抛物线及其标准方程ppt课件
合集下载
抛物线及其标准方程 课件(共21张PPT)数学人教A版(2019)选择性必修 第一册
p 2
2,
p 4,所以所求抛物线的标准方程是 x2 8 y
讲
课
人
:
邢
启 强
15
例题(讲3评)已知抛物线的准线方程为 x = 1 ,求抛物线的标准方程
yl
Fo
x
x=1
解:因为准线方程是 x = 1,所以 p =2 ,且焦点在 x 轴
的负半轴上,所以所求抛物线的标准方程是 y2 =-4x .
讲
课
讲
课 人 :
我们把这样的一条曲线叫做抛物线.
邢
启 强
6
新知总结 一、抛物线的定义:
在平面内,与一个定点F和一条定直 线l(l不经过点F)的距离相等的点的轨迹 叫抛物线.
· d M
C
H
焦点
·F
点F叫抛物线的焦点, 直线l 叫抛物线的准线
l
准线
e=1
d 为 M 到 l 的距离
即:若 MF 1 ,则点 M 的轨迹是抛物线. d
4.注重数形结合、分类讨论思想的应用
5.注重实际应用
讲
课
人
:
邢
启 强
21
3.3.1抛物线及其标准方程
1.回顾抛物线是如何切出来的。
临 界
2.如何画出抛物线呢? ●第一定义?
第二定义?
复习回顾 我们知道,椭圆、双曲线的有共同的几何特征:
都可以看作是,在平面内与一个定点的距离和一条定直线的距离的比 是常数e的点的轨迹. (其中定点不在定直线上)
(1)当0<e<1时,是椭圆; (2) 当e>1时,是双曲线;
(A)直线
(B)抛物线
(C)双曲线 (D)椭圆
讲
课
4.3.1抛物线的标准方程 课件(共14张PPT)
程为 x 3 .
2
2
活动 3 巩固练习,提升素养
例1 (2)已知抛物线的焦点坐标是 F(0,-2),求它 的标准方程.
解(2)因它的标准方程为为焦点在 y 轴的负半轴上, 并且 p 2,p 4 ,所以所求方程是
2
x2 8 y
课堂小结
y2 2 px p>0或y2 2 px p>0 x2 2 py p>0或x2 2 py p>0
试一试 第一步:在画板上画一条直线 l,使 l 与画板左侧的边
线平行; 第二步:再在直线 l 外画一个定点 F.取一个丁字尺靠
紧画板左侧外沿,丁字尺和直线垂直且相交于点 P,在丁 字尺的另一端取一点 Q, 将一条长度等于 PQ 的细绳,一 端固定在点 Q ,另一端固定在点 F;
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
F p ,0 ,准线为 x p .
2
2
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
设 M(x,y) 是抛物线上一点,则 M 到 F 的距离为
MF
x
p 2
2
y2
,M
到直线
l
的距离为
x
p 2
,所以
x p 2 y2 x p .
2
2
将上式两边平方,并化简得
y2 2 px p>0.
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
抛物线的标准方程还有其他几种形 :y2 2 px, x2 2 py x2 2 py ,它们的焦点、准线方程以及图形如表中所示:
3.3.1抛物线及其标准方程(PPT)课件(人教版)
1.抛物线 y=41x2 的准线方程是(
)
A.y=-1 B.y=-2
C.x=-1 D.x=-2
A 解析:因为 y=41x2⇔x2=4y,所以抛物线的准线方程是 y=
-1.
2.顶点在原点,焦点是 F(0,3)的抛物线标准方程是( ) A.y2=12x B.x2=12y C.y2=112x D.x2=112y
解: (1)由于点 M(-6,6)在第二象限, 所以过点 M 的抛物线开口向左或开口向上. 若抛物线开口向左,焦点在 x 轴上,设其方程为 y2=-2px(p>0). 将点 M(-6,6)代入,可得 36=-2p×(-6),所以 p=3. 所以抛物线的方程为 y2=-6x.
若抛物线开口向上,焦点在 y 轴上,设其方程为 x2=2py(p>0). 将点 M(-6,6)代入,可得 36=2p×6,所以 p=3, 所以抛物线的方程为 x2=6y. 综上所述,抛物线的标准方程为 y2=-6x 或 x2=6y.
