高等代数与解析几何课程教学大纲-上海交通大学数学系

合集下载

《高等代数与解析几何》

《高等代数与解析几何》

《高等代数与解析几何》教学大纲学时数:192 学分:12适用专业:数学与应用数学、信息与计算科学一、课程说明高等代数与解析几何是高校数学系课程中联系十分密切的两门的基础课.作为高等代数的主要内容,线性代数是由二维、三维几何空间中的向量代数进一步抽象推广得来的,高等代数的多数概念和方法都有着很强的几何背景.而解析几何的研究对象则是用代数的方法研究空间的几何问题.因此,高等代数与解析几何有着紧密的联系,它们的关系可归纳为“代数为几何提供研究方法,几何为代数提供直观背景.”本课程的主要任务是使学生获得代数的基本思想方法和行列式、矩阵、向量代数、线性方程组、多项式理论、二次型、向量空间、线性变换、欧氏空间、二次型、常见曲面等方面的系统知识.它一方面为后继课程(如近世代数、离散数学、计算方法、微分方程、泛涵分析)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力等重要作用.二、与其它课程的关系本课程作为一门基础课,是学习近世代数、离散数学、计算方法、微分方程、泛涵分析等课程的基础.三、大纲部分以下按各章具体写出第一章预备知识(6学时)本章的内容为介绍性质的,主要是为本课程的学习所做的预备工作,因而其中的内容基本相对独立.教学目的与要求理解数环与数域的定义;突出三个常用的数域,即有理数域、实数域和复数域,理解整数的整除性;理解第二归纳法原理;理解映射的定义、满射、单射和双射.数学重点数域的定义,映射的定义和性质.教学难点对映射定义的理解;对满射的理解和应用.新知识点数域性质的应用;整数整除性质的推广.教学方法与手段以“细读——精讲——习作”这一现代教学方法完成本章的主要内容.教学内容1.数环和数域12.整数和整除性3.数学归纳法4.映射课堂训练方案充分利用“习作”这一环节,补充有关数域的性质例题和独立思考题.课外训练指导方案1.首先组成课外学习小组;2.以数域和整数的整除性以及双射等内容补充相关的练习题;3.由教师指导以及相互讨论的方式完成上述难度大的练习题.自学指导方案本章将以映射为自学内容,先由教师给出自学提纲,让学生带着问题读书,以达到能充分理解映射的定义和性质.考试设计本章以数域和映射为主要测试试点;主要测试分析问题和解决问题的能力.参考书目1.北大编,高等代数,高教出版社(1988);2.北师大编,高等代数,高教出版社(1983).课时安排共6学时,讲授6学时.第二章行列式(14学时)教学目的与要求掌握行列式的定义与性质,能熟练应用行列式的定义及性质计算并证明行列式,掌握用行列式解线性方程组的方法.教学重点行列式的定义与性质.教学难点行列式的定义与性质.新知识点排列,n阶行列式的定义与性质,行列式依行依列展开,克莱姆法则,拉普拉斯定理.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.二阶与三阶行列式2.排列3.n阶行列式的定义4.行列式的性质5.行列式依行依列展开6.克莱姆法则7.拉普拉斯定理课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题—简要介绍本章内容的发展概况及应用.2课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关的题目.自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.考试设计学完前四节进行一次开卷测验,学完后三节进行一次开卷测试,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;5.王品超,《高等代数新方法》,山东教育出版社,1989.课时安排共14学时,讲授12学时,习题课2学时.第三章向量代数(30学时)本章内容主要介绍几何空间的向量及运算性质,作为应用解决几何空间中有关平面、直线等几何问题.教学目的与要求透彻理解有关向量的一些基本概念,牢固掌握向量的各种运算性质和规律,能熟练地运用向量的坐标进行运算,掌握一些几何度量的向量、坐标表示,能熟练地求出平面、直线的方程,掌握点、直线、平面的位置关系与度量关系.教学重点向量的各种运算,几何度量,平面、直线方程,点、直线、平面间的关系.教学难点向量的分解与仿射坐标、向量积.新知识点仿射坐标(系)、正交投影教学方法与手段精讲、细读、自学相结合方法,加强课内外训练为手段.教学内容1.向量及线性运算2.仿射坐标系与直角坐标系3.向量的数量积4.向量的向量积6.混合积与复合积7.平面的方程8.直线的方程9.点、平面、直线的关系10.平面束3课堂训练方案充分调动学生的思维机器,以典型例题为突破,独立思考的问题加以诱导,加深内容掌握的深度.课外训练指导方案1.补充思考的问题;2.典型题目的课外作业;3.相关学习内容的学习指导书的参考.自学指导方案1.列出自学提纲;2.让学生提出自学中的问题.考试设计测试向量运算规律的应用,几何度量,平面、直线方程,及点、直线、平面的关系.参考书目1.吕林根编:《解析几何》,1982;2.南开大学:高等代数与解析几何,2000;3.陈志杰:《高等代数与解析几何》,2001.课时安排共32学时,讲授28学时,习题课 2学时,复习课2学时.第四章矩阵(14学时)教学目的与要求掌握矩阵的概念与运算,掌握可逆矩阵的概念、性质及判别方法,会用初等矩阵求可逆矩阵,并会用分块矩阵的方法求某些可塑矩阵的逆矩阵.教学重点可逆矩阵的概念及判别方法.教学难点可逆矩阵的概念及判别方法.新知识点矩阵的运算,可逆矩阵,矩阵和等价,初等矩阵,分块矩阵.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.矩阵的运算2.可逆矩阵矩阵的秩3.初等矩阵4.矩阵的分块课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用.课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关的题目.自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关题目——找出本章内容与初等教学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.4考试设计学完前三节进行一次开卷测验,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;5.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990.课时安排共14学时,讲授12学时,习题课 2学时.第五章线性方程组(10学时)教学目的与要求掌握矩阵秩的概念及线性方程有解的判别方法,会用矩阵的初等变换解线性方程组.教学重点矩阵秩的概念及线性方程组有解的判别方法.教学难点矩阵秩的概念及线性方程组有解的判别方法.新知识点线性方程组的初等变换,矩阵的秩,线性方程组有解的判别方法.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.消元法;2.矩阵的初等变换;3.矩阵的秩线性方程组有解的判别方法;4.齐次线性方程组.课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用.课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关题目.自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步会体本课程的系统性——写出学习本章知识的心得.考试设计学完整内容进行一次开卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;5.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;6.王品超,《高等代数新方法》,山东教育出版社,1989.5课时安排共8学时,讲授6学时,习题课2学时.第六章多项式(24学时)教学目的与要求掌握多项式的整除、最大公因式及根的概念,熟练掌握求两个多项式的最大公因式的方法,掌握有理系数不可约式项式的方法.教学重点多项式的整除及最大公因式,有理系数多项式的根的求法及有理系数不可约多项式的判定.教学难点多项式的最大公因式,有理系数多项式的根的求法及有理系数不可约多项式的判定.新知识点多项式的整除性,多项式的最大公因式、重因式,多项式的根,不可约多项式,因式分解.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.一元多项式的定义和运算2.多项式的整除性3.多项式的最大公因式4.多项式的因式分解5.多项式的重因式6.多项式函数与多项式的根7.复数域与实数域的上的多项式8.有理数域上的多项式9.多元多项式课堂训练方案师生集体讨论题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关题目自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.考试设计学完前三节进行一次开卷测验,学完后六节进行一次开卷测试,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;65.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;6.王品超,《高等代数新方法》,山东教育出版社,1989.课时安排共30学时,26学时,习题课2学时, 复习课2学时.第七章向量空间(20学时)教学目的与要求掌握线性空间的概念、向量的线性相关性及线性空间的基、维数与坐标的概念,会求齐次线性方程组的解空间.