【精选】 有理数单元复习练习(Word版 含答案)
【3套精选】人教版七年级数学上册第1章有理数单元复习复习(含解析答案)
人教版七年级数学单元测试(含答案)——第1章有理数单元培优试题一、选择题1.下列各数中,不是负数的是( ) A .-2 B .3 C .-85D .-0.102.在数轴上距离原点8个单位长度的点所表示的数是( ) A. 8 B. -8 C. 8或-8 D. 4或-43.大于-0.5而小于4的整数共有 ( )A.6个B.5个C.4个D.3个 4.计算1-(-1)的结果是( )A .2B .1C .0D .-2 5.-2.5、0、2、-3这四个数中最小的是 A. 2 B. 0 C. -2 D. -3 6.下列各式计算正确的是( ) A .(-14)-5=-9 B .0-(-3)=3C .(-3)-(-3)=-6D .|5-3|=-(5-3)7.图1所示的数轴的单位长度为1,若点A ,B 表示的两个数的绝对值相等,则点A 表示的数是( ) A .4 B .0 C .-2 D .-48.下列各式结果为负数的是() A. -(-1) B. (-1)2C. -|-1|D. [-(-1)3]29.数学家斐波那契的《计算书》中有这样一个问题:在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘,则刀鞘数为( ) A .42只 B .49只 C .76只 D .77只10.有理数a ,b 在数轴上对应的位置如图2所示,则下列结论中正确的是( ) A .a+b >0 B .a-b=0 C .a-b >0 D .ab <0二、填空题11.下列各数中:-6,+2.5,5,0,-1,,100,10%.正数有:________;负数有:14.-的相反数是_____,-的倒数是_____,-的绝对值是_____. 15.已知n 为正整数,计算:()[]20171-11-++⨯n = . 16.已知2+32=22×32,3+83=32×83,4+154=42×154,…若14+b a =142×ba (a ,b 均为正整数),则a+b= .三、简答题20.计算(1)-20+(-14)-(-18)-13;(2)(4) (-81)÷+÷(-16);(5)21. 我国约有9 600 000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150 000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)22. 在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:km ):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B 地在A 地的什么方向,与A 地相距多远. (2)救灾过程中,最远处离出发点A 有多远?(3)若冲锋舟每千米耗油0.5 L ,油箱容量为29 L ,则途中还需补充多少升油?答案1. B2. C3. C4. A5. D 6. B 7. C 8. C 9. C 10. D11. +2.5,5,100,10%;-6,-1,12.点D 13. 1.8114. ; -3;15. 2016或2017 16. 209 17. -718. 解:在数轴上表示如图1所示.219. 解:方方的计算过程不正确. 正确的计算过程:原式=6÷(-63+62)=6÷(-61)=6×(-6)=-36. 20. 解:(1)原式=-20-14+18-13=-20-14-13+18 =-47+18 =-29;(2)原式=-32+21-4= -15;(3)原式==;(4)原式===;(5)原式=====;人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若汽车向南行驶30米记作+30米,则-50米表示()A.向东行驶50米B.向西行驶50米C.向南行驶50米D.向北行驶50米2.-|-2|的值是()A.-2 B.2 C.±2 D.43.大于-1且小于3的整数共有()A.2个B.3个C.4个D.5个4.下列四个数中,与-2018的和为0的数是()1 A.-2018 B.2018 C.0 D.-20185. “中国天眼”即500米口径球面射电望远镜(FAST),是世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面.将数据4600表示成a×10n(其中1≤a<10,n为整数)的形式,则n的值为()A.-1 B.2 C.3 D.46.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下列最接近标准质量的是( )A B C D7.图1所示的数轴单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点B 表示的数是( ) A .-4B .-2C .0D .4图18.下列说法中不正确的是( )A.在数轴上能找到表示任何有理数的点B.若a ,b 互为相反数,则ba=-1 C.若一个数的绝对值是它本身,则这个数是非负数D.近似数7.30所表示的准确数的范围是大于或等于7.295,小于7.3059. 如图2,数轴上点A 表示的有理数为a ,点B 表示的有理数为b ,则下列式子中成立的是( )A .a+b >0B .a+b <0C .a-b >0D .|a|=|b|图210.用十进制计数法表示正整数,如365=300+60+5=3×102+6×101+5,用二进制计数法来表示正整数,如:5=4+1=1×22+0×21+1×1,记作5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作14=(1110)2,则(10101)2表示数() A. 41B. 21C. 20D. 24二、填空题(本大题共6小题,每小题4分,共24分)11.在有理数-0.2,0,321,-5中,整数有____________. 12. 计算:(-1)6+(-1)7=____________.13. 两会期间,百度APP 以图文、图案、短视频、直播等多种形式展现两会内容.据统计,直播内容237场,峰值观看人数一度高达3 800 000人,将数据3 800 000用科学记数法表示为 .14.已知线段AB 在数轴上,且它的长度为4,若点A 在数轴上对应的数为-1,则点B 在数轴上对应的数为 .15.已知一张纸的厚度是0.1 mm ,若将它连续对折10次后,则它折后的厚度为 mm .16.观察下列数据,找出规律并在横线上填上适当的数:1,-43,95,-167, , , ,… 三、解答题(本大题共6小题,共52分)17.(每小题3分,共6分)比较下列各组数的大小:(1)|-4+5|与|-4|+|5|; (2)2×32与(2×3)2.18.(每小题4分,共8分)计算: (1)|-2|-(-3)×(-15)÷(-9); (2)-12018+(-21+32-41)×24.19.(7分)当温度每上升1℃时,某种金属丝伸长0.002 mm ;反之,当温度每下降1℃时,金属丝缩短0.00 2mm.把15℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,求最后的长度比原来伸长了多少.20.(9分)计算6÷(-21+31)时,李明同学的计算过程如下,原式=6÷(-21)+6÷31=-12+18=6.请你判断李明的计算过程是否正确,若不正确,请你写出正确的计算过程,并正确计算出(21-61+91)÷(-361).21.(10分)如图3,已知点A 在数轴上表示的数为-1,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各题. (1)请在数轴上标出点B 和点C ;(2)求点B 所表示的数与点C 所表示的数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和哪个数所对应的点重合?图3 22.(12分)一辆货车从仓库装满货物后在东西街道上运送水果,规定向东为正方向,某次到达的五个地点分别为A ,B ,C ,D ,E ,最后回到仓库,货车行驶的记录(单位:千米)如下:+1,+3,-6,-l ,-2,+5.(1)请以仓库为原点,选择适当的单位长度,画出数轴,并标出A ,B ,C ,D ,E 的位置;(2)求出该货车共行驶了多少千米;(3)如果货车运送的水果以l00千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A ,B ,C ,D ,E 五个地点的水果质量可记为:+50,-l5,+25,-l0,-15,则该货车运送的水果总质量是多少千克?附加题(共20分,不计入总分)1.(8分)如图,点P ,Q 在数轴上表示的数分别是-8,4,点P 以每秒2个单位长度的速度向右运动,点Q 以每秒1个单位长度的速度向左运动,当运动 秒时,P ,Q 两点相距3个单位长度.2.(12分)对于有理数a,b,定义运算“⊕”:a⊕b=ab-2a-2b+1.(1)计算5⊕4的结果;(2)计算[(-2)⊕6]⊕3的结果;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.(第一章 有理数测试题参考答案一、1.D 2.A 3.B 4. B 5.C 6.C 7.B 8.B 9. A 10.B二、11. 0,-5 12.013. 3.8×106 14.3或-5 15. 102.4 16.259,-3611,4913 提示:第n 个数,分母是n 2,分子是2n-1,第奇数个数是正数,第偶数个数是负数.三、17.(1)|-4+5|=|1|=1,|-4|+|5|=4+5=9,所以|-4+5|<|-4|+|5|. (2)2×32=2×9=18,(2×3)2=62=36,所以2×32<(2×3)2.18. 解:(1) 原式=2+3×15×91=2+5=7. (2)原式=−1−21×24+32×24−41×24=−1−12+16−6=−3. 19. 解:(60-15)×0.002-(60-5)×0.002 =45×0.002-55×0.002 =(45-55)×0.002 =(-10)×0.002 =-0.02(mm ).答:最后的长度比原来伸长了-0.02 mm.20.解:李明的计算过程不正确,正确计算过程为:6÷(-21+31)=6÷(-61)=-36.原式=(21-61+人教版七年级数学上第一章有理数单元练习试题(含答案)一.选择题(共11小题)1.关于字母a 所表示的数,下列说法正确的是( ) A .a 一定是正数 B .a 的相反数是﹣a C .a 的倒数是D .a 的绝对值等于a2.下列各组数中,互为倒数的是( )A.2和B.3和C.|﹣3|和﹣D.﹣4和43.当|a|=﹣a时,则a是()A.a≤0 B.a<0 C.a≥0 D.a>04.室内温度是15℃,室外温度是﹣3℃,要计算“室外温度比室内温度低多少度?”可以列的计算式为()A.15+(﹣3)B.15﹣(﹣3)C.﹣3+15 D.﹣3﹣155.下列命题中,正确的是()A.若m•n>0,则m>0,n>0 B.若m+n<0,则m<0,n<0C.若m•n=0,则m=0且n=0 D.