月处理污水240吨,每台B型设备每月处理污水200吨,每月处理的污水不低于2040吨”可得不等关系:240m+200(10﹣m)≥2040吨;把两个不等式组成不等式组,由此求出关于A型号处理机购买的几种方案,分类讨论,选择符合题意得那个方案即可.【解答】解:(1)设每台A型设备和每台B型设备各需要x万元、y万元,由题意得:,解得.设应购置A型号的污水处理设备a台,则购置B型号的污水处理设备(10﹣a)台,12a+10(10﹣a)≤105,解得:a≤2.5,∵a为非负整数,∴a=0,1,2,购买方案:①A型设备1台,B型设备9台;②A型设备2台,B型设备8台;③A型设备0台,B型设备10台;(2)设应购置A型号的污水处理设备m台,则购置B型号的污水处理设备(10﹣m)台,由题意得:,解得:1≤m≤2.5,∵m为整数,∴m=1,2,则B型购买的台数依次为9台,8台;∵A型号的污水处理设备12万元一台,比B型的贵,∴少买A型,多买B型的最省钱,故买A型1台,B型9台,答:该公司购买方案A型设备1台,B型设备9台第一种方案最省钱.【点评】此题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.。
人教版七年级数学下册《第九章不等式与不等式组》测试卷-有答案
人教版七年级数学下册《第九章不等式与不等式组》测试卷-有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.若,则下列式子正确的是()A.B.C.D.2.某超市花费元购进苹果千克,销售中有的正常损耗,为避免亏本其它费用不考虑,售价至少定为多少元千克?设售价为元千克,根据题意所列不等式正确的是()A.B.C.D.3.不等式的解集为()A.B.C.D.4.不等式组的解集在数轴上表示为()A.B.C.D.5.已知的解满足,则的取值范围是()A.B.C.D.6.某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至多可以答错或不答的试题道数为()A.5 B.6 C.7 D.87.某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折8.如图点A表示的数是-2,点B表示的数是3,点C是(与点A、B不重合)线段AB上的一点,且点C表示的数是,则x的取值范围是()A.B.C.D.二、填空题9.不等式组的整数解是.10.已知不等式组无解,则的取值范围是.11.某超市以每个50元的进价购入100个玩具,并以每个75元的价格销售,两个月后玩具的销售款已超过这批玩具的进货款,这时至少已售出玩具.12.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排人种茄子.13.世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有人进公园,买40张门票反而合算.三、计算题14.解不等式组,并把解集在数轴上表示出来.15.若关于x的不等式组恰有三个整数解,求实数a的取值范围.16.某市电力部门]实行两种电费计价方法.方法一是使用“峰谷电”:每天8:00至22:00,用电每千瓦时收费0.56元(“峰电”价);22 :00到次日8:00,每千瓦时收费0.28元(“谷电”价).方法二是不使用“峰谷电”:每千瓦时均收费0.53元如果小林家上月总用电量为140千瓦时,那么当“峰电”用量为多少时,使用“峰谷电”比较合算?17.我区某中学体育组因高中教学需要本学期购进篮球和排球共80个,共花费5800元,已知篮球的单价是80元/个,排球的单价是50元/个.(1)篮球和排球各购进了多少个(列方程组解答)?(2)因该中学秋季开学准备为初中也购买篮球和排球,教学资源实现共享,体育组提出还需购进同样的篮球和排球共40个,但学校要求花费不能超过2810元,那么篮球最多能购进多少个(列不等式解答)?18.某社区原来每天需要处理生活垃圾920吨,刚好被12个A型转运站和10个B型转运站处理.已知一个A型转运站比一个B型转运站每天多处理7吨生活垃圾.(1)每个A型或B型转运站每天处理生活垃圾各多少吨?(2)由于垃圾分类要求的提高,每个转运站每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该社区每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型转运站共5个,试问至少需要增设几个A型转运站才能当日处理完所有生活垃圾?参考答案:1.C2.A3.D4.A5.C6.B7.B8.A9.-2 , -1 ,0,1,210.m≥-311.6712.413.3314.