高二上学期数学综合练习题

合集下载

数学练习题及答案高二

数学练习题及答案高二

数学练习题及答案高二第一节:选择题1. 若函数 f(x) = ax^2 + bx + c 的图象开口向上,且在点 P(-1, 3) 有极值,那么 a, b, c 的关系是()(A) a ≠ 0, b = 0, c ≠ 0;(B) a ≠ 0, b ≠ 0, c ≠ 0;(C) a ≠ 0, b ≠ 0, c = 0;(D) a ≠ 0, b = 0, c = 0;答案:(A)解析:由题可知,函数图象开口向上,所以a ≠ 0。

又因为在点 P(-1, 3) 有极值,极值对应的 x 坐标为 -1,代入函数可得 f(-1) = -a + b - c。

由于函数开口向上,所以该极值为极小值,即 f(-1) = -a + b - c > 0。

再结合a ≠ 0,可以得出 b = 0,因为如果b ≠ 0,则在 x = -1 附近 f(-1)不可能为正值。

所以,a ≠ 0,b = 0,c ≠ 0。

2. 已知函数 y = 2x^2 + 3x - 2 的图象与 x 轴交于点 A、B两个地方,那么点 A、B 的纵坐标分别是()(A) 0,-3;(B) -2,0;(C) 0,-2;(D) -3,0;答案:(C)解析:当函数与 x 轴交于点 A、B 时,函数值 y = 2x^2 + 3x - 2 = 0。

可以通过因式分解或二次方程求根公式来解。

将方程 2x^2 + 3x - 2 = 0 因式分解为 (2x + 1)(x - 2) = 0,得到两个解:x = -1/2,x = 2。

所以,点 A 的纵坐标为 y(A) = 2(-1/2)^2 + 3(-1/2) - 2 = -2,点 B 的纵坐标为 y(B) = 2(2)^2 + 3(2) - 2 = -2。

因此,点 A、B 的纵坐标分别是 0、-2。

第二节:填空题1. 给定矩阵 A = [1 2 3; -1 0 1],则 A 的转置矩阵为 ______。

答案:[1 -1; 2 0; 3 1]解析:矩阵的转置就是将原矩阵的行变为列,列变为行。

高二数学直线的一般式方程及综合练习题总结

高二数学直线的一般式方程及综合练习题总结

直线的一般式方程要点一、直线方程的一般式关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式.注意:1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线.当B≠0时,方程③可变形为A Cy xB B=--,它表示过点0,CB⎛⎫-⎪⎝⎭,斜率为AB-的直线.当B=0,A≠0时,方程③可变形为Ax+C=0,即CxA=-,它表示一条与x轴垂直的直线.由上可知,关于x、y的二元一次方程,它都表示一条直线.2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0,也可以是1122x y-+=,还可以是4x―2y+2=0等.)要点二、直线方程的不同形式间的关系注意:在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x1≠x2,y1≠y2),应用时若采用(y2―y1)(x―x1)―(x2―x1)(y―y1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同.要点三、直线方程的综合应用1.已知所求曲线是直线时,用待定系数法求.2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程.对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.(1)从斜截式考虑已知直线111:b x k y l +=,222:b x k y l +=,12121212//()l l k k b b αα⇒=⇒=≠;12121211221tan cot 12l l k k k k παααα⊥⇒-=⇒=-⇒=-⇒=- 于是与直线y kx b =+平行的直线可以设为1y kx b =+;垂直的直线可以设为21y x b k=-+. (2)从一般式考虑:11112222:0,:0l A x B y C l A x B y C ++=++=1212120l l A A B B ⊥⇔+=121221//0l l A B A B ⇔-=且12210A C A C -≠或12210B C B C -≠,记忆式(111222A B C A B C =≠) 1l 与2l 重合,12210A B A B -=,12210A C A C -=,12210B C B C -=于是与直线0Ax By C ++=平行的直线可以设为0Ax By D ++=;垂直的直线可以设为0Bx Ay D -+=.类型一:直线的一般式方程例1.根据下列条件分别写出直线的方程,并化为一般式方程.(1)斜率是12-,经过点A (8,―2); (2)经过点B (4,2),平行于x 轴; (3)在x 轴和y 轴上的截距分别是32,―3; (4)经过两点P 1(3,―2),P 2(5,―4).【变式1】已知直线l 经过点(3,1)B -,且倾斜角是30︒,求直线的点斜式方程和一般式方程.例2.ABC ∆的一个顶点为(1,4)A --,B ∠、C ∠ 的平分线在直线10y +=和10x y ++=上,求直线BC 的方程.例3.求与直线3x+4y+1=0平行且过点(1,2)的直线l 的方程.【变式1】已知直线1l :3mx+8y+3m-10=0 和 2l :x+6my-4=0 .问 m 为何值时:(1)1l 与2l 平行(2)1l 与2l 垂直.【变式2】 求经过点A (2,1),且与直线2x+y ―10=0垂直的直线l 的方程.例4.已知直线l 的倾斜角的正弦值为35,且它与坐标轴围成的三角形的面积为6,求直线l 的方程.【总结升华】(1)本例中,由于已知直线的倾斜角(与斜率有关)及直线与坐标轴围成的三角形的面积(与截距有关),因而可选择斜截式直线方程,也可选用截距式直线方程,故有“题目决定解法”之说.(2)在求直线方程时,要恰当地选择方程的形式,每种形式都具有特定的结论,所以根据已知条件恰当地选择方程的类型往往有助于问题的解决.例如:已知一点的坐标,求过这点的直线方程,通常选用点斜式,再由其他条件确定该直线在y 轴上的截距;已知截距或两点,选择截距式或两点式.在求直线方程的过程中,确定的类型后,一般采用待定系数法求解,但要注意对特殊情况的讨论,以免遗漏.【变式1】如下图,射线OA 、OB 分别与x 轴正半轴成45°、30°.过点P (1,0)作直线AB 分别交OA 、OB 于点A 、B .当AB 的中点C 恰好落在直线12y x =上时,求直线AB 的方程.例5.过点P(2,1)作直线l 与x 轴、y 轴正半轴交于A 、B 两点,求△AOB 面积的最小值及此时直线l 的方程【变式1】已知a ∈(0,2),直线l 1:ax ―2y ―2a+4=0和直线l 2:2x+a 2y ―2a 2―y ―2=0与坐标轴围成一个四边形,要使此四边形面积最小,求a 的值.类型三:直线方程的实际应用例6.一条光线从点(3,2)A 出发,经x 轴反射,通过点(1,6)B -,求入射光线和反射光线所在直线的方程.【思路点拨】利用对称的知识来求解。

中职数学练习题 2023-2024学年浙江省温州市综合高中(3+2)中职高二(上)期中数学试卷

中职数学练习题 2023-2024学年浙江省温州市综合高中(3+2)中职高二(上)期中数学试卷

2023-2024学年浙江省温州市万全综合高中(3+2)中职高二(上)期中数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .-2B .-1C .2D .11.(4分)方程3x −1=19的解是( )A .36°B .30°C .24°D .12°2.(4分)把π5化成角度制是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.(4分)若角α=3rad ,则角α是( )A .4B .-4C .1D .-14.(4分)若直线2x +my +1=0与直线3x +6y -1=0平行,则m =( )A .2B .12C .−12D .-25.(4分)已知直线l 1:x +2y +3=0,l 2:x +ay +1=0,若l 1⊥l 2,则实数a 的值为()A .k 4<k 3<k 2<k 1B .k 1<k 2<k 3<k 4C .k 3<k 4<k 1<k 2D .k 2<k 1<k 3<k 46.(4分)如图,若直线l 1,l 2,l 3,l 4的斜率分别为k 1,k 2,k 3,k 4,则( )A .a >b >cB .c >b >aC .c =a >bD .b >a =c 7.(4分)若a =20.4,b =30.3,c =40.2,则( )二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.A .0B .12C .1D .28.(4分)已知函数f (x )=V W X log 2(2−x ),x ≤0f (x −4),x >0,则f (2022)=( )A .13B .4C .5D .379.(4分)已知M (2,1)、N (-1,5),则|MN |=( )√√A .B .C .D .10.(4分)函数f (x )=xlg (x 2+1)+2x 的部分图象大致为( )11.(4分)已知点A (2,-3),B (3,-2),则线段AB 的中点坐标为 .12.(4分)函数f (x )=log a (x -b )+2(a >0且a ≠1)恒过定点(3,2),则b = .13.(4分)已知过点(0,-2)的直线l 与以点A (3,1),B (-2,5)为端点的线段AB 相交,则直线l 的斜率的取值范围为 .14.(6分)计算:(1)2sin π6•812= ;(2)log 289+log 218−log 31= .15.(6分)直线l :x =1的倾斜角为 ;点P (2,5)到直线l 的距离为 .16.(6分)已知某扇形的圆心角为π6,弧长为2π3,则该扇形的半径为 ;面积为 .17.(6分)已知函数f (x )=2x +11−x+lg (3x +1),则f (0)= 函数定义域是 .√。

