放大电路实验操作和multisim仿真(20200705152859)

合集下载

两级放大电路multisim仿真试验报告

两级放大电路multisim仿真试验报告

两级放大电路multisim仿真试验报告两级放大电路multisim仿真试验报告一、实验介绍本实验主要用MultiSim软件编辑和仿真一个两级放大电路。

放大电路包括一级预处理部分(当前缓冲器+电容式滤波器)和一级功率部分(管式功率放大器TDA2110)。

两级放大电路也称直接放大,它使用一个预处理放大部分和一个功率放大部分来放大从源收到的信号。

预处理由电容式滤波器和当前缓冲器组成,用于消除输入信号中的干扰,提高信号增益。

功率放大部分主要由放大芯片TDA2110组成,以提高信号电平,使输出信号能够给拓扑分配足够的功率。

1. 首先,用Multisim软件编辑电路图。

先拖出当前缓冲器、电容式滤波器、放大芯片TDA2110等元件,按照原理设计图将各节点连接起来,并进行相应的仿真参数设置,如阻抗等。

2. 然后,设置激励信号,这里设置为正弦信号,频率为1kHz,高低电平分别为5V、-5V,且给激励信号的输入点添加滤波电容。

3.最后,设置输入电压为5v,根据实验要求,观察TDA2110功率放大芯片的输出信号,检查其电压分量的幅值,即前后放大的效果。

四、实验过程1.首先,拖出所需元器件,连接好各节点,并设置元器件的仿真参数,最终实现仿真所需电路图。

五、实验结果运行仿真,将输出信号电压调整为500mV,调压后输出信号获得明显放大,相对于输入信号来说,由5V放大至500mV(即放大100倍)。

如下图所示:六、结论通过实验,可以看出,两级放大电路在实验中正常工作,基本达到将输入信号由5V放大至500mV(即放大100倍)的效果。

multisim单管放大电路

multisim单管放大电路

ultisim单管放大电路实验一单管放大电路实验目的:1、掌握单管放大电路的电路特性;2、掌握单管放大电路的各项参数的测试方法;3、学习MULTISIM仿真软件的使用。

实验步骤:1、用MULTISIM仿真软件绘制电路图;2、共发射极放大电路的静态工作点的调整;3、共发射极放大电路的电压放大倍数的测量;4、共发射极放大电路的输入电阻的测量;5、共发射极放大电路的输出电阻的测量。

实验内容:一、共发射极放大电路1、元件选取1)电源V1:Place Sourc e→POWER_SOURCES→DC_POWER。

(此处的含义为:单击元器件工具栏的Place Source按钮,在打开的窗口的Family列表框中选择POWER_SOURCES,再在Component列表框中选择DC_POWER)2)接地:Place Source→POWER_SOURCES→GROUND,选取电路中的接地。

3)信号源V2:Place Source→SIGNAL_VOLTAGE_SO→AC_VOLTAGE,需要注意,默认的电压为1V,需要设置电压为2mV。

4)电阻:Place Basic→RESISTOR,选取2KΩ、10KΩ和750KΩ。

5)电容:Place Basic→CAPACITOR,选择10uF。

6)三极管:Place Transistor→GJT_NPN→2N222A。

2、电路组成将元器件及电源放置在仿真软件工作窗口合适的位置,连接成图1-1所示的仿真电路。

C110µFC210µFRB750kΩRC2.0kΩV112 VQ12N2222AR310kΩV22mVpk1kHz0°13452图1-1 仿真电路图3、电路仿真1)分析直流工作点首先在Sheet Properties对话框的Circuit选项卡中选中Show All选项。

然后执行菜单命令Simulation→Analysis,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图1-2所示。

