蒙特卡洛算法

合集下载

蒙特卡洛算法

蒙特卡洛算法

蒙特卡洛算法1. 蒙特卡洛⽅法的基本思想蒙特卡罗⽅法⼜叫统计模拟⽅法,它使⽤随机数(或伪随机数)来解决计算的问题,是⼀类重要的数值计算⽅法。

该⽅法的名字来源于世界著名的赌城蒙特卡罗,⽽蒙特卡罗⽅法正是以概率为基础的⽅法。

⼀个简单的例⼦可以解释蒙特卡罗⽅法,假设我们需要计算⼀个不规则图形的⾯积,那么图形的不规则程度和分析性计算(⽐如积分)的复杂程度是成正⽐的。

⽽采⽤蒙特卡罗⽅法是怎么计算的呢?⾸先你把图形放到⼀个已知⾯积的⽅框内,然后假想你有⼀些⾖⼦,把⾖⼦均匀地朝这个⽅框内撒,散好后数这个图形之中有多少颗⾖⼦,再根据图形内外⾖⼦的⽐例来计算⾯积。

当你的⾖⼦越⼩,撒的越多的时候,结果就越精确。

2.例⼦蒙特卡洛算法显然可⽤于近似计算圆周率:让计算机每次随机⽣成两个0到1之间的数,看这两个实数是否在单位圆内。

⽣成⼀系列随机点,统计单位圆内的点数与圆外的点数,内接圆⾯积和正⽅形⾯积之⽐为PI:4,PI为圆周率。

,当随机点取得越多时,其结果越接近于圆周率。

下⾯给出c++版本的实现:#include<iostream>#include<cstdio>#include<cstdlib>#include<cmath>using namespace std;double in,out,ans;double x,y,dis;double getrand(){double ran=0;int t=rand()%10000;ran=(double)t/10000;return ran;}int main(){int time=0;scanf("%d",&time);for(int i=1;i<=time;i++){x=getrand()*2;y=getrand()*2;dis=sqrt((1-x)*(1-x)+(1-y)*(1-y));if(dis>1) out++;else in++;}ans=4*in/(in+out);printf("%lf",ans);return0;}如图,当time的值取1*10^9时,PI的值表⽰为3.040527,这个值和真实值仍有较⼤区别,主要原因在cstdlib库中的rand_max,即随机数值的最⼤范围仅为32767。

蒙特卡洛算法应用

蒙特卡洛算法应用

蒙特卡洛算法应用蒙特卡洛算法是一种基于随机数模拟技术的数值计算方法,最初是应用在核物理领域中模拟中子扩散等问题。

近年来,随着计算机技术的发展,蒙特卡洛算法在各个领域得到了广泛的应用,例如计量经济学、金融风险评估、生命科学、气象学等领域。

下面,我们将具体介绍蒙特卡洛算法的应用及其优势。

一、基本原理蒙特卡洛算法的基本原理是利用随机抽样的方法,按照一定的概率分布来模拟某个系统或过程的随机性行为,通过数量统计和概率估计来得到该系统或过程的性质或规律。

例如,我们可以通过蒙特卡洛算法来求解复杂的多维积分问题,或者通过模拟股票价格走势来估计期权的价格等。

二、应用领域1. 计量经济学计量经济学是将数学和统计学方法应用于经济学研究的一门学科。

蒙特卡洛算法被广泛应用于计量经济学中的参数估计问题,例如通过蒙特卡洛模拟来得到回归系数的置信区间、方差的估计、非线性模型的参数估计等。

2. 金融风险评估在金融风险评估中,蒙特卡洛算法常常被用来模拟某个金融工具的价格变化,例如股票、期权、债券等,在此基础上计算预期收益率、波动率、价值-at-风险等指标,为投资决策提供支持。

3. 生命科学在生物学、药理学等领域中,蒙特卡洛算法被广泛应用于药物分子的建模与仿真,通过模拟分子的随机运动来计算其对蛋白质的亲和性、药效等指标,为新药发现提供重要的支持。