教学重点向量的线性相关性及线性空间的基、维数与坐标.教学难点向量的线性相关性.新知识点向量的线性相关性及线性空间的基、维数与坐标,子空间的和,齐次线性方程组的解空间.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.线性空间的定义2.向量的线性相关性3.基维数坐标4.子空间5.子空间的直和6.线性空间的同构7.齐次线性方程组的解空间课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关题目自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.考试设计学完前三节进行一次开卷测验,学完后四节进行一次开卷测试,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;5.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;76.王品超,《高等代数新方法》,山东教育出版社,1989.课时安排共20学时,讲授16学时,习题课 4学时.第八章线性变换(18学时)线性变换是线性代数的主要研究对象,主要研究向量空间中间量的内在联系.教学目的和要求理解线性变换的定义和运算;掌握线性变换的矩阵表示法;会求矩阵的特征根和特征向量;能熟练的将一个可以对角化的矩阵化成对角形;会求矩阵的最小多项式.教学重点线性变换和矩阵的对应关系;特征根和特征向量;矩阵的对角化.教学难点特征子空间;矩阵可以对角化的判别.新知识点矩阵的最小多项式;求特征子空间的新方法.教学方法和手段采用“细读——精细——习作”这一新的教学方法.教学内容1.定义和性质2.线性变换的运算3.线性变换和矩阵4.不变子空间5.特征值和特征向量6.可以对角化矩阵7.最小多项式课堂训练方案1.针对得出的定义,给出着干思考题,目的主要是巩固定义,加课对概念和理解;2.针对引出或证明的结论,给出若干应用题,目的在于理论联系实际,便抽象的理论具体化.课外训练方案1.针对课堂内容,给出适量的课外练习题;2.分成若干课外学习小组,以5人为一组,选出组长一人;3.由组长组织课外讨论,教师定期指导.自学指导方案1.选定内容并提出问题,让同学带着问题读书本章以第一节和第二节为自学内容;2.及时指导,并侧重点和难点和分析讲解.考试设计1.考试分为单元考试,期中考试和期末考试,期末考试多引入外校试题;2.考试分为开卷和闭卷,平时考试以开卷为主,期末考试以闭卷为主.参考书目1.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.8共14学时讲授12学时,复习2学时.第九章若当(Jordan)标准形(12学时)研究λ-矩阵,可进一步解决矩阵的化简问题可以给出矩阵的各种标准形,建立完备的理论.教学目的与要求理解λ-矩阵的概念;会用初等变换将λ-矩阵化成标准形,会求不变因子和初等因子;会求若当形.教学重点1.λ-矩阵的标准形;2.不变因子和初等因子以及若当形.教学难点若当标准形的理论推导新知识点1.求标准形的初等变换法;2.理论推导的新方法.教学方法与手段采用新的教学方法,即“细读——精讲——习作”,此方法的目的是培养能力.教学内容1.λ-矩阵的概念2.标准形3.不变因子4.矩阵相似的判定5.初等因子6.矩阵的若当标准形课堂训练方案1.对每一个新的定义,增加一定量的思考题,以巩固定义,指出定义的实质内容.2.对于每一个结论,分析其应用,并给切实的应用题,以达到理论与实际相结合之目的.课外训练方案1.对每一个知识点,补充相应的课外练习题;2.根据各自的志趣,组成相对独立的课外研究小组,各抒己见,以达到问题解决之目的.自学指导方案本章以第三节和第四节为自学内容,其指导方案为:1.教师先提出有代表性的问题;2.让学生为解决这些问题而读书.3.选部分同学讲个别问题,以提高演讲能力,将来成为一名优秀教师.考试设计本章的考试,以λ-矩阵的标准形为主线,达到能准确的求出不变因子和初等因子,进而求出任意λ-矩阵的标准形.91.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.课时安排共10学时,讲授8学时,习题课2学时.第十章欧氏空间(12学时)欧氏空间是实数域上定义了内积的向量空间,是几何空间的推广,是线性代数的主要内容之一.教学目的和要求理解内积和欧氏空间的定义;能由线性无关组求出标准正交组;理解正交换变换的定义;会证明有关正交换和正交矩阵的等价命题;理解对称变换的定义;会证明有关对称变换和对称矩阵的等价命题;能将实对称矩阵化成对角形.教学重点1. 标准正交基和构造;2. 正交变换和正交矩阵;3. 对称变换和对称矩阵;4. 度量矩阵和性质.教学难点正交变换和对称变换的系列命题的证明.新知识点度量矩阵的性质和应用教学方法与手段加强新知识点的教学和讨论,对旧的知识点进行革命化清理,但要顾及考研的要求,充分体现由“现代教学方法研究”提出的新观点,使“细读——精讲——习作”这一改革方案得以更好的施行.教学内容1.欧氏空间的定义2.标准正交基3.正交变换与正交矩阵4.对称变换与对称矩阵课堂训练方案1.在定义之后,给出2—3个思考题,借以巩固定义,找出定义的核心内容;2.做到理论与实际相联系,即引出重要结论之后,随即给出其应用,主要解决有一定难度的习题.自学指导方案本章以第一节为自学内容,指导方案为:1.以“内积”为主线,把握住内积为实数,知道整个欧氏空间就是由此展开讨论的;2.抓住柯——布不等式证明的关键,即向量α,β的线性相关性;3 柯——布不等式在具体欧氏空间中的应用.考试设计本章的考试,以正交变换和对称变换的相关问题进行命题.10参考书目1.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.课时安排共12学时,讲授 10学时,习题课 2学时.第十一章二次型(12学时)二次型的理论是线性代数的主要研究对象,同时也是中学教学内容的深入与提高.教学目的与要求理解二次型和对称矩阵的对应关系;掌握矩阵的合同关系;会将二次型化为标准形;掌握实二次型和复二次型标准形的唯一性;掌握正定二次型的判别.教学重点1.标准形和规范形;2.二次型的正定性.教学难点1.惯性定律的证明;2.有关正定性绪论的证明.新知识点正定二次型判别条件的新证明方法.教学方法与手段坚持“细读——精讲——习作”的现代教学教学方法,这是一种灵活的教学手段.教学内容1.二次型的定义及其矩阵表示2.二次型的标准形3.复数域和实数域上的二次型4.正定二次型课堂训练方案1.由定义绘出思考题,如:由二次型写出矩阵,由对称矩阵写二次型;2.理论的应用,坚持理论与实际相结合,如:正定二次型的判别条件,给出带有文字的练习题进行巩固.3.以化二次型形和习题作为课外练习题;以学习小组为单位,采用集体讨论或解决重点而有代表性的习题.自学指导方案本章主要以复数域和实数域上的二次型作为自学内容,具体方案:1.给出自学提纲;2.重点要解决的问题;3.检查对主要问题的掌握情况如何.考试设计1.方法方向主要测试化二次型为标准形的方法;112.理论方向涉及惯性定律和二次型正定的问题.参考书目1.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.课时安排共12学时,讲授10学时,习题课 2学时.第十二章常见曲面(20学时)本章学习的常见曲面在数学、物理和工程中都有广泛应用,它也是空间解析几何的基本内容,首先导出柱面、锥面、旋转曲面的方程,然后根据二次曲面的标准方程研究它们的性质、形状、直纹性,最后给出利用正交变换给出化简一般二次面面的方法.教学目的与要求1.掌握几种常见曲面的形成规律,并很好地由已知条件导出曲面的方程;2.能根据都有球面、双曲面、抛物面的标准方程利用平行截线法来研究其形状与性质;3.熟练掌握求直母线的方法,应用直母线的性质计算证明直母线的有关问题;4.会利用正交变换化简二次曲面方程.教学重点1.柱面、锥面、旋转曲面方程求法;2.利用平行截线法来研究椭球面、双曲面、抛物面的形状与性质;3.直纹面直母线的求法.教学难点1.柱面、锥面、旋转曲面的形成;2.直母线的性质;3.正交变换化简二次曲面方程;4.注意方程在仿射坐标系下,还是在直解坐标系下.新知识点正交变换在二次曲面方程化简中的应用.教学方法与手段1.从曲面的显著几何特点来求方程,从标准方程的研究图形的性质;2.从局部研究整体的方法;3.借助教具加深对平行截线法的理解和增强直观性,加强多媒体的应用;4.通过精讲、深入、自学相结合完成此章内容.教学内容1.曲面、曲线方程2.柱面3.锥面4.旋转曲面125.椭球面6.双曲面7.抛物面(包括正交变换在二次曲面方程化简中的应用)8.二次曲面的直纹性课堂训练方案充分利用静与动的关系加强曲面的形成及平行截线法的教学,提出思考的问题,通过典型例题加深问题的理解.课外训练指导方案加强所学内容的练习与复习,补充深入理解的内容,增加大难度习题及讨论,提高问题的解决方案,增加参考文献,充分理解与练习平面截曲面问题.自学指导方案1.出示自学提纲,带着问题去自学;2.提出学习中的问题;3.平面截曲面的截线问题的方法(参阅有关文献).考试设计抓住曲面方程求法和曲面的性质,平面截曲面问题来设计考试题.参考书目1.《新编解析几何教学辅导》,石油大学出版社,1994;2.陈志杰,《高等代数与解析几何》,高等教育出版社,2001.课时安排共20学时, 讲授16学时,习题课 2学时,复习2学时.四、实践性教学要求本课程是数学专业的基础课,与中学数学联系很大,本课程上课时制作部分模型,教学过程利用模型,使学生能直接观察,觉察出图形的各种特征,帮助思考,讲授是可以根据具体情况对内容作适当的调整,讲授要循序渐进,由浅入深,使学生真正体会到数学的奥妙.指导性的列出自学提纲与自学部分内容,成立课外学习小组,练习巩固所学内容,完成课下作业,了解问题的发展与延拓.13。