若m•n=0,则m=0或n=06.(﹣1)2018的相反数是()A.﹣1 B.1 C.﹣2018 D.20187.小亮的体重为47.95kg,用四舍五入法将47.95精确到0.1的近似值为()A.48 B.48.0 C.47 D.47.98.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1069.下列说法正确的有()①一个数不是正数就是负数;②海拔﹣155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个B.2个C.3个D.4个10.若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是()A.5或1 B.1或﹣1 C.5或﹣5 D.﹣5或﹣1 11.下列语句,正确的个数是()①若a>0,b>0,则ab>0 ②若a<0,b<0,则ab<0③若a是有理数,则a2>0 ④若a>b,则|a|>|b|A.1个B.2个C.3个D.4个二.填空题(共9小题)12.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则.13.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.14.没有最小的负数,但有最小的正数.15.﹣的倒数是.16.如果|a|=7,|b|=4,则a+b=.17.若|a|=3,|b|=5且a>0,则a﹣b=.18.如图,已知纸面上有一数轴,折叠纸面,使表示﹣2的点与表示5的点重合,则表示的点与表示的点重合.19.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.20.已知|x|=3,|y|=7,x<y,则x+y=.三.解答题(共4小题)21.计算:﹣5+(+2)+(﹣1)﹣(﹣)22.计算:(﹣)×(﹣)÷(﹣2)23.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.24.若“*”是一种新的运算符号,并且规定a*b=.例如:3*5=,求[2*(﹣2)]*(﹣3)的值.参考答案一.选择题(共11小题)1.解:A、a也可能是0或负数,故本选项错误;B、a的相反数是﹣a,故本选项正确;C、a若是0时,没有倒数,故本选项错误;D、a是非负数时,a的绝对值是a,故本选项错误;故选:B.2.解:A、2和不是倒数关系,故此选项错误;B、3和是倒数关系,故此选项正确;C、|﹣3|=3,3和﹣不是倒数关系,故此选项错误;D、﹣4和4不是倒数关系,故此选项错误;故选:B.3.解:当|a|=﹣a时,则a≤0.故选:A.4.解:由题意,可知:15﹣(﹣3),故选:B.5.解:A、若m•n>0,则m、n同号,可以都是正数也可以都是负数,故本选项错误;B、若m+n<0,则m、n中绝对值较大的一个一定是负数,不一定都是负数,故本选项错误;C、若m•n=0,则m=0或n=0,故本选项错误;D、若m•n=0,则m=0,或n=0,故本选项正确.故选:D.6.解:(﹣1)2018的相反数是﹣1,故选:A.7.解:47.95精确到0.1的近似值为48.0.故选:B.8.解:316 000 000用科学记数法可表示为3.16×108,故选:C.9.解:①一个数不是正数就是负数或0,错误;②海拔﹣155m表示比海平面低155m,正确;③负分数是有理数,错误;④零不是最小的数,错误;⑤零是整数,不是正数,错误.故选:A.10.解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵a+b>0,∴a=3,b=±2.当a=3,b=﹣2时,a﹣b=5;当a=3,b=2时,a﹣b=1.故a﹣b的值为5或1.故选:A.11.解:①若a>0,b>0,则ab>0,正确;②若a<0,b<0,则ab>0,不正确;③若a是有理数,则a2≥0,不正确;④若a>b,则|a|不一定大于|b|,不正确,∴正确的只有一个;故选:A.二.填空题(共9小题)12.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,又m的绝对值为2,所以m=±2,m2=4,则原式=0+2×4﹣3×1=5.故答案为5.13.解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.14.解:根据有理数的定义,没有最小的负数,因为正数和负数都有无数个,它们都没有最小的值;所以没有最小的负数,但有最小的正数说法错误,故答案为:×.15.解:﹣的倒数是﹣2.故答案为:﹣2.16.解:∵|a|=7,|b|=4,∴a=±7,b=±4,当a=7,b=4时,∴a+b=11,当a=7,b=﹣4时,∴a+b=3,当a=﹣7,b=4时,∴a+b=﹣3,当a=﹣7,b=﹣4时,∴a+b=﹣11,故答案为:±11或±317.解:∵|a|=3,|b|=5,a>0,∴a=3,b=±5,当a=3,b=5时,a﹣b=3﹣5=﹣2;当a=3,b=﹣5时,a﹣b=3﹣(﹣5)=8;综上,a﹣b的值为﹣2或8,故答案为:﹣2或8.18.解:5﹣(﹣2)=7,7÷2=,5﹣=,﹣=,即点在中点右边个单位,故与的重合点在中点左边个单位,表示数字,,故答案为:.19.解:由图可知,左边盖住的整数数值是﹣2,﹣3,﹣4,﹣5;右边盖住的整数数值是1,2,3,4;所以他们的和是﹣4.故答案为:﹣4.20.解:∵|x|=3,|y|=7,∴x=±3,y=±7,∵x<y,∴x=3,y=7或x=﹣3,y=7,∴x+y=10或4,故答案为10或4.三.解答题(共4小题)21.解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.22.解:原式=﹣××=﹣.23.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.24.解:原式=*(﹣3)=0*(﹣3)==﹣.。
【精选】七年级有理数单元练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.点在数轴上分别表示有理数,两点间的距离表示为 .且 .(1)数轴上表示2和5的两点之间的距离是________,数轴上表示−2和−5的两点之间的距离是________,数轴上表示1和−3的两点之间的距离是________;(2)数轴上表示x和−1的两点A和B之间的距离是________,如果|AB|=2,那么x=________;(3)当代数式|x+1|+|x−2|取最小值时,相应x的取值范围是________.【答案】(1)3;3;4(2)1;-3(3)−1⩽x⩽2【解析】【解答】解:(1)、|2−5|=|−3|=3;|−2−(−5)|=|−2+5|=3;|1−(−3)|=|4|=4;( 2 )、|x−(−1)|=|x+1|,由|x+1|=2,得x+1=2或x+1=−2,所以x=1或x=−3;( 3 )、数形结合,若|x+1|+|x−2|取最小值,那么表示x的点在−1和2之间的线段上,所以−1⩽x⩽2.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可算出答案;(2)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值得出AB=,又 |AB|=2 ,从而列出方程,求解即可;(3)|x+1|+|x−2| 表示数x的点到-1的点距离与表示x的点到2的点距离和,根据两点之间线段最短得出当表示x的点在-1与2之间的时候,代数式|x+1|+|x−2|有最小值,从而得出x的取值范围.2.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“||”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.如图A在数轴上对应的数为-2.(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是________.(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离. (3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B 两点相距4个单位长度.【答案】(1)2(2)解:,∴B点到达的位置所表示的数字是2+3×2=88-(-6)=14(个单位长度).故A,B两点间距离是14个单位长度.(3)解:运动后的B点在A点右边4个单位长度,设经过t秒长时间A,B两点相距4个单位长度,依题意有3t=14-4,解得x= ;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有3t=14+4,解得x=6.∴经过秒或6秒长时间A,B两点相距4个单位长度.【解析】【解答】解:(1)-2+4=2,故点B所对应的数是2;【分析】(1)根据左减右加可求得点B所对应的数;(2)先根据时间=路程÷速度,求得运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的点B在点A右边4个单位长度;运动后的点B在点A左边4个单位长度,列出方程求解.5.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。
【精选】人教版七年级上册数学 有理数单元练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。
因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。
因此我们可以用绝对值的几何意义按如下方法求的最小值;即数轴上x与1对应的点之间的距离,即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.设A、B、P三点对应的数分别是1、2、x.当1≤x≤2时,即P点在线段AB上,此时;当x>2时,即P点在B点右侧,此时= PA+PB=AB+2PB>AB;当x <1时,即P点在A点左侧,此时=PA+PB=AB+2PA>AB;综上可知,当1≤x≤2时(P点在线段AB上),取得最小值为1.请你用上面的思考方法结合数轴完成以下问题:(1)满足的x的取值范围是________。
(2)求的最小值为________,最大值为________。
