有理数知识点总结归纳
有理数字知识点总结
有理数字知识点总结一、有理数的基本概念有理数是可以写成分数形式的数,包括正整数、负整数和分数。
一般记作Q。
有理数集包括正整数、负整数、零和分数。
1. 正整数:1, 2, 3, …2. 负整数:-1, -2, -3, …3. 零:04. 分数:a/b(a和b都是整数,b≠0)和自然数、整数、整数和分数相比,有理数具备更广泛的适用性,它能够准确地表示各种有关量的大小,如长度、质量、时间、温度等。
二、有理数的运算有理数的运算包括加法、减法、乘法和除法。
下面我们将分别介绍有理数的四则运算。
1. 加法有理数的加法满足交换律、结合律和对称律。
(1)同号相加:两个正数相加,或者两个负数相加,其和为它们的绝对值相加,并且符号不变。
(2)异号相加:一个正数和一个负数相加,其和的绝对值为它们的绝对值相减,符号取绝对值较大的数的符号。
2. 减法有理数的减法可以转化为加法,即 a - b = a + (-b)。
(1)减去一个正数等于加上一个负数。
(2)减去一个负数等于加上一个正数。
3. 乘法有理数的乘法满足交换律、结合律和分配律。
(1)同号相乘,积为正数。
(2)异号相乘,积为负数。
4. 除法有理数的除法可以转化为乘法,即 a ÷ b = a × (1/b)。
(1)有理数相除,不等于零的数除以零是无意义的。
(2)同号相除,商为正数。
(3)异号相除,商为负数。
有理数的四则运算是数学中最基本的运算,它们在解决实际问题中起着重要的作用。
为了掌握有理数的四则运算,我们需要多做一些练习,加深对有理数运算规律的理解。
三、有理数的比较大小比较有理数的大小有以下几种方法:1. 同号比较大小:绝对值大的数更大。
2. 异号比较大小:正数大于零,负数大于负无穷小,零等于零。
3. 有理数的绝对值比较大小。
深化理解有理数的比较大小规律,对解决实际问题具有重要意义。
在实际生活中,我们经常需要比较各种有关量的大小,如温度的高低、时间的长短、质量的轻重等,而有理数的比较大小知识点正是这些实际问题的数学抽象。
有理数知识点总结人教
有理数知识点总结人教有理数的基本性质:1. 加法性质:有理数的加法满足交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。
而且有理数的加法有一个特殊性质,就是加法的逆元,即对于任意的有理数a,都存在一个有理数-b,使得a+b=0。
2. 减法性质:有理数的减法满足a-b=a+(-b),即减法可以转化为加法。
另外,减法也满足交换律,但不满足结合律。
3. 乘法性质:有理数的乘法满足交换律和结合律,即a*b=b*a,(a*b)*c=a*(b*c)。
而且有理数的乘法有一个特殊性质,就是乘法的逆元,即对于任意的非零有理数a,都存在一个有理数1/a,使得a*(1/a)=1。
4. 除法性质:有理数的除法满足a/b=a*(1/b),即除法可以转化为乘法。
而且有理数的除法满足交换律,但不满足结合律。
5. 分配律:有理数的加法和乘法满足分配律,即a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c。
有理数的大小比较:1. 绝对值:有理数a的绝对值表示为|a|,即a的绝对值等于a本身(如果a大于等于0),等于-a(如果a小于0)。
2. 大小比较:对于两个有理数a和b,如果a>b,则称a大于b;如果a<b,则称a小于b;如果a=b,则称a等于b。
3. 有理数的大小比较规则:当有理数的绝对值不相等时,绝对值大的数较大;当有理数的绝对值相等时,正数大于负数。
有理数的运算:1. 有理数的加法:对于两个有理数a和b,它们的加法运算为a+b。
2. 有理数的减法:对于两个有理数a和b,它们的减法运算为a-b。
3. 有理数的乘法:对于两个有理数a和b,它们的乘法运算为a*b。
4. 有理数的除法:对于两个有理数a和b(其中b不等于0),它们的除法运算为a/b。
5. 有理数的乘方:对于有理数a和非负整数n,它们的乘方运算为a^n。
有理数的应用:1. 有理数的加法和减法适用于日常生活中的收入和支出,例如银行存款、购物消费等。
有理数知识点总结
有理数知识点总结有理数是数学中的一个重要概念,它包括整数和分数。
有理数的运算规则和性质是数学学习的基础,下面将从有理数的定义、四则运算、有理数的比较和绝对值等方面进行总结。
一、有理数的定义有理数是可以表示为两个整数之比的数,其中分母不为零。
有理数的特点是可以用分数形式来表示,且分数的分子和分母都是整数。
例如,1/2、-3/4、5、-7等都是有理数。
二、有理数的四则运算1. 加法:有理数的加法满足交换律和结合律。
当两个有理数的符号相同时,将其绝对值相加,并保持符号不变;当两个有理数的符号不同时,将其绝对值相减,并取绝对值较大的符号作为结果的符号。
2. 减法:有理数的减法可以转化为加法,即将减数取相反数,然后进行加法运算。
3. 乘法:有理数的乘法满足交换律和结合律。
当两个有理数的符号相同时,将其绝对值相乘,并保持符号不变;当两个有理数的符号不同时,将其绝对值相乘,并取负号作为结果的符号。
4. 除法:有理数的除法可以转化为乘法,即将被除数乘以除数的倒数,然后进行乘法运算。
三、有理数的比较1. 相等性:两个有理数相等,当且仅当其分数表示形式相同。
2. 大小关系:有理数的大小关系可以通过比较其分数表示的分子和分母来确定。
若两个有理数的分子相同,则分母越小的数越大;若两个有理数的分母相同,则分子越大的数越大;若两个有理数的分子和分母都不相同,则可以通过交叉相乘法比较大小。
四、有理数的绝对值有理数的绝对值是该数到零的距离,即不考虑其正负。