最难高二数学练习题

最难高二数学练习题

最难高二数学练习题高中数学对于很多学生来说是一个挑战。

尤其是在高二的时候,学习内容逐渐深入,难度也相应增加。

而在这里,我将为大家介绍一道被认为是最难的高二数学练习题。

这道题目是一个由多个知识点组合而成的综合题,要求学生在运用多个数学概念的基础上进行解答。

下面我们一起来看看这道题目的内容和解题思路。

题目如下:已知函数f(x) = (x-1) ^ 2 + 1,g(x) = e ^ (ax + b) 的图像经过坐标点(2, 5) 和 (3, 10)。

求函数g(x) 的解析式。

解析:首先,我们要解决的是函数g(x) 的解析式。

根据题目给出的信息,我们可以得到以下两个方程:(1)当x = 2 时,g(2) = 5(2)当x = 3 时,g(3) = 10将这两个点带入函数g(x) 的表达式中,得到以下两个等式:(3)5 = e ^ (2a + b)(4)10 = e ^ (3a + b)现在我们有了两个方程,我们需要解这个方程组以求得a 和b 的值。

我们可以利用方程(3)和(4)进行消元。

首先将方程(3)乘以2得到6a + 2b = ln 5,然后将方程(4)减去方程(3)得到 e ^ (3a + b) - e ^ (2a + b) = 5。

我们可以观察到e ^ (2a + b) 作为一个整体,用u 来代替,那么上面的方程可以写为 e ^ u - u = 5。

这是一个非线性方程,其解并不容易得出。

我们需要借助数值计算方法来求解。

我们可以使用牛顿迭代法进行计算,不断迭代,直到找到满足方程的u 值为止。

在进行迭代计算后,我们得到了u 的值,然后可以带回方程(3)或(4)中求得a 和b 的值。

综上所述,我们可以利用牛顿迭代法来求解函数g(x) 的解析式。

2023-2024学年北京市丰台区高二上学期期末练习数学试卷+答案解析

2023-2024学年北京市丰台区高二上学期期末练习数学试卷+答案解析

2023-2024学年北京市丰台区高二上学期期末练习数学试卷一、单选题:本题共10小题,每小题5分,共50分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知直线l经过,两点,则直线l的倾斜角为()A. B. C. D.2.已知数列的前n项和为,且,,则()A. B. C.1 D.33.已知抛物线的焦点为F,点在抛物线C上.若,则()A.2B.3C.4D.54.已知椭圆的焦点在x轴上,则m的取值范围是()A. B. C. D.5.如图,在四面体OABC中,,,点M在OC上,且,N为AB 的中点,则()A. B.C. D.6.已知椭圆的左、右焦点分别为,,点P在椭圆C上.若,则的面积为()A.2B.4C.8D.97.月相是指天文学中对于地球上看到的月球被太阳照亮部分的称呼年,爱尔兰学者在大英博物馆所藏的一块巴比伦泥板上发现了一个记录连续15天月相变化的数列,记为,其将满月等分成240份,且表示第i天月球被太阳照亮部分所占满月的份数.例如,第1天月球被太阳照亮部分占满月的,即;第15天为满月,即已知的第1项到第5项是公比为q的等比数列,第5项到第15项是公差为d的等差数列,且q,d均为正整数,则()A.40B.80C.96D.1128.已知点P在由直线,和所围成的区域内含边界运动,点Q在x轴上运动.设点,则的最小值为()A. B. C. D.9.如图,在棱长为2的正方体中,E为棱的中点,F为棱上一动点.给出下列四个结论:①存在点F,使得平面;②直线EF与所成角的最大值为;③点到平面的距离为;④点到直线的距离为其中所有正确结论的个数为()A.1B.2C.3D.410.过双曲线的右焦点F引圆的切线,切点为P,延长FP交双曲线C的左支于点若,则双曲线C的离心率为()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。

11.已知向量,,若与共线,则__________.12.双曲线的渐近线方程为__________.13.已知等差数列的前n项和为,能够说明“对,若,则”是假命题的的一个通项公式为__________.14.在平面直角坐标系xOy中,已知点,点Q在圆上运动,当取最大值时,PQ 的长为__________.15.已知是各项均为正数的无穷数列,其前n项和为,且给出下列四个结论:①;②各项中的最大值为2;③,使得;④,都有其中所有正确结论的序号是__________.三、解答题:本题共6小题,共72分。

高二上学期数学练习题有详细答案

高二上学期数学练习题有详细答案

高二上学期数学练习题(1)(圆与方程)班级 姓名 学号一.选择填空题1.圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A .(x -4)2+(y +1)2=10B .(x +4)2+(y -1)2=10C .(x -4)2+(y +1)2=100D .(x -4)2+(y +1)2=102. 若一圆的标准方程为(x -1)2+(y +5)2=3,则此圆的圆心和半径长分别为( )A .(-1,5), 3B .(1,-5), 3C .(-1,5),3D .(1,-5),3 3. 方程(x +a )2+(y +b )2=0表示的图形是( )A .以(a ,b )为圆心的圆B .点(a ,b )C .以(-a ,-b )为圆心的圆D .点(-a ,-b ) 4. 点P (a,5)与圆x 2+y 2=24的位置关系是( )A .点在圆外B .点在圆内C .点在圆上D .不确定 5. 圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A .12 B .32 C .1 D .36. 已知圆心在x 轴上的圆C 与x 轴交于两点A (1,0),B (5,0),此圆的标准方程为( )A .(x -3)2+y 2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4 7. 若点(2a ,a -1)在圆x 2+(y +1)2=5的内部,则a 的取值范围是( )A .(-∞,1]B .(-1,1)C .(2,5)D .(1,+∞)8. 方程y =9-x 2表示的曲线是( )A .一条射线B .一个圆C .两条射线D .半个圆9. 若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0 D .2x -y -1=0 10. 点M 在圆(x -5)2+(y -3)2=9上,则点M 到直线3x +4y -2=0的最短距离为( )A .9B .8C .5D .211.直线1y kx =+与圆221x y +=的位置关系是( )A .相交B .相切C .相交或相切D .不能确定 12. 圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于2的点有( )A .1个B .2个C .3个D .4个 答案:B 13. 方程4-x 2=lg x 的根的个数是( )A .0B .1C .2D .无法确定14.圆22(4)(5)10x y -+-=上的点到原点的距离的最小值是( ).A C.二.填空题15.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是______ .16.若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的标准方程是_____17.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为________18.以直线2x+y-4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为________19.设点P(x,y)是圆x2+(y+4)2=4上任意一点,则x-12+y-12的最大值为________.20.以原点O为圆心且截直线3x+4y+15=0所得弦长为8的圆的方程是__________.21.直线y=x+b与曲线x=1-y2有且只有1个公共点,则b的取值范围是__________.三.解答题22.圆过点A(1,-2),B(-1,4),求(1)圆心在直线2x-y-4=0上的圆的方程.(2)周长最小的圆的方程;23.已知圆N的标准方程为(x-5)2+(y-6)2=a2(a>0).(1)若点M(6,9)在圆上,求a的值;(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N有且只有一个公共点,求a的取值范围.24.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在的直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程.25.求圆心在直线4x+y=0上,且与直线l:x+y-1=0切于点P(3,-2)的圆的方程,并找出圆的圆心及半径.26.求平行于直线3x+3y+5=0且被圆x2+y2=20截得长为62的弦所在的直线方程.27.已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.高二上学期数学练习题(1)(圆与方程)班级 姓名 学号一.选择填空题1.圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A .(x -4)2+(y +1)2=10B .(x +4)2+(y -1)2=10C .(x -4)2+(y +1)2=100D .(x -4)2+(y +1)2=10[答案] A [解析] 设圆的标准方程为(x -4)2+(y +1)2=r 2,把点(5,2)代入可得r 2=10,即得选A . 2. 若一圆的标准方程为(x -1)2+(y +5)2=3,则此圆的圆心和半径长分别为( )A .(-1,5), 3B .(1,-5), 3C .(-1,5),3D .(1,-5),3 [答案] B 3. 方程(x +a )2+(y +b )2=0表示的图形是( )A .以(a ,b )为圆心的圆B .点(a ,b )C .以(-a ,-b )为圆心的圆D .点(-a ,-b ) [答案] D 4. 点P (a,5)与圆x 2+y 2=24的位置关系是( )A .点在圆外 B .点在圆内 C .点在圆上 D .不确定 [答案] A [解析] 因为a 2+52=a 2+25>24,所以点P 在圆外.5. 圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A .12 B .32 C .1 D .3 [答案] A [解析] 直线方程可化为:0x -=,先求得圆心坐标(1,0), 再依据点到直线的距离公式求得12d ==。

高二数学题集合练习题

高二数学题集合练习题

高二数学题集合练习题1. 解方程组:方程组1:2x + 3y = 74x + 5y = 11方程组2:3x - 5y = 47x + 2y = 1方程组3:x + 2y - z = 33x - y + z = -54x + y + z = 12. 求以下函数的导数:函数1:f(x) = 3x^2 + 4x - 2函数2:g(x) = sin(x) + cos(x)函数3:h(x) = e^(2x) + ln(x)3. 已知函数f(x) = ax^2 + bx + c,其中 a、b、c 均为常数,求函数的极值点和极值。

