人工神经网络基础 PPT
合集下载
人工神经网络基础与应用-幻灯片(1)
24
4.4.2 根据连接方式和信息流向分类
反馈网络
y1 y2 ... y n 特点
仅在输出层到输入层存在反 馈,即每一个输入节点都有 可能接受来自外部的输入和 来自输出神经元的反馈,故 可用来存储某种模式序列。
应用
x 1 x 2 .... xn
神经认知机,动态时间序列 过程的神经网络建模
25
4.4.2 根据连接方式和信息流向分类
w ij : 从ui到xj的连接权值(注意其下标与方向);
s i : 外部输入信号;
y i : 神经元的输出
18
4.3.2 人工神经元的激励函数
阈值型 f 1 0
分段线性型
f
f max k
f
Neit10
Nei t0 Nei t0
Net i
0
0NietNie0 t
fNiet kNietNie0tNie0tNietNi1 et
典型网络
回归神经网络(RNN)
x 1 x 2 .... xn
27
第4.5节 人工神经网络的学习
连接权的确定方法: (1)根据具体要求,直接计算出来,如Hopfield网络作 优化计算时就属于这种情况。 (2)通过学习得到的,大多数人工神经网络都用这种方 法。
学习实质: 针对一组给定输入Xp (p=1,2,…, N ),通过学习使网络动态 改变权值,从而使其产生相应的期望输出Yd的过程。
树 突
细胞核 突
触
细胞膜 细胞体
轴 突
来自其 它细胞 轴突的 神经末 稍
神经末稍
11
4.2.1 生物神经元的结构
突触:是神经元之间的连接 接口。一个神经元,通过其 轴突的神经末梢,经突触与 另一个神经元的树突连接, 以实现信息的传递。
4.4.2 根据连接方式和信息流向分类
反馈网络
y1 y2 ... y n 特点
仅在输出层到输入层存在反 馈,即每一个输入节点都有 可能接受来自外部的输入和 来自输出神经元的反馈,故 可用来存储某种模式序列。
应用
x 1 x 2 .... xn
神经认知机,动态时间序列 过程的神经网络建模
25
4.4.2 根据连接方式和信息流向分类
w ij : 从ui到xj的连接权值(注意其下标与方向);
s i : 外部输入信号;
y i : 神经元的输出
18
4.3.2 人工神经元的激励函数
阈值型 f 1 0
分段线性型
f
f max k
f
Neit10
Nei t0 Nei t0
Net i
0
0NietNie0 t
fNiet kNietNie0tNie0tNietNi1 et
典型网络
回归神经网络(RNN)
x 1 x 2 .... xn
27
第4.5节 人工神经网络的学习
连接权的确定方法: (1)根据具体要求,直接计算出来,如Hopfield网络作 优化计算时就属于这种情况。 (2)通过学习得到的,大多数人工神经网络都用这种方 法。
学习实质: 针对一组给定输入Xp (p=1,2,…, N ),通过学习使网络动态 改变权值,从而使其产生相应的期望输出Yd的过程。
树 突
细胞核 突
触
细胞膜 细胞体
轴 突
来自其 它细胞 轴突的 神经末 稍
神经末稍
11
4.2.1 生物神经元的结构
突触:是神经元之间的连接 接口。一个神经元,通过其 轴突的神经末梢,经突触与 另一个神经元的树突连接, 以实现信息的传递。
《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
人工神经网络教学课件
2006年
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。
《人工神经网络》课件
拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。
神经网络控制基础人工神经网络课件ppt课件
其他工业领域应用案例
电力系统
神经网络控制可以应用于电力系统的负荷预测、故障诊断和稳定性 分析等方面,提高电力系统的运行效率和安全性。
化工过程控制
神经网络控制可以对化工过程中的各种参数进行实时监测和调整, 确保生产过程的稳定性和产品质量。
航空航天
神经网络控制在航空航天领域的应用包括飞行器的姿态控制、导航控 制和故障诊断等,提高飞行器的安全性和性能。
05 神经网络控制性能评估与优化
性能评估指标及方法
均方误差(MSE)
衡量神经网络输出与真实值之间的误差,值越小表示性能越好。
准确率(Accuracy)
分类问题中正确分类的样本占总样本的比例,值越高表示性能越好。
交叉验证(Cross-Validation)
将数据集分成多份,轮流作为测试集和训练集来评估模型性能。
强化学习在神经网络控制中应用
强化学习原理
通过与环境进行交互并根据反馈信号进行学习的方法,使神经网络能够自主学习 到最优控制策略。
强化学习算法
包括Q-learning、策略梯度等算法,用于求解神经网络控制中的优化问题,实现 自适应控制。