解:解不等式①,得:解不等式②,得:则不等式组的解集为:将不等式组的解集表示在数轴上如图:15.解:解不等式①,得解不等式②,得 .∵不等式组恰有三个整数解, .16.解:设小林家每月“峰电”用电量为x千瓦时则0.56x+0.28(140-x) <0.53×140解得x<125.即当“峰电”用电量小于125千瓦时使用“峰谷电”比较合算17.(1)解:设购进篮球x个,购进排球y个根据题意得:解得: .答:购进篮球60个,购进排球20个.(2)解:设购进篮球m个,则购进排球(40-m)个根据题意得:80m+50(40-m)≤2810解得:m≤27.答:篮球最多能购进27个.18.(1)解:设每个B型转运站每天处理生活垃圾x吨,则每个A型转运站每天处理生活垃圾吨.根据题意可得解得:.答:每个B型点位每天处理生活垃圾38吨;(2)解:设需要增设y个A型转运站才能当日处理完所有生活垃圾由(1)得每个A型转运站每天处理生活垃圾45吨分类要求提高后,每个A型点位每天处理生活垃圾(吨)每个B型转运站每天处理生活垃圾(吨)根据题意可得:解得∵y是正整数,∴符合条件的y的最小值为3答:至少需要增设3个A型转运站才能当日处理完所有生活垃圾.。
人教版七年级数学下册第九章测试卷含答案
第九章综合训练(满分120分)一、选择题.(每小题4分,共32分)1。
下列是一元一次不等式的有()x>0,<-1,2x<-2+x,x+y>-3,x=-1,x2>3,≥0.A。
1个B。
2个C。
3个 D.4个2.已知a=2b,若-2≤b≤-1,则a的取值范围是()A。
a≥-4 B.a≥-2C.-4≤a≤-1 D。
-4≤a≤-23.下列命题正确的是()A.若a>b,b<c,则a>cB.若a>b,则a c>b cC.若a>b,则a c2>b c2D。
若a c2>b c2,则a>b4。
x=-1不是下列不等式的解的是()A.2x+1≤-3 B。
2x-1≥-3C。
-2x+1≥3 D。
-2x-1≤35。
不等式组的解集在数轴上表示为()6。
已知关于x的方程2x+4=m-x的解为负数,则m的取值范围是()7.若关于x的不等式组的解集为2<x<3,则a,b的值分别为()A.-2,3 B。
2,-3C.3,-2 D。
-3,28。
(2017·湖北恩施州)关于x的不等式组无解,那么m的取值范围为()A.m≤-1 B。
m<-1C。
-1<m≤0 D.-1≤m<0二、填空题.(每小题4分,共32分)9.下列命题中正确的是_____________。
(填序号)①如果a<b,那么ac2<bc2;②若关于x的不等式(a-1)x>1-a的解集是x <-1,则a<1;③5≤5x+6≤21的整数解有4个.10.(甘肃天水中考)若点P(a,4-a)是第一象限的点,则a的取值范围是_____________.11.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值范围为_____________。
12。
不等式2x-1≤6的正整数解是_____________。
13.若不等式组有解,则a的取值范围是_____________。
14.不等式(x-m)>3-m的解集为x>1,则m的值为_____________.15.我们定义,例如=2×5-3×4=10-12=-2,若x,y均为整数,且满足1<<3,则x+y的值是_____________.16.元旦某班班主任购买了一批贺卡准备送给学生,若每人三张,那么还余59张;若每人5张,那么最后一个学生分到贺卡,但不足四张.班主任购买的贺卡共_____________张.三、解答题.(共56分)17.(12分)解下列不等式及不等式组,并把它们的解集在数轴上表示出来.(1)5x+15>4x-13;(2)(3)(广西南宁中考)18.(7分)若不等式2(x+1)-5<3(x-1)+4的最小整数解是关于x的方程x-mx=5的解,求式子m2-2m+2017的值。
人教版七年级下册数学第九章检测题(附答案)
人教版七年级下册数学第九章检测题(附答案)一、单选题(共12题;共24分)1.关于x的不等式-2x+a≥2的解集如图所示,a的值是()A. 0B. 2C. -2D. -42.某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是()A. t>26B. t≥12C. 12<t<26D. 12≤t≤263.某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打()A. 六折B. 七折C. 八折D. 九折4.某商品进价加价25%后出售,最后降价处理库存,要使后续销售不亏本,售价降价不能高于()A. 20%B. 25%C. 30%D. 40%5.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A. B. C. D.6.