4. 气象学在气象学中,蒙特卡洛模拟被用来模拟气象变化、大气环流等复杂的自然现象,得到风险评估、预测和规划等方面的应用。

三、优势1. 灵活性蒙特卡洛算法不需要预先设定函数解析形式,具有很大的灵活性,适用于各种非线性、高维、复杂的数学问题。

2. 精度高蒙特卡洛算法基于大量的随机抽样,能够得到非常精确的数值解。

3. 方便性蒙特卡洛算法的实现相对简单,只需要模拟随机变量的抽取和计算即可,不需要对解析解进行处理和推导。

四、结论在众多的数值计算方法中,蒙特卡洛算法因其灵活、精确和方便而被广泛应用于各个领域。

蒙特卡罗算法

蒙特卡罗算法

蒙特卡洛算法算法简介:蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。

是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。

与它对应的是确定性算法。

蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。

背景知识:蒙特卡洛是摩纳哥公国第一大城市,与澳门、美国拉斯维加斯并称世界三大赌城。

位于地中海沿岸,首都摩纳哥之北,建于阿尔卑斯山脉突出地中海的悬崖之上。

景色优美,是地中海地区旅游胜地。

市内建有豪华的旅馆、俱乐部、歌剧院、商店、游泳池、温泉浴室、运动场等娱乐设施。

城内开设有蒙特卡洛大赌场。

赌场建于1865年,为双层楼建筑,上有钟楼、塔厅和拱形亭阁,还饰以若干人物雕塑,庭前棕榈树成行,还辟有花园,旁边有大酒店和酒吧间。

整个城市在旺季时,约有赌场70多个,约有赌室3500间左右。

蒙特卡罗赌场由国家经营。

当地的其他活动,许多也带有赌博色彩。

游客住的旅店房间,有抽奖的号码,中奖的免付部分房费。

早餐的牛奶麦片粥里,如遇上金属牌子,亦可领奖。

该城只有1万人口,但每天报纸销量可达100万份,因为报纸上都印有可能得奖的号码。

游客最后离境,购买的车票上也印有彩票号码,于离境前开彩。

经营赌业是摩纳哥的主要经济来源,每年都从赌业中收取高额外汇利润。

蒙特卡洛算法简单描述:以概率和统计理论方法为基础的一种计算方法。

将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。

比如,给定x=a,和x=b,你要求某一曲线f和这两竖线,及x轴围成的面积,你可以起定y轴一横线y=c 其中c>=f(a) and c>=f(b),很简单的,你可以求出y=c,x=a,x=b,及x轴围成的矩形面积,然后利用随机参生生大量在这个矩形范围之类的点,统计出现在曲线上部点数和出现在曲线下部点的数目,记为:doteUpCount,nodeDownCount,然后所要求的面积可以近似为doteDownCounts所占比例*矩形面积。

蒙特卡洛算法

蒙特卡洛算法

蒙特卡洛的优缺点
优点 •蒙特卡洛方法直观易懂 •受几何条件限制小
•概率收敛与问题维数无关(解决高维问题)
•可同时处理类似问题
缺点
1. 较高精度的近似结果通常情况下很难获 得 2. 在解决处理较低维数的实际状况时,效果 可能不是很好,收敛速度较慢 3. 误差具有随机性(因为蒙特卡洛方法的 误差是在一定置信水平下估计的, 误差会 随着置信水平的不同而不同)
0

f
x dx
用常规的数值积分方法: 随着分段数量增加,误差将减小,近 似面积将逐渐逼近真实的面积 蒙特卡洛方法: 不需要将所有方柱的面积相加,而只 需要随机地抽取一些函数值,利用概 率论中所提到的几何概型可以算出函 数图像与x轴围成的面积,从而得到积 分的值。
圆周率求解
在平面上画一个半径r的圆 和边长为2r的正方形,让他 们的中心重合。随机的向正 方形内投点N次,观察投在 圆内的点的数目m。
•Normrnd(MU,SIGMA,m,n) 生成正态高斯分布的随机函数
其它函数
• Fix(x) : 截位取整,直接将小数部分舍去
(向零取整) • • • Floor(x) : 不超过x的最大整数(向下取整) Ceil(x) : 不小于x 的最小整数(向上取整) Round(x): 四舍五入取整
随机变量的抽样
3.1596
3.1553 3.1419 3.1415929
基本思想
由蒲丰试验可以看出,当所求问题的解是 某个事件的概率,或者是某个随机变量的 数学期望,或者是与概率、数学期望有关 的量时,通过某种试验的方法,得出该事 件发生的频率,或者该随机变量若干个具 体观察值的算术平均值,通过它得到问题 的解。这就是蒙特卡罗方法的基本思想。

主元素问题蒙特卡洛算法

主元素问题蒙特卡洛算法

主元素问题蒙特卡洛算法1. 引言主元素问题是一个在计算机科学领域中常见的问题,涉及到数学和算法。

在一个包含n个元素的数组中,如果某个元素的出现次数超过n/2,那么这个元素就被称为主元素。

主元素问题的解决方法有很多,其中之一就是蒙特卡洛算法。

2. 蒙特卡洛算法概述蒙特卡洛算法是一种基于概率统计的算法,通过模拟重复实验来解决问题。

它通常使用随机数来进行模拟,通过大量的模拟实验来估计问题的概率或得到问题的近似解。

在主元素问题中,蒙特卡洛算法可以用来判断一个给定的元素是否为主元素。

3. 蒙特卡洛算法解决主元素问题3.1 算法思想蒙特卡洛算法解决主元素问题的思想很简单,就是随机选择数组中的元素并判断其是否为主元素,通过多次重复实验来得到一个概率估计。

具体步骤如下:1.随机选择数组中的一个元素;2.在数组中计算该元素的出现次数;3.判断该元素的出现次数是否超过n/2;4.重复上述步骤多次,取所有实验中判断为主元素的元素中出现次数最多的作为最终的估计结果。

3.2 算法实现下面是蒙特卡洛算法解决主元素问题的实现代码(使用Python语言):import randomdef monte_carlo_majority(arr):n = len(arr)experiments = 1000experiment_results = []for _ in range(experiments):random_index = random.randint(0, n-1)random_element = arr[random_index]count = arr.count(random_element)if count > n/2:experiment_results.append(random_element)if len(experiment_results) == 0:return Nonemax_count = 0majority_element = Nonefor element in experiment_results:count = arr.count(element)if count > max_count:max_count = countmajority_element = elementreturn majority_element4. 算法分析与复杂度4.1 算法正确性分析蒙特卡洛算法解决主元素问题的正确性可以通过概率统计的方法来进行分析。

蒙特卡洛算法的应用及原理

蒙特卡洛算法的应用及原理

蒙特卡洛算法的应用及原理简介蒙特卡洛算法(Monte Carlo algorithm)起初是由数学家冯·诺依曼(John von Neumann)和斯坦尼斯拉夫·乌拉姆(Stanislaw Ulam)在20世纪40年代末引入的一种计算方法,利用随机数模拟求解问题。