对于正数,其绝对值等于其本身;对于负数,其绝对值等于其相反数;对于零,其绝对值仍然是零。
五、有理数的应用有理数在数学和实际生活中有广泛的应用。
在数学中,有理数是实数的一个重要组成部分,它们在代数运算中起着重要的作用。
在实际生活中,有理数可以用来表示温度、长度、质量、时间等物理量,以及货币、股票等经济数据。
六、总结有理数是数学中重要的数集,包括整数和分数。
有理数的四则运算规则和性质是数学学习的基础,通过对有理数的运算和比较,可以解决实际问题。
有理数的知识点总结
有理数的知识点总结一、有理数的定义及基本性质:有理数是指所有可以表示为两个整数的比值的数,包括整数、分数和零。
有理数可以用一组整数的比值表示成两种形式:分数形式(也称作比例效应)和小数形式(也称作数列形式)。
有理数的集合通常记作Q。
有理数具有以下基本性质:1. 有理数的加法、减法、乘法和除法仍然是有理数,也就是说,有理数集合对于这四种运算是封闭的。
2. 有理数满足交换律和结合律,在加法和乘法运算中,a+b =b+a,(a+b)+c = a+(b+c);在乘法运算中,a×b = b×a,(a×b)×c= a×(b×c)。
3. 有理数乘法和除法具有倒数性质,即对于任意非零有理数a,存在一个有理数b使得a×b = 1。
4. 有理数乘法符合分配律,即对于任意有理数a、b和 c,a×(b+c) = a×b + a×c。
5. 有理数具有唯一分解性质,即任何一个非零有理数都可以唯一表示为两个整数的比值,而且这个比值对于最简分数形式是唯一的。
二、有理数的四则运算:1. 有理数的加法和减法:对于两个有理数a/b和 c/d,它们的加法定义为(a/b) + (c/d) = (ad+bc)/bd,减法定义为(a/b) - (c/d) = (ad-bc)/bd。
在进行加法和减法运算时,通常需要化简结果为最简分数形式。
2. 有理数的乘法和除法:对于两个有理数 a/b和 c/d,它们的乘法定义为(a/b) × (c/d) =ac/bd,除法定义为(a/b) ÷ (c/d) = ad/bc(其中c/d≠0)。
在进行乘法和除法运算时,同样需要化简结果为最简分数形式。
三、有理数的大小比较:在有理数集合中,任何两个有理数都可以通过大小比较运算来确定它们的相对大小。
有理数的大小比较有以下几个基本原则:1. 相同符号的有理数比较大小,绝对值越大的数为更大的数;2. 不同符号的有理数比较大小,正数大于零,零大于负数;3. 相同符号的两个有理数的绝对值比较,绝对值较小的数较小。
《有理数》的知识点汇总
第一章有理数1.1 正数与负数1.正数和负数的概念①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:(3) 0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳有理数是我们学习数学的基础,掌握有理数的知识是进行后续学习的关键。
本章将对有理数的知识点、考点和难点进行总结归纳,帮助我们更好地理解和掌握有理数。
一、有理数的定义有理数是可以表示为两个整数的比值,包括正整数、负整数和零。
有理数的表示形式为分数或整数。
二、有理数的基本运算1. 加法和减法:有理数的加法和减法运算都可以通过分数的相加相减来完成,要注意同分母的分数之间的加减法运算规则,并进行合并和化简。
2. 乘法和除法:有理数的乘法和除法运算也可以通过分数的乘法和除法来完成,要注意分数的乘法规则和除法规则,并进行化简。
三、有理数的大小比较比较两个有理数的大小,可以首先将它们转化为相同分母的分数形式,然后按照分数的大小关系进行比较。
四、有理数的相反数与绝对值1. 相反数:一个有理数的相反数是它的数值相反而符号不变。
2. 绝对值:一个有理数的绝对值是它去掉符号后的数值,即该数的非负值。
五、有理数的混合运算混合运算是指同时进行加减乘除等多种运算的情况。
在有理数的混合运算中,需要根据运算法则和优先级进行计算,并注意括号的运用。
六、有理数的分数表示和小数表示有理数可以用分数形式表示,也可以用小数形式表示。
分数形式适用于精确计算,而小数形式便于运算和比较大小。
七、有理数的化简有理数的化简是指将其写成最简形式,即分子与分母没有公约数的分数表示。
通过寻找最大公约数,可以将有理数化简为最简形式。
八、有理数的乘方运算乘方运算是指一个数自乘若干次的运算。
在有理数的乘方运算中,可以根据乘方运算法则简化计算过程,并注意负次幂的运算规律。
九、有理数与实际问题的应用有理数在实际问题中有广泛的应用,如温度计的读数、海拔高度的表示、财务账目的计算等。
通过将实际问题转化为有理数运算,可以得出准确的答案。
总结:有理数是我们日常生活和学习中经常遇到的数,掌握有理数的知识对于数学学习至关重要。
本章总结了有理数的定义,基本运算,大小比较,相反数与绝对值,混合运算,分数与小数表示,化简,乘方运算以及应用等知识点、考点和难点。
数学七年级知识点总结归纳
一、有理数1. 正负数:大于 0 的数叫正数,小于 0 的数叫负数。
0 既不是正数也不是负数。
2. 有理数的分类:按定义分:有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
按性质分:有理数包括正有理数(正整数、正分数)、0、负有理数(负整数、负分数)。
3. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
4. 相反数:只有符号不同的两个数叫做互为相反数。
0 的相反数是 0。
5. 绝对值:数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