4. 计算以下不定积分:∫(3x^2 - 2x + 5)dx∫(cos(x) + e^x)dx∫(3sec^2(x) - 2csc(x))dx5. 求以下函数的定积分:∫[0, 2π] sin(x)dx∫[1, 4] (3x^2 - 2x + 5)dx∫[0, π/2] e^x(cos(x) + sin(x))dx6. 已知三角形ABC的边长分别为a、b、c,求其面积S和三个内角A、B、C的余弦值cosA、cosB、cosC之间的关系。

7. 已知二次函数f(x) = ax^2 + bx + c的图像经过一点P(-2, 5),并且开口朝上,求函数的表达式。

8. 求以下等差数列的和:1 + 3 + 5 + 7 + ... + 99-2 + 2/3 - 2/9 + 2/27 - ... + 2/2439. 求以下等比数列的和:3 + 1 + 1/3 + 1/9 + ... + (1/3)^n (n为自然数)4 - 12 + 36 - 108 + ... + (-3)^n (n为自然数)10. 解三角函数方程:sin(x) = 1/2cos(2x) = 1/2tan(x) + cot(x) = 2注意:以上题目仅为示例,实际文章中应根据需要设置合适的字数及格式,以满足要求。

高二数学排列组合练习题

高二数学排列组合练习题

高二数学排列组合练习题1. 某班共有6个男生和5个女生,现从中选出3名男生和2名女生组成一个团队。

问有多少种不同的组队方式?解析:根据排列组合的知识,我们可以使用组合的方式求解。

选取3名男生可以有C(6,3)种选择,选取2名女生可以有C(5,2)种选择。

根据乘法原理,两者的选择方式相互独立,所以总的组队方式数量为C(6,3) * C(5,2) = 20 * 10 = 200种。

2. 某电影院有8个座位,现有8名观众前往观看电影。

其中3对观众是夫妻关系,要求夫妻不能坐在相邻的座位上。

问有多少种不同的座位安排方式?解析:对于夫妻关系的观众,他们不能坐在相邻的座位上,相邻的座位可以看作是一对座位。

首先,我们把3对夫妻的座位看作是3个座位,这样就有6个单独的座位。

对于这6个单独的座位,可以有6!种不同的座位安排方式。

而夫妻关系的座位本身可以有3!种不同安排方式。

根据乘法原理,总的座位安排方式为6! * 3! = 720 * 6 = 4320种。

3. 某商店有8本不同的书和4个不同的笔记本,现要从中选取3本书和2个笔记本作为一份礼品赠送给顾客。

问有多少种不同的礼品组合方式?解析:选取3本书可以有C(8,3)种选择,选取2个笔记本可以有C(4,2)种选择。

根据乘法原理,总的礼品组合方式为C(8,3) * C(4,2) =56 * 6 = 336种。

4. 某个数字锁的密码是由4位数字组成,每位数字可以使用0-9之间的任意数字且可重复。

问共有多少种不同的密码组合方式?解析:对于每一位数字,有10种选择(0-9)。

因此,对于4位数字组成的密码,一共有10^4种不同的组合方式,即10000种。

5. 某班级里有10个学生,其中5个人喜欢足球,2个人喜欢篮球,3个人喜欢乒乓球。

现从中选取4个学生组成一支球队,要求至少有1名喜欢足球、至少有1名喜欢篮球、至少有1名喜欢乒乓球。

问有多少种不同的球队组合方式?解析:可以分为几种情况讨论:情况一:选取1名足球爱好者、1名篮球爱好者和2名乒乓球爱好者。

天津市部分区2023-2024学年高二上学期期末考试 数学(含答案)

天津市部分区2023-2024学年高二上学期期末考试 数学(含答案)