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A. x≥-1B. x>-1C. -3<x≤-1D. x>-37.若a>b,则下列不等式成立的是()A. a﹣1<b﹣1B. ﹣3a>﹣2bC. a>b﹣16D. <8.若a>b,则()A. a>﹣bB. a<﹣bC. ﹣2a>﹣2bD. ﹣2a<﹣2b9.一元一次不等式x+1≥2的解在数轴上表示为()A. B. C. D.10.若x<﹣5,则下列不等式成立的是()A. x2>﹣5xB. x2≥﹣5xC. x2<﹣5xD. x2≤﹣5x11.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A. 4B. 4或5C. 5或6D. 612.从﹣3,﹣1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是A. ﹣2 B. ﹣3 C. - D.二、填空题(共8题;共16分)13.已知有理数x满足:,若的最小值为a,最大值为b,则ab=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.若a >b ,则下列式子正确的是( ) A .-4a >-4b B.12a <12bC .4-a >4-bD .a -4>b -42.将不等式3x -2<1的解集表示在数轴上,正确的是( )3.如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )A.⎩⎪⎨⎪⎧x ≥2,x >-3B.⎩⎪⎨⎪⎧x ≤2,x <-3C.⎩⎪⎨⎪⎧x ≥2,x <-3D.⎩⎪⎨⎪⎧x ≤2,x >-34.不等式13(x -m )>3-m 的解集为x >1,则m 的值为( )A .1B .-1C .4D .-45.不等式组⎩⎪⎨⎪⎧x -1>1,x +8<4x -1的解集是( )A .x >3B .x <3C .x <2D .x >26.解不等式2x -12-5x +26-x ≤-1,去分母,得( )A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-17.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h8.关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,3x -1>2(x -1)无解,则m 的取值范围是( )A .m ≤-1B .m <-1C .-1<m ≤0D .-1≤m <09.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本10.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)二、填空题(每小题3分,共24分)11.不等式-12x +3<0的解集是________.12.若点A (x +3,2)在第二象限,则x 的取值范围是________. 13.当x ________时,式子3+x 的值大于式子12x -1的值.14.不等式组⎩⎪⎨⎪⎧x ≤3x +2,x -1<2-2x 的整数解是________.15.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.16.不等式组⎩⎪⎨⎪⎧x +1>0,a -13x <0的解集是x >-1,则a 的取值范围是________.17.定义一种法则“”如下:ab =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.18.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.三、解答题(共66分) 19.(8分)解不等式(组):(1)2x -1>3x -12;(2)⎩⎪⎨⎪⎧2x +5>3(x -1)①,4x >x +72②.20.(8分)x 取哪些整数值时,不等式4(x +1)≥2x -1与12x ≤2-32x 都成立?21.(8分)若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12x -mx =6的解,求m 2-2m -11的值.22.(10分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧3x +2y =5a +17,2x -3y =12a -6的解满足x >0,y >0,求实数a 的取值范围.23.