放大电路multisim实验报告

放大电路multisim实验报告

放大电路multisim实验报告1. 实验目的通过实验,熟悉和掌握放大电路的基本原理和放大倍数的计算方法。

2. 实验原理放大电路是指用于增大输入信号的电压、电流或功率的电路。

常用的放大电路有共射放大电路、共集放大电路和共基放大电路等。

本实验以共射放大电路为例进行研究。

共射放大电路是一种常见的放大电路,其特点是输入信号加在基极上,输出信号从集电极取出。

放大电路的放大倍数可通过直流负载线和交流负载线的交点来确定。

3. 实验器材和仪器- Multisim电路仿真软件- 电脑4. 实验步骤4.1 搭建电路在Multisim电路仿真软件中,选择适当的元件并搭建共射放大电路。

4.2 设置输入信号为电路添加一个函数信号发生器,设置输入信号的振幅和频率。

4.3 测量输出信号连接示波器,测量输出信号的波形。

4.4 计算放大倍数根据示波器上的波形,测量输入信号和输出信号的幅值,然后计算放大倍数。

5. 实验结果将示波器上测得的信号波形截图作为实验结果。

6. 实验讨论分析实验结果,讨论放大倍数是否符合预期,有无改进的空间。

7. 实验结论通过实验,我们成功搭建了共射放大电路,并计算出放大倍数。

实验结果和预期的结果相符。

通过这次实验,我们对放大电路的原理和计算方法有了更深入的了解。

8. 实验总结本次实验通过Multisim电路仿真软件,从搭建电路到测量输出信号,并计算出放大倍数。

实验过程中我们掌握了放大电路的基本原理和计算方法。

通过实验,我们发现实际电路中可能存在误差,因此在实际应用中应对放大电路进行优化和调整,以获得理想的放大效果。

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。

在这里,我们将引入Multisim的使用以及电路仿真实验报告。

Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。

通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。

1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。

在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。

在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。

接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。

最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。

1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。

通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。

同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。

希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。

2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。

它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。

使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。

2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。

多级放大器的multisim仿真

多级放大器的multisim仿真

1、实验目的和要求目的:1、理解多级放大器的几种耦合方式;2、熟悉多级放大器的电压放大倍数计算以及输入电阻、输出电阻计算方法;3、明确多级放大器的设计方法;4、理解多级放大电路通频带的估算方法;要求:1、电压增益G>50db;2、负载电阻 3.3k3、输入正弦信号电压U1=2mV(有效值)2、实验原理和内容1、共射放大电路放大器的基本任务是不失真地放大信号。

要使放大器能够正常的工作,必须设置合理的静态工作点Q。

为了获得最大不失真的输出电压,静态工作点应该在选出输出曲线上的交流负载线的中点,如图4.2.1所示,如工作点选的太高,就会引起饱和失真(如图4.2.2);若选的太低(如图4.2.3),就会引起截至失真。

对于小信号放大器而言,由于输出交流信号幅度很小,非线性失真不是主要问题,因此Q点不一定要选在交流负载线的中点,而可根据其他要求选择。

例如,希望放大器耗电小、噪声低或输入阻抗高,Q点可以选低一点;希望放大器增益高,Q点可以适当选高一些等等。

放大器的静态工作电压和电流可由简单偏置电路(图4.2.4)和分压式偏置电流负反馈电路(图4.2.5)供给。

简单偏置电路简单,当环境温度和其他条件变化(例如更换管子)时,Q点将会明显的偏移,此时本来不失真的输出波形就可能产生失真。

而分压式偏置电阻负反馈电路具有自动调节静态工作点的能力,所以当环境温度变化或者更换管子时,Q点能基本保持不变,因而这种电路获得了广泛的应用。

2.射极跟随器:射极跟随器(又称射极输出器,简称射随器或跟随器)是一种共集接法的电路见下图,它从基极输入信号,从射极输出信号。

它具有高输入阻抗、低输出阻抗、输入信号与输出信号相位相同的特点。

1、射随器的主要指标及其计算一、输入阻抗从上图(b)电路中,从二、1、1`端往右边看的输入阻抗为:Ri=Ui/Ib=rbe+(1+β)ReL式中:ReL=Re//RL,rbe是晶体管的输入电阻,对低频小功率管其值为:rbe=300+(1+β)(26毫伏)/(Ie毫伏)在上图(b)电路中,若从b、b’端往右看的输入阻抗为Ri=Ui/Ii=Rb//Rio.由上式可见,射随器的输入阻抗要比一般共射极电路的输入阻抗rbe高(1+β)倍。

Multisim实践报告单管及多级放大电路的仿真设计与分析

Multisim实践报告单管及多级放大电路的仿真设计与分析
函数信号发生器参数设置:Frequency: 1kHz ; Amplitude: 5mv
(2)直流静态工作点仿真。 (3)电路的动态参数仿真分析。
图S3.2 静态分析结果
图S3.3 输入、输出波形
(4)参数扫描分析。 (5)仿真数据分析。 ① 由静态工作点相应计算公式求出理论计 算值并与测量值进行比较。
2.通过仿真观察单管和多级放大电路输入、 输出波形的情况、相位关系和失真现象。
3.学习静态工作点Q的ቤተ መጻሕፍቲ ባይዱ量和调整方法, 测量放大器基极和集电极的直流电压。
4.测定每级放大器的静态工作点在直流负 载线上的位置。
5.测量两级放大器的总电压增益,并比较 测量值与计算值。
二、实训器材
PC,Multisim仿真环境。
5
C3
Q2
10uF
R5
2N2219
3kΩ
6
R2 2kΩ
C2 47uF
V1 12 V
图S3.1 单管共射极放大电路仿真原理图
调出双踪示波器与函数信号发生器。
示波器参数设置:Time Base:500s/div Channel A:5mV/div 输入信号 Channel B:200mV/div 输出信号
将示波器探头移到电路输出端,运行 仿真分析,记录输出峰值电压Uo,计算两 级放大器的总电压增益Au。
计算第一级放大器的增益Au1和第二级 放大器的增益Au2及总增益Au,如表S3.4所 示。
表S3.4 RL 增加电路增益计算
Uc1p
Au1
Uc2p
Au2
Au
(6)仿真数据分析。 ① 计算两级放大器电压增益并与测量值比 较。
表S3.1 静态工作点测量
Ub1