备用图:【答案】(1)当x<-3或x>4(2)-3;3【解析】【解答】解:(1)由,在数轴上表示-3和4两点,当x<-3时, >7;当-3≤x≤4时, .当x>4时, .故当x<-3或x>4时 .( 2 )当x<-1,当-1≤x≤2,,此时当x=2时,取得最大值3,当x=-1时,取得最小值-3;当x>2时, .故的最小值为-3,最大值为3.【分析】(1)此题实质就是求表示x的点与-3的对应点的距离及表示x的点与4的对应点的距离和大于7时,x的取值范围,从而分当x<-3时、当-3≤x≤4时、当x>4时三种情况根据绝对值的意义分别去绝对值符号后一一判断即可得出答案;(2)此题实质就是求表示x的点与-1的对应点的距离及表示x的点与2的对应点的距离差最小值与最大值,从而分当x<-1、当-1≤x≤2、当x>2时三种情况根据绝对值的意义分别去绝对值符号考虑即可得出答案.2.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.3.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.4.如图,数轴上一动点从原点出发,在数轴上进行往返运动,运动情况如下表(注:表格中的表示2到4之间的数).运动次数运动方向运动路程数轴上对应的数第1次____①_____3-3第2次左____②_____第3次____③_________④_____(1)完成表格;①________;②________;③________;④________.(2)已知第4次运动的路程为 .①此时数轴上对应的数是________;②若第4次运动后点恰好回到原点,则这4次运动的总路程是多少?________【答案】(1)左;;右; .(2)或;解:当时,或-0.5,不符合题意;当时,,,所以这4次运动的总路程是32.【解析】【解答】解:(1)动点从原点运动到点-3,所以是向左运动;再从点-3向左运动,故终点数字是;∵,∴,∴第三次点是向右运动,运动路程是,故答案为:左,,右, .( 2 )①向右运动时,;向左运动时,,故答案为或;【分析】(1)根据始点与终点的数字符号确定第一次运动方向;第一次终点数字与第二次运动路程的差即第二次终点数字;根据第三次终点数字与第二次终点数字的差的符号确定运动方向和运动路程.(2)①分向左或向右两种可能,根据确定第四次移动后最终在数轴上的对应数字;②根据第四次运动后的对应数字确定的值,再计算总路程.5.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3=,…请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)用含有n的代数式表示第n个等式:a n=________=________(n为正整数);(3)求a1+a2+a3+…+a2019的值.【答案】(1);(2);(3)解:a1+a2+a3+…+a2019=+…+=【解析】【解答】第1个等式:a1=,第2个等式:a2=,第3个等式:a3=,∴第4个等式:a4=,第5个等式:a5=,故答案为: (2)第n个等式:a n=故答案为:;【分析】(1)根据规律,得出第5个等式:a5=;(2)根据规律,得出第5个等式:a n=;(3)将提出后,括号里进行加减,即可求出结果.6.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。
人教版七年级数学上册 有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.3.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等① 当b2=16时,求c的值② 求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值【答案】(1)<;>;>(2)解:① 且 , ,且 , .∵点B到点A,C的距离相等,∴∴ ,∴②∵ , ∴ ,③依题意,得∴原式=∵∴原式= 【此处不取-2没关系】∵当 P 点在运动过程中,原式的值保持不变,即原式的值与无关∴ ,∴【解析】【解答】解:(1)由题中的数轴可知,a<0<b<c,且∴abc<0,a+b>ac,ab-ac>0,故答案为:<,>,>;【分析】(1)根据数轴上的点所表示的数的特点得出a<0<b<c,且,从而根据有理数的乘法法则,加法法则、减法法则及有理数大小的比较方法即可一一判断得出答案;(2)①根据数轴上点的位置及绝对值的意义、有理数的乘方确定a、b的取值,进而根据点B到点A,C的距离相等,即即可求解;②根据数轴上两个点之间的距离及点B到点A,C的距离相等,即,即可得结论;③根据绝对值的意义把算式化简,再根据当P点在运动过程中,原式的值保持不变,即原式的值与无关列出方程,求解即可.4.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.5.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.【答案】(1)-10;14;24(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,∴BC=|t-10-(14-2t)|=|3t-24|,∵BC=6,∴|3t-24|=6,解得:t1=6,t2=10.答:当BC=6(单位长度)时,t的值为6或10(3)【解析】【解答】(1)解:∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10,∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14,∴BC=14-(-10)=24,故答案为:-10;14;24( 3 )解:当运动时间为t秒时,点A在数轴上表示的数为-t-12,点B在数轴上表示的数为-t-10,点C在数轴上表示的数为14-2t,点D在数轴上表示的数为15-2t,∵0<t<24,∴点C一直在点B的右侧,∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为,点N在数轴上表示的数为,∴MN= - = .故答案为:【分析】(1)根据AB、CD的长度结合点A、D在数轴上表示的数,即可找出点B、C在数轴上表示的数,再根据两点间的距离公式可求出线段BC的长度;(2)找出运动时间为t秒时,点B、C在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)找出运动时间为t秒时,点A、B、C、D在数轴上表示的数,进而即可找出点M、N在数轴上表示的数,利用两点间的距离公式可求出线段MN的长.6.数轴上,,三个点对应的数分别为,,,且,到所对应的点的距离都等于7,点在点的右侧,(1)请在数轴上表示点,位置, ________, ________;(2)请用含的代数式表示 ________;(3)若点在点的左侧,且,点以每秒2个单位长度的速度沿数轴向右运动,当且点在的左侧时,求点移动的时间.【答案】(1);6(2)(3)解:点在点的左侧,且,,.设点移动的时间为秒.当点在点的左侧时,,解得:,此时点对应的数为14,在点的右侧,不合题意,舍去;当点在点的右侧且在点的左侧时,,解得:.点移动的时间为秒.【解析】【解答】(1)解:(1)根据题意得:,,,,将其表示在数轴上,如图所示.故答案为:;62)解:根据题意得:.故答案为:【分析】(1)由,到所对应的点的距离都等于7,点在点的右侧,可得出关于,的一元一次方程,解之即可得出,的值;(2)由点,对应的数,利用两点间的距离公式可找出的值;(3)由点在点的左侧及的值可得出的值,设点移动的时间为秒,分点在点的左侧和点在点的右侧且在点的左侧两种情况考虑,由,找出关于的一元一次方程,解之即可得出结论.7.阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点在线段上(点可以与点或重合),则称点与点关于线段径向对称.下图为点与点关于线段径向对称的示意图.解答下列问题:如图1,在数轴上,点为原点,点表示的数为-1,点表示的数为2.(1)①点,,分别表示的数为-3,,3,在,,三点中,________与点关于线段径向对称;②点表示的数为,若点与点关于线段径向对称,则的取值范围是________;(2)在数轴上,点,,表示的数分别是-5,-4,-3,当点以每秒1个单位长度的速度向正半轴方向移动时,线段同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为()秒,问为何值时,线段上至少存在一点与点关于线段径向对称.【答案】(1)点C和点D;1≤x≤5(2)解:移动时间t(t>0)秒时,点H,K,L表示的数分别是-5+t,-4+3t,-3+3t,此时,线段HK的中点设为R1,表示的数为,线段HL的中点设为R2,表示的数为,当线段R1R2,在线段OM上运动时,线段KL上至少存在一点与点H关于线段OM径向对称,当R2经过点O时,2t-4=0时,t=2,当R1经过点M时,时,,所以当时,线段R1 R2在OM上运动,所以当时,线段KL上至少存在一点与点H关于线段OM径向对称.【解析】【解答】解:(1)①与点A点关于线段径向对称需要满足:这个点与A点的中点在线段OM上,点B表示的数是-3,与点A表示的-1的中点是-2,不在线段OM上,所以点B不是;点C表示的数,与点A表示的-1的中点是,在线段OM上,所以点C 是;点D表示的3与点A表示的-1的中点是1,在线段OM上,所以点D是;综上,答案为点C,点D;②结合数轴可知当点x与点A的中点落在点O与点M之间时(包括端点O与M)正确,即,解得,故答案为;【分析】(1)根据题干中给出的径向对称的定义,进行验证解答即可;(2)根据题干中给出的径向对称的定义,列出点x与点A中点的取值范围,即可求出答案;(3)用含t的代数式分别表示出点H,K,L和线段HK与线段HL的中点列式计算即可.8.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .【答案】(1)-4(2)0或-4(3)4;【解析】【解答】解:根据观察可以知道,所有的式子符合的形式,所以(1)中此时2-a=6,解得a=-4,故答案为-4;所以(2)中a=2,故2-2=0,所以x的值为0;根据绝对值的意义将原式化简可得,求得x=0或x=-4,所以x的值为0或-4;(3)根据,可知,整理得,所以,所以y的最大值为4,此时的式子是.【分析】(1)根据即可求解;(2)由(1)的规律即可求解;(3)由(1)可得进行整理,根据绝对值意义求解即可.9.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.10.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________【答案】(1)100(2)(3)-14(4)【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:(2)到表示数和数距离相等的点表示的数为:(3)到表示数 -12 和数 -26 距离相等的点表示的数为:(4)到表示数a和数b距离相等的点表示的数为: .故答案为:100,, -14,.【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.11.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=________,AC=________,BE=________;(2)当线段CE运动到点A在C、E之间时,①设AF长为 x,用含 x 的代数式表示BE的值(结果需化简);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.