6. 有理数的大小比较:正数大于 0,0 大于负数,正数大于负数。
两个负数,绝对值大的反而小。
二、整式的加减1. 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做单项式的系数,单项式中所有字母的指数和叫做单项式的次数。
2. 多项式:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
3. 整式:单项式和多项式统称为整式。
4. 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
5. 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
6. 去括号法则:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。
括号前是“”,把括号和它前面的“”去掉后,原括号里各项的符号都要改变。
三、一元一次方程1. 方程:含有未知数的等式叫做方程。
2. 一元一次方程:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
3. 方程的解:使方程左右两边相等的未知数的值叫做方程的解。
4. 解方程:求方程的解的过程叫做解方程。
有理数知识点总结
有理数知识点总结理数是指可以用有限个整数相加、相减或相乘来表示的数。
理数包括正整数、负整数、零和分数。
1. 整数:正整数、负整数和零都是整数。
整数的运算有加法、减法和乘法。
加法的运算结果仍然是整数,减法的运算结果也可以是整数,但乘法的运算结果不一定是整数,可能是分数。
2. 分数:分数由分子和分母组成,分子是整数,分母是非零整数。
分数的运算包括加法、减法、乘法和除法。
加法和减法的分数运算基本规则是先通分,然后进行相应的运算。
乘法和除法的分数运算基本规则是分子相乘,分母相乘。
两个分数相除可以变成将除数的分子分母互换,然后再进行乘法运算。
3. 小数:小数是分数的一种特殊形式,用有限的十进制数或无限循环的十进制数表示。
小数可以转换为分数,将小数的数值部分作为分子,小数点后的位数作为分母的10的幂。
4. 数轴:数轴是用来表示有理数的直线,从左向右递增,可以根据数轴进行加法、减法和比较大小等操作。
5. 绝对值:绝对值是一个有理数的非负值。
对于正数,它的绝对值等于本身;对于负数,它的绝对值等于去掉负号。
绝对值的运算规则包括绝对值取正和绝对值取负。
6. 有理数的大小比较:有理数的大小比较可以根据数轴上的位置进行判断,也可以通过将有理数化为相同的分数形式进行比较。
在数轴上,离原点越远的数值越大。
7. 有理数的相反数:一个有理数的相反数是与它数值大小相等但符号相反的有理数。
8. 有理数的倒数:一个非零有理数的倒数是与它的分数定义中分子和分母交换位置后得到的分数。
倒数的运算规则包括正数的倒数仍然是正数,负数的倒数是与它的绝对值的倒数相等。
这些是关于有理数的一些基本知识点总结,理解这些知识点有助于我们在数学运算中正确地使用有理数。
有理数知识点总结
有理数知识点总结一、有理数的定义有理数是可以表示为两个整数的比的数,形式为a/b,其中a和b是整数,且b不为零。
有理数集合包括所有的整数、分数和它们的负数。
二、有理数的分类1. 正有理数:大于零的有理数。
2. 负有理数:小于零的有理数。
3. 零:唯一的非正非负的有理数。
三、有理数的性质1. 封闭性:有理数的加法、减法、乘法和除法(除数不为零)都是封闭的。
2. 有序性:任何两个有理数都可以比较大小。
3. 稠密性:任意两个有理数之间,都存在另一个有理数。
4. 可数性:有理数集合是可数的,即存在一种方法,可以将所有有理数列成一个列表。
四、有理数的运算规则1. 加法:- 同号有理数相加,取相同的符号,并将绝对值相加。
- 异号有理数相加,取绝对值较大的数的符号,并将绝对值相减。
- 任何数与零相加,结果为该数本身。
2. 减法:- 减去一个数等于加上这个数的相反数。
3. 乘法:- 正数与正数相乘得正数,负数与负数相乘得正数,正数与负数相乘得负数。
- 任何数与零相乘,结果为零。
4. 除法:- 除以一个不等于零的数,等于乘以这个数的倒数。
- 零除以任何非零的数,结果为零。
- 除数不能为零,否则除法无意义。
五、有理数的简化1. 化简分数:通过找到分子和分母的最大公约数,并将分子和分母都除以这个数,得到最简分数。
2. 约分:在进行有理数的乘法和除法运算后,需要将结果约分为最简形式。
六、有理数的混合运算在进行有理数的混合运算时,需要遵循运算的优先级顺序,即先乘除后加减,同级运算从左到右进行。
七、有理数的比较1. 正数大于零,负数小于零。
2. 两个负数比较大小,绝对值大的反而小。
八、有理数的四则运算应用1. 可以解决实际问题中的计算问题,如购物、计算面积和体积等。
2. 在数学问题中,有理数的运算是解决更复杂数学问题的基础。
九、有理数的限制有理数不能表示无理数,如圆周率π和黄金分割比等。
十、结论有理数是数学中最基本的数之一,它在日常生活和科学研究中都有着广泛的应用。
关于有理数的知识点总结
关于有理数的知识点总结一、有理数的概念及性质1. 有理数的定义有理数是指可以表示为两个整数的比的数,它通常用分数形式表示。
实际上,每个有理数都可以写成一个整数和一个非零整数的商。
例如,2/3、-5/4、3等都是有理数。
2. 有理数的性质(1)有理数可以用分数形式表示,例如2/3、-5/4等。
(2)有理数中包括正整数、负整数、零以及所有的分数。