3.已知动点 P(x,y)满足 (x-1)2+(y-2)2=|3x+45y-10|, 则点 P 的轨迹是( )
A.直线 B.圆 C.椭圆 D.抛物线 D 解析:由题意知,动点 P 到定点(1,2)和定直线 3x+4y-10 =0 的距离相等,又点(1,2)不在直线 3x+4y-10=0 上,所以点 P 的轨迹是抛物线.
1.已知抛物线 y2=4x 的焦点是 F,点 P 是抛物线上的动点, 又有点 A(3,4),则|PA|+|PF|的最小值为________.
2 5 解析:由题意可知点 A(3,4)在抛物线的外部. 因为|PA|+|PF|的最小值即为 A,F 两点间的距离,F(1,0), 所以|PA|+|PF|≥|AF|= 42+22=2 5, 即|PA|+|PF|的最小值为 2 5.
抛物线的定义及标准方程PPT课件-2024鲜版
性质
抛物线具有对称性,其对称轴是 过焦点且垂直于准线的直线;抛 物线上任一点到焦点的距离等于 到准线的距离。
4
抛物线的焦点和准线
焦点
抛物线上所有点到焦点的距离相等的 点,用F表示。
准线
焦点和准线的位置关系
对于开口向上的抛物线,焦点在准线 的上方;对于开口向下的抛物线,焦 点在准线的下方。
抛物线上所有点到准线的距离相等的 直线,用l表示。
18
05
抛物线与相关曲线的联系与区别
2024/3/28
19
与直线的交点问题
抛物线与直线交点的 求解方法
交点在抛物线对称轴 上的特殊情况
2024/3/28
交点个数的判断及位 置关系
20
与圆的切线问题
抛物线与圆的切线求解方法
切线个数的判断及位置关系
切点在抛物线顶点处的特殊情况
2024/3/28
21
无限延伸
抛物线在两端无限延伸,且越来越 接近其对称轴。
12
抛物线的顶点、焦点和准线的性质
顶点
抛物线的顶点是抛物线上距离对 称轴最近的点,也是抛物线的最
高点或最低点。
焦点
抛物线的焦点位于对称轴上,且 距离顶点的距离等于焦距。所有 从焦点出发的光线经过抛物线反
射后平行于对称 轴且距离顶点等于焦距的直线。 所有从焦点出发的光线经过抛物
线反射后,都会与准线相交。
2024/3/28
13
抛物线的对称性和平移性质
对称性
抛物线关于其对称轴对称,即如果点P(x,y)在抛物线上,那么点P'(-x,y)也在抛物线上。
平移性质
抛物线可以通过平移变换得到新的抛物线。如果抛物线沿x轴平移a个单位,沿y轴平移b个单位,那么新的抛物线 的方程可以通过在原方程中替换x为x-a,y为y-b得到。这种平移变换不会改变抛物线的形状和开口方向,只会改 变其位置和顶点坐标。
抛物线具有对称性,其对称轴是 过焦点且垂直于准线的直线;抛 物线上任一点到焦点的距离等于 到准线的距离。
4
抛物线的焦点和准线
焦点
抛物线上所有点到焦点的距离相等的 点,用F表示。
准线
焦点和准线的位置关系
对于开口向上的抛物线,焦点在准线 的上方;对于开口向下的抛物线,焦 点在准线的下方。
抛物线上所有点到准线的距离相等的 直线,用l表示。
18
05
抛物线与相关曲线的联系与区别
2024/3/28
19
与直线的交点问题
抛物线与直线交点的 求解方法
交点在抛物线对称轴 上的特殊情况
2024/3/28
交点个数的判断及位 置关系
20
与圆的切线问题
抛物线与圆的切线求解方法
切线个数的判断及位置关系
切点在抛物线顶点处的特殊情况
2024/3/28
21
无限延伸
抛物线在两端无限延伸,且越来越 接近其对称轴。
12
抛物线的顶点、焦点和准线的性质
顶点
抛物线的顶点是抛物线上距离对 称轴最近的点,也是抛物线的最
高点或最低点。
焦点
抛物线的焦点位于对称轴上,且 距离顶点的距离等于焦距。所有 从焦点出发的光线经过抛物线反
射后平行于对称 轴且距离顶点等于焦距的直线。 所有从焦点出发的光线经过抛物
线反射后,都会与准线相交。
2024/3/28
13
抛物线的对称性和平移性质
对称性
抛物线关于其对称轴对称,即如果点P(x,y)在抛物线上,那么点P'(-x,y)也在抛物线上。
平移性质
抛物线可以通过平移变换得到新的抛物线。如果抛物线沿x轴平移a个单位,沿y轴平移b个单位,那么新的抛物线 的方程可以通过在原方程中替换x为x-a,y为y-b得到。这种平移变换不会改变抛物线的形状和开口方向,只会改 变其位置和顶点坐标。
抛物线及其标准方程 课件
(1)y2=-12x;(2)3x2-4y=0;(3)x=32y2;(4)y2=ax(a≠0).