蒙特卡洛算法在物理学、金融学、计算机科学等领域被广泛应用,尤其在复杂的计算问题上具有较高的效率和准确度。

原理蒙特卡洛算法的核心思想是通过随机采样和统计分析获得问题的近似解,而不是通过解析求解等传统计算方法。

其基本流程如下: 1. 确定问题的范围和目标。

2. 设计合适的模型并确定输入参数。

3. 生成符合模型要求的随机数,并进行实验或模拟。

4. 统计实验或模拟结果,得到问题的近似解。

5. 根据需要,调整模型和参数,并重复上述步骤,直到达到预期的结果。

应用领域蒙特卡洛算法在各个领域得到了广泛应用,以下列举几个常见的应用场景。

1. 物理学蒙特卡洛算法在物理学领域的应用非常广泛。

例如,在计算粒子物理学中,科学家利用蒙特卡洛算法模拟高能粒子在加速器中的相互作用,以研究粒子的行为和性质。

此外,蒙特卡洛算法还可以用于计算电磁场、热传导和量子力学等问题。

2. 金融学在金融学中,蒙特卡洛算法被用于评估金融产品的风险和收益。

例如,在期权定价中,可以使用蒙特卡洛模拟来估计期权的价值和价格。

此外,蒙特卡洛算法还可以应用于投资组合优化、风险管理和股票价格预测等方面。

3. 计算机科学蒙特卡洛算法在计算机科学中也有广泛的应用。

例如,在人工智能领域,蒙特卡洛树搜索算法被用于博弈论和决策树的建模。

此外,蒙特卡洛算法还可以应用于随机算法设计、优化问题求解和机器学习等方面。

4. 统计学蒙特卡洛算法在统计学中被用于参数估计和假设检验。

通过生成服从特定分布的随机样本,可以对未知参数进行统计推断。

此外,蒙特卡洛算法还可用于模拟数据、计算置信区间和进行统计模型的评估等。

蒙特卡洛算法及简单应用

蒙特卡洛算法及简单应用

蒙特卡洛算法及简单应用蒙特卡洛算法是一种随机模拟算法,起源于1950年代,在计算机模拟方面的应用非常广泛。

蒙特卡洛算法采用概率的方法通过重复随机抽样来解决问题,因此具有很强的泛化能力和普适性,适用于不同领域中的各种问题。

蒙特卡洛算法的基本思想是利用随机数模拟真实情况,通过模拟实验来获取实验结果,从而得到问题的解。

一般而言,蒙特卡洛算法分为三个步骤:1. 构造模型:将问题抽象成一个数学模型;2. 随机化:对模型进行随机化,生成随机数,使结果具有随机性;3. 收集结果:重复多次实验,得到多组随机结果,进行统计分析,得到最终的结果。

蒙特卡洛算法的原理非常简单,但其应用却是非常广泛、复杂和深入的,几乎涵盖了所有数学、物理、化学、生物等科学领域。

下面我们将分别介绍几个蒙特卡洛算法的简单应用,以便更好地理解蒙特卡洛算法的奥妙。

一、蒙特卡洛方法在积分计算中的应用在数学中,积分是一种非常重要的运算方式,它可以求出曲线下面的面积、弧长甚至是体积等。

对于复杂的积分,解析解不一定存在,因此需要采用数值积分方法求解,而蒙特卡洛算法就是其中之一。

通过蒙特卡洛方法进行积分计算的基本思路是:将积分问题转换成随机抽样问题,然后通过采样得到一组随机数值,利用该样本进行统计分析和计算,得到最终结果。

这种方法的优点在于可以精确、有效地解决复杂积分计算问题,避免了解析解无法求得时出现的问题。

二、蒙特卡洛方法在股票估价中的应用金融领域是蒙特卡洛方法的主要应用领域之一,其中股票价格的预测是蒙特卡洛算法的主要应用之一。

在股票交易中,涨跌幅度的大小是多变的,而且具有不确定性,因此用蒙特卡洛模拟方法模拟股票变化时,必须加入随机性,来反应真实的情况。

过程如下:首先需要对股票的走势模型建模,模型可以是布朗运动模型、几何布朗运动模型等;接着,根据模型和实际数据生成随机变量;最后,根据这些随机变量得到一个随机路径,并且对一段时期的随机路径进行平均计算,从而得到股价的预测范围。

蒙特卡洛算法的原理和应用

蒙特卡洛算法的原理和应用

蒙特卡洛算法的原理和应用1. 蒙特卡洛算法简介蒙特卡洛算法是一种基于统计学原理的随机模拟方法,其主要思想是通过生成大量的随机样本来近似求解问题,用统计的方式对问题进行分析和求解。

蒙特卡洛算法可以应用于多个领域,包括金融、物理、计算机科学等。

2. 蒙特卡洛算法的原理蒙特卡洛算法的原理可以概括为以下几个步骤:2.1 随机样本生成蒙特卡洛算法首先需要生成大量的随机样本。

样本的生成方法可以根据具体问题选择合适的分布,如均匀分布、正态分布等。

2.2 模拟实验通过定义问题的数学模型,利用生成的随机样本进行模拟实验。

通过模拟实验可以得到问题的近似解或概率分布。

2.3 统计分析根据模拟实验的结果进行统计分析,计算问题的期望值、方差、置信区间等统计量。

统计分析可以帮助我们评估问题的解的准确性和可靠性。

2.4 结果评估根据统计分析的结果,评估问题的解的准确性和可靠性。

如果结果的误差在可接受范围内,我们可以接受该结果作为问题的近似解。

3. 蒙特卡洛算法的应用蒙特卡洛算法可以应用于多个领域,以下是几个常见的应用:3.1 金融领域在金融领域,蒙特卡洛算法常用于风险评估、投资组合优化和衍生品定价等方面。