(3)有理数的数轴表示:有理数可以用数轴上的点来表示,正数在原点的右侧,负数在原点的左侧,0在原点上。
二、有理数的表示和分类1. 有理数的表示有理数可以用分数形式表示或者小数形式表示。
对于分数形式,它可以用a/b的形式表示,其中a为分子,b为分母;对于小数形式,它可以用有限小数或者循环小数来表示。
2. 有理数的分类有理数可以分为正数、负数和零三种。
其中正数是大于0的数,负数是小于0的数,零表示0。
三、有理数的加法和减法1. 有理数的加法(1)同号数的加法:两个正数相加或者两个负数相加,结果为正数;例如2+3=5,(-2)+(-3)=-5。
(2)异号数的加法:两个正数相加或者一个正数和一个负数相加,结果的绝对值大的减去绝对值小的,符号取绝对值大的数的符号;例如2+(-3)=-1,(-2)+3=1。
2. 有理数的减法有理数的减法可以转化为加法来进行,即a-b=a+(-b)。
也就是说,将减法问题转化为加法问题,然后按照加法的规则进行计算。
四、有理数的乘法和除法1. 有理数的乘法(1)同号数的乘法:两个正数相乘或者两个负数相乘,结果为正数;例如2*3=6,(-2)*(-3)=6。
(2)异号数的乘法:一个正数和一个负数相乘,结果为负数;例如2*(-3)=-6。
2. 有理数的除法有理数的除法同样可以转化为乘法来进行,即a/b=a*(1/b)。
也就是说,将除法问题转化为乘法问题,然后按照乘法的规则进行计算。
五、有理数的绝对值1. 有理数绝对值的定义有理数a的绝对值定义为a的非负数表示,即a的绝对值记为|a|,有两种定义形式:(1)当a>=0时,|a|=a;(2)当a<0时,|a|=-a。
有理数的知识点总结
有理数1. 重要观点有理数是数学中的一类数,它包括整数和分数。
有理数可以表示为两个整数的比值,其中分母不为零。
有理数的重要观点如下:1.1 有理数的定义有理数是可以表示为两个整数的比值的数,其中分母不为零。
有理数可以用分数形,其中a和b是整数,b不为零。
式表示,如ab1.2 有理数的分类有理数可以分为正有理数、负有理数和零。
正有理数是大于零的有理数,负有理数是小于零的有理数,零是整数中的特殊有理数。
1.3 有理数的运算有理数的运算包括加法、减法、乘法和除法。
有理数的加法和乘法满足交换律、结合律和分配律。
有理数的减法可以转化为加法,除法可以转化为乘法。
1.4 有理数的比较有理数的大小可以通过比较其大小关系来确定。
两个有理数a和b,如果a−b大于零,则a大于b;如果a−b小于零,则a小于b;如果a−b等于零,则a等于b。
1.5 有理数的绝对值有理数的绝对值表示有理数的距离到零的距离,可以用来表示有理数的大小。
一个有理数a的绝对值,表示为|a|,如果a大于等于零,则|a|=a;如果a小于零,则|a|=−a。
1.6 有理数的约分有理数可以进行约分操作,即将分子和分母同时除以它们的公因数,得到一个等价的有理数。
约分可以使有理数的表示更简洁。
2. 关键发现在学习有理数的过程中,我们可以发现以下关键点:2.1 有理数与整数的关系整数是有理数的一种特殊情况,可以看作分母为1的有理数。
有理数的加法、减法和乘法运算也适用于整数。
2.2 有理数的小数表示有理数可以通过将分子除以分母得到小数表示形式。
有些有理数可以精确表示为有限小数,有些有理数则会出现循环小数。
2.3 有理数的运算性质有理数的运算满足交换律、结合律和分配律。
这些运算性质使得有理数的运算更加方便和灵活。
2.4 有理数的应用有理数在日常生活和实际问题中有广泛的应用。
例如,有理数可以用来表示温度、货币、时间等实际量,并进行相关的计算。
3. 进一步思考学习有理数的过程中,我们可以深入思考以下问题:3.1 无理数与有理数的关系除了有理数,还存在一类不能表示为两个整数的比值的数,称为无理数。
有理数章节知识点总结
有理数章节知识点总结有理数的表示形式有理数可以用分数表示,分子为整数,分母为非零整数。
有理数也可以用小数表示,可以是有限小数,也可以是循环小数。
有理数的运算1. 加法和减法有理数的加法和减法遵循数轴的移动规律,即同号相加为绝对值相加,异号相加取绝对值相减,并且结果的符号和绝对值相加减后的符号相同。
2. 乘法和除法有理数的乘法是正数与正数相乘为正,正数与负数相乘为负,负数与负数相乘为正;除法是乘法的逆运算,即被除数乘以除数的倒数。
需要注意的是除数不能为零。
3. 混合运算有理数的混合运算是指加、减、乘、除四则运算的组合,根据运算法则进行逐步计算,并注意特殊情况的处理。
有理数的性质1. 封闭性有理数的加、减、乘、除运算结果仍然是有理数。
即有理数集合对加、减、乘、除运算封闭。
2. 对称性对于有理数a,其相反数为-a。
即有理数a和-a是数轴上以原点为中心的对称点。
3. 传递性对于任意有理数a、b、c,如果a>b,b>c,则a>c。
即有理数的大小关系具有传递性。
4. 0的特殊性0是除数,不能作为除数;0和任何非零有理数相乘结果为0;0与任何有理数相加减仍然为原来的数。
有理数的大小比较1. 同号比较两个正数比较大小时,绝对值越大,数值越大;两个负数比较大小时,绝对值越大,数值越小。
2. 异号比较正数和负数比较大小时,正数大于负数。
3. 绝对值比较对于有理数a、b,若|a|>|b|,则a>b;若|a|<|b|,则a<b。
有理数的应用1. 有理数在实际生活中有着广泛的应用,比如金融领域的利息计算、温度计算中的正负值表示等等。
2. 在几何中,有理数也有着重要的作用,可以表示点的坐标,直线方程等。
3. 有理数也常用于解决生活中的实际问题,比如物品价格的计算、家庭开支的统计等。
总结:有理数是数学中一个基础且重要的概念,它在数学中以及实际生活中有着广泛的应用。