04 神经网络控制系统设计与实现
系统需求分析
功能性需求
明确系统需要实现的功能,如 数据输入、处理、输出等。
非监督学习
无需已知输出数据,通过挖掘输入数 据中的内在结构和特征进行学习,常 用于聚类、降维等任务。
深度学习在神经网络控制中应用
深度学习模型
通过构建深层神经网络模型,实现对复杂非线性系统的建模与控制,提高控制 精度和性能。
深度学习优化算法
采用梯度下降等优化算法对深度学习模型进行训练,提高训练效率和模型泛化 能力。
第6章人工神经网络算法ppt课件
1.基本概念 1.3 主要的神经网络模型 目前使用的比较典型的一些神经网络模型主要有以下几类:
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;
人工神经网络ppt课件
LOGO
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络PPT演示课件
感知器的学习算法
采用感知器学习规则进行训练。训练步骤为:
① 对各初始权值w0j(0),w1j(0),w2j(0),…,wnj(0),j=1,2,…,m(m为计算层的节点数) 赋予较小的非零随机数;
② 输入样本对{Xp,dp},其中Xp=(-1, x1p , x2p ,…, xnp ),dp为期望的输出向量(教师信 号),上标p代表样本对的模式序号,设样本集中的样本总数为P,则p=1,2,…,P;
③
计算各节点的实际输出
o
p j
(t
)
sgn[X
T j
(t)
X
],
j 1,2,, m
;
④
调整各节点对应的权值,Wj
(t
1)
Wj
(t)
[dLeabharlann p jop j
]X
p
,
j 1,2,, m
,其中η
为学习率,用于控制调整速度,太大会影响训练的稳定性,太小则使训练的收敛
速度变慢,一般取0<η ≤1;
x1
oj Wj
x2 ······ xi ······xn
由方程 w1 j x1 w2 j x2 Tj 0 确定的直线成为二维输入样本空间上的一条分界线。
② 设输入向量X=(x1,x2,x3)T,则三个输入分量在几何上构成一个三维空间。节点j的
输出为
1, o j 1,
w1 j x1 w2 j x2 w3 j x3 Tj 0 w1 j x1 w2 j x2 w3 j x3 Tj 0
智能信息处理技术
华北电力大学
1
第5章 人工神经网络
1 人工神经网络基础知识 2 前馈神经网络 3 自组织神经网络 4 反馈神经网络
第一章 人工神经网络概述_PPT幻灯片
2. 希望在理论上寻找新的突破,建立新的专 用/通用模型和算法。
3. 进一步对生物神经系统进行研究,不断地 丰富对人脑的认识。
人工神经网络
人工神经网络的特点:
(1)高度的并行性 (2)高度的非线性全局作用 (3)良好的容错性与联想记忆功能 (4)强大的自适应、自学习功能
第二节 人工神经网络的基本结构与模型
人工神经网络
第一节 人工神经网络的概念与发展
T.Kohonen的定义:“人工神经网络是由 具有适应性的简单单元组成的广泛并行互 连的网络,它的组织能够模拟生物神经系 统对真实世界物体所作出的交互反应。”
人工神经网络
历史回顾
➢萌芽期(20世纪40年代) ➢第一高潮期(1950~1968) ➢反思期(1969~1982) ➢第二高潮期(1983~1990) ➢再认识与应用研究期(1991~)
科学发展大趋势
New Society New Education
New Sciences
Info
Bio
Enhancing
Human
Performance
Nano
Cogno
New Industries
New Applications
New Humanbeing
技术创新浪潮的经济长波规律
水力 纺织 铁
人工神经网络
简单神经元网络及其简化结构图
(1)细胞体 (2)树突 (3)轴突(4)突触
人工神经网络
人工神经元模型
输入分量pj(j=1,2,…,r) 权值分量wj(j=1,2,…,r)
激活函数 f(·) 偏差(bias) b
人工神经网络
权值和输入的矩阵形式可以由W的行矢量和 P的列矢量表示:
3. 进一步对生物神经系统进行研究,不断地 丰富对人脑的认识。
人工神经网络
人工神经网络的特点:
(1)高度的并行性 (2)高度的非线性全局作用 (3)良好的容错性与联想记忆功能 (4)强大的自适应、自学习功能
第二节 人工神经网络的基本结构与模型
人工神经网络
第一节 人工神经网络的概念与发展
T.Kohonen的定义:“人工神经网络是由 具有适应性的简单单元组成的广泛并行互 连的网络,它的组织能够模拟生物神经系 统对真实世界物体所作出的交互反应。”
人工神经网络
历史回顾