天津市部分区2023~2024学年度第一学期期末练习高二数学(答案在最后)第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.45.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1ACE 的距离为()A.3B.6C.4D.148.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.22D.329.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.11.直线10x -=的倾斜角为_______________.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.14.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,求直线l 的方程.18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.19.在数列{}n a 中,11a =,()*122nn n a a n +-=∈N .(1)求2a ,3a ;(2)记()*2n n n a b n =∈N .(i )证明数列{}n b 是等差数列,并求数列{}n a 的通项公式;(ii )对任意的正整数n ,设,,,.n n n a n c b n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.天津市部分区2023~2024学年度第一学期期末练习高二数学第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--【答案】A 【解析】【分析】直接由空间向量的坐标线性运算即可得解.【详解】由题意空间向量()1,2,3a =-,()2,1,1b =- ,则()()()()()21,2,322,1,11,2,34,2,23,4,5a b -=---=---=--.故选:A.2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在【答案】A 【解析】【分析】求出直线1l 与2l 不相交时的a 值,再验证即可得解.【详解】当直线1l 与2l 不相交时,(2)30a a +-=,解得1a =或3a =-,当1a =时,直线1l :330x y +-=与直线2l :310x y ++=平行,因此1a =;当3a =-时,直线1l :3330x y --=与直线2l :10x y -++=重合,不符合题意,所以实数a 的值为1.故选:A3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-【答案】B 【解析】【分析】根据抛物线的方程与焦点之间的关系分析求解.【详解】由题意可知:此抛物线的焦点落在y 轴正半轴上,且24p =,可知12p=,所以焦点坐标是()0,1.故选:B.4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.4【答案】B 【解析】【分析】直接由等比数列基本量的计算即可得解.【详解】由题意()()21242131110251a q q a a q a a a q ++====++(1,0a q ≠分别为等比数列{}n a 的首项,公比).故选:B.5.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=【答案】D 【解析】【分析】先求椭圆的焦点坐标,再代入双曲线方程可得2a ,利用渐近线方程可得2b ,进而可得答案.【详解】椭圆221259x y +=的焦点坐标为()4,0±,而双曲线()222210,0x y a b a b -=>>过()4,0±,所以()2222401a b ±-=,得216a =,由双曲线的一条渐近线方程为20x y +=可得2214y x =,则2214b a =,于是21164b =,即24b =.所以双曲线的标准标准为221164x y -=.故选:D.6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =【答案】D 【解析】【分析】由题意分直线斜率是否存在再结合直线与圆相切的条件进行分类讨论即可求解.【详解】圆224470x y x y +--+=,即圆()()22221x y -+-=的圆心坐标,半径分别为()2,2,1,显然过(1,0)点且斜率不存在的直线为1x =,与圆()()22221x y -+-=相切,满足题意;设然过(1,0)点且斜率存在的直线为()1y k x =-,与圆()()22221x y -+-=相切,所以1d r ===,所以解得34k =,所以满足题意的直线方程为3430x y --=或1x =.故选:D.7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1A CE 的距离为()A.63B.66C.24D.14【答案】A 【解析】【分析】建立空间直角坐标系,利用空间向量法求点到平面的距离公式即可求出结果.【详解】分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,()11,0,1A ,11,,02E ⎛⎫⎪⎝⎭,()0,1,0C ,()11,1,1B ,110,,12A E ⎛⎫=- ⎪⎝⎭ ,()11,1,1AC =-- ,()110,1,0A B = 设平面1A CE 的法向量为(),,n x y z =,1100A E n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即1020y z x y z ⎧-=⎪⎨⎪-+-=⎩,取1,2,1x y z ===,()1,2,1n = 所以点1B 到平面1ACE的距离为113A B n d n⋅===uuu u r rr .故选:A.8.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.2D.2【答案】C 【解析】【分析】由圆222x y c +=与椭圆有交点得c b ≥,即2222c b a c ≥=-,可得212e ≥,即可求解.【详解】由题意知,以12F F 为直径的圆的方程为222x y c +=,要使得圆222x y c +=与椭圆有交点,需c b ≥,即2222c b a c ≥=-,得222c a ≥,即212e ≥,由01e <<,解得12e ≤<,所以椭圆的离心率的最小值为2.故选:C9.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236【答案】C 【解析】【分析】由题意首项得()*121n n n a +=∈+N ,进而有()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,由裂项相消法求和即可.【详解】由题意()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则()()()*1231232111n n n a a a na n n a ++++⋅⋅⋅++++=∈N ,两式相减得()()*112n n n a ++=∈N ,所以()*121n n n a+=∈+N ,又1221131a =⨯+=≠,所以()*3,12,2n n a n n n =⎧⎪=∈⎨≥⎪⎩N ,()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,所以数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为31111113115122223341011221122⎛⎫⎛⎫+⨯-+-++-=+⨯-= ⎪ ⎪⎝⎭⎝⎭.故选:C.第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.【答案】9【解析】【分析】根据空间向量数量积的坐标表示即可求解.【详解】由题意知,(2,1,3)(4,2,1)24(1)2319a b ⋅=-⋅=⨯+-⨯+⨯=.故答案为:911.直线10x -=的倾斜角为_______________.【答案】150 【解析】【分析】由直线10x +-=的斜率为3k =-,得到00tan [0,180)3αα=-∈,即可求解.【详解】由题意,可知直线10x +-=的斜率为3k =-,设直线的倾斜角为α,则00tan [0,180)3αα=-∈,解得0150α=,即换线的倾斜角为0150.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.【答案】39【解析】【分析】由题意36396129,,,S S S S S S S ---成等差数列,结合315S =-,612S =-即可求解.【详解】由题意n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,所以()()36312151518S S S -=++=--,而36396129,,,S S S S S S S ---成等差数列,所以3101112129318155439a S a S a S =++=⨯+-+=-=.故答案为:39.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.【答案】2【解析】【分析】利用空间向量坐标法即可求出点到直线的距离.【详解】因为()0,2,3A ,()2,1,5B -,()0,1,5C -,所以()2,2,0BC =-,()2,1,2AB =-- 与BC同向的单位方向向量BC n BC ⎫==-⎪⎭uu u rr uu u r,2AB n ⋅=-uu u r r 则点A 到直线BC 的距离为2=.故答案为:214.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.【答案】【解析】【分析】由两圆的方程先求出公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦长即可.【详解】 两圆方程分别为:2210100x y x y +--=①,2262400x y x y +-+-=②,由②-①可得:412400x y +-=,即3100x y +-=,∴两圆的公共弦所在的直线方程为:3100x y +-=,2210100x y x y +--=的圆心坐标为()5,5,半径为,∴圆心到公共弦的距离为:d ==,∴公共弦长为:=.综上所述,公共弦长为:故答案为:.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.,答案不唯一)【解析】【分析】设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立直线方程和抛物线方程,再由焦点弦公式得12222p AB x x p p k=++=+,由圆220x y px +-=的方程可知,直线l 过其圆心,2CD r =,由38AB CD =列出方程求解即可.【详解】由题意知,l 的斜率存在,且不为0,设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得()22222204k p k x k p p x -++=,易知0∆>,则2122222k p p p x x p k k ++==+,所以12222p AB x x p p k =++=+,圆220x y px +-=的圆心,02p ⎛⎫ ⎪⎝⎭,半径2p r =,且直线l 过圆心,02p ⎛⎫ ⎪⎝⎭,所以2CD r p ==,由38AB CD =得,22328p p p k ⎛⎫+= ⎪⎝⎭,k =..三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .【答案】(1)38n a n =-(2)122n n T +=-【解析】【分析】(1)由已知条件求出数列首项与公差,可求{}n a 的通项公式;(2)由23,b b 可得{}n b 的首项与公比,可求前n 项和n T .【小问1详解】设等差数列{}n a 公差为d ,15a =-,4143422S a d ⨯=+=-,解得3d =,所以()1138n a a n d n =+-=-;【小问2详解】设等比数列{}n b 公比为q ,244==b a ,335178b a a +=+==,得2123148b b q b b q ==⎧⎨==⎩,解得122b q =⎧⎨=⎩,所以()()11121222112nnn n b q T q +--===---.17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N两点,且MN =,求直线l 的方程.【答案】(1)()()22215x y -+-=(2)30x y --=或10x y -+=【解析】【分析】(1)由题意可知OA OB ⊥,由此得圆的半径,圆心,进而得解.(2)由直线垂直待定所求方程,再结合点到直线距离公式、弦长公式即可得解.【小问1详解】由题意可知OA OB ⊥,所以圆C 是以()4,0A ,()0,2B 中点()2,1C 为圆心,12r AB ===为半径的圆,所以圆C 的方程为()()22215x y -+-=.【小问2详解】因为垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,所以不妨设满足题意的方程为0x y m -+=,所以圆心()2,1C 到该直线的距离为d =所以MN ==,解得123,1m m =-=,所以直线l 的方程为30x y --=或10x y -+=18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.【答案】(1)10(2)证明见解析(3)6【解析】【分析】(1)建立适当的空间直角坐标系,求出()()1,2,0,2,2,0DE BC =-=- ,结合向量夹角余弦公式即可得解.(2)要证明1B F ⊥平面AEF ,只需证明11,B F AE B F AF ⊥⊥,即只需证明110,0B F AF B F AE ⋅=⋅= .(3)由(2)得平面AEF 的一个法向量为()11,1,2B F =-- ,故只需求出平面1AB E 的法向量,再结合向量夹角余弦公式即可得解.【小问1详解】由题意侧棱1AA ⊥平面ABC ,又因为,AB AC ⊂平面ABC ,所以11,AA AB AA AC ⊥⊥,因为90BAC ∠=︒,所以BA BC ⊥,所以1,,AB AC AA 两两互相垂直,所以以点A 为原点,1,,AB AC AA 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系:因为ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2A B C A B C ,()()()1,1,0,0,2,1,1,0,1F E D ,所以()()1,2,0,2,2,0DE BC =-=- ,设直线DE与BC所成角为θ,所以cos cos,10DE BCDE BCDE BCθ⋅===⋅.【小问2详解】由(1)()()()11,1,2,1,1,0,0,2,1B F AF AE=--==,所以111100,0220B F AF B F AE⋅=-+-=⋅=-+-=,所以11,B F AE B F AF⊥⊥,又因为,,AE AF A AE AF=⊂平面AEF,所以1B F⊥平面AEF.【小问3详解】由(2)可知1B F⊥平面AEF,即可取平面AEF的一个法向量为()11,1,2B F=--,由(1)可知()()12,0,2,0,2,1AB AE==,不妨设平面1AB E的法向量为(),,n x y z=,则22020x zy z+=⎧⎨+=⎩,不妨令2z=-,解得2,1x y==,即可取平面1AB E的法向量为()2,1,2n=-,设平面1AB E与平面AEF夹角为α,则111cos cos,6B F nB F nB F nα⋅===⋅.19.在数列{}n a中,11a=,()*122nn na a n+-=∈N.(1)求2a,3a;(2)记()*2nnnab n=∈N.(i)证明数列{}n b是等差数列,并求数列{}n a的通项公式;(ii)对任意的正整数n,设,,,.nnna ncb n⎧=⎨⎩为奇数为偶数,求数列{}n c的前2n项和2n T.【答案】19.24a=,312a=20.(i )证明见解析;()1*2n n a n n -=⋅∈N .(ii )()()*216554929n n n n n T n +-⎛⎫=++∈⎪⎝⎭N .【解析】【分析】(1)由递推公式即可得到2a ,3a ;(2)对于(i ),利用已知条件和等差数列的概念即可证明;对于(ii ),先写出n c ,再利用错位相减法求得奇数项的前2n 项和,利用等差数列的前n 项和公式求得偶数项的前2n 项和,进而相加可得2n T .【小问1详解】由11a =,()*122n n n a a n +-=∈N ,得()*122n n n a a n +=+∈N ,所以121224a a =+=,2322212a a =+=,即24a =,312a =.【小问2详解】(i )证明:由122n n n a a +-=和()*2n n n a b n =∈N 得,()*11111122122222n n n n n n n n n n n a a a a b b n ++++++--=-===∈N ,所以{}n b 是111122a b ==,公差为12的等差数列;因为()1111222n b n n =+-⨯=,所以()*1,22n n n a b n n ==∈N ,即()1*2n n a n n -=⋅∈N .(ii )由(i )得12,1,2n n n n c n n -⎧⋅⎪=⎨⎪⎩为奇数为偶数,当n 为奇数,即()*21n k k =-∈N 时,()()()221*21212214N k k k c k k k ---=-⋅=-⋅∈,设前2n 项中奇数项和为n A ,前2n 项中偶数项和为nB 所以()()0121*143454214n n A n n -=⨯+⨯+⨯++-⋅∈N ①,()()123*4143454214n n A n n =⨯+⨯+⨯++-⋅∈N ②,由①-②得:()()()()()012131431453421234214n n n A n n k -⎡⎤-=⨯+-⨯+-⨯++---⋅--⋅⎣⎦,()()121121444214n n n -=-+⨯++++--⋅ ,()()1142214114nn n ⨯-=⨯--⋅--()242214133n n n ⨯=---⋅-()2521433n n ⎡⎤=---⎢⎥⎣⎦()*552433n n n ⎛⎫=--∈ ⎪⎝⎭N ,即()*5532433n n A n n ⎛⎫-=--∈ ⎪⎝⎭N ,则()*655499n n n A n -⎛⎫=+∈ ⎪⎝⎭N ;当n 为偶数,即()*2n k k =∈N 时,()*212N 2k c k k k =⨯=∈,所以()()*11232n n n B n n +=++++=∈N .综上所述,()()*216554929n n n n n n n T A B n +-⎛⎫=+=++∈ ⎪⎝⎭N .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.【答案】(1)221205x y +=(2)220x y --=【解析】【分析】(1)由离心率和椭圆上的点,椭圆的方程;(2)设直线方程,代入椭圆方程,利用弦长公式和面积公式求出直线斜率,可得直线方程.【小问1详解】椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M ,则有22222161132a b a b c c e a ⎧+=⎪⎪⎪=+⎨⎪⎪==⎪⎩,解得2220,5a b ==,所以椭圆C 的方程为221205x y +=.【小问2详解】过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),设直线l 的方程为()41y k x =-+,椭圆左顶点为()A -,MA k =,点N 在x 轴下方,直线l的斜率k >,由()22411205y k x x y ⎧=-+⎪⎨+=⎪⎩,消去y 得()()222214846432160k x k k x k k ++-+--=,设(),N m n ,则有()2284414k k m k -+=+,得22168414k k m k --=+,)288414k MN k +==-=+,原点O 到直线l 的距离d =则有)2388121124OMN S MN d k k =⋅⋅++=⋅= ,当41k >时,方程化简为241270k k +-=,解得12k =;当041k <<时,方程化简为2281210k k +-=,解得114k =,不满足k >所以直线l 的方程为()1412y x =-+,即220x y --=.【点睛】方法点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.要强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。