MULTISIM电路仿真软件的使用操作教程

MULTISIM电路仿真软件的使用操作教程

MULTISIM电路仿真软件的使用操作教程Multisim是一款功能强大的电路仿真软件,可以帮助用户进行电路设计、分析和仿真。

在本教程中,我们将介绍Multisim的基本使用操作,让您可以快速上手并开始进行电路仿真。

1.创建新电路首先,在打开Multisim软件后,点击“File”菜单,并选择“New”来创建一个新的电路文件。

您可以选择使用自定义的模板或者从已有的电路模板中选择其中一个。

2.添加元件在新建的电路文件中,您可以通过点击“Place”菜单来添加不同种类的元件。

通过选择合适的元件,您可以构建您需要的电路。

您可以添加电源、电阻、电容、电感、晶体管等元件。

3.连接元件在添加完元件后,您需要连接这些元件以构建完整的电路。

通过点击“Connect”工具或者直接拖拽连接线将元件连接起来。

4.设置元件参数5.运行仿真完成电路的搭建后,您可以点击“Run”按钮来开始进行仿真。

Multisim会模拟电路的运行情况,并显示出电路中各元件的电流、电压等参数。

6.分析仿真结果在进行仿真后,您可以查看仿真结果并进行分析。

您可以查看波形图、数据表格等来了解电路的运行情况,以便进行进一步的优化和改进。

7.保存电路文件在完成电路设计后,您可以点击“File”菜单并选择“Save As”来保存电路文件。

您可以选择保存为不同格式的文件,以便将电路文件与他人分享或者备份。

8.导出报告如果您需要将电路设计的结果进行报告或者分享给他人,您可以点击“Tools”菜单并选择“Export”来导出报告或者数据表格。

9.调整仿真设置在进行仿真前,您可以点击“Options”菜单来调整仿真的参数,例如仿真时间、采样率等。

这可以帮助您更好地分析电路的性能。

10.学习资源Multisim提供了大量的学习资源,包括用户手册、视频教程、示例项目等。

您可以通过点击“Help”菜单来访问这些资源,以帮助您更好地使用Multisim进行电路仿真。

通过以上教程,您可以快速上手Multisim软件,并开始进行电路设计和仿真。

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验Multisim 模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。

(2)用Multisim的仿真手段对电路性能作较深入的研究。

2.实验内容实验19-1 基本单管放大电路的仿真研究(1)(2)理论分析(仿真电路符号如图):在V的情况下,可计算出则对比分析:经过比较,I(B)的误差较大。

而由实验结果也可看出,并不等于60,说明实际的三极管工作是由于电容、电阻各方面的因素β并不等于理论值,这即是I(B)误差较大的原因。

(3)理论分析:即放大倍数为14.07,相位相差180°输入电压最大值为1.41mV,输出最大值为19.5mV,相位正好相差180°,故实际的放大倍数为相对误差为1.71%可以看到,这与理论值还是十分接近的,相对误仅差为1.71% (4)幅频特性:上限截止频率18.070MHz下限截止频率17.694Hz则放大倍数,相对误差为1.56%带宽为(5)交流分析使用游标功能可测量出在输入频率为1000Hz时,放大倍数,相对误差为1.51%如上图,相位差为179.999°,相对误差趋0。

(6)当输入电压为300mV时此时失真度为21.449%.(7)理论分析:实验结果:测量输入电阻采用“加压求流法”,测输入端的电压(已知)和电流即可。

输入电流为2.951毫安于是,相对误差为2.1%,误差较小。

测量输出电阻采用改变负载电阻测输出电压进而估算输出电阻的方法。

00r 1o L oL U R U ??=-? ??? 00r 1o L oL U R U ??=-? ???,0o U 是输出端空载时的输出电压,oL U 是接入负载L R 时的输出电压,输出信号频率是1000KHz 。

于是,相对误差为1.97%,误差也是比较小(8)将1E R 去掉,将2E R 的值改为1.2k于是根据y2=95.2477得到放大倍数幅频特性上限截止频率18.911MHz 下限截止频率105.775Hz 则放大倍数95.25(此处可以通过示波器的显示结果验证)带宽为则输入电阻为(9)对比分析:结论:在去掉后,放大倍数、上下限截止频率都会增加,输入电阻会减小。

multisim仿真实验报告

multisim仿真实验报告

实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图E级对地电压25.静态数据仿真26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。

2.双击示波器,得到如下波形5.他们的相位相差180度。

27.动态仿真二1.删除负载电阻R62.重启仿真。

3.分别加上5.1k,300欧的电阻,并填表填表.28.仿真动态三1.测量输入端电阻。

在输入端串联一个5.1k的电阻,并连接一个万用表,启动仿真,记录数据,填入表格。

2.测量输出电阻RO数据为VL测量数据为VO填表1.画出如下电路图。

2.元件的翻转4.去掉r7电阻后,波形幅值变大。

实验二 射级跟随器一、实验目的1、熟悉multisim 软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

4、学习mutisim参数扫描方法 5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器 信号发生器交流毫伏表数字万用表 三、实验步骤1实验电路图如图所示;2.直流工作点的调整。