有理数具有封闭性、对称性、传递性等性质,通过加减乘除等运算可以进行混合运算,有理数的大小比较也有一定的规则。
有理数的46个知识点总结
有理数的46个知识点总结一、有理数的概念。
1. 有理数的定义。
- 有理数是整数(正整数、0、负整数)和分数的统称。
例如,5是正整数属于有理数,-3是负整数属于有理数,(1)/(2)是分数属于有理数。
2. 有理数的分类。
- 按定义分类:有理数可分为整数和分数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数,如0.25(有限小数),0.3̇(无限循环小数)。
- 按正负性分类:有理数可分为正有理数、0、负有理数。
正有理数包括正整数和正分数,负有理数包括负整数和负分数。
3. 有理数与无理数的区别。
- 无理数是无限不循环小数,如π、√(2)等,而有理数是整数或分数。
有理数可以表示为两个整数之比,无理数则不能。
二、有理数的数轴表示。
4. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
原点表示0,原点右边表示正数,原点左边表示负数。
5. 有理数在数轴上的表示。
- 每一个有理数都可以用数轴上的一个点来表示。
例如,3在原点右边3个单位长度处, -2在原点左边2个单位长度处。
6. 数轴上点的移动规律。
- 向右移动为加,向左移动为减。
如点A表示2,向右移动3个单位长度后表示2 + 3=5;向左移动4个单位长度后表示2-4 = - 2。
三、相反数。
7. 相反数的定义。
- 绝对值相等,符号相反的两个数互为相反数。
例如,3和 - 3互为相反数,0的相反数是0。
8. 相反数的性质。
- 互为相反数的两个数相加为0,即a+(-a)=0。
如5+( - 5)=0。
- 在数轴上,互为相反数的两个数位于原点两侧,且到原点的距离相等。
四、绝对值。
9. 绝对值的定义。
- 一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
例如,|3| = 3,| - 2|=2,|0| = 0。
10. 绝对值的性质。
- | a|≥slant0,即绝对值是非负的。
- 若| a|=| b|,则a = b或a=-b。
第一章.有理数知识点归纳总结
第一章 有理数1、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类有理数是整数和分数的统称。
通常有两种分类:0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正数正分数有理数负整数负数负分数 3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
4、绝对值与相反数(1)绝对值:在数轴上表示数a 的点与原点的距离,叫做a 的绝对值,记作:a 。
一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a 、b 互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
任何数的绝对值是非负数。
本身之迷①倒数是它本身的数是±1②绝对值是它本身的数是非负数(正数和0)③平方等于它本身的数是0,1 ④立方等于经本身的数是±1,0 ⑤偶数次幂等于本身的数是0、1 ⑥奇数次幂等于本身的数是±1,0 ⑦相反数是它本身的数是0数之最①最小的正整数是1 ②最大的负整数是-1 ③绝对值最小的数是0 ④平方最小的数是0 ⑤最小的非负数是0 ⑥最大的非正数0 ⑦没有最大和最小的有理数 ⑧没有最大的正数和最小的负数5、利用绝对值比较大小两个正数比较:绝对值大的那个数大;两个负数比较:先算出它们的绝对值,绝对值大的反而小。
(完整版)《有理数》章节知识点归纳总结
有理数章节知识点归纳总结一、基本运算和基本概念本身之迷①倒数是它本身的数是±1②绝对值是它本身的数是非负数(正数和0)③平方等于它本身的数是0,1 ④立方等于经本身的数是±1,0⑤偶数次幂等于本身的数是0、1 ⑥奇数次幂等于本身的数是±1,0⑦相反数是它本身的数是0数之最①最小的正整数是1②最大的负整数是-1③绝对值最小的数是0 ④平方最小的数是0 ⑤最小的非负数是0 ⑥最大的非正数0⑦没有最大和最小的有理数⑧没有最大的正数和最小的负数例、填空:①两个互为相反数的数的和是_____; ②____与它绝对值的差为0;③两个互为相反数的数的商是___;(0除外)④ ____的倒数等于它本身;⑤____的绝对值与它本身互为相反数; ⑥ ____的平方与它的立方互为相反数;⑦_ __的倒数与它的平方相等;⑧____的平方是4,_____的绝对值是4;1、(1)、 ,___)9()6(=-++(2)、,___)9()6(=--+(3)、,(4)、___)9()6(=-⨯+, ___)14()56(=-÷-(5)、,(6)、___4716=-,___46=+-(7)、,(8)、____)3(3=-,____)2(4=-(9)、,(10)、____24=-,____)1(2008=-(11)、,(12)、____)2(3=--,___565=--(13)、,(14)、___2131=-, ___)103()65(=-⨯-(15)、,(16)、___8325.0=÷-,____5.04=(17)、,(18)、___55=+-,___1020=--(19)、, ___)1.6()9.5(=---(20)、。