通过生成大量的随机样本,可以对各类金融产品的风险和回报进行模拟和分析,帮助投资者做出更明智的决策。

3.2 物理领域在物理领域,蒙特卡洛算法可以应用于粒子传输、量子力学和核物理等方面。

通过模拟实验和随机样本生成,可以近似求解复杂的物理问题,如粒子在介质中的传输过程、粒子的随机运动等。

3.3 计算机科学领域在计算机科学领域,蒙特卡洛算法可以应用于算法评估和优化、图像处理和模式识别等方面。

通过生成随机样本,并对样本进行模拟实验和统计分析,可以评估和优化算法的性能,解决图像处理和模式识别中的难题。

4. 蒙特卡洛算法的优缺点蒙特卡洛算法具有以下优点和缺点:4.1 优点•算法简单易懂,思路清晰。

•可以应用于各个领域的问题求解。

•通过生成大量的随机样本,可以较准确地近似求解复杂问题。

蒙特卡洛法 算法

蒙特卡洛法 算法
落入扇形区的判据
代码
#include <iostream> #include <cstdlib> #include <ctime> #include <cmath> using namespace std; // 预编译命令 // 预编译命令 // 预编译命令 // 预编译命令
int main() // 主函数 { long k=0, c=0, d=0; // 定义长整型变量 float pai=0.0, x=0.0, y=0.0; // 定义浮点类型变量 srand((unsigned int) time(NULL)); // 设置种子 for(k=1; k<=10000000; k++) { // 循环体开始 d=d+1; // 累加正方形中落入的一个雨点 x=(float)rand()/32767; // 雨点在x方向的位置 y=(float)rand()/32767; // 雨点在y方向的位置 if(sqrt(x * x + y * y) <= 1) c=c+1; // 累加扇形中落入的一个雨点 }
int main() { int k = 0; // 定义整型变量k srand((unsigned int) time(NULL)); //设置种子 for(k=0; k<10; k++) //循环输出随机数 cout << rand() << “ “; cout << endl; cout<<“rand能产生的最大随机数为" <<RAND_MAX << endl; //输出最大随机数 return 0; } // 主函数结束

蒙特卡洛算法范文

蒙特卡洛算法范文

蒙特卡洛算法范文蒙特卡洛算法(Monte Carlo Algorithm)是一种以概率统计方法为基础的计算方法,由于其随机性和模拟的特点,广泛应用于数值计算、风险评估、优化问题等领域。

本文将从原理、应用以及优缺点三个方面来详细介绍蒙特卡洛算法。

蒙特卡洛算法的原理基于统计学中的大数定律,即在大量的独立事件中,事件的频率收敛到事件的概率。

它通过随机抽样的方法,对问题进行模拟,通过多次重复实验得到的近似概率分布来估计相关的数值。

蒙特卡洛算法适用于无法通过解析方法求解的问题,可以通过模拟来近似计算。

蒙特卡洛算法的应用非常广泛,可以用于求解各种数学问题,例如求解积分、求解方程、求解微分方程等,在金融领域中,也广泛应用于期权定价、风险评估、投资组合优化等问题中。