如上图所示,通过扫描R1的阻值,在输入端输入稳定的正弦波,功过观察输出5端的波形,使其为最大不失真的波形,此时可以确定Q1的静态工作点。

7.出现如图的图形。

10.单击工具栏,使出现如下数据。

11.更改电路图如下、17思考与练习。

1.创建整流电路,并仿真,观察波形。

XSC12.由以上仿真实验知道,射级跟随器的放大倍数很大,且输入输出电压相位相反,输入和输出电阻也很大,多用于信号的放大。

实验三:负反馈放大电路一、实验目的:1、熟悉Multisim软件的使用方法2、掌握负反馈放大电路对放大器性能的影响3、学习负反馈放大器静态工作点、电压放大倍数、输入电阻、输出电阻的开环和闭环仿真方法。

multisim放大电路设计

multisim放大电路设计

multisim放大电路设计
在 Multisim 中设计放大电路可以通过以下步骤实现:
1. 打开 Multisim 软件并创建一个新的电路设计文件。

2. 在元件库中选择放大器元件,例如通用运算放大器(Operational Amplifier)。

3. 将所选的运算放大器放置在电路设计区域中。

你可以使用拖放功能将其移动到合适的位置。

4. 连接放大器的输入和输出引脚。

根据你的设计需求,将输入信号源连接到放大器的输入引脚,将负载(例如电阻或电容)连接到放大器的输出引脚。

5. 设置放大器的增益。

在放大器的属性对话框中,可以设置增益值。

根据你的需求,选择合适的增益倍数。

6. 添加其他元件(如果需要)。

根据你的设计要求,可能需要添加其他元件,如电阻、电容、电源等,以实现所需的放大电路功能。

7. 连接电路的电源。

根据你的设计,连接适当的电源到电路中的元件。

8. 进行仿真。

在 Multisim 中,你可以运行仿真来测试放大电路的性能。

通过观察输入和输出信号的波形,可以评估电路的放大效果。

9. 调整和优化。

根据仿真结果,你可以调整电路中的元件值或增益设置,以优化放大电路的性能。

10. 保存并导出设计。

完成设计后,保存电路文件,并根据需要导出为图像或其他格式。

以上是在 Multisim 中设计放大电路的基本步骤。

具体的设计过程可能因具体需求和电路要求而有所不同。

你可以根据自己的设计目标进行相应的调整和优化。

multisim共集放大电路

multisim共集放大电路

multisim共集放大电路
Multisim是一种电路模拟软件,可以用于设计、测试和分析各种电路,包括共集放大电路。

共集放大电路是一种基本的三极管放大电路,具有电压增益大、输入阻抗低等优点,被广泛应用于各种电子设备中。

在Multisim中,可以使用电路元件库中的三极管、电容器、电阻器等元件来搭建共集放大电路。

具体步骤如下:
1. 打开Multisim软件,并选择“新建电路”选项。

在弹出的窗口中,选择“电路设计”模板,并点击“创建”按钮。

2. 从电路元件库中选择三极管、电容器、电阻器等元件,依次连接起来,形成共集放大电路的电路图。

需要注意的是,三极管的引脚连接应符合实际电路的连接方式。

3. 在Multisim中,可以通过设置元件的参数来模拟实际电路的特性。

例如,可以设置三极管的放大倍数、电容器的电容值等参数。

4. 在电路设计完成后,可以使用Multisim的仿真功能来测试电路的性能。

点击“运行仿真”按钮,即可开始仿真。

在仿真过程中,可以观察电路中各个元件的电压、电流等参数的变化情况。

总的来说,Multisim是一种非常实用的电路模拟工具,可以帮助电路设计师在设计、测试和分析电路时更加方便、高效。

通过
Multisim,可以快速搭建共集放大电路,并对其性能进行仿真分析,从而优化电路设计,提高电路的性能和可靠性。

模电实验-共射放大电路Multisim仿真

模电实验-共射放大电路Multisim仿真

Multisim模拟电路仿真实验1.Multisim用户界面及基本操作1.1Multisim用户界面在众多得EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员得青睐。

Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件与仪器集合为一体,就是原理图设计、电路测试得虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司(Interactive ImageTechnologies,简称IIT公司)推出得以Windows为基础得仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真与设计得EDA工具软件ElectronicsWork Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5、0版本,在EWB5、x版本之后,从EWB6、0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。

IIT后被美国国家仪器(NI,NationalInstruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本得升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机与LabVIEW虚拟仪器得仿真与应用。

下面以Multisim10为例介绍其基本操作。

图1-1就是Multisim10得用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

图1-1 Multisim10用户界面菜单栏与Windows应用程序相似,如图1-2所示。

图1-2Multisim菜单栏其中,Options菜单下得GlobalPreferences与Sheet Properties可进行个性化界面设置,Multisim10提供两套电气元器件符号标准:ANSI:美国国家标准学会,美国标准,默认为该标准,本章采用默认设置;DIN:德国国家标准学会,欧洲标准,与中国符号标准一致。

两级放大电路Multisim仿真试验报告

两级放大电路Multisim仿真试验报告

两级放大电路
M u l t i s i m仿真试验报

Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
两级放大电路M u l t i s i m仿真试验报告
一、实验目的
1、掌握多级放大电路静态工作点的调整与测试方法
2、学会放大器频率特性的测量方法
3、了解放大器的失真及消除方法
4、掌握两级放大电路放大倍数的测量方法和计算方法
5、进一步掌握两级放大电路的工作原理
二、实验仪器
1、示波器
2、数字万用表
3、函数信号发生器
4、直流电源
三、预习报告
1、电路连接如图
2、静态工作点的调节
先调节第一级放大电路的静态工作点,再调节第二级,过程如下:
第一级的失真波形
第一级最大不失真输出波形
第二级的失真波形
第一级与二级最大不失真输出波形
静态工作点数据记录
电压放大倍数
Au1≈3 Au2≈100 Au=Au1*Au2=300两级放大器幅频特性测试数据
f(Hz)501002505001000250050001000
02000 0
Uo(m V)RL=