➢萌芽期(20世纪40年代) ➢第一高潮期(1950~1968) ➢反思期(1969~1982) ➢第二高潮期(1983~1990) ➢再认识与应用研究期(1991~)
科学发展大趋势
New Society New Education
New Sciences
Info
Bio
Enhancing
Human
Performance
Nano
Cogno
New Industries
New Applications
New Humanbeing
技术创新浪潮的经济长波规律
水力 纺织 铁
人工神经网络
简单神经元网络及其简化结构图
(1)细胞体 (2)树突 (3)轴突(4)突触
人工神经网络
人工神经元模型
输入分量pj(j=1,2,…,r) 权值分量wj(j=1,2,…,r)
激活函数 f(·) 偏差(bias) b
人工神经网络
权值和输入的矩阵形式可以由W的行矢量和 P的列矢量表示:
神经计算基础(人工神经网络基础) PPT
脑的一些基本特征,同时使得人工神经网络具有良 好的可实现性。
人们期待着,通过大家的不懈努力,在不久的将来,能在 这两种技术的研究上以及其有机结合方面有所突破,也希 望在方法上有一个新的突破,真正打开智能的大门。
IIP’2011-2012(1)
3
3.1 人工神经网络基础
人工神经网络是根据人们对生物神经网络的研究成果设计 出来的,它由一系列的神经元及其相应的联接构成,具有 良好的数学描述,不仅可以用适当的电子线路来实现,更 可以方便的用计算机程序加以模拟。
3 神经计算基础
3.1 人工神经网络基础
School of Information Science & Technology Dalian Maritime University
目录
3 神经计算基础 3.1 人工神经网络基础 3.1.1 人工神经网络的提出 3.1.2 人工神经网络的特点 3.1.3 历史回顾 3.1.4 生物神经网络 3.1.5 人工神经元 3.1.6 人工神经网络的拓扑特性 3.1.7 存储与映射 3.1.8 人工神经网络的训练
✓ 进化主义(或者叫做行动/响应)学派。
IIP’2011-2012(1)
10
物理符号系统
物理符号系统的定义:
✓ 因为信息需要在一定的载体上以某种规定的形式表达出来,
✓ 习惯上,人们用一系列的基本符号以及组合这些符号的一些规则去表 达一些信息和行为,
✓ 这些基本符号以及组合这些符号的规则就是所谓的物理符号系统。
首先简要介绍智能和人工智能,然后简要介绍人工神经网 络的发展过程及其基本特点。
然后将介绍人工神经网络的基本知识,主要包括:
✓ 基本的生物神经网络模型, ✓ 人工神经元模型及其典型的激活函数; ✓ 人工神经网络的基本拓扑特性, ✓ 存储类型(CAM-LTM,AM-STM)及映象, ✓ 有导师(Supervised)训练与无导师(Unsupervised)训练。
人们期待着,通过大家的不懈努力,在不久的将来,能在 这两种技术的研究上以及其有机结合方面有所突破,也希 望在方法上有一个新的突破,真正打开智能的大门。
IIP’2011-2012(1)
3
3.1 人工神经网络基础
人工神经网络是根据人们对生物神经网络的研究成果设计 出来的,它由一系列的神经元及其相应的联接构成,具有 良好的数学描述,不仅可以用适当的电子线路来实现,更 可以方便的用计算机程序加以模拟。
3 神经计算基础
3.1 人工神经网络基础
School of Information Science & Technology Dalian Maritime University
目录
3 神经计算基础 3.1 人工神经网络基础 3.1.1 人工神经网络的提出 3.1.2 人工神经网络的特点 3.1.3 历史回顾 3.1.4 生物神经网络 3.1.5 人工神经元 3.1.6 人工神经网络的拓扑特性 3.1.7 存储与映射 3.1.8 人工神经网络的训练
✓ 进化主义(或者叫做行动/响应)学派。
IIP’2011-2012(1)
10
物理符号系统
物理符号系统的定义:
✓ 因为信息需要在一定的载体上以某种规定的形式表达出来,
✓ 习惯上,人们用一系列的基本符号以及组合这些符号的一些规则去表 达一些信息和行为,
✓ 这些基本符号以及组合这些符号的规则就是所谓的物理符号系统。
首先简要介绍智能和人工智能,然后简要介绍人工神经网 络的发展过程及其基本特点。
然后将介绍人工神经网络的基本知识,主要包括:
✓ 基本的生物神经网络模型, ✓ 人工神经元模型及其典型的激活函数; ✓ 人工神经网络的基本拓扑特性, ✓ 存储类型(CAM-LTM,AM-STM)及映象, ✓ 有导师(Supervised)训练与无导师(Unsupervised)训练。
人工神经网络课件
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
2人工神经网络基础知识PPT课件
.