高等代数与解析几何教学大纲

高等代数与解析几何教学大纲

高等代数与解析几何教学大纲课程介绍:高等代数与解析几何是数学学科中的两门重要课程,其理论与应用均十分广泛。

本课程旨在通过讲授和练习,帮助学生掌握高等代数与解析几何中的部分重要基础知识,为后续学习与研究打下坚实的基础。

教学目标:通过本课程的学习,学生可以:1.掌握向量代数、矩阵代数等基础知识;2.理解线性方程组、行列式、矩阵的行列式、矩阵秩等概念;3.熟练掌握向量、标量的内积、外积等相关概念及其应用;4.掌握解析几何中的相关知识,如向量、直线、平面等的坐标表示、距离公式等;5.理解空间直线、平面的方程、平面与直线的位置关系等;6.培养数学思维、逻辑思维和解决实际问题的能力。

教学内容:第一章:线性方程组1.1 引入矩阵、向量的概念,简述线性方程组的基础知识; 1.2 讲解GCDS算法、消元法等解线性方程组的方法; 1.3 介绍常系数齐次、非齐次线性方程组的解法; 1.4 探讨线性方程组解的唯一性及其相关概念。

第二章:行列式2.1 讲解行列式的基本概念、性质及其应用; 2.2 探讨行列式的计算方法,包括按行/列进行展开、性质法、递推法等; 2.3 引入矩阵的概念,讨论其与行列式等的关系;第三章:矩阵秩3.1 熟悉矩阵的基本概念及其运算法则; 3.2 介绍行列式的几何意义及其相关概念; 3.3 探讨矩阵秩的定义、计算方法及其相关性质; 3.4 引入矩阵的等价关系概念,探讨其应用。

第四章:向量、内积、外积4.1 掌握向量、标量概念及其运算法则; 4.2 熟悉向量的基本性质和几何意义; 4.3 理解向量、标量乘法的运算法则,掌握向量投影的相关知识; 4.4 掌握向量的内积、外积的概念及其运算,探讨其相关性质和应用。

第五章:解析几何基础5.1 引入解析几何的概念,熟悉直线、平面、点的坐标表示; 5.2 探讨直线、平面的基本性质及其方程表示; 5.3 讲解平面与直线的位置关系及其相关概念; 5.4 探讨空间元素的向量表示方式,在向量坐标系中进行相关问题的求解。