【答案】(1)16;6;2(2)解:∵点F是AE的中点,∴AF=EF,设AF=EF=x,∴CF=8﹣x,∴BE=16﹣2x=2(8﹣x),∴BE=2CF.故答案为① 16-2x,② BE=2CF.(3)解:①当0<t≤6时,P对应数:-6+3t,Q对应数-4+2t,,解得:t=1或3;②当6<t≤8时,P对应数, Q对应数-4+2t,,解得:或;故答案为t=1或3或或【解析】【解答】(1)数轴上A、B两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F是AE的中点,∴AF=EF=7,,∴AC=AF﹣CF=6,BE=AB﹣AE=16﹣7×2=2,故答案为16,6,2;【分析】(1)由数轴上A、B两点对应的数分別是-4、12,可得AB的长;由CE=8,CF=1,可得EF的长,由点F是AE的中点,可得AF的长,用AB的长减去2倍的EF的长即为BE 的长;(2)设AF=FE=x,则CF=8-x,用含x的式子表示出BE,即可得出答案(3)分①当0<t≤6时;②当6<t≤8时,两种情况讨论计算即可得解12.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.【答案】(1)解:根据数轴上点的位置得:;(2)解:根据题意得:a+b<0,b-1<0,a-c<0,则;(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,∴原式 .【解析】【分析】(1)根据数轴上点的位置判断即可;(2)由数轴可得a+b<0,b-1<0,a-c<0,然后利用绝对值的代数意义化简即可;(3)根据b<0,a<0,c>0,m=-1-c,进行计算即可.。
七年级数学上册第一单元《有理数》期末单元复习(3)带答案.doc
七年级数学上册第一单元《有理数》期末单元复习(3)一、选择题(共8小题,每小题3分,共24分)1. -3的倒数是( )2. 如果向北走3kiii 记作+3km,那么向南走5km 记作()A. - 5kmB. - 2kmC. +5kmD. +8km3. 2010年4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功 举行,热心企业和现场观众踊跃捐款31083. 58元.将31083. 58元保留两位冇效数字D.两个加数不能同为负数7 . ( 2015 秋•平顶山校级期中)给III 下列程序 输入x ----- >应右| ----- » |><田 --- > 冋 > 輸出fl 当输入1时,输出值为3;输入0时,输出值为2.则当输入x 值为时,输出值为()A. 1B. - 1C. 0D. 28. 在数轴上表示a 、b 两数的点如图1所示,则下列判断正确的是()bo a — ----- i —1 ------ > 图1A 、a+b>0B 、a+b<0C 、ab>0D 、| a | > | b | 二、填空题(共6小题,每小题3分,共18分)9. 大于・1.5小于2.5的整数共有 ________ 个10. 小明量得课桌长为1.025米,四舍五入到|•分位为 ________ 米,冇 _____ 个冇效数字.11. ______________________________________________ 数轴上表示3的点和表示- 6的点的距离是 _________________________________________________ .12. 一件商品的成本是200元,提高30%后标价,然后打9折销售,则这件商品的标C. 3D. -3 可记为( )A 、3・ IX 10“元B 、3. 11X101 元C 、3. 1X101 元D 、3. 10X10"元 4.计算:-32+ ( -2)'的值是( ) A. 0 B. - 17 C. 1D. - 15.若|a| = P ,则4是() A. 0 B. 正数 C.负数 D.负数或06.若两个冇理数的和是正数,那么一定冇结论A. 两个加数都是正数B. 两个加数有一个是正数;C. 一个加数正数,另一个加数为零价为 _________ ,售价为______________ ,利润为______________ ;13.有理数m, n在数轴上的位置如图,14. ______________________________________________ 有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结 果是12,第2次输出的结果是6,第3次输出的结果是 ________________________________________________________ ,依次继续下去…,第 2013次输出的结果是 _________ ・四、解答题(共58分)15. W 申16. (1)计算:44(呂“一(罰・4(2)化简:17. 计算:1999x2001数字解密:第一个数3二2+1,第二数是5=3+2,第三个数是9二5+4,第四个数是17=9+8- 观察并猜想第五至第七个数是什么? 19. (4分)a 、b 、c 在数轴上的位置如图所示,求| a+b| — |c —a|的值 C ba20. (5分)定义某种运算如:a 心# (abH 。
人教版七年级上册数学第一章《有理数》单元复习整合练(含答案)
人教版七年级上册数学《有理数》单元复习整合练考点一:正负数的意义一.知识点回顾:二.典型习题1.如果收入100元记作+100元,那么支出100元记作( )A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( )A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( )A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( )A.6B.-6C.D.-2.-15的绝对值为()A.-15B.15C.-D.3.-的倒数是( )A.-2B.C.2D.14.-a一定是( )A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是()A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( )A.-5B.-1C.0D.12.计算(-3)×9的结果等于( )A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( )A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= .6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;2.比较有理数a×10n和b×10m的大小,不仅要比较a和b的大小,更要比较m和n的大小.典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( )A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( )A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( )A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( )A.十分位B.个位C.十位D.百位人教版七年级上册数学《有理数》单元复习整合练(解析版)考点一:正负数的意义一.知识点回顾:正负数意义的本质区别正数和负数意义的本质区别是表示具有相反意义的量,通过正(负)数表示的意义,从而确定负(正)数表示的意义.二.典型习题1.如果收入100元记作+100元,那么支出100元记作( A)A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( B)A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( A)A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):城市悉尼纽约时差/时+2 -13当北京6月15日23时,悉尼、纽约的时间分别是( A)A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( C)A.6B.-6C.D.-2.-15的绝对值为( B )A.-15B.15C.-D.3.-的倒数是( A)A.-2B.C.2D.14.-a一定是( D)A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是(A)A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为0.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( A)A.-5B.-1C.0D.12.计算(-3)×9的结果等于( A)A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( B)A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( A)A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= -.6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.【解析】(1)原式=16+18-9-15=10;(2)原式=×24+×24-×24-=-4+14-9-=;(3)原式=-9+4×(-5)-6=-9-20-6=-35.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( D)A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( D)A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( D)A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( C)A.十分位B.个位C.十位D.百位。
第一章《有理数》全章 练习题 (含答案)
第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。
第一章 有理数 单元练习(含答案)2024-2025年人教版数学七年级上册