思路分析先将所给方程转化为标准方程的形式,确定其开口方向,
求出p的值,再写出焦点坐标和准线方程.பைடு நூலகம்
解(1)由方程 y2=-12x 知,抛物线开口向左,焦点在 x 轴的负半
轴上,2p=12,所以 p=6,2=3,因此焦点坐标为(-3,0),准线方程为
解(1)因为点M(-8,4)在第二象限,所以抛物线焦点在y轴的正半轴
或x轴的负半轴上.
设抛物线方程为x2=2py(p>0)或y2=-2px(p>0).
将点M(-8,4)代入可得(-8)2=2p·4或42=-2p·(-8),
解得2p=16或2p=2,
故所求抛物线方程为x2=16y或y2=-2x.
(2)因为直线 x+4y+6=0 与坐标轴的交点为(-6,0),
轴还是y轴,是正半轴还是负半轴,从而设出相应的标准方程的形
式;“计算”就是指根据所给的已知条件求出方程中参数p的值,从而
得到抛物线的标准方程.
2.求抛物线的标准方程时需注意以下三个问题:
(1)注意开口方向与方程间的对应关系;
(2)当抛物线的类型没有确定时,可设方程为y2=mx或x2=my,这样
可以减少讨论情况的个数;
2 2 4
1
- ,0
4
,准线方程为
1
x= .
4
综上可知,当 a≠0 时,抛物线 x=-ay2 的焦点坐标为 1
线方程为 x=4.
1
,0
4
,准
纠错心得在解决抛物线问题时,必须注意抛物线方程的形式,若
不是标准方程,应首先转化为标准方程,其次要注意分类讨论思想
思路分析先将所给方程转化为标准方程的形式,确定其开口方向,
求出p的值,再写出焦点坐标和准线方程.பைடு நூலகம்
解(1)由方程 y2=-12x 知,抛物线开口向左,焦点在 x 轴的负半
轴上,2p=12,所以 p=6,2=3,因此焦点坐标为(-3,0),准线方程为
解(1)因为点M(-8,4)在第二象限,所以抛物线焦点在y轴的正半轴
或x轴的负半轴上.
设抛物线方程为x2=2py(p>0)或y2=-2px(p>0).
将点M(-8,4)代入可得(-8)2=2p·4或42=-2p·(-8),
解得2p=16或2p=2,
故所求抛物线方程为x2=16y或y2=-2x.
(2)因为直线 x+4y+6=0 与坐标轴的交点为(-6,0),
轴还是y轴,是正半轴还是负半轴,从而设出相应的标准方程的形
式;“计算”就是指根据所给的已知条件求出方程中参数p的值,从而
得到抛物线的标准方程.
2.求抛物线的标准方程时需注意以下三个问题:
(1)注意开口方向与方程间的对应关系;
(2)当抛物线的类型没有确定时,可设方程为y2=mx或x2=my,这样
可以减少讨论情况的个数;
2 2 4
1
- ,0
4
,准线方程为
1
x= .
4
综上可知,当 a≠0 时,抛物线 x=-ay2 的焦点坐标为 1
线方程为 x=4.