《高等代数与解析几何(1)》教学大纲

《高等代数与解析几何(1)》教学大纲

《高等代数与解析几何(1)》教学大纲一、课程地位与课程目标(一)课程地位《高等代数与解析几何》是信息与计算科学专业及数学与应用数学专业最基础的课程之一, 本课程作为一门基础课,是学习近世代数、离散数学、计算方法、微分方程、泛涵分析等后续课程的基础。

(二)课程目标1. 《高等代数与解析几何》包含高等代数与解析几何两部分内容。

高等代数的多数概念和方法都有着很强的几何背景,而解析几何的研究对象则是用代数的方法研究空间的几何问题。

因此,高等代数与解析几何的关系可归纳为“代数为几何提供研究方法,几何为代数提供直观背景”。

本课程的主要目标是使学生获得代数与几何的基本思想方法和知识。

具体内容如下:1.1向量代数、直线与平面与常见二次曲面等系统知识。

1.2多项式理论、行列式、线性方程组。

2.通过本课程的学习,使学生进一步提高抽象思维能力、逻辑推理能力和分析解决实际问题的能力。

二、课程目标达成的途径与方法以课堂教学为主,课堂讨论、课外作业等。

课堂教学以教师教学为主导,教师通过章节内容的讲解,习题课内容的逻辑结构分析,使学生对高等代数的知识有深刻的理解和条理的掌握。

课堂讨论以学生为主体,每次讨论一个主题,学生轮流发言,总结主题知识的框架逻辑结构图,使得学生能够清晰了解内容之间的关系。

三、课程目标与相关毕业要求的对应关系四、课程主要内容与基本要求1、行列式主要内容排列,n级行列式,n级行列式的性质,行列式的计算,行列式按一行(列)展开,Cramer 法则,Laplace定理,行列式乘法法则。

基本要求掌握排列及其逆序数、偶排列和奇排列的概念,了解对换及其排列的作用;掌握行列式的定义及性质;能运用行列式的按行(列)展开定理。

能运用Laplace定理(定理的证明不作要求),掌握计算n级行列式递推法、母函数方法、升(降)阶方法,会计算常见的n级行列式;掌握Cramer 法则、行列式乘法法则。

2、向量代数主要内容向量及其基本计算,向量的内积,向量的外积,混合积与双重外积。

数学系《高等代数》课程教学大纲

数学系《高等代数》课程教学大纲

数学系《高等代数》课程教学大纲学时:153学时学分:9适用专业:数学与应用数学执笔人:储茂权审定人:殷晓斌说明:1、课程的性质、地位和任务本课程是高等师范院校以及综合性大学数学和应用数学专业的一门重要基础课程,它的任务是使学生初步掌握基本的、系统的代数知识和抽象的、严格的代数方法,以加深对初等数学的理解,并为进一步学习打下基础,要求学生掌握数域上一元多项式的因式分解理论以及多元多项式和对称多项式的基本知识;掌握行列式,矩阵和线性方程组中的基本理论和方法,掌握实二次型、线性空间、线性变换的基本理论和常用的数学方法。

2、课程教学的基本要求(1)掌握数域和一元多项式的概念、整除的概念。

对数域上一元多项式的因式分解及唯一定理及证明的思想有较深刻的认识。

熟练掌握一元多项式的带余除法和辗转相除法;多项式函数和重因式的基本知识;掌握有关复数域、实数域和有理数域上的一元多项式的基本结果和基本方法;掌握多元多项式的基本知识并能将对称多项式表为初等对称多项式的多项式。

(2)掌握行列式的基本性质和计算;线性方程组的基本理论;矩阵的概念、运算、分块矩阵的初等变换和初等矩阵;二次型和标准形、规范形和正定性,掌握 -矩阵的基本知识,矩阵相似的条件,矩阵的Jordan标准形的基本知识;线性空间中向量的线性相关性,线性空间的维数、基和向量的坐标,基变换和坐标变换,线性子空间的基本知识;掌握欧氏空间的基本知识;熟练掌握线性变换的定义、运算和线性变换的矩阵;掌握线性变换的特征值和特征向量,值域和核、不变子空间等基本知识。

3、课程教学改革(1)注重能力的培养本课程教学中,在讲授有关内容的基本概念、基本理论和基本方法的同时,应注重培养学生的运算能力,运用获取的基本知识和基本技能去分析问题和解决问题的能力,同时注意培养抽象思维能力和逻辑推理能力,逐步提高自学和创新能力。

(2)注重本课程与其它课程的联系《高等代数》是数学系的重要基础课程之一,它的基础地位不仅表现在它的内容上,而且还表现在它的思想方法上;它与《解析几何》、《近世代数》、《离散数学》、《组合数学》、《数学模型》等课程。

高等代数与解析几何教学大纲

高等代数与解析几何教学大纲

附件1高等代数与解析几何教学大纲课程编号:课程英文名:Advanced Algebra and Analytic Geometry课程性质:学科基础课课程类别:必修课先修课程:高中数学学分:4+4总学时数:72+72周学时数:4+4适用专业:统计学适用学生类别:内招生开课单位:信息科学技术学院数学系一、教学目标及教学要求1.本课程是统计学专业的一门重要基础课。

它不仅是学习后继课程及在各个学科领域进行理论研究和实际应用的必要基础,同时还为培养学生的独立工作能力提供必要的训练。

学生学好这门课程的基本内容和方法,对今后的提高和发展有着深远的影响。

2.通过本课程的学习,要使学生了解高等代数与解析几何的概貌、各部分内容的结构和知识的内在联系;学会代数与几何方法,培养学生抽象思维能力、逻辑推理能力、想象能力、运算能力和综合应用能力。

3.要求学生熟练掌握本课程的基本概念、基本理论、基本运算及方法。

通过课堂教学及进行大量的习题训练等各个教学环节,使得学生做到概念清晰、推理严密、运算准确,并且学会应用这些基本理论及方法去处理实际问题。

二、本课程的重点和难点(略。

由课任教师自行掌握)三、主要实践性教学环节及要求精讲、细读、自学相结合方法,加强课内外训练为手段。

四、教材与主要参考文献教材:《高等代数与解析几何》(上、下)(第二版),孟道骥编著,科学出版社,2004年。

参考书:1.《高等代数与解析几何》,陈志杰编著,高等教育出版社,2000年;2.《数论基础》,张君达主编,北京科学技术出版社,2002年。

五、考核形式与成绩计算考核形式:闭卷考试。

成绩计算:平时成绩(包括平时作业、小测验、考勤等)占30%,期末考试占70%。

六、基本教学内容第二学期第一周—第二周:(8课时)第一章:向量代数与解析几何基础1. 代数与几何发展概述。

2. 向量的线性运算及几何意义:定义与性质、向量的共线、共面与线性关系3. 坐标系:标架、向量和点的坐标、n维向量空间。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