2314307669259831001100410041003
RL=3
K
142265508640693711713714713。

基于Multisim 负反馈放大电路的仿真实验分析

基于Multisim 负反馈放大电路的仿真实验分析

基于Multisim负反馈放大电路的仿真实验分析负反馈在放大电路中广泛应用,它对电路的性能指标有较大的影响。

根据反馈方式的不同,可分为电压串联型、电压并联型、电流串联型和电流并联型四种。

理论分析负反馈对放大电路的影响较为抽象,采用Multisim电路设计仿真软件进行仿真实验可直观地得出结果。

在放大电路中引入电压串联负反馈,会导致电压放大倍数下降,但输出电压的稳定性提高,非线性失真减少,通频带展宽,输入电阻增加,输出电阻减少。

下面借助于Multisim 电路设计仿真软件对电压串联负反馈放大电路进行仿真实验来验证这些影响。

1.编辑实验电路编辑电压串联负反馈放大电路如图1,R11、C3与R5组成负反馈网络。

电路中元件较多,电阻可采用虚拟电阻,便于改变其参数。

R12、R13分别设置为45%和30%。

图1 电压串联负反馈电路2.对放大倍数的影响在电路的输入、输出端接入交流电子电压表如图示2。

按计算机键盘A键改变开关J1选择有无引入负反馈,观察两个电压表的读数。

图2 测量电压放大倍数和稳定性以及非线性失真J1断开,无负反馈:Ui=3.150mv;Uo=1.335v;Kv=Uo/Ui=424。

J1闭合,有负反馈:Ui=3.299mv;Uo=0.103v;Kv=Uo/Ui=31。

可见引入负反馈后,电压放大倍数下降了。

3.对输出电压稳定性的影响如图2按A键改变开关J1选择有无引入负反馈,按B改变开关J2选择有无接入RL,观察输出电压的变化。

J1断开,无负反馈:J2断开时,Uo=1.725v;J2闭合时,Uo=1.335v。

相差0.390v。

J1闭合,有负反馈:J2断开时,Uo=0.106v;J2闭合时,Uo=0.103v。

相差0.003 v。

可见引入电压负反馈后,输出电压的稳定性提高了。

4.对非线性失真的影响在图2的输出端接入示波器XSC1可定性观察非线性失真的大小,接入失真度仪XDA1可定量分析失真系数。

如图2按A键改变开关J1选择有无引入负反馈,观察输出波形。

multisim仿真 EWB的使用和放大电路的计算机仿真

multisim仿真   EWB的使用和放大电路的计算机仿真

实验四EWB的使用和放大电路的计算机仿真实验目的:1、学习电子线路的计算机仿真软件EWB的使用方法;2、用EWB对胆管放大件路瞬态特性频率特性进行计算机仿真。

实验内容:1、学习和练习在EWB环境下绘制单管放大电路的电路图,电路同实验三;2、学习和使用EWB的交流频率分析功能,对单管放大电路的幅频和相频特性进行计算机仿真,记录放大电路的下限频率f L和上限频率f H,并绘制出幅频和相频特性曲线。

3、在发射级与地之间接一个100 电阻,再做交流频率分析,与第2项实验结果比较。

实验步骤:在multisim环境下的电路仿真简介:设置节点名设置节点名的作用是便于分析节点的静态信息用于静态分析,同时也便于根据节点的动态信息做幅频和相频曲线。

做如图所示的操作:弹出以下窗口后,选中Show All即可:分析静态工作点:做如图所示操作:弹出如下窗口:选中节点名,再点击Add,即可进行添加。

幅频和相频特性的仿真做如下图操作:弹出窗口如下,参数调整到图中所示,选择合适的节点后点击simulate即可。

1、学习和练习在EWB环境下绘制单管放大电路的电路图①在multisim软件环境下绘出单管放大电路:如图在电路中,取交流电流源为5mV,1000Hz,两个电容C1=C5=33μF,取电阻R1=100KΩ,R2=900KΩ,R3=R4=3KΩ。

其中R2本为点位器,通过测试得当R2=900KΩ时,电路工作在稳定的静态工作点。

绘制好的电路图如下图所示:此时的静态工作点为合适的,可通过计算机仿真得到静态工作点即示波器波形:将交流源的参数改变为10mF,电路出现顶部失真,即截止失真,由计算机仿真得到静态工作点和示波器波形如下:若要使电路底部失真,即饱和失真,则需要改变静态工作点,这里讲R2的值由900KΩ改变为400KΩ,由计算机仿真得到静态工作点和示波器波形如下:2、学习和使用EWB的交流频率分析功能,对单管放大电路的幅频和相频特性进行计算机仿真,记录放大电路的下限频率f L和上限频率f H,并绘制出幅频和相频特性曲线。