2024-2025年人教版数学七年级上册第一章有理数单元练习一、选择题1.在生产生活中,正数和负数都有现实意义.例如收20元记作+20元,则支出10元记作()A.+10元B.﹣10元C.+20元D.﹣20元2.在数,,,中,有理数的个数有()A.4个B.3个C.2个D.1个3.如图是单位长度为1的数轴,点,是数轴上的点,若点表示的数是,则点表示的数是()A.B.0C.1D.24.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.B.C.D.5.如图,数轴上点A 所表示的数的相反数是()A.9B.C.D.6.下列各对数中,互为相反数的是()A.-(-3)和3B.+(-5)和-[-(-5)]C.和-3D.-(-7)和-|-7|7.有理数,,0,中,绝对值最大的数是()A.B.C.0D.8.的绝对值的相反数是()A.B.3C.D.0二、填空题9.有理数中,最大的负整数是.10.在,,,0,中,负数共有个.11.绝对值小于2.5的整数有.12.若a与互为相反数,则a的值为.13.如果一个数的绝对值是10,那么这个数是.三、解答题14.小明在超市买一食品,外包装上印有“总净含量”的字样请问“”表示什么意义?小明拿去称了一下,发现只有问食品生产厂家有没有欺诈行为?15.把下列各数填在相应的集合中:8,-1,-0.4,,0,,,,.正数集合{…};负数集合{…};整数集合{…};分数集合{…};非负有理数集合{…}.16.求,-2.35,0,的相反数和绝对值.17.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0,18.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与何数表示的点重合;(2)若-1表示的点与5表示的点重合,0表示的点与何数表示的点重合;(3)若-1表示的点与5表示的点之间的线段折叠2次,展开后,请写出所有的折点表示的数?参考答案1.B 2.B 3.C 4.B 5.D 6.D 7.A 8.A 9.-110.211.±2;±1;012.13.14.解:由题意可知:“”表示总净含量的浮动范围为上下5g,即含量范围在克到克之间,故总净含量为297在合格的范围内,食品生产厂家没有欺诈行为.15.8,,,;-1,-0.4,,;8,-1,0,;-0.4,,,,;8,,0,,16.解:相反数分別是:;绝对值分别是:.17.解:+3的相反数为:-3,-1.5的相反数为:1.5,0的相反数为:0,的相反数为:,在数轴上表示如下:.18.(1)解:若1表示的点与-1表示的点重合,则-2表示的点与2表示的点重合;(2)解:若-1表示的点与5表示的点重合,0表示的点与4表示的点重合;(3)解:若-1表示的点与5表示的点重合,则对称中心是2表示的点,第2次对折:-1表示的点与2表示的点重合,则对称中心是0.5表示的点;2表示的点与5表示的点重合,则对称中心是3.5表示的点;∴展开后,所有的折点表示的数:0.5,2,3.5.。
【精选】有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.3.如图,在数轴上点表示的数,点表示的数,点表示的数,是最大的负整数,且满足 .(1)求,,的值;(2)若将数轴折叠,使得点与点重合,求与点重合的点对应的数;(3)点,,在数轴上同时开始运动,其中以单位每秒的速度向左运动,以单位每秒的速度向左运动,点以单位每秒的速度运动,当,相遇时,停止运动,求此时两点之间的距离.【答案】(1)解:∵是最大的负整数,∴b=-1,∵,∴a=-3,c=6(2)解:设当点与点重合时,对折点为D,则D点的坐标为(-2,0),∴此时与点重合的点对应的数是-10(3)解:由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,此时C点坐标为(-8,0),当A点向左运动时,此时C点坐标为(-24,0),可得此时两点之间的距离为16;当A点向右运动时,此时C点坐标为(18,0),可得此时两点之间的距离为26【解析】【分析】(1)根据是最大的负整数得出b=-1,根据绝对值的非负性,由两个非负数的和为0,则这两个数都为0,求出a,c的值;(2)设当点与点重合时,对折点为D,根据折叠的性质得出点D所表示的数是-2,故CD=8,在点D的左边距离点D8个单位的数就是-10,从而得出答案;(3)由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,然后根据点A向左或向右运动两种情况考虑即可得出答案.4.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.5.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
第一章 有理数 单元练习(含答案) 人教版(2024)数学七年级上册
人教版(2024)数学七年级上册第一章有理数单元练习一、选择题1.在中国古代数学著作《九章算术》中记载了用算筹表示正负数的方法,即“正算赤,负算黑”.如果向东走30米记作“米”,那么向西走70米记作()A.米B.米C.米D.米2.在,1,0,这四个数中,是负数的是()A.B.1C.0D.3.的相反数是()A.B.C.D.4.如图,数轴上点P表示的数是()A.-1B.0C.1D.25.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.在,0,,和2024这五个有理数中,正数有()A.1个B.2个C.3个D.4个7.有理数,,0,中,绝对值最大的数是()A.B.C.0D.8.如图,数轴上点A所表示的数的相反数是()A.9B.C.D.二、填空题9.若月球表面的白天平均温度零上,记为,则月球表面的夜间平均温度零下记为.10.大于而小于的整数共有个;11.在数轴上,到原点的距离等于个单位长度的点所表示的有理数是.12.若a与互为相反数,则a的值为.13.如果|m|=4,且m<0,那么m=.三、解答题14.把下列各数填在相应的大括号里.,4,,,,,,,0,.(1)整数集合{…}(2)分数集合{…}(3)非负数集合{…}(4)正有理数集合{…}(5)负有理数集合{…}15.某汽车制造厂本周计划每天生产400辆家用轿车,由于每天上班人数和操作原因,每天实际生产量分别为405辆,393辆,397辆,410辆,391辆,385辆,405辆.用正、负数表示每日实际生产量和计划量的增减情况.16.数轴上A点表示的数为+4,B、C两点所表示的数互为相反数,且C到A的距离为2,点B和点C各表示什么数.17.把下列各数及它们的相反数在数轴上表示出来,并用“<”把所有数都连接起来.2,﹣1.5,0,﹣4.18.张师傅要从5个圆形机器零件中选取2个拿去使用,经过检验,把比规定直径长的数记为正数,比规定直径短的记为负数,记录如下(单位:毫米):,,,,.你认为张师傅会拿走哪2个零件?请你用绝对值的知识加以解释.参考答案1.C2.A3.A4.A5.D6.B7.A8.D9.10.611.12.13.﹣414.(1),4,,,0(2),,,(3)4,,,,,0,(4)4,,,,(5),,15.解:+5,-7,-3,+10,-9,-15,+5 16.解:∵A点表示的数为+4,C到A的距离为2,∴C点表示的数是2或6;又∵B、C两点所表示的数互为相反数∴B点所表示的数是-2,或-6.17.解:如图,﹣4<﹣2<﹣1.5<0<1.5<2<418.解:张师傅会拿走记录为和的2个零件.理由:利用数据的绝对值的判断零件的质量,绝对值越小的说明越接近规定标准.因为.所以张师傅会拿走记录为和的2个零件。
人教版2021年七年级上册第1章《有理数》单元复习训练卷 word版,含答案
人教版2021年七年级上册第1章《有理数》单元复习训练卷一.选择题1.下列语句中,含有相反意义的两个量的是()A.盈利3千元和收入2千元B.上升2米和下降3米C.超过1米和长高10厘米D.存入3百元和花费3百元2.绝对值为的数是()A.5B.C.﹣D.±3.十三五,我国经济社会发展取得新的历史性成就.经济运行总体平稳,经济结构持续优化,国内生产总值从不到70万亿元增加到超过100万亿元.创新型国家建设成果丰硕,在载人航天、探月工程、深海工程、超级计算、量子信息等领域取得一批重大科技成果.脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.用科学记数法表示100万亿为()A.1×106B.1×108C.1×1012D.1×10144.在0,1,﹣5,﹣1四个数中,最小的数是()A.0B.1C.﹣5D.﹣15.以下叙述中,不正确的是()A.减去一个数,等于加上这个数的相反数B.两个正数的和一定是正数C.两个负数的差一定是负数D.在数轴上,零右边的点所表示的数都是正数6.计算4×(﹣6)的结果等于()A.24B.﹣24C.10D.﹣107.一个负数除以另一个负数,那么结果一定是()A.正数B.0C.负数D.无法确定8.将数1.4960用四舍五入法取近似数,若精确到百分位,则得到的近似数是()A.1.49B.1.50C.1.496D.1.49.计算:(﹣2)2021+(﹣2)2022的是()A.22021B.﹣1C.﹣2D.﹣2202110.已知有理数a,b,c在数轴上的位置如图所示,则下列结论不正确的是()A.c<a<b B.abc>0C.a+b>0D.|c﹣b|>|a﹣b|二.填空题11.气温上升5℃记为+5,则气温下降3℃记为.12.比较两数大小:﹣|﹣3|﹣(﹣3)(填“<”,“=”或“>”).13.广富林文化遗址公园自2018年6月26日开园以来,受到广大游客的喜爱,高峰时每天接待游客达1.03万,其中近似数1.03万精确到位.14.已知a=2,|b|=3,计算a﹣b=.15.规定运算*,使x*y=,如果1*2=1,那么3*4=.16.如图,直径为1个单位长度的圆从原点向左滚动一周,圆上的一点由原点O到达点O',点O'对应的数是.三.解答题17.计算:(1);(2).18.计算:(1)﹣5.53+4.26+(﹣8.47)﹣(﹣2.38);(2)﹣12020++(﹣)×[﹣2﹣(﹣3)].19.下面是圆圆同学计算一道题的过程:2÷(﹣+)×(﹣3)=[2÷(﹣)+2÷]×(﹣3)=2×(﹣3)×(﹣3)+2×4×(﹣3)=18﹣24=6.圆圆同学这样算正确吗?如果正确请解释理由;如果不正确,请你写出正确的计算过程.20.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?21.已知有理数ab<0,a+b>0,且|a|=2,|b|=3.(1)求a、b的值;(2)求|a﹣|÷2b的值.22.如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?参考答案一.选择题1.解:选项B中的“上升”和“下降”意义恰好相反.故选:B.2.解:±的绝对值是,即绝对值为的数是±.故选:D.3.解:∵100万亿=100000000000000,第一个数1后面有14个0,∴100万亿用科学记数法表示为1×1014,故选:D.4.解:∵﹣5<﹣1<0<1,∴最小的数是﹣5,故选:C.5.解:∵有理数的减法法则为:减去一个数,等于加上这个数的相反数,∴A选项正确,不符合题意;∵同号两数相加,取相同的符号,∴两个正数的和一定是正数.∴B选项正确,不符合题意;∵(﹣1)﹣(﹣5)=﹣1+5=4,∴两个负数的差一定是负数不正确.∴C选项不正确,符合题意;∴在数轴上,零右边的点所表示的数都是正数,∴D选项正确,不符合题意.综上,不正确的是:C.故选:C.6.解:4×(﹣6)=﹣(4×6)=﹣24.故选:B.7.解:根据“两数相除,同号得正,异号得负”可得,一个负数除以另一个负数,那么结果一定是正数,故选:A.8.解:1.4960≈1.50(精确到百分位),故选:B.9.