《解析几何》课程教学大纲======1.doc

《解析几何》课程教学大纲======1.doc

《解析几何》课程教学大纲课程代号:21090010总学时:讲授/理论52学时,实验/技术/技能20学时,上机/课外实践0 学时适用专业:数学与应用数学、信息与计算科学先修课程:本课程是建立在中学《平面解析几何》与《立体几何》的基础上, 引进向量代数这个工具,在立体空间建立起空间坐标系,从而建立代数与空间几何的内在联系,达到用代数方法解决几何问题的目的。

一、本课程地位、性质和任务本课程为高等院校数学系各专业的一门必修的专业基础课程。

它为学习数学系的其它课程(诸如《数学分析》、《高等代数》及《微分几何》等打好基础,同时,它在自然科学与工程技术中,也有广泛的应用。

通过本课程的教学,应使学生系统地掌握空间解析几何的基础知识和基本理论;正确地理解和使用向量;在掌握几何图形性质的同时,提高运用代数方法,解决几何问题的能力;进一步培养学生的空间想象能力;能在较高的理论水平基础上,处理教学或工程技术中的有关问题。

二、课程教学的基本要求能够以向量代数为工具,用标架法建立空间直线、平面方程;掌握直线、平面的位置关系及几何量计算;掌握特殊曲面方程的推导并能利用平面截割法刻划曲面的几何性质;二次曲线(曲面)的一般理论。

三、课程学时分配、教学要求及主要内容(一)课程学时分配一览表早主要内容总学学时分配讲授讨论习题实验其他1向量与坐标181442轨迹与方程443平面与空间直线161244特殊曲面与二次曲16106面181265二次曲线的一般理论(二)课程教学要求及主要内容第一章向量与坐标教学目的和要求:向量代数及坐标法在自然科学和工程技术中有着广泛的应用。

本章是工具性的知识,是学习后面各章的基础。

本章通过向量代数与空间坐标系基本知识的教学,使学生能以向量为工具,研究并简单地解决某些几何问题。

教学重点和难点:1、透彻理解向量的有关基本概念。

2、牢固掌握向量的各种运算及其对应的几何意义与算律。

3、理解坐标系建立的依据以及向量与点坐标的意义,熟练地利用向量的坐标进行运算。

高等代数与解析几何教学大纲

高等代数与解析几何教学大纲

《高等代数与解析几何》教学大纲说明高等代数与解析几何是数学的主要基础课. 通过本课程的教学将逐步培养学生运用几何与代数相结合的方法分析问题和解决问题的能力. 因此在教学中应注意讲清代数概念的几何背景, 培养学生的空间想象力.本课程如按每学期每周4节正课2节习题课安排, 在一学年内应能讲授完本大纲的内容。

至于教科书《高等代数与解析几何》中的打星号的选学内容可以作为第三学期的选修课内容。

第一章第一章向量代数(22课时)第二章第二章行列式(12课时)第三章第三章线性方程组与线性子空间(20课时)第四章第四章矩阵的秩与矩阵的运算(14课时)第五章第五章线性空间与欧几里得空间(16课时)第六章第六章几何空间的常见曲面(14课时)第七章第七章线性变换(6课时)第八章第八章线性空间上的函数(10课时)第九章第九章坐标变换与点变换(12课时)第十章第十章一元多项式与整数的因式分解(14课时)第十一章第十一章多元多项式(12课时)第十二章第十二章多项式矩阵与若尔当典范形(10课时)以下计划中所列参考课时数均不包括习题课课时.第一章向量代数(22课时)内容包括向量的线性运算,向量的共线与共面,用坐标表示向量,线性相关性与线性方程组,n维向量空间,几何空间向量的内积、外积与混合积,平面曲线的方程等。

本章的教学目的是使学生对向量及其运算以及线性相关性有一个较直观的认识,为以后抽象向量的学习打下基础。

第二章行列式(12课时)本章从讲解映射与变换以及置换的奇偶性入手,通过体积的计算引入行列式的定义,同时也给出行列式的常用定义,然后引入矩阵的概念,以帮助理解行列式的性质,再讲解行列式按一行(一列)展开以及用行列式解线性方程组的克拉默法则,最后证明拉普拉斯定理。

本章的教学目的是使学生对行列式的意义及其计算有所了解。

并会应用克拉默法则解线性方程组。

对行列式计算的技巧不能太强调。

第三章线性方程组与线性子空间(20课时)用消元法解线性方程组是与初等数学相衔接的,在此基础上讨论线性方程组的解的情况,然后引出向量组的线性相关性的有关性质,再学习线性子空间及线性子空间的基与维数,以帮助理解齐次线性方程组的解的结构。

《高等代数》课程教学大纲

《高等代数》课程教学大纲

《高等代数》课程教学大纲一、大纲说明课程名称: 高等代数课程名称(英文):Advanced Algebra适用专业:数学与应用数学课程性质:学科教育必修课程总学时: 192其中理论课学时: 192 实践(实验)课学时:0学分:12先修课程:二、本课程的地位、性质和任务《高等代数》是数学与应用数学专业最重要的基础课程之一,是数学各专业报考硕士研究生的必考课程之一。

通过本课程的学习,使学生掌握多项式和线性代数的系统知识和理论,提高学生抽象思维、逻辑推理和运算能力,培养学生运用抽象的、严格的代数思想方法分析问题、解决问题的能力,为常微分方程、近世代数、计算方法、泛函分析等后续课程的学习打下坚实的基础。

三、教学内容、教学要求第一章基本概念教学内容本章主要介绍了集合、映射、数环、数域等基本概念,这些概念是学习本课程及其它数学分支的基础知识。

1、集合子集集合的相等集合的交与并及其运算律笛卡儿积2、映射映射满射单射双射映射的相等映射的合成可逆映射映射可逆的充要条件3、数学归纳法自然数的最小数原理第一数学归纳法第二数学归纳法4、整数的一些整除性质5、数环和数域教学要求了解:整数的一些整除性质理解:集合掌握:映射;数学归纳法;数环和数域重点与难点映射;可逆映射;数域。