中职高二上册数学练习题

中职高二上册数学练习题

中职高二上册数学练习题一、选择题1. 已知函数 f(x) = 2x - 5,求 f(3) 的值是多少?A) 1B) 3C) 4D) 62. 若 2x + 5 = 11,求 x 的值为多少?A) -3B) -2C) 2D) 33. 某物品原价为 120 元,现以八折出售,求出售后的价格是多少?A) 24 元B) 60 元C) 90 元D) 96 元4. 一个正方形的边长为 x 米,求该正方形的面积是多少?A) xB) 2xC) x²D) 2x²5. 若 a:b = 3:4,且 b = 20,求 a 的值为多少?A) 5B) 10C) 15D) 25二、填空题1. 下面哪个数字是素数:( 2 )2. 若 a + 3 = 7,求 a 的值为:( 4 )3. 若一个圆的半径为 5cm,其直径是多少 cm:( 10 )4. 若 x + 5 = 8,求 x 的值为:( 3 )5. 下面哪个数字是偶数:( 16 )三、解答题1. 请计算下列等式的结果:(a) 2³ + 4 - 5 × 2(b) 3 × 4² + 8 ÷ 2 - 52. 请解决以下方程:(a) 2x + 3 = 9(b) 5(2x - 3) = 253. 一个矩形的长比宽大 5,且周长等于 70,求该矩形的长和宽各是多少?四、证明题证明:三角形内角和是180度。

解答:设三角形的三个内角分别为 A、B、C。

根据三角形的性质,三个内角之和等于180度,即 A + B + C = 180。

所以,我们证明了三角形内角和是180度。

五、应用题某电商平台举办了一次促销活动,某商品原价为150元,促销期间价格降低20%。

1. 请计算促销期间该商品的实际售价是多少?2. 若一位顾客购买了该商品5件,他总共支付了多少钱?3. 若该顾客支付了200元,他购买的商品数量是多少件?六、综合题1. 一块蛋糕被4人分享,每人分得的蛋糕重量是250克。

高二上册数学每章练习题

高二上册数学每章练习题

高二上册数学每章练习题第一章:函数与方程函数与方程是高中数学的重点内容之一,它们揭示了数学中的关系与变化规律。

本章主要介绍了函数的概念与性质,以及一元二次函数、指数函数、对数函数等具体的函数类型。

本章的练习题分为四部分,分别是选择题、填空题、解答题和实践题。

选择题部分主要考查函数概念和性质的基本掌握情况,如函数的定义、函数图像的性质等。

在解答这部分题目时,要注意理解题目中的条件和要求,运用所学知识进行分析和解答。

填空题部分考查函数与方程的运算和应用,如解方程、求函数的值域等。

解答这部分问题时,应注意运用恰当的方法和步骤进行计算,并进行必要的化简和推导。

解答题部分主要考查函数的性质、函数方程的求解以及函数应用等方面的能力。

在解答这部分的问题时,应注意理顺思路,合理运用所学的数学知识,写出准确的解答过程和结论。

实践题部分是一个综合应用题,要求学生通过运用所学知识解决具体问题。

在解答这部分问题时,应注意分析问题的背景和条件,理清思路,掌握解决问题的关键步骤,写出完整的解答过程。

练习题的目的是帮助学生巩固知识、掌握技能,提高解题能力。

解答练习题时,应注重理解题意,仔细分析问题,灵活运用所学知识,充分发挥自己的思维能力和创造力。

通过认真完成每章练习题,可以帮助学生深入理解和巩固所学知识,培养良好的数学思维和解题能力。

同时,也要积极参加课堂上的讨论和练习,与同学们一起交流和学习,共同进步。

在以后的学习中,要善于总结和归纳所学内容,不断加强对数学的理解和掌握,为后续学习打下扎实的基础。

北京市第十二中学2024-2025学年高二上学期10月练习数学试题

北京市第十二中学2024-2025学年高二上学期10月练习数学试题

北京市第十二中学2024-2025学年高二上学期10月练习数学试题一、单选题1.过())0,1,A B 两点的直线的倾斜角为( ) A .60-︒B .60︒C .120︒D .150︒2.已知直线l 经过点(1,1,2),(0,1,0)A B ,平面α的一个法向量为(2,0,4)n =--r,则( )A .l α∥B .l α⊥C .l α⊂D .l 与α相交,但不垂直3.如图,平行六面体1111ABCD A B C D -中,E 为BC 的中点,AB a u u u r r =,AD b =u u ur r ,1AA c =u u u r r ,则1D E =u u u u r ( )A .12a b c -+r r rB .12a b c --r r rC .32a b c ++r r rD .1122a b c +-r r r4.设点()2,3,4A -在xOy 平面上的射影为B ,则OB u u u r等于( )AB .5C .D 5.在以下4个命题中,不正确的命题的个数为( )①若a b b c ⋅=⋅r r r r ,则a c =r r ;②若三个向量,,a b c r r r 两两共面,则向量,,a b c r r r共面;③若{},,a b c r r r为空间的一个基底,则{},,a b b c c a -++r r r r r r 构成空间的另一基底;④()a b c a b c ⋅⋅=⋅⋅r r r r r r . A .1个 B .2个 C .3个 D .4个6.已知向量,a b r r ,则“()()0a b a b +⋅-=r r r r ”是“a b =r r 或a b =-r r ”的( )条件.A .必要而不充分B .充分而不必要C .充分必要条件D .既不充分也不必要条件7.已知PA =u u u r (2,1,﹣3),PB =u u u r(﹣1,2,3),PC =u u u r (7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A .9B .﹣9C .﹣3D .38.设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=u u u r u u u r ,0AC AD ⋅=u u u r u u u r ,0AB AD ⋅=uu u r uuu r,则BCD ∆是( ) A .锐角三角形B .钝角三角形C .直角三角形D .不确定9.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.若图3中每个正方体的棱长为1,则点A 到平面QGC 的距离是( )A .14B .12C D 10.正多面体也称柏拉图立体,被誉为最有规律的立体结构,是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形). 数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体. 如图,已知一个正八面体ABCDEF 的棱长为2,M ,N 分别为棱AD ,AC 的中点,则直线BN 和FM 夹角的余弦值为( )A .56BC D 11.在棱长为1的正方体1111ABCD A B C D -中,点M 和N 分别是正方形ABCD 和11BB C C 的中心,点P 为正方体表面上及内部的点,若点P 满足DP mDA nDM kDN =++u u u r u u u r u u u u r u u u r,其中,,R m n k ∈,且1m n k ++=,则满足条件的所有点P 构成的图形的面积是( )A B C D 12.菱形ABCD 的边长为4,60A ∠=︒,E 为AB 的中点(如图1),将ADE V 沿直线DE 翻折至A DE 'V 处(如图2),连接A B ',A C ',若四棱锥'A EBCD -的体积为F 为A D '的中点,则F 到直线BC 的距离为( )A .B C D二、填空题13.已知向量(1,2,1),(3,,)a b x y =-=r r,且//a b r r ,则x y +=.14.已知i r ,j r ,k r 为空间两两垂直的单位向量,且2a i j k =+-r r r r ,34b i j k =-+r r r r ,则a b ⋅=rr .15.已知()()2,2,3,1,1,2b a =-=-r r ,则向量a r在向量b r 上的投影向量的坐标为.16.已知直线l 斜率的取值范围是(),则l 的倾斜角的取值范围是.17.长方体1111ABCD A B C D -中,13,4,,,AD AA AB E F G ===分别是棱111,,C D BC CC 的中点,M 是该长方体的面ABCD 内的一个动点(不包括边界),若直线1D M 与平面EFG 平行,则11MB MD ⋅u u u u r u u u u r的最小值为.18.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥底面, 1.ABCD PA AB G ==为PC 的中点,M 为PBD △内一动点(不与,,P B D 三点重合).给出下列四个结论:①直线BC 与PD 所成角的大小为π4;②AG BM ⊥;③GM ④若AM =则点M 的轨迹所围成图形的面积是π6.其中所有正确结论的序号是.三、解答题19.已知空间中三点()()()2,0,2,1,1,2,3,0,3A B C ---,设,a AB b AC ==u u ur u u u r r r .(1)求()b a a +⋅r r r ;(2)求向量a r与向量b r夹角的大小.20.如图,平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都是1,1190,60,BAD DAA BAA M ∠=︒∠=∠=︒为11AC 与11B D 的交点.设1,,AB a AD b AA c ===u u u r u u u r u u u r r r r .(1)用,,a b c r r r表示BM u u u u r ,并求BM u u u u r 的值;(2)求1BM AC ⋅u u u u r u u u u r的值.21.如图,正方体1111ABCD A B C D -棱长为2,点E 是棱BC 的中点.(1)求证:1//BD 平面1DC E ;(2)若点F 是线段1BD 的中点,求直线DF 与平面1DC E 所成角的正弦值. 22.如图,在四棱锥P ABCD -中,PD ⊥平面,,90ABCD AB CD ADC ︒∠=∥,且22AD CD PD AB ====.(1)求证:AB ⊥平面PAD ;(2)求平面PAD 与平面PBC 夹角的余弦值;(3)在棱PB 上是否存在点G (G 与,P B 不重合),使得DG 与平面PBC 所成角的正弦值为23?若存在,求PGPB的值,若不存在,说明理由. 23.学习阅读以下材料,应用所学知识解决下面的问题.类比于二维空间(即平面),向量a r可用二元有序数组()12,a a 表示,若n 维空间向量a r用n 元有序数组()12,,,n a a a L 表示,记为()12,,,=rL n a a a a ,对于k ∈R ,任意()()1212,,,,,,,n n a a a a b b b b ==r rL L ,有:①数乘运算:()12,,,n ka ka ka ka =rL ;②加法运算:()1122,,,n n a b a b a b a b +=+++rr L ;③数量积运算:1122n n a b a b a b a b ⋅=+++r rL ;④向量的模:r a ⑤对于一组向量()1,2,,i a i m =u rL ,若存在一组不同时为零的实数()1,2,,i k i m =L 使得11220m m k a k a k a +++=u r u u r u u r rL ,则称这组向量线性相关,否则称为线性无关.⑥在n 维向量空间中,基底是一组线性无关的向量{}12,,,n e e e u r u u r u u r L ,并且在空间中的任意向量αu r都可以由这组基底线性表示,即1122n n e e e αλλλ=+++u ru r u u r u u rL ,其中12,,,n λλλL 是一组实数.设i A 是n 元集合{}1,2,,A n =L 的子集,集合i A 元素的个数记为i A ,若集合组12,,,m A A A L 同时满足以下2个条件,则称集合组12,,,m A A A L 具有性质P :①i A 为奇数,其中1,2,,i m =⋯;②i j A A I 为偶数,其中,1,2,,,i j m i j =⋯≠.(1)当3n =时,集合组12,,,m A A A L 具有性质P ,求m 的最大值,并写出相应集合组; (2)当8n =时,集合组12,,,m A A A L 具有性质P ,求m 的最大值;(3)i A 是n 元集合{}1,2,,A n =L 的子集,若集合组12,,,m A A A L 具有性质P ,求m 的最大值.。