7
2.2人工神经元模型
人工神经网络是在现代神经生物学研究基础上提出的模 拟生物过程以反映人脑某些特性的计算结构。它不是人脑神 经系统的真实描写,而只是它的某种抽象、简化和模拟。根 据前面对生物神经网络的研究可知,神经元及其突触是神经 网络的基本器件。因此,模拟生物神经网络应首先模拟生物 神经元。
为简便起见,省去式中(t),而且常用向量表示
ne'tj WjT X
式中 W j和X 均为列向量:
X [x 1 x 2 .x .n ] .T ,W j [w 1 w 2 .w .n ] .T
若令 x0 1 ,w 0j,则 . w 0x 有 0j,则激 n表 e活 t 为
n
nejt wijxi WjTX
人的智能来自于大脑,大脑是由大量的神经细胞或神经元 组成的。每个神经元可以看作为一个小的处理单元,这些神经 元按照某种方式互相连接起来,构成了大脑内部的生物神经元 网络,他们中各神经元之间连接的强弱,按照外部的激励信号 作自适应变化,而每个神经元又随着接收到的多个激励信号的 综合大小呈现兴奋或抑制状态。据现在的了解,大脑的学习过 程就是神经元之间连接强度随外部激励信息做自适应变化的过 程,大脑处理信息的结果确由神经元的状态表现出来。显然, 神经元是信息处理系统的最小单元。虽然神经元的类型有很多 种,但其基本结构相似,生物学中神经元结构如图所示。
数。
.
9
上述约定是对生物神经元信息处理过程的简化和概括,它清晰 地描述了生物神经元信息处理的特点,而且便于进行形式化表 达。通过上述假定,人工神经元的结构模型如图所示。
.
10
人工神经元的数学模型描述:
第j个神经元,接受多个其它神经元i在t时刻的输入xi(t),引起 神经元j的信息输出为yj(t):
人工神经网络基础ppt课件
期望输出)。实际输出与期望输出之间存在着误差,用
e(n)表示:
e(n)=d (n)-yi (n)
现在要调整权值,是误差信号e(n)减小到一个范围。 为此,可设定代价函数或性能指数E(n):
43
<二> 神经网络的学习规则
E(n)= 1 e2 (n) 2
反复调整突触权值使代价函数达到最小或者使系统达 到一个稳定状态(及突触权值稳定不变),就完成了该学 习过程。
1—150m/s之间 信息传递时延和不应期,一般为0.3~lms 可塑性,突触传递信息的强度是可变的,即具有学习功能 存在学习、遗忘或疲劳(饱和)效应
对应突触传递作用增强、减弱和饱和
16
三 人工神经网络结构
人工神经网络 人工神经元模型 常见的神经元激发函数 人工神经网络典型结构
17
在互连网络模型中,任意两个神经元之间都可能有相互 连接的关系。其中,有的神经元之间是双向的,有的是单 向的。
Hopfield网络、Boltzman机网络属于这一类。
36
<2> 互联型神经网络
在无反馈的前向网络中,信号一旦通过某个神经元,过 程就结束了。而在互连网络中,信号要在神经元之间反复往 返传递,神经网络处在一种不断改变状态的动态之中。从某 个初始状态开始,经过若干次的变化,才会到达某种平衡状 态,根据神经网络的结构和神经元的特性,还有可能进入周 期振荡或其它如浑沌等平衡状态。
1949年,心理学家Hebb提出神经系统的学习规则, 为神经网络的学习算法奠定了基础。现在,这个规 则被称为Hebb规则,许多人工神经网络的学习还 遵循这一规则。
4
一 人工神经网络发展
1957年,F.Rosenblatt提出“感知器”(Perceptron) 模型, 第一次把神经网络的研究从纯理论的探讨付诸工程实践, 掀起了人工神经网络研究的第一次高潮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工神经网络基础 PPT
人工神经网络概述 前向多层网络 自组织特征映射网络(SOFM)
人工神经网络概述