第二章多项式本章主要介绍数域上一元多项式的概念及其运算、整除性、因式分解和有理系数多项式有理根的求法,简单介绍了多元多项式及对称多项式。

多项式理论是高等代数的重要内容,是中学数学有关知识的加深和扩充,是学习其它数学分支的必要基础。

教学内容1、一元多项式的定义和运算2、多项式的整除性整除的基本性质带余除法定理3、多项式的最大公因式最大公因式概念、性质辗转相除法多项式互素概念、性质4、多项式的唯一因式分解定理不可约多项式概念唯一因式分解定理典型分解式5、多项式的重因式多项式的重因式概念多项式有重因式的充要条件6、多项式函数与多项式的根多项式函数的概念余式定理综合除法多项式的根的概念根与一次因式的关系多项式根的个数7、复数域和实数域上多项式的因式分解(代数基本定理不证明)8、有理数域上多项式的可约性及有理根本原多项式的定义Gauss引理整系数多项式在有理数域上的可约性问题Eisenstein判别法有理数域上多顶式的有理根※9、多元多项式多元多项式的概念字典排列法多元多项式的和与积的次数※10、对称多项式对称多项式的概念初等对称多项式对称多项式基本定理教学要求了解:多元多项式对称多项式理解: 一元多项式的定义和运算;多项式的整除性;多项式函数与多项式的根;复数域和实数域上多项式的因式分解掌握: 多项式的重因式;多项式的最大公因式;复数域和实数域上多项式的因式分解;有理数域上多项式的可约性及有理根重点与难点整除概念、带余除法及整除的性质、最大公因式、互素、辗转相除法、不可约多项式概念、性质、因式分解及唯一性定理、因式分解定理的应用、k重因式与k 重根的关系、复(实)系数多项式分解定理、本原多项式、Eisenstein判别法。

《高等数学(上)》(higher mathematics(1))教学大纲(《高等数学(上)》(高等数学(1))教学大纲)

《高等数学(上)》(higher mathematics(1))教学大纲(《高等数学(上)》(高等数学(1))教学大纲)

《高等数学(上)》(higher mathematics(1))教学大纲(《高等数学(上)》(高等数学(1))教学大纲)《高等数学(上)》(高等数学(1))教学大纲一课程编号::040401。

二课程类型:必修课。

课程学时:80 / 5学分学时适用专业:除信科、强化班外的理、工科各专业先修课程:初等数学三。

课程性质与任务高等数学是我校理工科各专业的一门重要基础课理论课程,是各专业学生一门必修的重要课程。

通过本课程的学习,使学生系统地获得一元函数微积分等基本知识和基本理论;重点介绍极限、导数、积分(不定积分、定积分),并注重培养学生熟练的运算能力和较强的抽象思维能力﹑逻辑推理能力﹑几何直观和空间想象能力,从而使学生学会利用数学知识去分析和解决一些几何﹑力学和物理等方面的实际问题,为学习后续课程和进一步扩大数学知识奠定必要的数学基础。

四。

教学主要内容及学时分配序号主要内容学时一函数、极限与连续十八二导数与微分十五三中值定理及导数的应用十五四不定积分十二五定积分十六定积分的应用八五。

基本要求和基本内容(一)函数与极限1、理解一元函数、反函数、复合函数的定义;2、了解函数的表示和函数的简单性态--有界性、单调性、奇偶性、周期性;3、熟悉基本初等函数与初等函数(包含其定义区间、简单性态和图形);4、理解数列极限的概念(对定义不作过高要求);5、熟悉收敛数列的性质-有界性、唯一性;6、了解数列极限的存在准则-单调有界准则、夹逼准则;7、理解函数的极限的定义(包括当和时,函数极限的定义及左、右极限的定义)8、了解函数极限的性质--唯一性、保号性、局部有界性;9、熟练掌握极限的四则运算法则(包括数列极限与函数极限)10、掌握两个重要极限:11、熟悉无穷小量的概念及其运算性质、无穷小量的比较;12、了解无穷大量的概念及其与无穷小量的关系;13、函数极限与无穷小量的关系;14、理解函数的连续性的概念、了解函数的间断点的分类;15、熟悉连续函数的和、差、积、商及复合函数的连续性;16、了解初等函数的连续性,掌握闭区间上连续函数的性质。

高等代数与解析几何(I)课程教学大纲

高等代数与解析几何(I)课程教学大纲

important course that helps students to preliminarily complete the
excess from high school mathematics to university mathematics on
the level of learning method and mathematical thinking.
Mid-term exam
20%
Final Exam
60%
教材:《高等代数简明教程》上册(第007 年第二版。
*教材或参考资料 (Textbooks & Other
Materials)
参考书目: 1.《高等代数与解析几何》上册,陈志杰编著,高等教育出版社,2008 年第二版。 2.《高等代数》,北京大学数学系编著,高等教育出版社,2003 年第三版。 3.《大学代数》,陆少华、沈灏编著,上海交通大学出版社,2001 年。 4. Serge Lang,《Introduction to Linear algebra》, Second Edition,
习题
完成要求 书面作业
*考核方式 (Grading)
线性空间与
线性变换
39
面授
习题
完成要求 书面作业
本课程的考试,注重对学生综合运用所学知识解决问题能力的考核, 考试成绩包括三个方面:
(1)作业与平时成绩,占 20%。 (2)期中考试, 占 20%。 (3)期末考试,占 60%。
Homework
20%
3.熟练掌握矩阵理论的基本知识,以及分块矩阵技巧。(A5,B1,B2,B7)
*学习目标(Learning Outcomes)

高等代数与解析几何课程教学大纲-上海交通大学数学系

高等代数与解析几何课程教学大纲-上海交通大学数学系

《高等代数与空间解析几何》课程教学大纲课程名称:高等代数与空间解析几何课程代码:学分 / 学时:10学分 / 160学时适用专业:数学专业先修课程:开课单位:理学院数学系一、课程性质和教学目标(需明确各教学环节对人才培养目标的贡献)(一)本课程的性质、地位和作用《高等代数与空间解析几何》是数学系两门最重要的专业基础课之一,其主要内容有多项式理论与线性代数两部分。

本课程的教学目的是使学生初步掌握基本的、系统的代数知识和抽象的严格的代数方法,为后继课程如近世代数、常微分方程、概率论与数理统计、泛函分析、拓扑学、代数几何、计算方法等提供必须具备的代数知识,也为进一步学习数学的各门课程所需要的抽象思维能力提供一定的训练。

《高等代数与空间解析几何》课程是中学代数的继续和提高。

通过本课程的教学,要使学生对中学代数的理解得到实质性的提高和升华。

本课程在教学中要求学生确切理解《高等代数与空间解析几何》中的基本概念,不仅要正确掌握这些概念的内涵,还要了解这些概念的实际背景与对将来各课程的应用前景和对人类文明的推动作用。