___)13(0)56()7(=-÷⨯-⨯-(21)、=-------------- (22)、 =---------2)2(-23-----(23)、 =--------------(24)、 =----------2)32(-22-----(25)、 =-------------- ( 26)、 =-----32322----------”b=b4=43(2二、数的分类1、把下列各数填在相应的括号内:-16,26,-12,-0.92, 0, 0.1008,-4.95正数集合{ }; 负数集合{ };整数集合{ };正分数集合{ };负分数集合{ };2、下列各数中:7,-9.25,,-301,109-274,31.25, ,-1573.5,0,2,-7,1.25,-,-3,2153743-。
有理数章知识点总结
有理数章知识点总结一、有理数的概念有理数是指可以表示为两个整数的比值的数,包括有限小数、无限循环小数和整数。
有理数的特点是可以表示为分数形式,即p/q的形式,其中p和q都是整数,且q不能为0。
有理数用符号Q表示,其中Q={a/b|a∈Z, b∈Z*, b≠0}。
有理数的分类:1. 正有理数:大于0的有理数,如1/2、3/4等;2. 负有理数:小于0的有理数,如-1/3、-5/6等;3. 零:0也是一个有理数。
二、有理数的性质1. 有理数的比较对于任意两个不相等的有理数a和b,有以下性质:(1)如果a>b,则-a<-b;(2)如果a<b,则-a>-b。
这表明有理数的大小可以相互比较,且有明确的大小关系。
2. 有理数的加法性质对于任意三个有理数a、b、c,有以下加法性质:(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)存在零元素:a+0=a;(4)存在相反元素:a+(-a)=0。
这些性质表明有理数的加法操作满足基本的性质。
3. 有理数的乘法性质对于任意三个有理数a、b、c,有以下乘法性质:(1)交换律:a×b=b×a;(2)结合律:(a×b)×c=a×(b×c);(3)存在单位元素:a×1=a;(4)存在倒数元素:a×(1/a)=1,其中a≠0。
这些性质表明有理数的乘法操作也满足基本的性质。
4. 有理数的除法性质对于任意两个有理数a和b,其中b≠0,有以下除法性质:(1)存在商:a/b是一个有理数;(2)零除不合法:a/0是不合法的;(3)乘法逆元:a/1=a;(4)除法逆元:a/(1/a)=a×a。
5. 有理数的分配律对于任意三个有理数a、b、c,有以下分配律:a×(b+c)=a×b+a×c三、有理数的运算1. 有理数的加法两个有理数a和b相加,可以通过以下步骤完成:(1)如果a和b的符号相同,则它们的绝对值相加,并保留原来的符号;(2)如果a和b的符号不同,则它们的绝对值相减,并以绝对值大的符号为结果的符号。
(完整版)有理数运算知识点总结
(完整版)有理数运算知识点总结有理数运算知识点总结1. 有理数的定义有理数是可以用两个整数的比(分数形式)表示的数。
有理数包括正数、负数和零。
2. 有理数的四则运算2.1 加法有理数的加法满足以下运算规则:- 正数与正数相加,结果为正数;- 负数与负数相加,结果为负数;- 正数与负数相加,结果的绝对值为两数绝对值之差,并且符号与绝对值较大的数相同。
2.2 减法有理数的减法可以转化为加法运算,即a - b = a + (-b)。
2.3 乘法有理数的乘法满足以下运算规则:- 正数与正数相乘,结果为正数;- 负数与负数相乘,结果为正数;- 正数与负数相乘,结果为负数。
2.4 除法有理数的除法可以转化为乘法运算,即a ÷ b = a × (1/b)。
3. 有理数的运算性质3.1 交换律加法和乘法满足交换律,即a + b = b + a,a × b = b × a.3.2 结合律加法和乘法满足结合律,即(a + b) + c = a + (b + c),(a × b) × c = a × (b × c).3.3 分配律乘法对加法满足左分配律和右分配律,即a × (b + c) = (a × b) + (a × c),(a + b) × c = (a × c) + (b × c).4. 有理数的大小比较4.1 绝对值比较对于两个有理数a和b,如果|a| = |b|,则a = b,如果|a| > |b|,则a > b,如果|a| < |b|,则a < b.4.2 正负数比较对于一个正数和一个负数,正数大于负数。
4.3 同号数比较对于两个正数或两个负数,绝对值较大的数较大。
5. 有理数的相反数和倒数5.1 相反数一个有理数a的相反数记作-a,即a + (-a) = 0。
《有理数》章节知识点归纳总结
《有理数》章节知识点归纳总结有理数是数学中的一种基本概念,它包括了整数、分数和零。
有理数可以用分数形式表示,分子是整数,分母是正整数。
一、有理数的定义和性质1.有理数的定义:有理数表示为两个整数的比值,其中分母不为零。
有理数可以用分数形式表示为a/b的形式,其中a是整数,b是正整数。
2.有理数的四则运算法则:加法:同号求和,异号作差,结果的符号跟两个有理数的符号相同。
减法:转化为加法运算,将减法问题转化为加法问题。
乘法:同号得正,异号得负。
除法:将除法转化为乘法,取倒数后将除法问题转换为乘法问题。
3.有理数的乘方运算:有理数的乘方运算是将一个有理数乘以自身若干次。
有理数的乘方运算的结果仍然是有理数。
4.有理数的比较运算:可以通过比较大小符号来比较有理数的大小,如果两个有理数的大小符号相同,则比较绝对值的大小。
5.有理数的约分:可以将一个有理数化简成最简形式,即将分子和分母互质的形式。
二、有理数的绝对值和相反数1.有理数的绝对值:绝对值表示有理数距离零的距离,绝对值是非负的。