一 人工神经网络发展 二 生物学基础 三 人工神经网络结构 四 神经网络基本学习算法
一 人工神经网络发展
最早的研究可以追溯到20世纪40年代。1943年, 心理学家McCulloch和数学家Pitts合作提出了形式 神经元的数学模型。这一模型一般被简称M-P神经 网络模型,至今仍在应用,可以说,人工神经网络 的研究时代,就由此开始了。
大家学习辛苦了,还是要坚持
继续保持安静
一 人工神经网络发展
自20世纪80年代中期以来,世界上许多国家掀 起了神经网络的研究热潮,可以说神经网络已 成为国际上的一个研究热点。
一 人工神经网络发展
神经网络研究的两大派:
主要包括:生物学家、物理学家和心理学家
研究目的:给出大脑活动的精细模型和描述。
主要包括:工程技术人员
主要目的:怎样利用神经网络的基本原理,来构 造解决实际问题的算法,使得这些算法具有有趣 的和有效的计算能力。
人工神经网络属于此类
一 人工神经网络发展
人工神经网络概念: 人工神经网络:
就是把一个描述生物神经网络运行机理和工 作过程的抽象和简化了的数学-物理模型,表 达成为一个以其中的人工神经元为节点、以 神经元之间的连接关系为路径权值的有向图, 再用硬件或软件程序实现该有向图的运行, 其稳态运行结果体现生物神经系统的某种特 殊能力。
一 人工神经网络发展
人工神经网络是近年来得到迅速发展的一 个前沿课题。神经网络由于其大规模并行 处理、容错性、自组织和自适应能力和联 想功能强等特点,已成为解决很多问题的 有力工具。
二 生物学基础
生物神经元 突触信息处理 信息传递功能与特点
1、生物神经元
神经元是大脑处理信息的基本单元 人脑约由101l-1012个神经元组成,其中,每个
x0 x0
MP模型:
可知当神经元i的输入信号加权和超过阈值时,输出为
“1”,即“兴奋”状态;反之输出为“0”,是“抑制” 状态。
1943 , 神经 生 理 学 家 McCulloch 和 数 学 家 Pitts 基于早期神经元学说,归纳总结了生物神经 元的基本特性,建立了具有逻辑演算功能的神经元 模型以及这些人工神经元互联形成的人工神经网络, 即所谓的 McCulloch-Pitts 模型。
McCulloch-Pitts 模型(MP模型)是世界上第 一个神经计算模型,即人工神经系统。
一 人工神经网络发展
1982年,美国加州工学院物理学家Hopfield提出了离散 的神经网络模型,标志着神经网络的研究又进入了一个新 高潮。1984年,Hopfield又提出连续神经网络模型,开 拓了计算机应用神经网络的新途径。
1986年,Rumelhart和Meclelland提出多层网络的误差 反传(back propagation)学习算法,简称BP算法。解决 了多层前向神经网络的学习问题,证明了多层神经网络具 有很强的学习能力,它可以完成许多学习任务,解决许多 实际问题。
1—150m/s之间 信息传递时延和不应期,一般为0.3~lms 可塑性,突触传递信息的强度是可变的,即具有学习功能 存在学习、遗忘或疲劳(饱和)效应
对应突触传递作用增强、减弱和饱和
三 人工神经网络结构
人工神经网络 人工神经元模型 常见的神经元激发函数 人工神经网络典型结构
二、人工神经元模型
1949年,心理学家Hebb提出神经系统的学习规则, 为神经网络的学习算法奠定了基础。现在,这个规 则被称为Hebb规则,许多人工神经网络的学习还 遵循这一规则。
一 人工神经网络发展
1957年,F.Rosenblatt提出“感知器”(Perceptron) 模型,第 一次把神经网络的研究从纯理论的探讨付诸工程实践,掀 起了人工神经网络研究的第一次高潮。
递主要发生在突触附近; 当神经元细胞体通过轴突传到突触前膜的脉冲幅
度达到一定强度,即超过其阈值电位后,突触前 膜将向突触间隙释放神经传递的化学物质; 突触有两种类型,兴奋性突触和抑制性突触。前 者产生正突触后电位,后者产生负突触后电位。