1
,0
4
,准
纠错心得在解决抛物线问题时,必须注意抛物线方程的形式,若
不是标准方程,应首先转化为标准方程,其次要注意分类讨论思想
抛物线及其标准方程优秀课件
准线位置:根据抛物线 准线的位置,可以分为 准线平行于x轴、准线 平行于y轴和准线不平 行于坐标轴三种。
抛物线的标准方程
抛物线的标准方程推导
抛物线的定义:一个平面曲线,它的所有点都位于一个固定点(焦点)和一条固定直 线(准线)之间。
抛物线的标准方程:y^2 = 4px,其中p是焦点到准线的距离。
抛物线的一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。 单击此处添加文本具体内容,简明扼要地阐述您的观点。根据需要可酌情增减文字, 以便观者准确地理解您传达的思想。单击此处添加文本具体内容,简明扼要地阐述您 的观点
抛物线的对称轴为x=-b/2a。 结论:二次函数的对称轴与抛物线的对称轴相同,都为x=-b/2a。
抛物线的准线方程
准线的定义: 抛物线上任意 一点到准线的
距离相等
准线的方程: x=-p(开口方 向为x轴正方向) 或x=p(开口 方向为x轴负方
向)
准线的性质: 准线是与抛物 线对称轴平行 的直线,离抛
物线最近
准线的作用: 利用准线方程 可以求出抛物 线上任意一点
的坐标
抛物线的解析性质
抛物线的导数与切线斜率
抛物线在建筑美学中的应用:古罗 马建筑中的抛物线元素
抛物线在建筑美学中的应用:桥梁、 隧道等交通设施中的抛物线应用
添加标题
添加标题
添加标题
添加标题
抛物线在建筑美学中的应用:现代 建筑中的抛物线设计
抛物线在建筑美学中的应用:室内 设计中的抛物线元素
物理学中的抛物线应用
光学应用:抛物线 镜面可以聚焦光线, 用于制造望远镜、 显微镜等光学仪器。
抛物线的渐近线方程
定义:抛物线与直线y=±x 的交点形成的直线
《抛物线及其标准方程一》(课件)
几何意义
抛物线的形状像一条平滑的曲线 ,它是由所有与焦点和准线等距 的点组成的。
焦点与准线
焦点
抛物线上的一个固定点,通常用大写 字母F表示。所有抛物线上的点到焦 点的距离都等于到准线的距离。
准线
抛物线所在平面内的一条定直线,通 常用小写字母l表示。准线与抛物线的 对称轴平行,且到焦点的距离等于焦 距。
抛物线与对称轴的交点,也称为抛物线的最高点或最低点。顶点的坐标可以通过 抛物线的标准方程求出。
对称轴
抛物线的一条直线,它经过顶点且与抛物线交于两点。对称轴与x轴平行或重合 ,且所有关于对称轴对称的点都在抛物线上。对称轴的方程可以通过抛物线的标 准方程求出。
02
标准方程推导与形式
标准方程推导过程
引入抛物线的定义
顶点位置
抛物线的顶点位置可以由 标准方程直接得出。
借助计算机软件进行可视化展示
使用数学软件
结合动态演示
如Mathematica、MATLAB等数学软 件,可以直接输入抛物线的标准方程, 进行可视化展示。
通过计算机软件,还可以实现抛物线 的动态演示,更直观地展示抛物线的 性质。
使用绘图工具
如GeoGebra、Desmos等在线绘图 工具,也可以方便地绘制出抛物线的 图像。
为:$d=|x+p|$。
对于开口向上或向下的抛物线, 焦点到直线上任意点的距离公式
为:$d=|y+p|$。
注意:这里的距离公式是在标准 方程下的特殊情况,对于一般的 抛物线方程,需要根据具体情况
进行推导。
03
抛物线图像绘制方法
利用描点法绘制图像
01
02
03
确定抛物线的顶点
根据抛物线的标准方程, 可以确定抛物线的顶点坐 标。
抛物线的形状像一条平滑的曲线 ,它是由所有与焦点和准线等距 的点组成的。
焦点与准线
焦点
抛物线上的一个固定点,通常用大写 字母F表示。所有抛物线上的点到焦 点的距离都等于到准线的距离。
准线
抛物线所在平面内的一条定直线,通 常用小写字母l表示。准线与抛物线的 对称轴平行,且到焦点的距离等于焦 距。