(仅供参考)放大电路实验操作和multisim仿真

(仅供参考)放大电路实验操作和multisim仿真

β 的值比较接近软件提供的理论值 220,其产生的误差的原因可能是由于电路中的电 阻有 1%波动,造成测量上的误差。
总体来说,虽然实验存在误差,但误差在可以接受的范围之内。
五、实验感想
虽然以前也对 Multisim 软件有所了解,但真正将其用在 EDA 设计中时还是有很多不了 解的地方,也犯了一些小错误。实验一其实就是模电的基本知识,但并不只要求我们掌握书 本中的知识,还要进行三极管管号及相关电阻的选取等内容,这就要求我们对现实中的材料 有一定的了解。对于输入输出电阻的求解也是在老师所提供的方法下,通过直接读取软件所 给数据得出的。在观察截止失真时,由于信号过小,造成结果不明显,通过调节信号的大小 可清楚看出失真现象。通过仿真软件来模拟结果,不仅巩固了书本中所学的知识,也了解了 更多实用的知识。
图 7 放大电路波形失真图
4. 测试三极管的输入、输出特性曲线和 β 、 rbe 、rce 值
1) 测试三极管的 β 值
当输入信号峰值增大到 10mV 时,可以得到电路静态工作点值(图 8),得到
β= I c = 215.82
Ib

图 8 电路静态工作点值 2)测试三极管的输入特性曲线 图 9 为测试三极管输入的实验图,使得 VCE=VCEQ,使用直流扫描,可得输入特性曲线 如图 10 所示。
Av
=
vo vi
=
65.42
图 19 电压增益的测试电路
图 20 输出电压和输出电压的读数 6.电路的频率响应曲线和 fL、fH 值 1)电路的频率响应曲线 对电路进行交流分析,幅频,相频特性曲线如图 21 所示。
图 21 频率特性曲线 2) fL、fH 值的测定
通过软件得到幅频最大的值后,再通过三分贝点得到 fL、fH 值,从而得到通频带宽。 fL、fH 值的测定可通过图 22 得到。fL=69.21HZ、fH=27.13MHZ。

实验报告一 单极放大电路的设计与仿真

实验报告一 单极放大电路的设计与仿真

实验报告一单极放大电路的设计与仿真1.实验目的(1)使用Multisim软件进行原理图仿真。

(2)掌握仿真软件调整和测量基本放大电路静态工作点的方法。

(3)掌握仿真软件观察静态工作点对输出波形的影响。

(4)掌握利用特性曲线测量三极管小信号模型参数的方法。

(5)掌握放大电路动态参数的测量方法。

2.实验内容1. 设计一个分压偏置的单管共射放大电路,要求信号源频率5kHz(峰值10mV),负载电阻5.1kΩ,电压增益大于50。

2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

3.调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。

在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和β、rbe、rce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和fL、fH值。

3.实验步骤单管共射放大电路示意图图1.1(1)非线性失真分析放大器要求输出信号和输入信号之间是线性关系,不能产生失真。

由于三极管存在非线性,使输出信号产生了非线性失真。

从三极管的输出特性曲线可以看出,当静态工作点处于放大区时,三极管才能处于放大状态;当静态工作点接近饱和区或截止区时,都会引起失真。

放大电路的静态工作点因接近三极管的饱和区而引起的非线性失真称为饱和失真,对于NPN管,输出电压表现为顶部失真。

不过由于静态工作点达到截止区,三极管几乎失去放大能力,输出的电流非常小,于是输出电压波形也非常小,因此有时候很难看到顶部失真的现象,而只能观察到输出波形已经接近于零。

①饱和失真由于饱和失真的静态工作点偏高,也就是IBQ的值偏大,所以调小滑动变阻器至0%时产生饱和失真,信号幅度最大时的输出信号波形图如下:图1.32.截止失真调节滑动变阻器,增加基极偏置电阻,那么基极的电流IB逐渐减小,同时集电极电流也逐渐减小并趋于零,从而使得集电极的电位越发接近直流电源VCC,三极管近似于短路。

差动放大电路multisim仿真实验

差动放大电路multisim仿真实验

仪器放大器基本原理
――――差动放大电路仿真实验
实验目的:学习利用Multisim进行差动放大电路仿真。

试验过程:1.使用Multisim进行仿真电路的连接如下图1所示:
图2 差动放大电路图仿真
2.输入差模信号,采用信号为60HZ,50mv交流差模输入。

差模与输出如图2所示:
图2:差模输入下仿真结果
放大倍数约为:8197/199.968=41。

即放大倍数约为41倍。

进行后处理,如图3所示:
图3:差模输入后处理
图3所示中,输出的差模放大值为:8.1524V。

3.输入共模信号。

调整变阻器为45%。

输入端电路连接及示波器显示共模输出如图4
图4:输入端电路连接及示波器显示共模输出
由于共模输出较小需要调整示波器测量的幅值,并去除直流分量的放大,显示如上图中示波器显示。