3、信息传递功能与特点
具有时空整合能力 不可逆性,脉冲只从突触前传到突触后,不逆向传递 神经纤维传导的速度,即脉冲沿神经纤维传递的速度,在
神经元的排列和突触的强度(由复杂的化学过程决定)确立了神经网络的 功能。
1、生物神经元
生物学研究表明一些神经结构是与生俱来的,而 其他部分则是在学习的过程中形成的。 在学习的过程中,可能会产生一些新的连接,也 可能会使以前的一些连接消失。这个过程在生命 早期最为显著。
2、突触的信息处理
生物神经元传递信息的过程为多输入、单输出; 神经元各组成部分的功能来看,信息的处理与传
神经元约与104-105个神经元通过突触联接,形 成极为错纵复杂而且又灵活多变的神经网络 神经元以细胞体为主体,由许多向周围延伸的 不规则树枝状纤维构成的神经细胞,其形状很 像一棵枯树的枝干 主要由细胞体、树突、轴突组成
1、生物神经元
• 树突是树状的神经纤维接收网络,它将电信号传送到细胞体 • 细胞体对这些输入信号进行整合并进行阈值处理 • 轴突是单根长纤维,它把细胞体的输出信号导向其他神经元
MP模型:
称为输出函数或激活函数
MP模型:
求和操作
n
xi wji uj i j1
n
激活函数 yi f(xi)f( wjiuj vation Function),也称输出函数。 MP神经元模型中的输出函数为阶跃函数:
其表达式为:
f (x) 10,,
1969年,人工智能学者专著《感知机》的发表,从数学上 严格论证了简单的线性感知机不能解决“异或”(XOR) 问题。同时也指出如果在感知器中引入隐含神经元,增加 神经网络的层次,可以提高神经网络的处理能力,但是却 无法给出相应的网络学习算法。于是,从20世纪60年代末 期起,人工神经网络的研究进入了低潮。
人工神经网络概述 前向多层网络 自组织特征映射网络(SOFM)
人工神经网络概述
一 人工神经网络发展 二 生物学基础 三 人工神经网络结构 四 神经网络基本学习算法
一 人工神经网络发展
最早的研究可以追溯到20世纪40年代。1943年, 心理学家McCulloch和数学家Pitts合作提出了形式 神经元的数学模型。这一模型一般被简称M-P神经 网络模型,至今仍在应用,可以说,人工神经网络 的研究时代,就由此开始了。
大家学习辛苦了,还是要坚持
继续保持安静
一 人工神经网络发展
自20世纪80年代中期以来,世界上许多国家掀 起了神经网络的研究热潮,可以说神经网络已 成为国际上的一个研究热点。
一 人工神经网络发展
神经网络研究的两大派:
主要包括:生物学家、物理学家和心理学家
研究目的:给出大脑活动的精细模型和描述。
主要包括:工程技术人员
主要目的:怎样利用神经网络的基本原理,来构 造解决实际问题的算法,使得这些算法具有有趣 的和有效的计算能力。
人工神经网络属于此类
一 人工神经网络发展
人工神经网络概念: 人工神经网络:
就是把一个描述生物神经网络运行机理和工 作过程的抽象和简化了的数学-物理模型,表 达成为一个以其中的人工神经元为节点、以 神经元之间的连接关系为路径权值的有向图, 再用硬件或软件程序实现该有向图的运行, 其稳态运行结果体现生物神经系统的某种特 殊能力。
一 人工神经网络发展
人工神经网络是近年来得到迅速发展的一 个前沿课题。神经网络由于其大规模并行 处理、容错性、自组织和自适应能力和联 想功能强等特点,已成为解决很多问题的 有力工具。
二 生物学基础
生物神经元 突触信息处理 信息传递功能与特点
1、生物神经元
神经元是大脑处理信息的基本单元 人脑约由101l-1012个神经元组成,其中,每个
x0 x0
MP模型:
可知当神经元i的输入信号加权和超过阈值时,输出为
“1”,即“兴奋”状态;反之输出为“0”,是“抑制” 状态。