抛物线与对称轴的交点,也称为抛物线的最高点或最低点。顶点的坐标可以通过 抛物线的标准方程求出。
对称轴
抛物线的一条直线,它经过顶点且与抛物线交于两点。对称轴与x轴平行或重合 ,且所有关于对称轴对称的点都在抛物线上。对称轴的方程可以通过抛物线的标 准方程求出。
02
标准方程推导与形式
标准方程推导过程
引入抛物线的定义
顶点位置
抛物线的顶点位置可以由 标准方程直接得出。
借助计算机软件进行可视化展示
使用数学软件
结合动态演示
如Mathematica、MATLAB等数学软 件,可以直接输入抛物线的标准方程, 进行可视化展示。
通过计算机软件,还可以实现抛物线 的动态演示,更直观地展示抛物线的 性质。
使用绘图工具
如GeoGebra、Desmos等在线绘图 工具,也可以方便地绘制出抛物线的 图像。
为:$d=|x+p|$。
对于开口向上或向下的抛物线, 焦点到直线上任意点的距离公式
为:$d=|y+p|$。
注意:这里的距离公式是在标准 方程下的特殊情况,对于一般的 抛物线方程,需要根据具体情况
进行推导。
03
抛物线图像绘制方法
利用描点法绘制图像
01
02
03
确定抛物线的顶点
根据抛物线的标准方程, 可以确定抛物线的顶点坐 标。
3.3.1抛物线及其标准方程-课件(共26张PPT)
7
由图可知,当 ⊥ 时,|| + 最小,最小值为2.
7
即|| + ||的最小值为2 ,
此时P点纵坐标为2,代入2 = 2,得 = 2.
∴点P坐标为(2,2).
9.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露
出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?
m2
设 P ( , m ) ,则点 M
2p
p
p
,m ,
2
因为焦点 F 2 , 0 , FPM 是等边三角形,
m2 p
6
m2 27
2 p 2
.因此抛物线方程为
所以
,解得
p
3
p
p
( )2 m2 6
2 2
y2 6x .
(2)待定系数法.
若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,
若抛物线的焦点位置不确定,则要分情况讨论,
另外,焦点在 x 轴上的抛物线方程统一设成 y2=ax (a ≠ 0) ,
焦点在 y 轴上的抛物线方程可统一设成 x2=ay (a ≠ 0).
跟踪训练
1.根据下列条件写出抛物线的标准方程:
5.过抛物线 y 2 2 px( p 0) 的焦点作直线交抛物线于 P( x1 ,y1 ) 、Q( x2 ,y2 ) 两点,若 x1 x2 3 p ,
则 PQ 等于( A )
A.4p
B.5p
C.6p
D.8p
6.与圆(x-2)2+y2=1外切,且与直线x+1=0相切的动圆圆心的轨迹方程是
由图可知,当 ⊥ 时,|| + 最小,最小值为2.
7
即|| + ||的最小值为2 ,
此时P点纵坐标为2,代入2 = 2,得 = 2.
∴点P坐标为(2,2).
9.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露
出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?
m2
设 P ( , m ) ,则点 M
2p
p
p
,m ,
2
因为焦点 F 2 , 0 , FPM 是等边三角形,
m2 p
6
m2 27
2 p 2
.因此抛物线方程为
所以
,解得
p
3
p
p
( )2 m2 6
2 2
y2 6x .
(2)待定系数法.
若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,
若抛物线的焦点位置不确定,则要分情况讨论,
另外,焦点在 x 轴上的抛物线方程统一设成 y2=ax (a ≠ 0) ,
焦点在 y 轴上的抛物线方程可统一设成 x2=ay (a ≠ 0).