此外,蒙特卡洛算法还可以用于计算机图形学中的光线追踪和物理仿真中的粒子模拟等。

蒙特卡洛算法的优点主要有以下几个方面。

首先,它适用于各种不规则、复杂的问题,无论问题是否可微分都可以使用蒙特卡洛算法求解。

其次,蒙特卡洛算法的结果是近似值,可以通过增加模拟次数来提高结果的精确性。

另外,蒙特卡洛算法可以并行计算,在处理大规模问题时具有一定的优势。

此外,蒙特卡洛算法相对简单直观,易于理解和实现。

然而,蒙特卡洛算法也存在一些缺点。

首先,由于是随机采样的方法,需要大量的随机抽样来达到较高的精度,因此计算成本较高。

其次,在采样过程中,数据的方差较大,可能会导致结果的不稳定性。

此外,蒙特卡洛算法对问题的维数敏感,高维问题需要更多的样本才能获得准确结果。

最后,蒙特卡洛算法依赖于概率分布的可生成性和采样的独立性,对于一些问题可能并不适用。

综上所述,蒙特卡洛算法作为一种基于概率统计的计算方法,具有广泛的应用场景和很多优点,但也存在一定的局限性。

在实际应用中,我们需要根据具体问题的性质和需求,合理选择蒙特卡洛算法的应用方式,并结合其他方法进行综合分析和求解,以达到更好的结果。

蒙洛卡特算法

蒙洛卡特算法

蒙洛卡特算法蒙洛卡特算法是一种基于随机抽样技术的数值计算方法,广泛应用于风险评估、金融衍生品定价、物理模拟等众多领域。

本文将对蒙洛卡特算法的原理、应用以及优势进行介绍。

一、蒙洛卡特算法原理蒙特卡洛算法是一种随机化算法,基于随机抽样的方法获取样本来求解问题。

直接蒙特卡洛算法是一种非常原始的方法,将问题转化为一个期望值,使用随机抽样的方法进行估计。

而蒙洛卡特算法则是通过改进直接蒙特卡洛算法,使得随机抽样的效率更高。

具体来说,蒙洛卡特算法首先通过随机抽样的方法生成多个独立的随机数序列,这些序列称为样本。

然后,将这些样本输入到函数中进行计算,最后对计算结果进行统计分析得到估计值。

蒙洛卡特算法有以下几个特点:1. 独立性。

样本之间应该是相互独立的,这意味着每个样本都是完全独立于其他样本的,并且可以多次使用。

2. 随机性。

随机抽样的过程应该是完全随机的,这意味着每个样本的值应该是随机的,并且应该具有相同的概率分布。

3. 代表性。

样本应该是代表性的,这意味着样本的数量应该足够大,以及样本应该来自于整个概率分布的区域。

4. 收敛性。

当样本数量足够大时,蒙洛卡特算法会收敛于真值。

二、蒙洛卡特算法应用1. 风险评估。

用蒙洛卡特算法进行风险评估,可以帮助投资者更加准确地评估投资的风险。

2. 金融衍生产品定价。

蒙洛卡特算法可以帮助金融衍生产品的定价,例如期权、期货等。

3. 物理模拟。

使用蒙洛卡特算法可以模拟物理系统,例如量子场论、蒙特卡洛模拟等。

4. 优化模型。

蒙洛卡特算法可以用于优化模型,例如寻找一个函数的最小值或最大值。

三、蒙洛卡特算法优势1. 可分布计算。

蒙洛卡特算法允许在分布式计算环境下运行,这使得它能够利用并行计算的优势来提高计算效率。

2. 适应高维数据。

相比于其他的数值计算方法,蒙洛卡特算法在处理高维数据时表现更加优秀。

3. 不要求导数。

相比较于一些需要求导数的数值计算方法,例如最优化算法和差分方程算法,蒙洛卡特算法不需要对函数进行求导。

蒙特卡洛算法

蒙特卡洛算法

蒙特卡洛算法主要用在求解最优化模型(多约束非线性规划问题)上,图像采样的问题,是以一系列随机数来模拟过程,解决问题的算法,但是求解时间很长。

以概率和统计理论方法为基础的一种计算方法。

将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。

步骤:Step1,根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致。

比如在多约束非线性规划问题问题中,采用的是unifrnd函数。

Step2,根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。

通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,进行随机模拟试验。

Step3,根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。

比如在多约束非线性规划问题问题中,采用的是循环随机抽样。

Step4,按照所建立的模型进行仿真试验、计算,求出问题的随机解。

Step5,统计分析模拟试验结果,给出问题的概率解以及解的精度估计。

(其精度检验需要手工来操作,因为涉及查表,但是需要在matlab 里面加入计算概率的语句。

)代码:《Matlab 在数学建模中运用》Test1.m 文件实现的是122/x x y ;例题:随机数生成方式:更为详细的在:/link?url=CF2pgipej6-j1p8V8IfxM_XDs2g RSsNBjUxgztOmfPP4d89txs0M06Yy__O48tTfY549WGn26_cW8o5jLuHdal O42KgjERnD8ZalfowTnWO/link?url=N5b5_BfgHTlzlA5OeFooJsyMJPZ PBgFddYfTo4X59iSy0JAgDw2riIHiivkxLmzsQS9BkxAxU9j4ABlGDQtcpEAgxPT6wYaX1Wc_2ytvJnaRand(n),,rand(n,m)Matlabbetarnd贝塔分布的随机数生成器binornd二项分布的随机数生成器chi2rnd卡方分布的随机数生成器exprnd指数分布的随机数生成器frndf分布的随机数生成器gamrnd伽玛分布的随机数生成器geornd几何分布的随机数生成器hygernd超几何分布的随机数生成器lognrnd对数正态分布的随机数生成器nbinrnd负二项分布的随机数生成器ncfrnd非中心f分布的随机数生成器nctrnd非中心t分布的随机数生成器ncx2rnd非中心卡方分布的随机数生成器normrnd正态(高斯)分布的随机数生成器poissrnd泊松分布的随机数生成器raylrnd瑞利分布的随机数生成器trnd学生氏t分布的随机数生成器unidrnd离散均匀分布的随机数生成器unifrnd连续均匀分布的随机数生成器weibrnd威布尔分布的随机数生成器Matlab自己产生的随机数:normrnd 可以生成一定均值和标准差的正态分布gamrnd 可以生成gamma分布的伪随机数矩阵chi2rnd 可以生成卡方分布的伪随机数矩阵trnd 可以生成t分布的伪随机数矩阵frnd 可以生成f分布的伪随机数矩阵raylrnd 可以生成rayleigh分布的伪随机数矩阵。