解:(﹣2)2021+(﹣2)2022=(﹣2)2021+(﹣2)×(﹣2)2021=(1﹣2)×(﹣2)2021=﹣1×(﹣2)2021=22021故选:A.10.解:∵a、b、c在数轴上的位置从左到右排列为:c、a、b,∴c<a<b,故选项A正确;由a、b、c在数轴上的位置可知:a<0,b>0,c<0,∴abc>0,故选项B正确;由a、b、c在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,故选项C错误;由a、b、c在数轴上的位置可知:表示数a的点到表示数b的点的距离小于表示数c的点到表示数b的点的距离,∴|c﹣b|>|a﹣b|,故选项D正确;故选:C.二.填空题11.解:气温上升5℃记为+5,则气温下降3℃记为:﹣3,故答案为:﹣3.12.解:∵﹣|﹣3|=﹣3<0,﹣(﹣3)=3>0,∴﹣3<3,∴﹣|﹣3|<﹣(﹣3).故答案为:<.13.解:近似数1.03万=10300,精确到百位.故答案为:百.14.解:∵|b|=3,∴b=±3,∴a﹣b=2﹣3=﹣1或a﹣b=2﹣(﹣3)=5.故答案为:﹣1或5.15.解:∵1*2=1,∴,解得:A=6,∴x*y=∴3*4===4.故答案为:4.16.解:∵圆的直径d=1,∴周长C=πd=π,∴OO′=π,∴点O'对应的数是﹣π.故答案为:﹣π.三.解答题17.解:(1)=﹣1﹣2×=﹣1﹣1=﹣2.(2)=1×(﹣48)﹣×(﹣48)+×(﹣48)=﹣48+8﹣18=﹣58.18.解:(1)﹣5.53+4.26+(﹣8.47)﹣(﹣2.38)=[﹣5.53+(﹣8.47)]+[4.26﹣(﹣2.38)]=﹣14+6.64=﹣7.36.(2)﹣12020++(﹣)×[﹣2﹣(﹣3)]=﹣1++(﹣)×1=﹣1+﹣=﹣1.19.解:2÷(﹣+)×(﹣3)=×(﹣3)=2×(﹣12)×(﹣3)=72.20.解:(1)14﹣(﹣8)=22(分钟),∴小李跑步时间最长的一天比最短的一天多跑22分钟.(2)30×7+(10﹣8+12﹣6+11+14﹣3)=240(分钟),240×0.1=24(千米)∴若小李跑步的平均速度为每分钟0.1千米,则这七天他共跑了24千米.21.解:(1)∵有理数ab<0,a+b>0,且|a|=2,|b|=3,∴a=﹣2,b=3;(2)∵a=﹣2,b=3,∴|a﹣|÷2b=|﹣2﹣|÷(2×3)==.22.解:(1)观察数轴可知三根木棒长为30﹣6=24(cm),则这根木棒的长为24÷3=8(cm);故答案为8.(2)6+8=14,14+8=22.所以图中A点所表示的数为14,B点所表示的数为22.故答案为:14,22.(3)当奶奶像妙妙这样大时,妙妙为(﹣37)岁,所以奶奶与妙妙的年龄差为:[119﹣(﹣37)]÷3=52(岁),所以奶奶现在的年龄为119﹣52=67(岁).。
七年级数学上册第一单元《有理数》期末单元复习(1)带答案.doc
七年级数学上册第一单元《有理数》期末单元复习(1)一.选择题(共8小题,每小题3分,共24分)1. -夕的绝对值等于(A. 4(1西列等于1000毫西般,1毫西死等于1000微西列),用科学记数法可表示为() A. Uxltfffi 弗 8. Uxl 胪西弗 c. 3JXMT 1西弗 D. 3Jxl(F •西弗6. 某个体户在一•次买卖中同时卖出两件上衣,售价都是135元,若按成本价让算,其中一件盈利25%,另-•件亏损25%,在这次买卖中他()A.亏18元B.赚18元C.赚36元D.不赚不亏7. 近三年,国家投入8450亿元用于缓解群众“看病难、看病贵”的问题,将8450亿元用科学记数法表示为()A. OLMS1C1O 1 亿元B. 8.45 X ltf 亿元8. 计算机中常用的十六进制是逢16进1的计数制,釆用数字0〜9和字母A 〜F 共16个计 数符号,这些符号为十进制的数的对应关系如下表:例如,用十六进制表示C+F 二1B. 19-F 二A, 184-4=6,贝ijAXB 二 A. 72. B. 6E . C.. 5F . D. B0.-42. 卜勺的相反数是(A.C. 2 [)• —23.A. 4- 5. 下列各数(-3)2, 0, - ( - 2,( -1 ) 2015 , - 2》中,负数有()2个 B. 3个 C. 4个 D. 5个已知(x+3) 2+ | 3x+y+m | =0,且y 是负数,则m 的取值范围是()A. m>9B. m<9C. ni>-9D. m<-9我们身处在口然环境中,一年接受的宇宙射线及其它天然辎射照射屋约为3 1 00微西弗二、填空题(共6小题,每小题3分,共18分)9. __________________________________ 计算:-0. 4+轨一号二 (结果化成最简分数形式). 10. 一列数:1, -3, 9, —27, 81, -243,…,其中某三个相邻数的和是-1701,则这三个数屮最人的数是11. 如图,C 、Z )是线段曲 的三等分点,P 为8 的中点,<3»=2,则却= ______________________ o(40+善)=a + b,若 a 是整数,lVb<2,贝lj a =1313. 某市移动公司为了调杳手机发送短信息的情况,在木区域的120位用户屮抽取了 10位用户来统计他们某周发信息的条数,结果如下表:1 2 3 45 6 78 910 2oJ 19 20 20_J 21 1715 2320 2512.已知(39+圭)X13例:1+2+3+・・・+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续正整数的规律和特点,可以发现运用加法的运算律,是可以人人简化计算,提高计算速度的.因为1+100=2+99 = 3+98 =・・・=50+51 = 101,所以将所给算式中各加数经过交换、结合以后, 可以很快求出结果.解:I+2+3+・・・+100= (1+100) + (2+99) + (3+98) +・•・+ (50+51)= 101X _= __________(1)补全上述例题解题过程(2)计算3+ (a+b) + (a+2b) + (a+3b) +•••+ (a+99b)19.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,求・一crf・——的值。
第二章有理数及其运算专项练习共7个专题含答案推荐文档
第二章《有理数及其运算》专项练习专题一:正数和负数C.除去正数的其他数3、 关于零的叙述错误的是()A. 零大于所有的负数 C.零是整数4、 非负数是( )A.正数B.零D.小于0的数B. 零小于所有的正数 D.零既是正数,也是负数C. 正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边 20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了 40米,接着又向东走了一 60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处6、大于一5.1的所有负整数为 ______7、珠穆朗玛峰高出海平面 8848米,表示为+8848米•吐鲁番盆地低于海平面 155米,表示为 ____&请写出3个大于一1的负分数 _________9、某旅游景点一天门票收入 5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作 _____专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间2、关于相反数的叙述错误的是( )A. 两数之和为0,则这两个数为相反数B. 如果两数所对应的点到原点的距离相等,这两个数互为相反数C. 符号相反的两个数,一定互为相反数D.零的相反数为零1 11、下列各数中,大于一小于一的负数疋()22211A. —-—C.-33 32、负数是指()A.把某个数的前边加上“―” 号B.不大于0的数D.03、若数轴上A、B两点所对应的有理数分别为a、b,且B在A的右边,则a —b 一定()A.大于零B.小于零C.等于零D.无法确定1 一1 、4、在数轴上A点表示一—,B点表示一,则离原点较近的点是________ .3 25、两个负数较大的数所对应的点离原点较 ______ .6、在数轴上距离原点为2的点所对应的数为_______ ,它们互为______ .2 3 47、数轴上A、B、C三点所对应的实数为一一,一一,一,则此三点距原点由近及远的顺序为____________3 4 58数轴上一1所对应的点为A,将A点右移4个单位再向左平移6个单位,则此时A点距原点的距离为_____ .9、在等式3 | | 2 | | 15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
最新七年级数学上册有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.2.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
(1)点A表示的数为________,点B表示的数为________,线段AB的长为________。
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________。
七年级数学有理数单元复习(含答案)
有理数单元复习一、单选题(共15道,每道5分)1.某大米包装袋上标注着“净重量:25kg±0.25kg”,则一袋这种合格的大米其实际净含量可能是( )A.25.28kgB.25.18kgC.24.69kgD.24.25kg答案:B解题思路:由题可得:25+0.25=25.25kg,25-0.25=24.75kg,因此合格的大米其实际净含量是:24.75~25.25kg,25.28kg,25.18kg,24.69kg,24.25kg中只有25.18kg在该范围内.故选B.试题难度:三颗星知识点:正负数的实际意义2.已知下列各数:,,,,,,其中负数有( )A.2个B.3个C.4个D.5个答案:C解题思路:,,,,,,所以其中的负数有4个.故选C.试题难度:三颗星知识点:有理数的乘方3.下列说法正确的是( )A.互为相反数的两个数一定不相等B.绝对值等于它相反数的数是负数C.一个有理数不是整数就是分数D.倒数等于它本身的数只有1答案:C解题思路:0的相反数是0,这两个数相等,A选项错误;绝对值等于它相反数的数是负数和0,B选项错误;整数和分数统称为有理数,所以一个有理数不是整数就是分数,C选项正确;根据倒数的定义可知,倒数等于它本身的数有1和-1,D选项错误.故选C.试题难度:三颗星知识点:有理数的定义4.下列说法正确的是( )A.-1是最大的负数B.两个数的和一定大于其中的任意一个数C.两个数的差一定小于被减数D.两数相乘,如果积为负数,那么这两个因数异号答案:D解题思路:根据有理数的分类,-1是最大的负整数,A选项错误;2+(-1)=1,1大于-1,小于2,B选项错误;2-(-1)=3,3大于2,C选项错误;两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,积仍为0.