跟踪训练
1.根据下列条件写出抛物线的标准方程:
5.过抛物线 y 2 2 px( p 0) 的焦点作直线交抛物线于 P( x1 ,y1 ) 、Q( x2 ,y2 ) 两点,若 x1 x2 3 p ,
则 PQ 等于( A )
A.4p
B.5p
C.6p
D.8p
6.与圆(x-2)2+y2=1外切,且与直线x+1=0相切的动圆圆心的轨迹方程是
抛物线及其标准方程ppt课件
l
平面内与一个定点 F 和一条定直线 l(l 不经
H
过点 F)的距离相等的点的轨迹叫做抛物线.点 F
叫做抛物线的焦点,直线 l 叫做抛物线的准线.
准线
M
F
焦点
根据抛物线的几何特征,如图,取经过点 F 且垂直于直线 l 的直线为 x 轴,垂
足为 K,并使原点与线段 KF 的中点重合,建立平面直角坐标系 Oxy.设| KF | p( p 0) ,
的值是( C)
A. 4
B.2
C.4
D.8
解析:抛物线的准线方程为:
x
p 2
,因为
M
到焦点距离为
5,所以
M
到准线
的距离1 p 5 ,即 p 8 ,则抛物线方程为 y2 16x .将1, m 代入得:m2 16 ,
2
因为 m 0,所以 m 4 .故选:C.
5.抛物线 y2 mx( m 0) 的准线方程为 x 2 , 那么抛物线 y mx2 的焦点坐标为
焦点坐标
p 2
,
0
p 2
,
0
0,
p 2
0,
p 2
准线方程
x p 2
x p 2
y p 2
y p 2
四种标注方程对应抛物线的比较 相同点:
(1)顶点都是原点
(2)焦点都在坐标轴上
·
(3)焦点到准线的距离都是 p
(4)准线与焦点所在的坐标轴垂直,准线与坐标轴的交点与焦点关于原点对称,
它们与原点的距离都等于
p 2
1,得到
p
2
.
A 2.抛物线 y x 2 的焦点到双曲线 x2 y2 1 的渐近线的距离为( ) 24
3.3.1抛物线及其标准方程 课件(可编辑图片版)(共35张PPT)
4.已知抛物线顶点为坐标原点,焦点在y轴上,抛物线上的 点M(m,-2)到焦点的距离为4,则m=________.
解析:由已知,可设抛物线方程为x2=-2py.由抛物线定义有
2+
p 2
=4,∴p=4,∴x2=-8y.将(m,-2)代入上式,得m2=
16.∴m=±4.
答案:±4
题型一 求抛物线的标准方程 探究 1 直接法求抛物线方程 例 1 (1)顶点在原点,对称轴是 y 轴,并且顶点与焦点的距离 等于 3 的抛物线的标准方程是( ) A.x2=±3y B.y2=±6x C.x2=±12y D.x2=±6y
3.3.1抛物线及其标准方程
[知识要点]
要点一 抛物线的定义 平面内与一个定点 F 和一条定直线 l(l 不经过点 F)距离相等的 点的轨迹叫做__抛__物__线__.点 F 叫做抛物线的__焦__点____,直线 l 叫做 抛物线的_准__线___.
【方法技巧】(1)抛物线定义的实质可归结为“一动三定”:一 个动点,设为 M;一个定点 F 叫做抛物线的焦点;一条定直线 l 叫 做抛物线的准线;一个定值,即点 M 到点 F 的距离和它到直线 l 的距离之比等于 1.
[基础自测]
1.判断正误(正确的画“√”,错误的画“×”) (1)标准方程y2=2px(p>0)中的p的几何意义是焦点到准线的距 离.( √ ) (2)平面内到一定点距离与到一定直线距离相等的点的轨迹是 抛物线.( × ) (3)只有抛物线的顶点在坐标原点,焦点在坐标轴上时,抛物 线才具有标准形式.( √ ) (4)焦点在y轴上的抛物线的标准方程x2=±2py(p>0),也可以写 成y=ax2,这与以前学习的二次函数的解析式是一致的.( √ )
受二次函数的影响,误以为 y 根据抛物线方程求准线方程时,应
抛物线及其标准方程 课件
[规律方法] 抛物线定义的两种应用 (1)实现距离转化.根据抛物线的定义,抛物线上任意一点到焦点的距离 等于它到准线的距离,因此,由抛物线定义可以实现点点距与点线距的相互 转化,从而简化某些问题. (2)解决最值问题.在抛物线中求解与焦点有关的两点间距离和的最小值 时,往往用抛物线的定义进行转化,即化折线为直线解决最值问题.