蒙特卡洛算法

蒙特卡洛算法

随机点的产生 准随机算法
伪随机算法都存在差异性,不均匀性。因此,不要求新 的发生器模拟真实的均匀分布,而力求任意大小的样本(尤 其是小样本)都能满足低差异性。换言之,以牺牲随机性为 代价,换来均匀性的提高,称其为准随机模拟器。 目前有3种准随机序列可用来辅助生成均匀分布随机数,
分别是Halton序列、Sobol序列、Latin超立方体序列。
蒙特卡洛算法的介绍
算法简介
蒙特卡洛算法,也称统计模拟方法,是二十世纪四十年代中期 由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统 计理论为指导的一类非常重要 数值计算方法,蒙特· 卡罗方法在金融 工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计 算、空气动力学计算)等领域应用广泛。
//Halton序列的产生 // 以2 、3为基底产生序列 //使2和3产生的序列中元素的个数相同 //索引项 //x数组定义 //二维数组q定义 //二维数组d定义 //输入参数值,得到序列中的元素 // K.length=2
//给q,d赋值 //q[0]=63,q[1]=40 //d[0]=63,d[1]=40
随机点的产生 在二维中,0~1之间产生的点的序列就是(1/2, 1/3)(1/4,2/3)(3/4,1/9)(1/8,4/9) (5/8,7/9)(3/8,2/9)(7/8,5/9) (1/16,8/9)(9/16,1/27)….
核心代码分析



//把参数传给k


//这部分通过运算






double[] nextPoint() { 第二个点 index++; for(int i = 0; i < K.length; i++) { for(int j = 0; j < K[i]; j++) { d[i][j]++; x[i] += q[i][j]; if (d[i][j] < P[i]) { break; } d[i][j] = 0; x[i] -= (j == 0? 1.0: q[i][j-1]); } } return x; } }

MonteCarlo(蒙特卡洛算法)算法

MonteCarlo(蒙特卡洛算法)算法
1、用此方法模拟某一过程时,需要产生 各种概率分布的随机变量。 2、用统计方法把模型的数字特征估计出 来,从而得到实际问题的数值解。
用Monte Carlo 计算定积分
考虑积分
I
x 1exdx,
0
0.
假定随机变量具有密度函数
fX (x) ex,

I E( X 1).
用Monte Carlo 计算定积分-
2
2
T
T
Monte Carlo 模拟连续过程的欧式 期权定价-
均匀分布
R=unidrnd(N),-产生1到N间的均匀分布随 机数
R=unidrnd(N,n,m),产生1到N间的均匀分布 随机数矩阵
连续均匀分布
R=unifrnd(A,B) -产生(A,B)间的均匀分布随 机数
R=unifrnd(A,B,m,n)产生(A,B)间的均匀分布 随机数矩阵
Matlab 的随机数函数-
正态分布随机数
R=normrnd(mu,sigma) R=normrnd(mu,sigma,m) R=normrnd(mu,sigma,m,n)
特定分布随机数发生器 R=random(‘name’,A1,A2,A3,m,n)

a=random(‘Normal’,0,1,3,2) a=
基本思想和原理
基本思想:当所要求解的问题是某种事件出现 的概率,或者是某个随机变量的期望值时,它 们可以通过某种“试验”的方法,得到这种事 件出现的频率,或者这个随机变数的平均值, 并用它们作为问题的解。
原理:抓住事物运动的几何数量和几何特征, 利用数学方法来加以模拟,即进行一种数字模 拟实验。
实现从已知概率分布抽样
构造了概率模型以后, 按照这个概率分 布抽取随机变量 (或随机向量),这一 般可以直接由软件包调用,或抽取均匀 分布的随机数构造。这样,就成为实现 蒙特卡罗方法模拟实验的基本手段,这 也是蒙特卡罗方法被称为随机抽样的原 因。

蒙特卡洛算法

蒙特卡洛算法

蒙特卡洛算法
蒙特卡洛算法是一种利用计算机模拟来解决复杂问题的方法,它被认为是一种博弈论算法,可以用于多种实际问题的数学解决方案,并且在许多工业领域得到广泛应用。

蒙特卡洛算法的基本思想是,它重复性地从概率分布中生成随机样本,使用这些样本来估算一个定义在概率分布领域上的数学函数。

这个数学函数是一个所谓的“期望”,所谓“期望”是指把采样概率分布的概率乘以所采样的值,然后求和的操作。

蒙特卡洛算法的核心思想是服从某一分布的随机实验,并经过数量规模放大来反映出大量样本的特性。

在实施蒙特卡洛算法时,我们需要先确定随机实验,并选择有利于解决问题的期望值,然后再收集尽可能多的样本,以此来估计期望值。

蒙特卡洛算法有许多优势,其中最重要的一点是它能够解决复杂的问题,不论问题的规模大小如何,只要有足够的样本量,就能够解决。

此外,蒙特卡洛算法不需要任何特定的先验知识,并且不像函数优化算法耗费大量时间,以及不像任何人工智能算法耗费大量计算开支,所以可以说,蒙特卡洛算法有着很高的效率。

蒙特卡洛算法的应用非常广泛,比如在金融领域,它可以用来评估风险、寻找投资机会、定义投资组合、进行盘活资产等。

在工业制造领域,它可用来设计优化工艺流程,解决配送问题。

此外,蒙特卡洛算法也可以在建模、机器学习、自然语言处理等领域得到应用。

总之,蒙特卡洛算法是一种相当有效的算法,能够被广泛应用于
各种实际问题的数学解决方案之中,且其优势明显。

因此,研究人员们希望能够不断提出新的蒙特卡洛算法,以更好地解决复杂的实际问题。

(完整版)蒙特卡洛算法详讲

(完整版)蒙特卡洛算法详讲

(完整版)蒙特卡洛算法详讲Monte Carlo 法§8.1 概述Monte Carlo 法不同于前⾯⼏章所介绍的确定性数值⽅法,它是⽤来解决数学和物理问题的⾮确定性的(概率统计的或随机的)数值⽅法。