正数的绝对值是它本身,负数的绝对值是它的相反数。
2.有理数的相反数:一个有理数的相反数是与它的绝对值相等但符号相反的数。
三、有理数的数轴1.有理数的数轴是一条直线,可以用来表示有理数的大小关系。
2.在数轴上,正数表示为向右的方向,负数表示为向左的方向,原点为零。
3.数轴上,绝对值越大的数离原点越远,绝对值相同的数离原点的距离相等。
四、有理数的运算律1.有理数的加法符合交换律、结合律和分配律。
交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)分配律:a×(b+c)=a×b+a×c2.有理数的乘法符合交换律、结合律和分配律。
交换律:a×b=b×a结合律:(a×b)×c=a×(b×c)分配律:(a+b)×c=a×c+b×c五、有理数的应用1.有理数可以用来表示一些具体问题中的数值,比如表示温度、长度、质量等。
有理数有理数知识点归纳
0000<=>⎪⎩⎪⎨⎧-=a a a a a a一、有理数1. 0和正整数叫做自然数,也叫非负整数.2. 有理数的分类: (1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 (2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数负整数正整数正有理数有理数0二、数轴1.规个定了原点、正方向和单位长度的直线叫做数轴.2. 任意一个有理数,都可以用数轴上的一个点表示,但数轴上的任意一点却不一定表示一个有理数,正有理数用原点右边的点表示,负有理数用原点左边的点表示.3. 利用数轴比较有理数的大小,数轴上右边的点表示的数总大于左边的点表示的数.三、相反数1. 只有符号不同的两个数叫做互为相反数.0的相反数仍是0.2. 在数轴上,表示一对相反数的点分别位于原点两侧,并且到原点的距离相等,它们关于原点对称.3. 互为相反数的两个数的和为0,即a 与b 互为相反数.四、绝对值1. 数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a .2. 绝对值的性质:(1)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(2)绝对值具有非负性,即有理数a 的绝对值a >0.(3)利用绝对值可以比较两个 负数的大小,两个负数绝对 值大的反而小. 五、倒数乘积是1的两个数互为倒数.倒数是成对的,互为倒数的两个数同号;0没有倒数.六、乘方求n 个相同的因数的积的运算,叫做乘方,乘方的结果叫做幂.在na 中,a 叫做底数,n 叫 做指数.乘方的运算法则:(1)负数的奇次幂是负数,负数的偶次幂是正数.(2)正数的任何次幂都是正数,0的任何任何正整数次幂都是0.七、科学记数法1. 把一个大于10的数表示成n a 10⨯的形式(其中a 的整数数位只有一位的数,n 是正整数). 有理数知识点归纳2. 精确度:近似数四舍五人到哪一位,就精确到哪一位.3. 有效数字: 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效 数字.4. (1)科学记数法中a 应满足101<≤a ,n 等于原数的整数位数减1,一个负数的科学记数法只 要在n a 10⨯前面加上“一”即可.(2) 用科学记数法表示的数na 10⨯,精确度由还原后的数字中a 的末位字所在的数位决定.(3) 用科学记数法表示的数n a 10⨯,有效数字与n 10无关,只与a 有关,当近似数后面有单位是,有效数字与单位无关,只与单位前面的数有关.八、有理数的混合运算(1)先乘方,在乘除,最后加减.(2)同级运算,从做到右进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.考点分析1. 用正负数表示具有相反意义的量;2. 有理数相关概念;3. 数轴、相反数、绝对值、倒数;4.有理数的大小比较及运算;5. 有理数的乘方;6. 科学记数法.两个负数比较大小有两个步骤:①先分别求出这两个负数的绝对值,并比较绝对值大小.②根据“两个负数,绝对值大的反而小”得出结论.。
有理数知识点考点难点总结归纳
有理数知识点考点难点总结归纳理数是数的一种,它包括整数、分数和小数。
在初中数学中,有理数是一个重要的知识点,学生需要掌握有理数的性质、运算和应用。
下面我来总结归纳一下有理数的知识点、考点和难点。
一、有理数的基本概念1.整数:正整数、负整数、零。
整数的性质:加法逆元、乘法逆元、绝对值。
2.分数:分子、分母、约分、通分、分数的比较大小、分数的性质。
3.小数:有限小数、无限循环小数、无限不循环小数。
二、有理数的运算1.四则运算:加法、减法、乘法、除法及其性质。
2.混合运算:不同运算符的运算顺序。
3.绝对值与大小比较:有理数的绝对值性质、绝对值大小的比较。
4.整数幂:整数的正、负、零幂及其性质。
5.分数的四则运算:加法、减法、乘法、除法及其性质。
6.有理数的乘方:有理数的正、负、零次幂及其性质。
三、有理数的应用1.推理与解答问题:通过有理数知识解答实际问题。
2.田字格法则:计算有理数乘法与除法的结果。
3.分数的应用:计算问题中的比例、百分数、利率等。
四、有理数的考点1.正数、负数、零的概念及其性质与运算。
2.分数的概念、运算、比较和应用。
3.分数与整数、分数与小数的转化。
4.有理数四则运算的规则与性质。
5.有理数乘方与有理数四则混合运算。
6.有理数的比较和绝对值的计算。
7.有理数运算在实际问题中的应用。
五、有理数的难点1.分数的约分、通分和比较大小。
2.分数与整数、小数的互化。