高二数学练习题及答案电子版

高二数学练习题及答案电子版

高二数学练习题及答案电子版下面是一份高二数学练习题及答案的电子版,供同学们参考和复习使用。

1. 线性方程组1.1 解线性方程组 2x + 3y = 7,3x - 4y = 6。

解答:先用第一个方程解出 x:2x = 7 - 3yx = (7 - 3y)/2将 x 的值代入第二个方程中:3(7 - 3y)/2 - 4y = 6化简得:21 - 9y - 8y = 12-17y = -9y = 9/17将 y 的值代入第一个方程中,求得 x:2x + 3(9/17) = 72x + 27/17 = 72x = 7 - 27/17 = 119/17 - 27/17 = 92/17x = 92/17 * 1/2 = 46/17所以,该线性方程组的解为 x = 46/17,y = 9/17。

2. 数列与数列求和2.1 求等差数列 2,5,8,11,... 的第 n 项公式和前 n 项和公式。

解答:等差数列的通项公式可以表示为 an = a1 + (n - 1)d,其中 a1 是首项,d 是公差。

首项 a1 = 2公差 d = 5 - 2 = 3第 n 项公式 an = 2 + (n - 1)3 = 3n - 1前 n 项和公式 Sn = (n/2)(a1 + an) = (n/2)(2 + 3n - 1) = (n/2)(3n + 1)所以,该等差数列的第 n 项公式为 3n - 1,前 n 项和公式为 (n/2)(3n + 1)。

3. 函数与方程3.1 求函数 f(x) = 2x^2 + 3x - 4 的极值点和拐点。

解答:首先,求函数的导数 f'(x):f'(x) = 4x + 3令 f'(x) = 0,解得极值点 x = -3/4。

然后,求函数的二阶导数 f''(x):f''(x) = 4由于二阶导数恒为正数,所以没有拐点。

所以,函数 f(x) = 2x^2 + 3x - 4 的极值点为 (-3/4, f(-3/4)),没有拐点。

高二数学练习题大题带答案

高二数学练习题大题带答案

高二数学练习题大题带答案一、选择题1. 已知函数f(x)=3x^2+2x-1,则f(-2)的值为A. -17B. -11C. 1D. 7答案:B. -112. 若三角形ABC中,∠B=60°,且AB=AC,则下列结论中错误的是A. ∠A=60°B. ∠C=60°C. AB=BCD. ∠BAC=180°答案:D. ∠BAC=180°3. 已知等差数列的首项为-2,公差为4,则该数列的前n项和为Sn=2n^2+7n,则n的值为A. 0B. 1/2C. 2D. 4答案:C. 2二、填空题1. 二次函数y=ax^2+bx+c(a≠0),若图象与x轴交于点(3,0),且顶点坐标为(2,3),则a的值为______,b的值为______。

答案:a=1,b=-62. 若a、b、c为互不相等的实数,且满足等式a^2+b^2+c^2=1,则a+b+c=______。

答案:0三、解答题1. 解下列方程组:x+y=4x-y=2解答:将两个方程相加得:2x=6,解得x=3将x=3代入第一个方程得:3+y=4,解得y=1所以方程组的解为x=3,y=1。

2. 某工程队需要10天完成一项工程,现在工程队决定增加人手,如果增加4人则可提前2天完成工程。

求原来工程队的人数。

解答:设原来工程队的人数为x人。

根据题意可得以下方程:10x = 8(x + 4)解方程可得:10x = 8x + 32化简后得:2x = 32解得x = 16所以原来工程队的人数为16人。

四、简答题1. 什么是函数?答:函数是一个集合的输入和输出之间的对应关系。

对于函数而言,每个输入都有唯一的输出。

2. 什么是等差数列?请给出一个等差数列的例子。

答:等差数列是指一个数列中,从第二个数起,每个数与前一个数的差等于同一个常数。

例如:1, 4, 7, 10, 13就是一个等差数列,其中公差为3。

五、证明题证明:两个互余的角相加等于90°。

高二数学选择性必修一第一章综合练习

高二数学选择性必修一第一章综合练习

高二数学选择性必修一第一章综合练习-、单项选择题:1.在空间直角坐标系中,点()1,2,3P 关于xOy 平面对称的点的坐标是( ) A .()1,2,3-B .()1,2,3-C .()1,2,3-D .()1,2,3--2.已知直线l 的方向向量是()3m =--,平面α的法向量是13,3n ⎛⎫=--- ⎪⎝⎭,则直线l 与平面α的位置关系是( ) A .l α⊥ B .l α C .l 与α相交但不垂直 D .l α或l α⊂3.在棱长为1的正方体1111ABCD A B C D -中,设AB a =,AD b =,1AA c =,则向量a b +与向量b c -的夹角的大小为( ) A .4πB .3πC .2πD .23π4.如图,在正方体1111ABCD A B C D -中,与平面11A BC 垂直的向量是( )A .1ABB .BCC .1ACD .1B D5.如图,在正四棱锥P ABCD -中,2PA =,AB E 为BC 的中点,则异面直线BD与PE 所成角的余弦值为( )A B C D6.如图,在三棱锥P ABC -中,PC ⊥底面ABC ,90BAC ∠=︒,2AB AC ==,tan PBC ∠则点C 到平面PAB 的距离是( )A BCD .45二、多项选择题。

7.已知向量()1,2,1a =--,()2,4,2b =-,则下列结论中正确的是( ) A .()1,2,1a b +=-B .abC .10a b ⋅=-D .26a=8.如图,在正方体1111ABCD A B C D -中,14AA =,点M ,N 分别在棱AB 和1BB 上运动(不含端点),若1D M MN ⊥,则下列命题正确的是( )A .1 MN A M ⊥B .MN ⊥平面1D MCC .线段BN 长度的最大值为1D .三棱锥111C A D M -体积不变三、填空题:本题共2小题。

9.已知()1,1,0a =,()1,1,0b =-,()0,0,3c =-分别是平面α,β,γ的法向量,则α,β,γ 三个平面中互相垂直的有________对.10.如图,在三棱锥A BCD -中,AD ⊥平面BCD ,2AD CD ==,BD =,135BDC ∠=︒,则平面ABD 与平面ABC 夹角的余弦值为________.四、解答题:本题共2小题。