Monte Carlo ⽅法(MCM ),也称为统计试验⽅法,是理论物理学两⼤主要学科的合并:即随机过程的概率统计理论(⽤于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态[1]。

它是⽤⼀系列随机数来近似解决问题的⼀种⽅法,是通过寻找⼀个概率统计的相似体并⽤实验取样过程来获得该相似体的近似解的处理数学问题的⼀种⼿段。

运⽤该近似⽅法所获得的问题的解in spirit 更接近于物理实验结果,⽽不是经典数值计算结果。

普遍认为我们当前所应⽤的MC 技术,其发展约可追溯⾄1944年,尽管在早些时候仍有许多未解决的实例。

MCM 的发展归功于核武器早期⼯作期间Los Alamos (美国国家实验室中⼦散射研究中⼼)的⼀批科学家。

Los Alamos ⼩组的基础⼯作刺激了⼀次巨⼤的学科⽂化的迸发,并⿎励了MCM 在各种问题中的应⽤[2]-[4]。

“Monte Carlo ”的名称取⾃于Monaco (摩纳哥)内以赌博娱乐⽽闻名的⼀座城市。

Monte Carlo ⽅法的应⽤有两种途径:仿真和取样。

仿真是指提供实际随机现象的数学上的模仿的⽅法。

⼀个典型的例⼦就是对中⼦进⼊反应堆屏障的运动进⾏仿真,⽤随机游动来模仿中⼦的锯齿形路径。

取样是指通过研究少量的随机的⼦集来演绎⼤量元素的特性的⽅法。

例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进⾏估计。

这就是数值积分的Monte Carlo ⽅法。

MCM 已被成功地⽤于求解微分⽅程和积分⽅程,求解本征值,矩阵转置,以及尤其⽤于计算多重积分。

任何本质上属随机组员的过程或系统的仿真都需要⼀种产⽣或获得随机数的⽅法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


取8个随机数
R1 0.0078, R2 0.9325,R3 0.1080,R4 0.0063
用蒙 特卡 洛计 算定 积分
R5 0.5490, R6 0.8556,R7 0.9771,R8 0.2783 Iˆ 0.9187
1.9

大大改善了结果!
理论依据 贝努里(Bernoulli) 大数定律
设 nA 是 n 次独立重复试验中事件 A 发生的 次数, p 是每次试验中 A 发生的概率,则
0 有
nA lim P p 0 n n

nA lim P p 1 n n
1 1 1 0 0.25 2 2 2
P(A1) = P(j=0)P(A1∣j=0) + P(j=1)P(A1∣j=1) =
1 1 1 1 0 2 2 3 6
P(A2) = P(j=0)P(A2∣j=0) + P(j=1)P(A2∣j=1)
1 1 1 1 = 0 2 2 6 12 1 1 1 2 0.33 E1 = 6 12
生成一个满足均匀分布的 m n 随机矩阵,矩
阵的每个元素都在 (0,1) 之间。 注:rand(n)=rand(n,n)
randn(m,n)
生成一个满足正态 m n 的随机矩阵
randperm(m)
生成一个由 1:m 组成的随机排列
perms(1:n)
生成由 1:n 组成的全排列,共 n! 个,称为 “群“
分析:这是一个概率问题,可以通过理论计算
得到相应的概率和期望值.但这样只能给出作战 行动的最终静态结果,而显示不出作战行动的动 态过程.
算 法 基 本 思 想
蒙特卡洛方法的基本思想虽然早已被人 们提出,却很少被使用。直到电子计算 机出现后,使得人们可以通过电子计算 机来模拟巨大数目的随机试验过程,使 得蒙特卡洛方法得以广泛地应用,在现 代化的科学技术中发挥应有的作用
nA 在概率的统计定义中,事件 A 发生的频率 n “ 稳定于”事件 A 在一次试验中发生的概率是 指: nA nA 频率 与 p 有较大偏差 p 是 n n
小概率事件, 因而在 n 足够大时, 可以用频率 近似代替 p . 这种稳定称为依概率稳定.
贝努里(Bernoulli) 大数定律的意义:

Monte Carlo 方法处理的问题可 以分两类
确定性的数学问题
蒙特 卡洛 方法 处理 的问 题
多重积分、求 逆矩阵、解线性代数方程组、解 积分方程、解某些偏微分方程边 值问题和计算代数方程组、计算 微分算子的特征值等等 随机性问题

考虑积分
用 Mont e Carlo 计算 定积 分
蒙 特 卡 洛 算 法 概 述
蒙特卡洛算法(Monte Carlo method) 是以概率和统计的理论、方法为基础 的一种计算方法,将所求解的问题同 一定的概率模型相联系,用电子计算 机实现统计模拟或抽样,以获得问题 的近似解,故又称统计模拟法或统计 试验法。