[规律方法] 1.用待定系数法求抛物线标准方程的步骤
2.求抛物线的标准方程时需注意的三个问题 (1)把握开口方向与方程间的对应关系. (2)当抛物线的类型没有确定时,可设方程为 y2=mx 或 x2=ny,这样可以 减少讨论情况的个数. (3)注意 p 与p2的几何意义.
抛物线的定义的应用
例 2、(1)已知抛物线的顶点在原点,焦点在 y 轴上,抛物线上一点 M(m, -3)到焦点的距离为 5,求 m 的值、抛物线方程和准线方程.
(2)已知抛物线的焦点在 y 轴上,可设方程为 x2=2my(m≠0),由焦点到准 线的距离为 5,知|m|=5,m=±5,所以满足条件的抛物线有两条,它们的标 准方程分别为 x2=10y 和 x2=-10y.
(3)∵点(-3,-1)在第三象限,∴设所求抛物线的标准方程为 y2=- 2px(p>0)或 x2=-2py(p>0).
抛物线及其标准方程
1.抛物线的定义 平面内与一个定点 F 和一条定直线 l(l 不经过点 F)距离相等的点的轨迹叫 做抛物线.点 F 叫做抛物线的焦点,直线 l 叫做抛物线的准线. 思考 1:抛物线的定义中,若点 F 在直线 l 上,那么点的轨迹是什么?
[提示] 点的轨迹是过点 F 且垂直于直线 l 的直线.
[思路探究]
(1)(2)
由题意可确 定方程形式
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y2 2 px( p 0)
这就是所求的轨迹方程.
10
三、抛物线的标准方程
把方程 y2 = 2px (p>0)叫做抛物线的标准方 程.其中 p 为正常数,表示焦点在 x 轴正半轴上.
p的几何意义是: 焦点到准线的距离,简称焦准距
焦点坐标是 ( p , 0) , 2
p 准线方程为: x
y
A
. o
Fx
B
18
题型二:利用抛物线的定义求点的轨迹方程
例3:点M与点F(4,0)的距离比它到直线 l:x+5=0的距离小1,求点M的轨迹方程。
. y
G
M
H
o
.x
F (4,0)
19
x=-5 x=-4
题型三:抛物线应用于求最值问题
例4:已知抛物线y2=2x的焦点是F,点P是抛物 线上的动点,又有点A(3,2),求|PA|+|PF|的 最小值,并求出取最小值时P点的坐标
L
H
M
几何画板观察
F
6
一、抛物线的定义:
H
在平面内,与一个定点F和一条
d
M·
C
定直线l(l不经过点F)的距离相等的 点的轨迹叫抛物线.
·F
点F叫抛物线的焦点,
l e=1
直线l 叫抛物线的准线
d 为 M 到 l 的距离
即:若 MF 1 ,则点 M 的轨迹是抛物线. d
那么如何建立坐标系,使抛物线的方程更简
焦点坐标
准线方程
(1) (5,0) x=-5
(2) (3) (4)
(0,—1 ) (- —5 ,8 0)
8
(0,-2)
y= - —1
8
x= —5 y=28
16
四.四种抛物线的对比
图形
标准方程
ly
y2=2px
O F x (p>0)
焦点坐标 准线方程
( p ,0) x p
2
2
yl
FO
y2=-2px x (p>0)
3 2 ,0)
准线:x =-
3 2
(2)已知抛物线的焦点坐标是 F(0,-2),求
抛物线的标准方程
x 2 =-8 y
(3)已知抛物线的准线方程为 x = 1 ,求抛物(4)求过点A(3,2)的抛物线的标准方程
y2=
4 3
x或
x2=
9 2
y
课堂练习:
1、根据下列条件,写出抛物线的标准方程:
( ( (123)))焦准焦点 线 点是 方 到程 准F(线是3的,x 距=0)离;是14 2;。
y2 =12x y2 =x
y2 =4x、 y2 = -4x、x2 =4y 或 x2 = -4y
2、求下列抛物线的焦点坐标和准线方程:
(1)y2 = 20x (2)x2= 1 y (3)2y2 +5x =0 (4)x2 +8y =0 2
(1)当0<e<1时,是椭圆; (2) 当e>1时,是双曲线;
l M
·F
l M
F·
l
·M
·F
0<e <1
e>1
e=1
那么,当e=1时,它又是什么曲线 ?