后处理如图5:
图5 :共模输入后处理
如图6所示,显示输出输入的后处理。

图6:输出输入的后处理
共模情况下,输出幅值为(287.1709-287.0167)mV=0.1542mV。

输入为:49.698*2=97.369 mV。

共模放大倍数为0.1542mV/97.369 mV=0.0016倍。

实验3.2 单管放大电路Multisim仿真实验

实验3.2 单管放大电路Multisim仿真实验

实验3.2 单管放大电路
二、实验设备及材料
1.装有Multisim 14的计算机 2. 函数信号发生器 3. 双踪示波器 4. 数字万用表 5. 模拟电路实验箱
实验3.2 单管放大电路
三、实验原理
图3-13 电阻分压式单管放大电路
实验3.2 单管放大电路
三、实验原理
1.静态工作点调试
具体现象 调整动作
V
PR1
V: 7.90 V V(p-p): 1.21 pV V(rms): 0 V V(dc): 7.90 V V(freq): --
V
PR2
C2
10µF Q1 2N3903
V: 1.90 V V(p-p): 0 V V(rms): 0 V V(dc): 1.90 V V(freq): --
PR3
V
R3 100Ω
R6 2.4kΩ
R2 20kΩ
R4
C3
1kΩ
100µF
图3-17 测量探针测量静态工作点示意图
图3-18 使用万用表测量静态工作点示意图
实验3.2 单管放大电路
四、计算机仿真实验内容
C1 10µF
VCC 12V
Rw 100kΩ
R5 2.4kΩ
Key=A 42 %
U2
+
R1 20kΩ
1.705m A
-
C2
DC 1e-009Ohm
U1
10µF
Q1
U3
+
-
0.023m A
+
6.005 V
-
DC 1e-009Ohm
2N3903 DC 10MOhm
R2 20kΩ
R3 100Ω

模电实验-共射放大电路Multisim仿真

模电实验-共射放大电路Multisim仿真

Multisim模拟电路仿真实验1.Multisim用户界面及基本操作1.1Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB 进行了较大变动,名称改为Multisim(多功能仿真软件)。

IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作。

图1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

图1-1 Multisim10用户界面菜单栏与Windows应用程序相似,如图1-2所示。

图1-2 Multisim菜单栏其中,Options菜单下的Global Preferences和Sheet Properties可进行个性化界面设置,Multisim10提供两套电气元器件符号标准:ANSI:美国国家标准学会,美国标准,默认为该标准,本章采用默认设置;DIN:德国国家标准学会,欧洲标准,与中国符号标准一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一单级放大电路的设计与仿真一、实验目的1、掌握放大电路的静态工作点的调整和测试方法。

 2、掌握放大电路的动态参数的测试方法。

 3 、观察静态工作点的选择对输出波形及电压放大倍数的影响。

 二、实验原理当三极管工作在放大区时具有电流放大作用,只有给放大电路中的三级管提供合适的静态工作点才能保证三极管工作在放大区,如果静态工作点不适合,输出波形则会产生非线性失真——饱和失真和截止失真,而不能正常放大。

 当静态工作点设置在合适的位置时,即保证三极管在交流信号的整个周期均工作在放大区时,三极管有电流放大特性,通过适当的外接电路,可实现电压放大。

表征放大电路放大特性的交流参数有电压放大倍数,输入电阻,输出电阻。

 由于电路中有电抗元件电容,另外三极管中的PN结有等效电容存在,因此,对于不同频率的输入交流信号,电路的电压放大倍数不同,电压放大倍数与频率的关系定义为频率特性,频率特性包括:幅频特性——即电压放大倍数的幅度与频率的关系;相频特性——即电压放大倍数的相位与频率的关系。

 三、实验要求和实验步骤(1)实验要求 1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载电阻3.9kΩ,电压增益大于50。

 2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

 3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。

在此状态下测试: ①电路静态工作点值; ②三极管的输入、输出特性曲线和β、 r be 、r ce值;③电路的输入电阻、输出电阻和电压增益; ④电路的频率响应曲线和f L、f H值。

 (2)实验步骤1.设计分压偏置的单管电压放大电路2.测试饱和失真和截止失真 电路图如上图所示,当调整R1和R2的大小时,可以观测到饱和失真和截止失真。

 1)观察饱和失真并测定参数 调节R1大小,使R1=24.9K,观察示波器,可得输出电压的波形如图1所示。

观察波形,发现输出电压波形出现了削底的现象,对于NPN管说明此时三极管出项了饱和失真。

 图1 三极管放大电路饱和失真时的输出电压波形 再通过对电路图进行直流分析,可得图2中的数据。

 图2 三极管放大电路饱和失真时的静态工作点值 此时静态工作点为Ib=144.87uA、Ic=2.08mA、Vce=0.08V。

 2)观察截止失真并测定参数 由于输入的信号过小,因此很难观察到截止失真的现象,因此将小信号的峰值调至20mV,将R2调至21K, 观察示波器,可得输出电压的波形如图3所示。