对于一些基本的重要概念,还要求了解它们产生与发展的过程及概念推广的原则;与中学代数有直接联系或者平行的概念,要求学生能与中学数学中相应概念加以比较,并以新的高级观点理解、认识已有的概念和知识体系。

对于《高等代数与空间解析几何》的基本理论,要求学生理解基本理论的结果,掌握典型定理的论证方法或思想,同时要求学生能了解严谨的理论体系,体会建立这种体系的抽象的代数方法。

通过本课程的教学,要求学生能显著地提高应用基本概念、基本理论作抽象论证的能力;熟练地掌握基本的论证方法与基本的计算方法,特别要掌握基本的线性代数计算法。

(二)本大纲制订的依据根据我校建设世界一流大学的宏伟蓝图,数学系的目标应当是培养“科学大师”。

本大纲即是以此标准而制定,较原有大纲在教学内容上有了大幅度扩充和加深,对学生的能力要求也有较大提高。

《高等代数》课程教学大纲

《高等代数》课程教学大纲

《高等代数》课程教学大纲一、课程基本信息1、课程代码:MA1092、课程名称(中文):高等代数课程名称(英文):Higher Algebra3、学时/学分:72学时+ 18学时(习题课)/4学分4、先修课程:解析几何5、面向对象:联读班。

6、开课院(系)、教研室:理学院数学系,代数和组合数学教研室7、推荐教学参考书:《大学代数》,陆少华、沈灏编著,上海交大出版社,2002。

《高等代数》,北京大学数学力学系。

二、课程的性质和任务高等代数是一门重要的数学基础课。

代数的理论、方法和思想已渗透到数学与科学的各个领域。

随着通信与计算机科学的迅速发展,高等代数作为描述离散对象的各学科的重要基础,其地位与作用越来越重要。

同时,代数课程还承担着提高学生数学素养,训练与培养思维能力、计算能力与建立数学模型能力的任务。

通过《高等代数》课程的学习,应使学生能较好地熟悉与掌握多项式理论及线性代数的基本概念、理论与方法,并能运用到所学专业中去。

三、教学内容和要求《高等代数》高等代数的教学内容分为八部分,对不同的内容提出不同的教学要求。

(数字表示供参考的相应的学时数)第一章数与多项式(10)1数环与数域(2)2一元多项式、最大公因式(2)3 多项式的因式分解理论(4)4 习题课(2)要求:熟悉数环与数域的基本概念与运算法则;理解因子分解唯一性定理;熟练掌握求最大公因式的辗转相除法。

第二章行列式(10)1 行列式的定义与基本性质(4)2 行列式的按行展开,Laplace定理(2)3 行列式的计算(2)4 习题课(2)要求:熟悉行列式的基本性质、掌握行列式的常用计算方法。

第三章矩阵(12)1 矩阵的概念与矩阵运算(2)2 矩阵的初等变换与相抵标准形、矩阵的秩(4)3 习题课(2)4 逆矩阵与矩阵的求逆(2)5 分块矩阵,例(2)要求:熟练掌握矩阵的加、乘与求逆运算;熟练掌握求矩阵相抵标准形的初等变换方法。

第四章线性方程组(12)1 解线性方程组的矩阵消元法(2)2 Cramer法则,例(2)3 n维向量组的线性关系、向量组的等价与向量组的秩(4)4 线性方程组的矩阵形式、向量形式;线性方程组解的结构(2)5 习题课(2)要求:掌握线性方程组的求解理论与解线性方程组的矩阵消元法;理解线性方程组解的几何意义。

高等代数与解析几何(Higher Algebra and Analytic Geometry)

高等代数与解析几何(Higher Algebra and Analytic Geometry)

高等代数与解析几何(Higher Algebra and Analytic Geometry)课程教学大纲一、课程编号:040504,040505二、课程类别:必修课课程学时:160学时适用专业:信息与计算科学先修课程:初等代数、初等几何三、课程的性质与任务《高等代数与解析几何》是数学、通信、计算机、信息等专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。

主要目的是掌握本门课程的基本理论和基本方法。

四、教学主要内容及学时分配(一)向量代数(20学时)(二)行列式(14学时)(三)线性方程组与线性子空间(24学时)(四)矩阵(20学时)(五)线性空间与欧几里德空间(20学时)(六)几何空间的常见曲面(12学时)(七)线性变换(16学时)(八)线性空间上的函数(10学时)(九)坐标变换与二次曲线方程的化简(4学时)(十)一元多项式理论(16学时)(十一)多项式矩阵与若当典范形(4学时)五、教学基本要求(一)理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。

(二)理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克兰姆法则。

理解矩阵及初等变换的概念。

(三)理解n维向量的概念、线性相关与线性无关的定义,了解几个相关结论。

理解线性方程组解的结构,熟练掌握求解方法;会用线性方程组理论判别n维向量组的线性相关性;掌握求直线、平面方程的方法;理解线性子空间、基、维数、坐标的概念,了解简单性质。

(四)理解向量组及矩阵的秩,掌握求逆矩阵、秩的方法;熟悉线性方程组有解判别条件;理解线性映射与矩阵的对应关系。

(五)理解线性空间、欧氏空间、同构、和、直和的概念,了解其性质;掌握施密特正交化方法;了解最小二乘法;会求直线或平面的夹角、点到平面的距离;了解正交矩阵的性质。

(六)了解常见二次曲面的方程及形状,会求简单的旋转曲面、柱面、锥面的方程。

课程教学大纲-上海大学数学系

课程教学大纲-上海大学数学系
一、教学基本要求
1.理解数域上文字 的多项式的概念;理解多项式的次数、整除、最大公因式、互素、不可约多项式、重因式等重要概念,了解这些概念和系数域的扩大与缩小的关系。
2.熟练掌握“整除性”,互素与不可约多项式的基本性质;理解带余除法的实质,掌握用带余除法求商式和余式;会求两个多项式的最大公因式并掌握把最大公因式表示成这两个多项式的组合的方法;会用微商判断多项式有、无重因式;能把多项式的有关概念,性质与整数的有关概念、性质进行比较。
2.余数定理
3.多项式的根、因式定理
4.重根及重根判别方法
5.非零多项式根的个数定理
6.多项式相等判别方法
7.Lagrange插值公式
第七节复数域和实数域上多项式
1.复系数多项式因式分解定理
2.实系数多项式因式分解定理
第七节有理数域上多项式
1.本原多项式、Gauss引理
2.整系数多项式与有理系数多项式关系
第四节特征值和特征向量
1.特征值、特征向量和特征多项式的定义和求法
2.矩阵的秩和行列式与特征值的关系
3.相似矩阵的特征多项式
第五节不变子空间
1.不变子空间的定义和简单性质
2.不变子空间与简化线性变换的矩阵之间的关系
第六节矩阵的相似
1.属于不同特征值的特征向量的线性无关性
2.特Байду номын сангаас子空间的维数与所属特征值的重数的关系
3.初步掌握矩阵分块的原则、技巧及运算。
二、教学内容
第一节数域与数环
1.数域
2.数环
第二节矩阵的运算及特殊矩阵
1.矩阵的定义
2.矩阵的运算与运算律
3.特殊矩阵
第三节可逆矩阵
1.可逆矩阵定义
2.可逆矩阵性质