人教版高二上学期数学(选择性必修1)《3.1.2椭圆的标准方程及性质的应用》练习题及答案

人教版高二上学期数学(选择性必修1)《3.1.2椭圆的标准方程及性质的应用》练习题及答案

人教版高二上学期数学(选择性必修1)《3.1.2椭圆的标准方程及性质的应用》练习题及答案学校:___________班级:___________姓名:___________学号:___________一、选择题1.直线y =kx -k 与椭圆x 29+y 24=1的位置关系为( ) A.相交 B.相切C.相离D.不确定2.直线y =kx +2和椭圆x 23+y 22=1有公共点,则k 的取值范围是( ) A.k <-63或k >63 B.k ≤-63或k ≥63C.-63<k <63D.-63≤k ≤633.德国天文学家开普勒发现天体运行轨道是椭圆,已知地球运行的轨道是一个椭圆,太阳在它的一个焦点上,轨道近日点到太阳中心的距离和远日点到太阳中心的距离之比是29∶30,那么地球运行轨道所在椭圆的离心率是( ) A.159 B.259 C.2959 D.30594.已知过圆锥曲线x 2m +y 2n =1上一点P (x 0,y 0)的切线方程为x 0x m +y 0y n =1.过椭圆x 212+y 24=1上的点A (3,-1)作椭圆的切线l ,则过点A 且与直线l 垂直的直线方程为( )A.x -y -3=0B.x +y -2=0C.2x +3y -3=0D.3x -y -10=05.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆(如图所示),若“切面”所在平面与底面成60°角,则该椭圆的离心率为( )A.12B.22C.32D.136.如图是一个篮球在太阳光照射下的影子,已知篮球的直径为22 cm ,现太阳光与地面的夹角为60°,则此椭圆形影子的离心率为( )A.13B.12C.22D.327.(多选)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( ) A.63 B.-63C.-33 D.33 8.(多选)如图所示,某探月卫星沿地月转移轨道飞向月球,在月球附近一点P 处变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点处第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,且轨道Ⅱ的右顶点为轨道Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为a 1和a 2,半焦距分别为c 1和c 2,离心率分别为e 1,e 2,则下列结论正确的是( )A .a 1+c 1>2(a 2+c 2)B .a 1-c 1=a 2-c 2C .e 1=e 2+12D .椭圆Ⅱ比椭圆Ⅰ更扁 二、填空题9.某隧道的拱线设计为半个椭圆的形状,最大拱高h 为6米(如图所示),路面设计是双向车道,车道总宽为87 米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽d 至少应是________米.10.过点M(1,1)作斜率为-12的直线与椭圆C:x2a2+y2b2=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为________11.若直线y=x+2与椭圆x2m+y23=1有两个公共点,则m的取值范围是________________12.罗马竞技场,建于公元72年到82年,是古罗马文明的象征,其内部形状近似为一个椭圆形,其长轴长约为188米,短轴长约为156米,竞技场分为表演区与观众区,中间的表演区也近似为椭圆形,其长轴长为86米,短轴长为54米,若椭圆的面积为πab(其中a,b分别为椭圆的长半轴长与短半轴长,π取3.14),已知观众区可以容纳9万人,由此推断,观众区每个座位所占面积约为________平方米(保留小数点后两位).三、解答题13.已知椭圆x2+8y2=8,在椭圆上求一点P,使P到直线l:x-y+4=0的距离最短,并求出最短距离.14.已知点A,B的坐标分别是(-1,0),(1,0),直线AM,BM相交于点M,且它们的斜率之积为-2.(1)求动点M 的轨迹方程;(2)若过点N ⎝ ⎛⎭⎪⎫12,1的直线l 交动点M 的轨迹于C ,D 两点,且N 为线段CD 的中点,求直线l 的方程.15.如图,某市新城公园将在长34米、宽30米的矩形地块内开凿一个“挞圆”形水池,水池边缘由两个半椭圆x 2a 2+y 2b 2=1(x ≤0)和y 2b 2+x 281=1(x ≥0)组成,其中a >b >9,“挞圆”内切于矩形(即“挞圆”与矩形各边均有且只有一个公共点).(1)求“挞圆”的方程;(2)在“挞圆”形水池内建一矩形网箱养殖观赏鱼,若该矩形网箱的一条边所在直线方程为y =t (t ∈(0,15)),求该网箱所占水面面积的最大值.参考答案及解析一、选择题1.A 解析:由⎩⎪⎨⎪⎧ y =kx -k ,x 29+y 24=1,消去y 得(4+9k 2)x 2-18k 2x +9k 2-36=0Δ=(-18k 2)2-4(4+9k 2)(9k 2-36)=576(2k 2+1),易知Δ>0恒成立∴直线y =kx -k 与椭圆x 29+y 24=1的位置关系为相交. 2.B 解析:将y =kx +2代入椭圆方程x 23+y 22=1,消去y ,可得(2+3k 2)x 2+12kx +6=0 ∴Δ=144k 2-24(2+3k 2)=72k 2-48∵直线和椭圆有公共点,∴72k 2-48≥0,∴k ≤-63或k ≥63. 3.A 解析:设椭圆的长半轴长为a ,半焦距为c ,由题意可得a -c a +c =2930整理得a =59c ,即c a =159. ∴地球运行轨道所在椭圆的离心率是159. 4.B 解析:过椭圆x 212+y 24=1上的点A (3,-1)的切线l 的方程为3x 12+(-y )4=1,即x -y -4=0,切线l 的斜率为1.与直线l 垂直的直线的斜率为-1,故过点A 且与直线l 垂直的直线方程为y +1=-(x -3),即x +y -2=0.5.C 解析:设椭圆长轴长为2a ,短轴长为2b ,由“切面”所在平面与底面成60°角可得2b 2a =cos 60°,即a =2b ,所以e =c a =a 2-b 2a 2=32. 6.B 解析:如图,l 1,l 2 是两条与球相切的直线,分别切于点A ,C ,与底面交于点B ,D ,设篮球的半径为R∴AC =2R =22,R =11过点C 作CE ∥BD 交l 1于点E ,则CE =BD在△ACE 中,CE =AC sin 60°,∴CE =22×23=2a ,∴a =223=2R 3,b =R ∴c =4R 23-R 2=33R ,∴e =c a =3R 32R 3=12. 7.AB 解析:由⎩⎪⎨⎪⎧ y =kx +2,x 23+y 22=1,得(3k 2+2)x 2+12kx +6=0,由题意知Δ=144k 2-24(3k 2+2)=0 解得k =±63. 8.ABC 解析:对A ,由题可知a 1=2a 2,c 1=a 2+c 2>2c 2,所以a 1+c 1>2(a 2+c 2),所以选项A正确;对B ,由a 1-c 1=|PF |,a 2-c 2=|PF |,得a 1-c 1=a 2-c 2,所以选项B 正确;对C ,由a 1=2a 2,c 1=a 2+c 2,得c 1a 1=a 2+c 22a 2=1+c 2a 22,即e 1=e 2+12,所以选项C 正确;对D ,根据选项C 知,2e 1=e 2+1>2e 2,所以e 1>e 2,即椭圆Ⅰ比椭圆Ⅱ更扁,所以选项D 错误.故选ABC .二、填空题9.答案:32解析:设椭圆方程为x 2a 2+y 236=1,当点(47,4.5)在椭圆上时,16×7a 2+⎝ ⎛⎭⎪⎫92236=1,解得a =16 ∵车辆高度不超过4.5米,∴a ≥16,d =2a ≥32,故拱宽至少为32米.10.答案:22解析:设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b2=1,① x 22a 2+y 22b 2=1.② ∵M 是线段AB 的中点,∴x 1+x 22=1,y 1+y 22=1. ∵直线AB 的方程是y =-12(x -1)+1,∴y 1-y 2=-12(x 1-x 2). 由①②两式相减可得x 21-x 22a 2+y 21-y 22b 2=0,即2a 2+⎝ ⎛⎭⎪⎫-12·2b 2=0.∴a =2b ,∴c =b ,∴e =c a =22. 11.答案:(1,3)∪(3,+∞)解析:∵x 2m +y 23=1表示椭圆,∴m >0且m ≠3. 由⎩⎪⎨⎪⎧ y =x +2,x 2m +y 23=1,得(m +3)x 2+4mx +m =0∴Δ=16m 2-4m (m +3)>0,解得m >1或m <0.∴m >1且m ≠3∴m 的取值范围是(1,3)∪(3,+∞).12.答案:0.22解析:由条件可得,竞技场的总面积为π×1882×1562=7 332π(平方米),表演区的面积为π×862×542=1 161π(平方米),故观众区的面积为7 332π-1 161π=6 171π(平方米),故观众区每个座位所占面积为6 171π90 000≈6 171×3.1490 000≈0.22(平方米).三、解答题13.解:设与直线x -y +4=0平行且与椭圆相切的直线方程为x -y +a =0(a ≠4) 由⎩⎨⎧ x 2+8y 2=8,x -y +a =0,消x 得9y 2-2ay +a 2-8=0 由Δ=4a 2-36(a 2-8)=0,解得a =3或a =-3∴与直线l 距离较近的切线为x -y +3=0,两条直线之间的距离即为所求最短距离 且直线x -y +3=0与椭圆的切点即为所求点P .故所求最短距离d =|4-3|2=22. 由⎩⎨⎧ x 2+8y 2=8,x -y +3=0,得⎩⎪⎨⎪⎧ x =-83,y =13,即P ⎝ ⎛⎭⎪⎫-83,13.14.解:(1)设M (x ,y ).因为k AM ·k BM =-2,所以y x +1·y x -1=-2(x ≠±1),化简得2x 2+y 2=2(x ≠±1). 即点M 的轨迹方程为2x 2+y 2=2(x ≠±1).(2)设C (x 1,y 1),D (x 2,y 2).当直线l ⊥x 轴时,直线l 的方程为x =12,易知此时线段CD 的中点不是N ,不符合题意. 当直线l 不与x 轴垂直时,设直线l 的方程为y -1=k ⎝ ⎛⎭⎪⎫x -12,将点C (x 1,y 1),D (x 2,y 2)的坐标代入2x 2+y 2=2(x ≠±1),得2x 21+y 21=2,① 2x 22+y 22=2,② ①-②整理得k =y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×2×122×1=-1 故直线l 的方程为y -1=-⎝ ⎛⎭⎪⎫x -12,即所求直线l 的方程为2x +2y -3=0. 15.解:(1)由题意知b =15,a +9=34,解得a =25,b =15.所以“挞圆”方程为x 2252+y 2152=1(x ≤0)和y 2152+x 292=1(x ≥0). (2)设P (x 0,t )为矩形在第一象限内的顶点,Q (x 1,t )为矩形在第二象限内的顶点则t 2152+x 2092=1,x 21252+t 2152=1,可得x 1=-259x 0.所以内接矩形的面积S =2t (x 0-x 1)=2t ×349x 0=15×34×2·x 09·t 15≤15×34⎝ ⎛⎭⎪⎫x 2092+t 2152=510 当且仅当x 09=t 15时,S 取最大值510. 所以网箱所占水面面积的最大值为510平方米。