1943 , 神经 生 理 学 家 McCulloch 和 数 学 家 Pitts 基于早期神经元学说,归纳总结了生物神经 元的基本特性,建立了具有逻辑演算功能的神经元 模型以及这些人工神经元互联形成的人工神经网络, 即所谓的 McCulloch-Pitts 模型。
McCulloch-Pitts 模型(MP模型)是世界上第 一个神经计算模型,即人工神经系统。
一 人工神经网络发展
1982年,美国加州工学院物理学家Hopfield提出了离散 的神经网络模型,标志着神经网络的研究又进入了一个新 高潮。1984年,Hopfield又提出连续神经网络模型,开 拓了计算机应用神经网络的新途径。
1986年,Rumelhart和Meclelland提出多层网络的误差 反传(back propagation)学习算法,简称BP算法。解决 了多层前向神经网络的学习问题,证明了多层神经网络具 有很强的学习能力,它可以完成许多学习任务,解决许多 实际问题。
1—150m/s之间 信息传递时延和不应期,一般为0.3~lms 可塑性,突触传递信息的强度是可变的,即具有学习功能 存在学习、遗忘或疲劳(饱和)效应
对应突触传递作用增强、减弱和饱和
三 人工神经网络结构
人工神经网络 人工神经元模型 常见的神经元激发函数 人工神经网络典型结构
二、人工神经元模型
1949年,心理学家Hebb提出神经系统的学习规则, 为神经网络的学习算法奠定了基础。现在,这个规 则被称为Hebb规则,许多人工神经网络的学习还 遵循这一规则。
一 人工神经网络发展
1957年,F.Rosenblatt提出“感知器”(Perceptron) 模型,第 一次把神经网络的研究从纯理论的探讨付诸工程实践,掀 起了人工神经网络研究的第一次高潮。
递主要发生在突触附近; 当神经元细胞体通过轴突传到突触前膜的脉冲幅
度达到一定强度,即超过其阈值电位后,突触前 膜将向突触间隙释放神经传递的化学物质; 突触有两种类型,兴奋性突触和抑制性突触。前 者产生正突触后电位,后者产生负突触后电位。
3、信息传递功能与特点
具有时空整合能力 不可逆性,脉冲只从突触前传到突触后,不逆向传递 神经纤维传导的速度,即脉冲沿神经纤维传递的速度,在
神经元的排列和突触的强度(由复杂的化学过程决定)确立了神经网络的 功能。
1、生物神经元
生物学研究表明一些神经结构是与生俱来的,而 其他部分则是在学习的过程中形成的。 在学习的过程中,可能会产生一些新的连接,也 可能会使以前的一些连接消失。这个过程在生命 早期最为显著。
2、突触的信息处理
生物神经元传递信息的过程为多输入、单输出; 神经元各组成部分的功能来看,信息的处理与传
神经元约与104-105个神经元通过突触联接,形 成极为错纵复杂而且又灵活多变的神经网络 神经元以细胞体为主体,由许多向周围延伸的 不规则树枝状纤维构成的神经细胞,其形状很 像一棵枯树的枝干 主要由细胞体、树突、轴突组成
1、生物神经元
• 树突是树状的神经纤维接收网络,它将电信号传送到细胞体 • 细胞体对这些输入信号进行整合并进行阈值处理 • 轴突是单根长纤维,它把细胞体的输出信号导向其他神经元
MP模型:
称为输出函数或激活函数
MP模型:
求和操作
n
xi wji uj i j1
n
激活函数 yi f(xi)f( wjiuj vation Function),也称输出函数。 MP神经元模型中的输出函数为阶跃函数:
其表达式为:
f (x) 10,,
1969年,人工智能学者专著《感知机》的发表,从数学上 严格论证了简单的线性感知机不能解决“异或”(XOR) 问题。同时也指出如果在感知器中引入隐含神经元,增加 神经网络的层次,可以提高神经网络的处理能力,但是却 无法给出相应的网络学习算法。于是,从20世纪60年代末 期起,人工神经网络的研究进入了低潮。