热分析(ansys教程)解析

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳态传热



如果系统的净热流率为0,即流入系统的热量加上 系统自身产生的热量等于流出系统的热量:q流入+q 生成 -q 流出 =0 ,则系统处于热稳态。在稳态热分析中 任一节点的温度不随时间变化。稳态热分析的能量 平衡方程为(以矩阵形式表示):[K]{T}={Q} 式中: [K]为传导矩阵,包含导热系数、对流系数 及辐射率和形状系数;{T}为节点温度向量;{Q}为 节点热流率向量,包含热生成; ANSYS 利用模型几何参数、材料热性能参数以及 所施加的边界条件,生成[K] 、 {T}以及{Q} 。
线性与非线性
如果有下列情况产生,则为非线性热分析: ① 材料热性能随温度变化,如K(T),C(T)等; ② 边界条件随温度变化,如h(T)等; ③ 含有非线性单元; ④ 考虑辐射传热 非线性热分析的热平衡矩阵方程为: [C(T)]{ T }+[K(T)]{T}={Q (T)}
边界条件、初始条件
KXX HF DENS C ENTH
表征物体吸收的热量,为一个体系的内能与体系的体积和外界施加 于体系的压强的乘积之和
传热学经典理论回顾
热传递的方式
1、热传导 热传导可以定义为完全接触的两个物体之间或一个 物体的不同部分之间由于温度梯度而引起的内能的 交换。热传导遵循付里叶定律: qn=-k*(dT/dx) ,式 中 qn 为热流密度( W/m2 ), k 为导热系数 (W/m-℃) , “-”表示热量流向温度降低的方向。 2、热对流 热对流是指固体的表面与它周围接触的流体之间, 由于温差的存在引起的热量的交换。热对流可以分 为两类:自然对流和强制对流。热对流用牛顿冷却 方程来描述: qn= h*(TS-TB),式中 h为对流换热系 数(或称膜传热系数、给热系数、膜系数等),TS为固 体表面的温度, TB为周围流体的温度。
ANSYS热分析的边界条件或初始条件可分为七种: 温度:模型区温度已知 热流率:热流率已知的点 对流:表面的热传递给周围的流体通过对流。输 入对流换热系数h和环境流体的 平均温度Tb 热辐射:通过辐射产生热传递的面 . 输入辐射系 数,Stefan-Boltzmann常数,“空间节点”的温度 作为可选项输入 绝热面: “完全绝热”面,该面上不发生热传递 热通量:单位面积上的热流率已知的面 热生成率:体的生热率已知的区域
瞬态源自文库热


瞬态传热过程是指一个系统的加热或冷却过程。 在这个过程中系统的温度、热流率、热边界条 件以及系统内能随时间都有明显变化。根据能 量守恒原理,瞬态热平衡可以表达为 ( 以矩阵 形式表示):[C]{ }+[K]{T}={Q} T 式中 :[K] 为传导矩阵,包含导热系数、对流系 数及辐射率和形状系数; [C]为比热矩阵,考虑系统内能的增加; {T}为节点温度向量; { T }为温度对时间的导数; {Q}为节点热流率向量,包含热生成。
热分析


热分析的目的
热分析用于计算一个系统或部件的温度分布及其 它热物理参数,如热量的获取或损失、热梯度、 热流密度(热通量)等 热分析在许多工程应用中扮演重要角色,如内燃 机、涡轮机、换热器、管路系统、电子元件等

ANSYS的热分析



ANSYS/Multiphysics 、 ANSYS/Mechanical 、 ANSYS/Thermal 、 ANSYS/FLOTRAN 、 ANSYS/ED 五种产品中包含热分析功能 ANSYS 热分析基于能量守恒原理的热平衡方程,用 有限元法计算各节点的温度,并导出其它热物理参 数 ANSYS 热分析包括热传导、热对流及热辐射三种热 传递方式。此外,还可以分析相变、有内热源、接 触热阻等问题
ANSYS的热分析分类
ANSYS的热分析分类 稳态传热:系统的温度场不随时间变化 瞬态传热:系统的温度场随时间明显变化 与热有关的耦合分析 热-结构耦合 热-流体耦合 热-电耦合 热-磁耦合 热-电-磁-结构耦合等

热分析的符号与单位
项目 长度 时间 质量 温度 力 能量(热量) 功率(热流率) 热流密度 生热速率 导热系数 对流系数 密度 比热 焓 国际单位 m s Kg ℃ N J W W/m2 W/m3 W/m-℃ W/m2-℃ Kg/m3 J/Kg-℃ J/m3 英制单位 ft[英尺] s lbm [磅质量] oF lbf BTU[英制热单位] BTU/sec BTU/sec-ft2 BTU/sec-ft3 BTU/sec-ft-oF BTU/sec-ft2-oF lbm/ft3 BTU/lbm-oF BTU/ft3 ANSYS代号
热传递的方式(续)
3、热辐射 热辐射指物体发射电磁能,并被其它物体吸收转变 为热的热量交换过程。物体温度越高,单位时间辐 射的热量越多。热传导和热对流都需要有传热介质, 而热辐射无须任何介质。实质上,在真空中的热辐 射效率最高。 在工程中通常考虑两个或两个以上物体之间的辐射, 系统中每个物体同时辐射并吸收热量。它们之间的 净热量传递可以用斯蒂芬 — 波尔兹曼方程来计算: q=εσA1F12(T14-T24) ,式中 q 为热流率, ε 为辐射率 (黑度), σ为斯蒂芬-波尔兹曼常数,约为 5.67×10-8W/m2.K4 , A1 为辐射面 1 的面积, F12 为由 辐射面1到辐射面2的形状系数,T1为辐射面1的绝对 温度,T2为辐射面2的绝对温度。由上式可以看出, 包含热辐射的热分析是高度非线性的。
热分析误差估计




仅用于评估由于网格密度不够带来的误差; 仅适用于 SOLID 或 SHELL 的热单元 ( 只有温度 一个自由度); 基于单元边界的热流密度的不连续; 仅对一种材料、线性、稳态热分析有效; 使用自适应网格划分可以对误差进行控制。
稳态传热分析


稳态传热用于分析稳定的热载荷对系统或部件 的影响。通常在进行瞬态热分析以前,进行稳 态热分析用于确定初始温度分布。 稳态热分析可以通过有限元计算确定由于稳定 的热载荷引起的温度、热梯度、热流率、热流 密度等参数
相关文档
最新文档