设r表示射击运动员的弹着点到靶心 的距离,g(r)表示击中r处相应的得 分数(环数),f(r)为该运动员的弹 着点的分布密度函数,它反映运动 员的射击水平。该运动员的射击成 绩为
需要模拟出以下两件事:
[1]观察所对目标的指示正确与否
模拟试验有两种结果,每一种结果出现的概率都是1/2。
问 题 分 析
因此,可用投掷一枚硬币的方式予以确定,当硬币出现 正面时为指示正确,反之为不正确.
[2]当指示正确时,我方火力单位的射击结果情况
模拟试验有三种结果:毁伤一门火炮的可能性为1/3(即 2/6),毁伤两门的可能性为1/6,没能毁伤敌火炮的可能 性为1/2(即3/6). 这时可用投掷骰子的方法来确定: 如果出现的是1、2、3三个点:则认为没能击中敌人; 如果出现的是4、5点:则认为毁伤敌人一门火炮; 若出现的是6点:则认为毁伤敌人两门火炮.
符 号 说 明
i:要模拟的打击次数; k1:没击中敌人火炮的射击总数; k2:击中敌人一门火炮的射击总数; k3:击中敌人两门火炮的射击总数; E:有效射击比率; E1:20次射击平均每次毁伤敌人的火炮数。
初始化:i=0,k1=0,k2=0,k3=0
i=i+1
模 拟 框 图
Y 硬币正面?
1,2,3
normrnd(MU,SIGMA,m,n)
生成正态(高斯)分布的随机数
exprnd 指数分布的随机数生成器
geornd 几何分布的随机数生成器 poissrnd 泊松分布的随机数生成器 unidrnd 离散均匀分布的随机数生成器 unifrnd 连续均匀分布的随机数生成器 betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器
N
骰子点数?
4,5 6
k1=k1+1
k2=k2+1
k3=k3+1
k1=k1+1
i<20? N
Y
E=(k2+k3)/20 E1=0*k1/20+1*k2/20+2*k3/20 停止
确 0 观察所对目标指示不正 设: j 1 观察所对目标指示正确
理 论 计 算
A0:射中敌方火炮的事件;A1:射中敌方一门火炮的事件; A2:射中敌方两门火炮的事件. 则0∣j=0) + P(j=1)P(A0∣j=1) =
I x 1e x dx, 0.
0

称为γ函 数,

假定随机变量具有密度函数


f X ( x) e x ,
I E( X 1 ).

用蒙 特卡 洛方 法计 算定 积分

抽取密度为e^{-x}的随机数 X_1,…X_n 构造统计数
n 1 1 ˆ I X i . n i 1
取 整 函 数
fix(x) floor(x) ceil(x) round(x)
: 截尾取整,直接将小数部分舍去 : 不超过 x 的最大整数
: 不小于 x 的最小整数
: 四舍五入取整
用蒙特卡罗投点法计算 的值
>>clear;clc; n=100000; a=2; m=0; for i=1:n x=rand*a/2;y=rand*a/2; if ( x^2 + y^2 <= (a/2)^2 ) m=m+1; end end fprintf('计算出来的pi为:%d',4*m/n);
方法一:将整个坐标轴看成一个边长为12的正方形,然后均匀的 这个正方形分成N(N的大小取决于划分的步长)个点,然后找出 N个点中有多少个点是属于阴影部分中, 假设这个值为k, 则阴影部分的面积为:k/N*12^2

方法二:将整个坐标轴看成一 个边长为12的正方形,然后在 (-6,6)中随机出N(N越大 越好,至少超过1000)个点, 然后找出这N个点中有多少个 点在阴影区域内,假设这个值 为k,则阴影部分的面积为: k/N*12^2。然后重复这个过程 100次,求出100次面积计算结 果的均值,这个均值为阴影部 分面积。
算 法 应 用 举 例
在我方某前沿防守地域,敌人以一个炮排(含两 门火炮)为单位对我方进行干扰和破坏.为躲避 我方打击,敌方对其阵地进行了伪装并经常变换 射击地点。
经过长期观察发现,我方指挥所对敌方目标的指 示有50%是准确的,而我方火力单位,在指示正 确时,有1/3的射击效果能毁伤敌人一门火炮, 有1/6的射击效果能全部毁伤敌人火炮. 现在希望能用某种方式把我方将要对敌人实施的 20次打击结果显现出来,确定有效射击的比率及 毁伤敌方火炮的平均值。


n n 1 1 1 1 ˆ E ( I ) E X i E X i n i 1 n i 1
1 n n 1 1 E X E X I . n i 1 n

例如 α=1.9
用 Mont e Carlo 计算 定积 分---
I1.9 x e dx.
0.9 x 0


取 X i ln Ri , Ri U (0,1) :
R1 0.0587, R2 0.0961, R3 0.9019, R4 0.3095, Iˆ 1.497


Γ(1.9)=0.96176 – 模拟结果不好!
用蒙 特卡 洛计 算定 积分
例子说明分析和设计是重要的。 重写积分 x 1 I1.9 xe 0.1 dx. 密度函数为fY ( y ) ye y 0 x 取两个随机数

1 R1 , R2 U (0,1), 令Y R1 ln R2 , 算I1.9 E 0.1 Y
e
x
t2 2
dt
用蒙特卡洛方法进行计算机模拟的步骤:
计 算 机 模 拟
[1] 设计一个逻辑框图,即模拟模型. [2] 根据流程图编写程序,模拟随机现象.可通 过具有各种概率分布的模拟随机数来模拟随机现 象. [3] 分析模拟结果,计算所需要结果.
随 机 数 生 成 函 数
rand(m,n)
中心极限定理
设随机变量序列 X 1 , X 2 ,, X n , 相互 独立,服从同一分布,且有期望和方差:
E ( X k ) , D ( X k ) 2 0 , k 1,2,
则对于任意实数 x , n X n k 1 k 1 lim P x n 2 n
g
引 例



0
g (r ) f (r )dr
用概率语言来说,<g>是随机变量g (r)的数学期望,即
相关文档
最新文档