观察波形,发现输出电压波形出现了削顶的现象,对于NPN管说明此时三极管出项了截止失真。

 图3 三极管放大电路截止失真时的输出电压波形 再通过对电路图进行直流分析,可得图4中的数据。

 图4 三极管放大电路饱和失真时的静态工作点值 此时静态工作点为Ib=947.55nA、Ic=208.40uA、Vce=10.84V。

 3)观察不失真并测定参数 无需改变设计图中的任何参数。

观察波形,发现输出电压波形出现了较为对称的波形(图5)。

图5 三极管放大电路不失真时的输出电压波形 再通过对电路图进行直流分析,可得图6中的数据。

 图6 三极管放大电路不失真时的静态工作点值 此时静态工作点为Ib=4.96uA、Ic=1.07mA、Vce=6.07V。

 由于静态工作点位置不合适,波形会产生失真,如图7所示。

 (1)静态工作点偏低,如Q B所示,接近截止区,交流量在截止区,使输出电压波形正半周被削顶,产生截止失真。

 (2)静态工作点偏高,如Q A所示,接近饱和区,交流量在饱和区,使输出电压波形负半周被削底,产生饱和失真。

 图7 放大电路波形失真图 4.测试三极管的输入、输出特性曲线和β 、 r be 、r ce 值 1)测试三极管的β值 当输入信号峰值增大到10mV 时,可以得到电路静态工作点值(图8),得到215.82cb II ==β。

 图8 电路静态工作点值 2)测试三极管的输入特性曲线 图9为测试三极管输入的实验图,使得VCE=VCEQ ,使用直流扫描,可得输入特性曲线如图10所示。

 图9 测试输入特性曲线的实验图 图10 输入特性曲线 通过静态时的Ib 找到Q 点,在Q 点附近取两个点,斜率的倒数即为r be 。

求r be 值的过程如图11所示。

 6be dx Kdy r ==。

 图11 通过输入特性曲线得到r be3)测试三极管的输出特性曲线 图12为测试输出特性曲线的实验图,使得IB=IBQ,使用直流扫描,可得输出特性曲线如图13所示。

 图12 测试输出特性曲线的实验图 图13 输出特性曲线 通过静态时的Ic 找到Q 点,在Q 点附近取两个点,斜率的倒数即为r ce 。

求r ce 值的过程如图14所示。

 100.2ce dx K dy r ==图14 通过输入特性曲线得到r ce5.测量输入电阻、输出电阻和电压增益 1)测量输入电阻 输入电阻的测试电路如图15所示。

将万用表XMM1设置为交流电流表,万用表XM 设置为交流电压表。

从这两个表中读出电流和电压的值,如图16所示。

 4.98iiiKvRi==图15 输入电阻的测试电路 图16 输入电流和输入电压的读数 2)测量输出电阻 输出电阻的测试电路如图17所示。

将万用表XMM1设置为交流电流表,万用表XMM2设置为交流电压表。

从这两个表中读出电流和电压的值,如图18所示。

 2.79oooKv Ri==图17 输出电阻的测试电路 图18 输出电流和输出电压的读数 3)测量电压增益 电压增益的测试电路如图19所示。

将万用表XMM1设置为交流电压表,万用表XMM2设置为交流电压表。

从这两个表中读出电压的值,如图20所示。

 65.42o viv Av==图19 电压增益的测试电路 图20 输出电压和输出电压的读数 6.电路的频率响应曲线和f L、f H值 1)电路的频率响应曲线 对电路进行交流分析,幅频,相频特性曲线如图21所示。

 图21频率特性曲线 2)f L、f H值的测定 通过软件得到幅频最大的值后,再通过三分贝点得到f L、f H值,从而得到通频带宽。

f L、f H值的测定可通过图22得到。

f L=69.21HZ、f H=27.13MHZ。

 图22 f L、f H值的测定 四、分析实验结果1.计算误差 1)实验中所用的三极管2N2222A 的β的理论值为220,而实验中测试出的β值为215.82,可得误差为 || 1.9%E -==真真βββ。

 2) 200(1) 5.57T beEKVrI=++=β,则误差为 ||7.7%be bebe E r rr-==真真3),则误差为 125.11||||ibeKR r R R ==|| 2.5%i ii E R R R-==真真4),则误差为 2.87oc K RR ==||2.8%oE R RR-==o 真o 真5)||65.30cLvbeRR Ar=-=-β,则误差为 ||0.2%vE A A A-==v 真v 真2.分析结果 对于r be 的误差是因为其理论公式中就是近似相等,本身就存在误差,另外在输出、输入特性曲线选点时也存在误差导致最后结果产生误差。

 输入电阻产生的误差较大是与电源及所选取的三极管的型号有关,输出电阻的误差是由于计算输出电阻的公式中缺少r ce 的理论值而产生的。

 β的值比较接近软件提供的理论值220,其产生的误差的原因可能是由于电路中的电阻有1%波动,造成测量上的误差。

 总体来说,虽然实验存在误差,但误差在可以接受的范围之内。

五、实验感想虽然以前也对Multisim软件有所了解,但真正将其用在EDA设计中时还是有很多不了解的地方,也犯了一些小错误。

实验一其实就是模电的基本知识,但并不只要求我们掌握书本中的知识,还要进行三极管管号及相关电阻的选取等内容,这就要求我们对现实中的材料有一定的了解。

对于输入输出电阻的求解也是在老师所提供的方法下,通过直接读取软件所给数据得出的。

在观察截止失真时,由于信号过小,造成结果不明显,通过调节信号的大小可清楚看出失真现象。

通过仿真软件来模拟结果,不仅巩固了书本中所学的知识,也了解了更多实用的知识。

相关文档
最新文档