高等数学 教案 上交大 第8章 向量代数与空间解析几何

高等数学 教案 上交大 第8章  向量代数与空间解析几何

第八章向量代数与空间解析几何
教学要求
向量的运算;两个向量夹角的计算;两个向量垂直和平行的充要条件;向量的模,单位向量,方向余弦和向量的坐标表达式;利用坐标表达式进行向量的运算;平面和直线方程;二次曲面标准方程及其图形。

教学重点
向量的概念;曲面方程的概念;空间曲线参数方程和交线方程的概念。

教学难点
以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面。

课时安排
本章安排12课时。

教学大纲
第一节向量的线性运算与空间直角坐标系
第二节数量积向量积混合积
第三节平面及其方程
第四节空间直线及其方程
第五节曲面方程
第六节空间曲线方程
主要概念
1.向量
2.平面与直线方程
3.旋转曲面与二次曲面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等代数与空间解析几何》课程教学大纲
课程名称:高等代数与空间解析几何
课程代码:
学分 / 学时:10学分 / 160学时
适用专业:数学专业
先修课程:
开课单位:理学院数学系
一、课程性质和教学目标(需明确各教学环节对人才培养目标的贡献)
(一)本课程的性质、地位和作用
《高等代数与空间解析几何》是数学系两门最重要的专业基础课之一,其主要内容有多项式理论与线性代数两部分。

本课程的教学目的是使学生初步掌握基本的、系统的代数知识和抽象的严格的代数方法,为后继课程如近世代数、常微分方程、概率论与数理统计、泛函分析、拓扑学、代数几何、计算方法等提供必须具备的代数知识,也为进一步学习数学的各门课程所需要的抽象思维能力提供一定的训练。

《高等代数与空间解析几何》课程是中学代数的继续和提高。

通过本课程的教学,要使学生对中学代数的理解得到实质性的提高和升华。

本课程在教学中要求学生确切理解《高等代数与空间解析几何》中的基本概念,不仅要正确掌握这些概念的内涵,还要了解这些概念的实际背景与对将来各课程的应用前景和对人类文明的推动作用。

对于一些基本的重要概念,还要求了解它们产生与发展的过程及概念推广的原则;与中学代数有直接联系或者平行的概念,要求学生能与中学数学中相应概念加以比较,并以新的高级观点理解、认识已有的概念和知识体系。

对于《高等代数与空间解析几何》的基本理论,要求学生理解基本理论的结果,掌握典型定理的论证方法或思想,同时要求学生能了解严谨的理论体系,体会建立这种体系的抽象的代数方法。

通过本课程的教学,要求学生能显著地提高应用基本概念、基本理论作抽象论证的能力;熟练地掌握基本的论证方法与基本的计算方法,特别要掌握基本的线性代数计算法。

(二)本大纲制订的依据
根据我校建设世界一流大学的宏伟蓝图,数学系的目标应当是培养“科学大师”。

本大纲即是以此标准而制定,较原有大纲在教学内容上有了大幅度扩充和加深,对学生的能力要求也有较大提高。

(三)大纲内容选编原则与要求
1.鉴于我校尚无符合要求的自己的教材,以往的大纲往往以与北京大学数学系几何与代数教研室代数小组编《高等代数》(高等教育出版社第三版)为蓝
本制定,授课教师爷往往以自己的偏好选择讲授内容,具有较大随意性。

2.为了避免教学上的难点过于集中,个别定理(如Jordan标准型)的掌握可以侧重于定理的结果和证明定理的方法,以达到掌握基本的代数方法的目的。

3.每一章的重点内容要重点讲解,在讲清概念的基础上,通过适当的练习(课堂讨论、作业、习题课、自学课外资料、大作业、问题探讨)以达到掌握高等代数中常用的计算方法、基本运算中的技能和技巧以及提高综合计算和解决问题的能力的目的。

难点要逐步引入,分散讲解。

4.本大纲列入部分带“”的内容,供选用,不计算入总课时。

本课程各教学环节对人才培养目标的贡献见下表。

三、教学方法
以课堂教学为主,结合试题课、自学、数学作业。

四、考核及成绩评定方式
建议最终成绩由平时作业与课堂参与度、期中考试、考试成绩等部分组合而成。

各部分所占比例建议如下:
平时作业和上课参与程度:30%。

期中考试:30%
期末考试 40%
五、教材及参考书目
教材:
1. 蓝以中,《高等代数简明教程》(上、下),第二版,北京大学出版社,2010 参考书目:
1. 姚慕生、吴泉水,《高等代数学》,复旦大学出版社;
2. 张贤科、许莆华,《高等代数学》,清华大学出版社,2004;
3. 许以超,《线性代数与矩阵论》,高等教育出版社,2008;
4. 龚升,《线性代数五讲》,科学出版社,2005;
5. 孟道骥,高等代数与空间解析几何(第二版),科学出版社,2007。

6. 苏步青,《高等几何讲义》,上海科技出版社,1964;
7. 方德植、陈奕培,《射影几何》,高等教育出版社,1983;
8. A N. 柯斯特利金,《代数学引论》(第二版),高等教育出版社,2010;
9 S K. Berberian, Linear algebra. Oxford, USA:Oxford Univ. Press,1992.
10. W C. Bwown, A second course in linear algebra, New York: J. Wiley &
Sons, 1988
11. K W. Gruenberg, A J. Weir, Linear geometry (2nd Edition). New York:
Springer-Verlag, 1997.
12. D H. Griffel, Linear algebra and its applications, New York: Marcei
Dekker, 1985.
13. x, Linear algebra and its applications,2nd Edition, New York: J.
Wiley & Sons, 2007
14. S. Maclane and G. Birkhoff, Algebra, New York: Macmillan,1979.
15. S. Lipschutz, Theory and problems on linear algebra, New York: McGraw-Hill, 1991.
起草者:张跃辉。

相关文档
最新文档