(10分)已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有三个整数解,求实数a 的取值范围.24.(10分)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数).25.(12分)为解决中小学大班额问题,东营市各县区今年将扩建部分中小学,某县计划对A、B两类学校进行扩建,根据预算,扩建2所A类学校和3所B类学校共需资金7800万元,扩建3所A类学校和1所B类学校共需资金5400万元.(1)扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划扩建A、B两类学校共10所,扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的扩建资金分别为每所300万元和500万元.请问共有哪几种扩建方案?参考答案与解析1.D 2.D 3.D 4.C 5.A 6.C 7.B 8.A 9.D10.C 解析:A ,B ,D 成立,C 的反例:[-5.4-3.2]=[-8.6]=-9,[-5.4]+[-3.2]=-6+(-4)=-10.∵-9>-10,∴[-5.4-3.2]>[-5.4]+[-3.2],∴[x +y ]≤[x ]+[y ]不成立.11.x >6 12.x <-3 13.>-8 14.-1,015.8 解析:设签字笔买了x 支,则圆珠笔买了(15-x )支,由题意得26<2x +1.5(15-x )<27,解得7<x <9.∵x 是整数,∴x =8.16.a ≤-1317.m ≥-4 解析:由题意可知-2m -5≤3,解得m ≥-4.18.131或26或5或45 解析:若在输出656前执行了一次程序,则5x +1=656,解得x =131;若执行了二次程序,则5x +1=131,解得x =26;若执行了三次程序,则5x +1=26,解得x =5;若执行了四次程序,则5x +1=5,解得x =45.若执行了五次程序,则5x +1=45,解得x =-125.∵x 为正数,∴x =-125不合题意,舍去,综上所述,满足条件的所有x 的值是131或26或5或45.19.解:(1)去分母得2(2x -1)>3x -1,解得x >1.(4分) (2)解不等式①得x <8,(5分)解不等式②得x >1.(6分)所以不等式组的解集为1<x <8.(8分)20.解:依题意有⎩⎪⎨⎪⎧4(x +1)≥2x -1,12x ≤2-32x ,(2分)解得-52≤x ≤1.(5分)∵x 取整数值,∴当x 为-2,-1,0和1时,不等式4(x +1)≥2x -1与12x ≤2-32x 成立.(8分)21.解:解不等式3(x +1)-1<4(x -1)+3,得x >3.(3分)它的最小整数解是x =4.(4分)把x =4代入方程12x -mx =6,得m =-1,(6分)∴m 2-2m -11=-8.(8分)22.解:解方程组⎩⎪⎨⎪⎧3x +2y =5a +17,2x -3y =12a -6,得⎩⎪⎨⎪⎧x =3a +3,y =4-2a .(5分)∵x >0,y >0,∴⎩⎪⎨⎪⎧3a +3>0,4-2a >0,(8分)解得-1<a <2.(10分)23.解:⎩⎪⎨⎪⎧5x +2>3(x -1)①,12x ≤8-32x +2a ②.解不等式①,得x >-52,解不等式②,得x ≤4+a ,∴原不等式组的解集为-52<x ≤4+a .(8分)∵原不等式组有三个整数解,∴0≤4+a <1,∴-4≤a <-3.(10分)24.解:(1)设这个月有x 天晴天,由题意得30x +5(30-x )=550,(3分)解得x =16.(4分)答:这个月有16天晴天.(5分)(2)设需要y 年可以收回成本,由题意得(550-150)·(0.52+0.45)·12y ≥40000,(8分)解得y ≥8172291.(9分)∵y 是整数,∴至少需要9年才能收回成本.(10分)25.解:(1)设扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意得⎩⎪⎨⎪⎧2x +3y =7800,3x +y =5400,解得⎩⎪⎨⎪⎧x =1200,y =1800.(4分)答:扩建一所A 类学校所需资金为1200万元,扩建一所B 类学校所需资金为1800万元.(5分)(2)设今年扩建A 类学校a 所,则扩建B 类学校(10-a )所,由题意得⎩⎪⎨⎪⎧(1200-300)a +(1800-500)(10-a )≤11800,300a +500(10-a )≥4000, 解得3≤a ≤5.(10分)∵a 取整数,∴a =3,4,5.即共有3种方案:方案一:扩建A 类学校3所,B 类学校7所;方案二:扩建A 类学校4所,B 类学校6所;方案三:扩建A 类学校5所,B 类学校5所.(12分)。