3.有理数四则运算的运算顺序。
4.有理数运算的特殊性质的把握。
6.有理数应用题的解答思路与方法。
以上是有理数的知识点、考点和难点的总结归纳。
通过系统学习和不断练习,学生可以掌握有理数的基本概念、运算规则和应用技巧,提高数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《有理数及其运算》知识梳理正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a 可以表示什么数⑴a>0表示a 是正数;反之,a 是正数,则a>0;⑵a<0表示a 是负数;反之,a 是负数,则a<0⑶a=0表示a 是0;反之,a 是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a ,b 互为相反数,则a+b=0⑷互为相反数的非零两数商为负1,即a ,b 互为相反数,则ba == -1(a ≠0,b ≠0)) 3.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b 的相反数是-(5a+b )。
化简得-5a-b );⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)5.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a 是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)6.多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。
)②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。
)3.绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。
所以,a取任何有理数,都有|a|≥0。
即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0;⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;⑶任何数的绝对值都不小于原数。
即:|a|≥a;⑷绝对值是相同正数的数有两个,它们互为相反数。
即:若|x|=a(a>0),则x=±a;⑸互为相反数的两数的绝对值相等。
即:|-a|=|a|或若a+b=0,则|a|=|b|;⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则a=b或a=-b;⑺若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
5.绝对值的化简①当a≥0时, |a|=a ;②当a≤0时, |a|=-a6.已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
有理数的加减法1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律⑴加法交换律:a+b=b+a ⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。
即:⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如: (-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”有理数的乘除法1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a ·a 1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a1是a 的倒数。
注意:①0没有倒数;②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;③正数的倒数是正数,负数的倒数是负数。
(求一个数的倒数,不改变这个数的性质);④倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
即ab=ba⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即(ab)c=a(bc). ⑶乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。
即a(b+c)=ab+ac4.有理数的除法法则(1)除以一个不等0的数,等于乘以这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得05.有理数的乘除混合运算(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除后加减’的顺序进行。
有理数的乘方1.乘方的概念求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在 na 中,a 叫做底数,n 叫做指数。
2.乘方的性质(1)负数的奇次幂是负数,负数的偶次幂的正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
(3)1,0的任何次幂分别是1,0;—1的奇次幂是—1,偶次幂是1。
有理数的混合运算做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。