两数相乘,如果积为负数,那么这两个因数异号,D选项正确.故选D.试题难度:三颗星知识点:有理数减法运算5.下列判断正确的是( )A.-a一定小于0B.C. D.答案:C解题思路:当时,,A选项错误;当时,,B选项错误;若a+b=0,则,则,即,C选项正确;若,则a=b,或,D选项错误.故选C.试题难度:三颗星知识点:绝对值的定义6.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则( )A.1或-3B.±1C.±3D.1答案:A解题思路:试题难度:三颗星知识点:倒数7.已知点A为数轴上表示-1的点,将点A向右平移3个单位长度得到点B,再将点B向左平移4个单位长度得到点C,则点C表示的数为( )A.-2B.0C.2D.3答案:A解题思路:根据题意,画数轴分析:所以点C表示的数为-2.故选A.试题难度:三颗星知识点:数轴表示数8.设有理数在数轴上的对应点如图所示,则下列说法正确的是( )A. B.C. D.答案:B解题思路:由图可知,,,,并且,所以在数轴上的位置如图所示:因此,,,,所以只有选项B正确.故选B.试题难度:三颗星知识点:用数轴上的点表示数9.如果,那么代数式的值是( )A.-2014B.2014C.-1D.1答案:C解题思路:由题知,,所以,,则.故选C.试题难度:三颗星知识点:绝对值的非负性10.已知,,且,则的值为( )A.1B.7C.1或7D.1或6答案:C解题思路:对于绝对值的分类讨论,首先画树状图,分类,然后根据限制条件,筛选、排除.∵,∴x=±4,y=±3∵∴画树状图分析,如图,由,排除图中画×的两种情况,∴故选C.试题难度:三颗星知识点:绝对值分类讨论11.结合数轴与绝对值的知识回答下列问题:数轴上4和1两点之间的距离是_____;-3和2两点之间的距离是_____;一般地,数轴上数m和数n两点之间的距离等于,如果数a和-2两点之间的距离是3(在数轴上,数a在原点的左边),那么a=_____.以上空缺处依次所填正确的是( )A.3;5;-5B.3;1;-5C.3;5;-1D.5;5;-5或1答案:A解题思路:画数轴:可知数轴上4和1两点之间的距离是3;画数轴:可知数轴上-3和2两点之间的距离是5.根据数m和数n两点之间的距离等于,数a和-2两点之间的距离是3,即,所以.又因为数a在原点的左边,a<0,所以a=-5.故选A.试题难度:三颗星知识点:绝对值的几何意义12.计算的结果是( )A.-25B.-19C.15D.21答案:C解题思路:故选C.试题难度:三颗星知识点:有理数混合运算13.计算的结果是( )A.-22B.-32C.-10D.-34答案:D解题思路:故选D.试题难度:三颗星知识点:有理数混合运算14.计算的结果是( )A.24B.16C.-16D.-24答案:A解题思路:故选A.试题难度:三颗星知识点:有理数混合运算15.计算的结果是( )A.-2B.-3C.0D.答案:B解题思路:故选B.试题难度:三颗星知识点:有理数混合运算。
【精选】七年级数学上册有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.3.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。
有理数单元练习及参考答案
有理数单元练习一、选择题1.有理数3的相反数是()A.-3B.3C.13D.132.一个数和它的倒数相等,则这个数是()A.1B.-1C.±1D.±1或者03.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是14.若x的相反数是1,|y|=2,则x+y的值为()A. 3B.-1C. -1或3D.-35.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+c等于()A.-1B.0C.1D.26.已知|x|=3,|y|=5,且xy<0,那么x+y的值等于()A.8B.-2C.8或者-8D.2或者-27.质检员抽查零件的质量,超过尺寸的记为正数,不足的记为负数,抽查了四个零件,结果如下,质量最差的零件是()A.+0.01mmB.-0.05mmC. +0.1mmD.-0.11mm8.(-1)2023的计算结果是()A.-1B.1C.2023D.-20239.我国陆地面积约9600000 km²,用科学记数法表示为()A.9.6×105B. 9.6×106C. 9.6×107D. 9.6×10810.如图,四个有理数在数轴上的对应点M、P、N、Q,若点M、N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.MB.PC.ND.Q二、填空题11.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168000000米,用科学计数法表示这个数__________12.若(x-2)2与|x+y |互为相反数,则y-x=__________ 13. 若规定a ▽b =a ba b-+,则﹣3▽4= . 14.观察表中按次序排列的一组数,则-2023在表中第 行第 列.15.如果a <0,b >0,a +b >0,那么四个数a 、-a 、b 、-b 之间的大小关系是_____________(请用“<”连接)16.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为__________. 三、解答题 17.计算:(1)11(8)(15)(3)-+--+--; (2)8199199⎛⎫÷- ⎪⎝⎭;(3)42112(3)6⎡⎤--⨯--⎣⎦; (4)4231151454⎡⎤-+-⨯+⨯⎢⎥⎣⎦(-4)(-)-|-(-2)|18.若(a+3)2+|b -5|=0,求2a +b 的值.1111|2||1|......(1)(1)(2)(2)(2021)(2021)ab b ab a b a b a b --++++++++++19.已知与互为相反数,求的值20. 有理数a.b.c 在数轴上位置如图,化简:|c-a|-|a-b|+|b-c|.21. 某检修小组,约定向东为正,乘一辆汽车从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6 (1)收工时,该小组距离A 地多远?(2)若每行驶1千米汽车耗油3升,开工时储存180升汽油,问从出发到收工途中是否需要汽油?若需要,最少加多少升?若不需要,收工时还剩多少升? (3)若该小组从出发到回到A 地共花费6小时,求它的平均速度.有理数单元练习参考答案一、选择题1.有理数3的相反数是( A )A.-3B.3C.13D.132.一个数和它的倒数相等,则这个数是( C )B.1 B.-1C.±1D.±1或者03.下列说法正确的是( D )A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是14.若x的相反数是1,|y|=2,则x+y的值为( C )A. 3B.-1C. -1或3D.-35.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+c等于( B )A.-1B.0C.1D.26.已知|x|=3,|y|=5,且xy<0,那么x+y的值等于( D )A.8B.-2C.8或者-8D.2或者-27.质检员抽查零件的质量,超过尺寸的记为正数,不足的记为负数,抽查了四个零件,结果如下,质量最差的零件是( A )A.+0.01mmB.-0.05mmC. +0.1mmD.-0.11mm8.(-1)2023的计算结果是( A )A.-1B.1C.2023D.-20239.我国陆地面积约9600000 km²,用科学记数法表示为( B )A.9.6×105B. 9.6×106C. 9.6×107D. 9.6×10810.如图,四个有理数在数轴上的对应点M、P、N、Q,若点M、N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( B )A.MB.PC.ND.Q二、填空题11.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168000000米,用科学计数法表示这个数1.68×10812.若(x -2)2与|x+y|互为相反数,则y-x = -4 13. 若规定a ▽b =a ba b-+,则﹣3▽4= -7 . 14.观察表中按次序排列的一组数,则-2023在表中第 675 行第 2 列.15.如果a <0,b >0,a +b >0,那么四个数a 、-a 、b 、-b 之间的大小关系是 -b <a <-a <b (请用“<”连接)16.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为 8或4 . 三、解答题 17.计算:(1)11(8)(15)(3)31-+--+--=-;(2)81899999910÷=(-1); (3)421112(3)66⎡⎤--⨯--=⎣⎦; (4)4231151714544⎡⎤-+-⨯+⨯⎢⎥⎣⎦(-4)(-)-|-(-2)|=- 18.若(a +3)2+|b -5|=0,求2a+b 的值. 解:a =-3,b =5,2a+b =-11111|2||1|......(1)(1)(2)(2)(2021)(2021)ab b ab a b a b a b --++++++++++19.已知与互为相反数,求的值解:b=1,a=21111......(1)(1)(2)(2)(2021)(2021)1111......2132432023202211111111 (223342022202311202320222023)ab a b a b a b ++++++++++=++++⨯⨯⨯⨯=-+-+-++-=-=20. 有理数a.b.c 在数轴上位置如图,化简:|c-a|-|a-b|+|b-c|.21. 某检修小组,约定向东为正,乘一辆汽车从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6 (1)收工时,该小组距离A 地多远?(2)若每行驶1千米汽车耗油3升,开工时储存180升汽油,问从出发到收工途中是否需要汽油?若需要,最少加多少升?若不需要,收工时还剩多少升? (3)若该小组从出发到回到A 地共花费6小时,求它的平均速度. 解:(1)根据题意可得:向东为正,则向西为负,则收工的距离=(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣5)+(+6)=+35米, 故收工时该小组在A 地东39千米,(2)从A 地出发到收工一共走了|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65千米, 共消耗油:65×3=195升,故需加油15升; (3)该小组从出发到A 地共走了65+39=104千米,000||||||()()2c a a b b c c a a b b c a c a b b c a c a b b c c ---∴---++=----+=--+--=-解:由图可得:<,>,<平均速度为:千米/小时=千米/小时;答:收工时该小组距离A地39千米,需加油15升,平均速度为千米/小时.。