5
提出问题:
如图,点 F是定点,L 是不经过点F 的定直线。H 是L上
任意一点,过点H作MH L ,线段FH的垂直平分线m交 MH于点M,拖动点H,观察点M的轨迹,你能发现点M 满足的几何条件吗?
y ax2 (a 0) x2 1 y 1 2 p aa
当a>0时与当a<0时,结论都为:
焦点(0,1 )准线y=- 1
4a
4a
13
y y=ax2
y=ax2y+=cax2+bx+c
o
x
14
例1
(1)已知抛物线的标准方程是 y 2 = 6 x ,求它
的焦点坐标及准线方程
焦点F (
y
解法三:以过F且垂直于 l 的直
M(x,y) 线为x轴,垂足为K.以F,K的中点
Ko F
O为坐标原点建立直角坐标系xoy.
x 设 M( x, y), FK p ,
l
则焦点 F( p , 0) ,准线 l : x p
2
2
依题意得 ( x p )2 y2 | x p |
2
2
两边平方,整理得
( p ,0) 2
xp 2
y
F
O
x2=2py
x
l
(p>0)
(0,p ) y p
2
2
y
O F
l
x
x2=-2py (p>0)
(0, p ) 2
y p 2
方程的特点: (1)左边是二次 式, (2)右边是一次 式;决定了焦点 的位置.
12
思考:
二次函数 y ax2 (a 0) 的图象为什么是抛物线?
2
想一想: 坐标系的建立还有没有其它方案也
﹒ ﹒ ﹒ ﹒ 会使抛物线方程的形式简单 ?
y
y
y
ox
ox o x
y
o
x
方案(1)
方案(2)
方案(3)
方案(4) 11
四.四种抛物线的对比
图形
标准方程
ly
y2=2px
O F x (p>0)
焦点坐标 准线方程
( p ,0) x p
2
2
yl
FO
y2=-2px x (p>0)
( p ,0) 2
xp 2
y
F
O
x2=2py
x
l
(p>0)
(0,p ) y p
2
2
y
O F
l
x
x2=-2py (p>0)
(0, p ) 2
y p 2
方程的特点: (1)左边是二次 式, (2)右边是一次 式;决定了焦点 的位置.
17
例2:一种卫星接收天线的轴截面如下图所示。卫星波 束呈近似平行状态射入轴截面为抛物线的接收天线, 经反射聚集到焦点处。已知接收天线的径口(直径) 为4.8m,深度为0.5m。建立适当的坐标系,求抛物线 的标准方程和焦点坐标。
单,其标准方程形式怎样?
7
二、抛物线标准方程的推导
解法一:以 L为 y轴,过点F 垂直于L的直线为 x 轴建
立直角坐标系(如下图所示),则定点F( p, o) 设动点
点 M (x, y) ,由抛物线定义得:
(x p)2 y2 x
化简得:y
2
2
px
p
2
(
p
0)
y.
M(X,y)
O
.
F
x
l
8
二、标准方程的推导
解法二:以定点F 为原点,过点F 垂直于L的直线为x 轴建
立直角坐标系(如下图所示),则定点F (0, 0) ,L 的方程
为x p
设动点 M (x, y),由抛物线定义得
x2 y2 x p
y p 2
2
化简得: 2 px ( p 0)
9
二、标准方程的推导
2.4.1 抛物线及其标准方程
1
2
喷泉
3
思考:
我们知道,二次函数y=ax2+bx+c(a≠0)的图象 是一条抛物线,而且还研究过它的顶点坐标、 对称轴等问题。那么,抛物线到底有怎样的几 何特征?它还有哪些几何性质?
4
复习回顾: 我们知道,椭圆、双曲线有共同的几何特征:
都可以看作是,在平面内与一个定点的距离和一条定直线 (其中定点不在定直线上)的距离的比是常数e的点的轨迹.