【精选】有理数单元练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。
(2)根据题意分别列式求出第5次和第6次行进后相对A的位置,由此可得到第P和点Q到A的距离,即可作出判断。
(3)根据点B在原点的右侧,列式可求出n=100时,可得到点A在数轴上表示的数,再根据点B表示的数,就可求出AB的距离。
2.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.3.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.4.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.5.对于有理数,定义一种新运算“ ”,观察下列各式:,,.(1)计算: ________, ________.(2)若,则 ________ (填入“ ”或“ ”).(3)若有理数,在数轴上的对应点如图所示且,求的值.【答案】(1)19;(2)(3)解:由数轴可得,,,则,,∵,∴,∴,∴,∴.【解析】【解答】(1),;(2)∵,,,∴,或综上可知,【分析】(1)根据定义计算即可;(2)分别根据定义计算a b和b a,判断是否相等;(3)由定义计算得到|a+b|=5,再根据数轴上点的位置关系判断a+b<0,再计算[(a+b)(a+b)][a+b]6.阅读材料,回答下列问题:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学有理数解答题压轴题精选(难)1.阅读下面的材料:如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【答案】(1)解:如图所示:(2)5;﹣5或3(3)﹣1+x(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为5,﹣5或3;( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为﹣1+x;【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.2.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
(1)点A表示的数为________,点B表示的数为________,线段AB的长为________。
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________。
(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)30;﹣6;36(2)6或﹣42(3)解:①当点Q未出发,P、Q两点相距4个单位长度,此时t×1=4,所以t=4;②点P用了6秒移动到O点时,点Q才从B点出发。
当点Q在点P后面,P、Q两点相距4个单位长度,此时3(t﹣6)= t﹣4,所以t=7;③点P用了6秒移动到O点时,点Q才从B点出发。
当点Q在点P前面,P、Q两点相距4个单位长度,此时3(t﹣6)= t+4,所以t=11;所以t=4或t=7或t=11。
【解析】【分析】(1)根据非负数的性质求出a、b表示的数,然后将点A和点B表示在数轴上,容易求出线段AB的长;(2)分两种情况讨论:①若点C在线段AB上,则点C为线段AB的三等分点,此时BC=AB=12,易得点C在数轴上表示的数为6;②若点C在线段AB的延长线上,则点B 为线段AC的中点,此时BC=AB=36,易得点C在数轴上表示的数为-42.(3)先求出t秒后点P、Q所对应的数分别是t、3(t-3),然后分三种情况分别列出方程解出t的值即可:①当点Q未出发(0<t≤6)时,P、Q之间的距离即为点P移动的距离;②点p用了6秒移动到O点(t>6)时,点Q才开始从B点出发。
当点Q在点P的后面时,点Q表示的数比点P表示的数小4;③点P用了6秒移动到O点(t>6)时,点Q才开始从B点出发。
当点Q在点P的前面时,点Q表示的数比点P表示的数大4。
3.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.4.对于有理数,定义一种新运算“ ”,观察下列各式:,,.(1)计算: ________, ________.(2)若,则 ________ (填入“ ”或“ ”).(3)若有理数,在数轴上的对应点如图所示且,求的值.【答案】(1)19;(2)(3)解:由数轴可得,,,则,,∵,∴,∴,∴,∴.【解析】【解答】(1),;(2)∵,,,∴,或综上可知,【分析】(1)根据定义计算即可;(2)分别根据定义计算a b和b a,判断是否相等;(3)由定义计算得到|a+b|=5,再根据数轴上点的位置关系判断a+b<0,再计算[(a+b)(a+b)][a+b]5.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得:;(iii)当12<t≤48时,点P在点Q的左侧,∴3(t﹣8)﹣t=4,解得:t=14,综上所述:当t为4秒、10秒和14秒时,P、Q两点相距4个单位长度.【解析】【解答】解:(1)∵|a﹣40|+(b+8)2=0,∴a﹣40=0,b+8=0,解得a=40,b=﹣8,AB=40﹣(﹣8)=48.故点A表示的数为40,点B表示的数为﹣8,线段AB的长为48;(2)点C在线段AB 上,∵AC=2BC,∴AC=48× =32,点C在数轴上表示的数为40﹣32=8;点C在射线AB上,∵AC=2BC,∴AC=40×2=80,点C在数轴上表示的数为40﹣80=﹣40.故点C在数轴上表示的数为8或﹣40;【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤8、8<t≤12,12<t≤48三种情况考虑,根据P,Q移动的路程结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.6.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .【答案】(1)-4(2)0或-4(3)4;【解析】【解答】解:根据观察可以知道,所有的式子符合的形式,所以(1)中此时2-a=6,解得a=-4,故答案为-4;所以(2)中a=2,故2-2=0,所以x的值为0;根据绝对值的意义将原式化简可得,求得x=0或x=-4,所以x的值为0或-4;(3)根据,可知,整理得,所以,所以y的最大值为4,此时的式子是.【分析】(1)根据即可求解;(2)由(1)的规律即可求解;(3)由(1)可得进行整理,根据绝对值意义求解即可.7.把具有某种规律的一列数:1,-2,3,-4,5,-6,...,排列成下面的阵形:........探索下列事件:(1)第10行的第1个数是什么数?(2)数字2019前面是负号还是正号?在第几行?第几列?【答案】(1)解:∵第1行第1个数1=(-1)2×(02+1);第2行第1个数-2=(-1)3×(12+1);第3行第1个数5=(-1)4×(22+1);第4行第1个数-10=(-1)5×(32+1);…∴第10行第1个数为(-1)11×(92+1)=-82,(2)解:由以上数列可知,绝对值为奇数的为正,绝对值为偶数的符号为负,∴2019前面是正号;∵第45行第1个数为(-1)46×(442+1)=1937,第46行第1个数为(-1)47×(452+1)=-2026,且2019-1937+1=83,∴2019在第45行,第83列【解析】【分析】(1)由每行的第一个数可知,第n行第一个数为(-1)n+1×[(n-1)2+1],据此可得;(2)根据题意知绝对值为奇数的为正,绝对值为偶数的符号为负;求出第45行第1个数为1937,第46行第1个数为-2026知2021在第45行,再由每行中每个数的绝对值依次加1可得列数.8.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.例如:对于数列因为所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.(1)数列的“关联数值”为________;(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________ (3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.【答案】(1)-4(2)7;-3、4、2(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,∴-9-a<-9<-3,∴数列3、-6、a的“关联数值”为-3,∵-3=-3,-3+a=a-3,-3+a-(-6)=a+3,a>0,∴-3<-3+a<a+3,∴数列3、a、-6的“关联数值”为a+3,∵-(-6)=6,-(-6)+a=a+6,-(-6)+a-3=a+3,a>0,∴a+6>6,a+6>a+3,∴数列-6、a、3的“关联数值”为a+6,∵-(-6)=6,-(-6)+3=9,-(-6)+3-a=9-a,a>0,∴9>9-a,9>6,∴数列-6、3、a的“关联数值”为9,∵-a=-a,-a+(-6)=-a-6,-a+(-6)-3=-a-9,a>0,∴-a-9<-a-6<-a,∴数列a、-6、3的“关联数值”为-a,∵-a=-a,-a+3=3-a,-a+3-(-6)=9-a,a>0,∴-a<3-a<9-a,∴数列a、3、-6的“关联数值”为9-a,∵a>0,这些数列的“关联数值”的最大值为10,∴-3、9、-a、9-a不符合题意,∵a+6>a+3,∴a+6=10,解得:a=4.取得“关联数值”最大值的数列为-6,4、3.【解析】【解答】(1)∵-4=-4,-4+(-3)=-7,-4+(-3)-2=-9,∴数列的“关联数值”为-4.故答案为-4(2)“4、-3、2”这三个数按照不同的顺序排列有4、-3、2;4、2、-3;-3、4、2;-3、2、4;2、4、-3;2、-3、4共6种排列顺序,由(1)得数列的“关联数值”为-4.∵-4=-4,-4+2=-2,-4+2-(-3)=1,∴数列4,2,-3的“关联数值”为1,∵-(-3)=3,-(-3)+4=7,-(-3)+4-2=5,∴数列-3、4、2的“关联数值”为7,∵-(-3)=3,-(-3)+2=5,-(-3)+2-4=1,∴数列-3、2、4的“关联数值”为5,∵-2=-2,-2+4=2,-2+4-(-3)=5,∴数列2、4、-3的“关联数值”为5,∵-2=-2,-2+(-3)=-5,-2+(-3)-4=-9,∴数列2、-3、4的“关联数值”为-2,∴这些数列的“关联数值”的最大值是7,取得“关联数值”的最大值的数列是-3、4、2故答案为7;-3、4、2【分析】(1)根据材料所给计算方法计算即可;(2)按不同顺序计算出“关联数值”即可;(3)按不同顺序计算出“ ” 这三个数的“关联数值”,根据a>0,这些数列的“关联数值”的最大值为10,求出a值即可.9.如图,在数轴上A点表示的数是-8,B点表示的数是2。