高二上册数学练习题大全

高二上册数学练习题大全

高二上册数学练习题大全本文将为您提供一份高二上册数学练习题的大全,旨在帮助学生们更好地巩固和提高数学知识和技能。

以下是各个章节的习题,每个章节包含主题、概念和相应的练习题,供学生们进行训练和复习。

第一章:代数与函数1. 分解因式练习题:将以下多项式完全分解因式:a) x^2 + 6x + 9b) x^2 - 16c) x^2 + 5x + 6d) x^2 - 92. 一次函数图像与性质练习题:给定函数 f(x) = 3x - 2,求出函数的 x 轴截距、斜率和图像的倾斜方向。

3. 二次函数练习题:已知函数 f(x) = -2x^2 + 5x + 3,a) 求出函数的顶点坐标和对称轴方程;b) 求解方程 f(x) = 0。

第二章:三角函数1. 三角函数的基本概念练习题:计算下列三角函数的值:a) sin(π/3)b) cos(π/4)c) tan(π/6)2. 三角函数的性质与图像练习题:画出函数 y = sin(2x) 和 y = cos(3x) 的图像,并分析其性质。

3. 三角函数方程与恒等式练习题:解以下方程:a) sin(x) = 1b) cos(2x) = -1第三章:数列与数列的应用1. 等差数列练习题:已知等差数列的首项为 3,公差为 2,求出第 n 项的通项公式。

2. 等比数列练习题:已知等比数列的首项为 2,公比为 3,求出第 n 项的通项公式。

3. 数列的应用练习题:若数列 a_n 满足 a_(n+1) = a_n + 2n + 1,且 a_1 = 3,a) 求出 a_2 和 a_3;b) 求出前 n 项和 S_n 的表达式。

第四章:平面坐标系与向量1. 平面直角坐标系与坐标练习题:计算点 P(3, -4) 和点 Q(-1, 2) 之间的距离。

2. 向量的基本概念练习题:求出向量 v(3, -1) 和向量 u(-5, 2) 的和向量 v+u。

3. 平面向量的坐标表示与性质练习题:已知向量 v(-2, 3),求出平行于 v 且长度为 5 的向量。

高二数学上册练习题及答案

高二数学上册练习题及答案

高二数学上册练习题及答案1. (a) 求解方程:3x - 2 = 7(b) 求解方程:2(x - 3) + 5 = 17解答:(a) 3x - 2 = 7将-2移到等式右边:3x = 7 + 23x = 9将系数3移到等式右边,同时将9除以3:x = 3(b) 2(x - 3) + 5 = 17将2乘以括号里的表达式:2x - 6 + 5 = 17合并同类项:2x - 1 = 17将-1移到等式右边:2x = 17 + 12x = 18将系数2移到等式右边,同时将18除以2: x = 92. 计算下列代数式的值:(给定变量a = 3, b = 5)(a) a^2 - b^2(b) a^3 + b^3解答:(a) a^2 - b^2替换变量的值:3^2 - 5^2计算指数运算:9 - 25提取结果:-16(b) a^3 + b^3替换变量的值:3^3 + 5^3计算指数运算:27 + 125提取结果:1523. 解下列不等式,并将解表示在数轴上:(a) 2x + 3 ≤ 9(b) 5 - x > 2x + 1解答:(a) 2x + 3 ≤ 9将3移到不等式右边:2x ≤ 9 - 3简化不等式:2x ≤ 6将系数2移到不等式右边,同时将6除以2:x ≤ 3将解表示在数轴上,标记点3及其左侧为解的区间。

(b) 5 - x > 2x + 1将5移到不等式右边:-x > 2x + 1 - 5简化不等式:-x > 2x - 4将系数-1移到不等式右边,将解取反,同时将4加到2x上: 3x < 4将解表示在数轴上,标记点4及其左侧为解的区间。

4. 求解下列线性不等式组,并将解表示在数轴上:(a) { x + 1 > 3{ 2x - 5 ≤ 9(b) { 3x - 2 ≤ 10{ 4 - x > 2x - 1解答:(a) { x + 1 > 3{ 2x - 5 ≤ 9对第一个不等式进行简化:x > 3 - 1x > 2对第二个不等式进行简化:2x ≤ 9 + 52x ≤ 14x ≤ 7综合两个不等式的解:x > 2 且x ≤ 7将解表示在数轴上,标记点2及其右侧和标记点7及其左侧为解的区间。

北京市2024-2025学年高二上学期11月期中练习数学试题含答案

北京市2024-2025学年高二上学期11月期中练习数学试题含答案

2024—2025学年度第一学期高二年级数学期中练习(答案在最后)一、选择题,共10小题,每小题4分,共40分.1.直线:30l y --=的倾斜角为()A.30︒B.60︒C.120︒D.90︒【答案】B 【解析】【分析】先由直线的一般式得到其斜率,再利用直线斜率与倾斜角的关系即可得解.【详解】因为直线30l y --=可化为3y -,,0180θθ︒≤<︒,则tan θ=,所以60θ=︒.故选:B.2.正方体1111ABCD A B C D -的棱长为a ,则棱1BB 到面11AA C C 的距离为()A.33a B.a C.2a D.【答案】C 【解析】【分析】连接1111,A C B D ,它们交于点O ,证明11B D ⊥平面11AA C C ,得1B O 的长即为棱1BB 到面11AA C C 的距离,【详解】如图,连接1111,A C B D ,它们交于点O ,正方形中1111AC B D ⊥,又1AA ⊥平面1111D C B A ,11B D ⊂平面1111D C B A ,所以111AA B D ⊥,1111111,,AA A C A AA A C ⋂=⊂平面11AA C C ,所以11B D ⊥平面11AA C C ,所以1B O 的长即为棱1BB 到面11AA C C 的距离,而122B O a =,所以所求距离为2a .故选:C .3.如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,1111AA D C BB +-=()A.1AB B.DC C.AD D.BA【答案】B 【解析】【分析】通过所给平行六面体1111ABCD A B C D -,并结合相等向量、向量的加减运算,即可求解.【详解】由题中所给平行六面体1111ABCD A B C D -可知,11AA BB →→=,11D C DC →→=,故111111AA D C BB D C DC →→→→→+-==.故选:B4.已知直线()12:20,:2120l ax y l x a y +-=+++=,若1l ∥2l ,则a =()A.1-或2 B.1C.1或2- D.2-【答案】B 【解析】【分析】由条件结合直线平行结论列方程求a ,并对所得结果进行检验.【详解】因为1l ∥2l ,()12:20,:2120l ax y l x a y +-=+++=,所以()112a a +=⨯,所以220a a +-=,解得2a =-或1a =,当2a =-时,1:220l x y -+=,2:220l x y -+=,直线12,l l 重合,不满足要求,当1a =时,1:20+-=l x y ,2:10l x y ++=,直线12,l l 平行,满足要求,故选:B.5.已知l m ,为两条不同的直线,αβ,为两个不同的平面,则下列结论正确的是()A.若l m αβαβ⊂⊂∥,,,则lmB.若l m l m αβ⊂⊂,,∥,则αβ∥C.若l m m l αββ⋂=⊂⊥,,,则αβ⊥D.若n l l n αβαβα⊥⋂=⊂⊥,,,,则l β⊥【答案】D 【解析】【分析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【详解】A ,若l m αβαβ⊂⊂∥,,,则lm 或异面,故该选项错误;B ,若l m l m αβ⊂⊂,,∥,则αβ∥或相交,故该选项错误;C ,若l m m l αββ⋂=⊂⊥,,,则α,β不一定垂直,故该选项错误;D ,若n l l n αβαβα⊥⋂=⊂⊥,,,,则利用面面垂直的性质可得l β⊥,故该选项正确.故选:D.6.如图,将半径为1的球与棱长为1的正方体组合在一起,使正方体的一个顶点正好是球的球心,则这个组合体的体积为()A.716π+ B.7566π+ C.718π+ D.1π+【答案】A 【解析】【分析】该组合体可视作一个正方体和78个球体的组合体,进而求出体积.【详解】由题意,该组合体是一个正方体和78个球体的组合体,其体积为33747111836ππ+⨯⨯=+.故选:A.7.已知直线:l y kx b =+,22:1O x y +=e ,则“||1b <”是“直线l 与O 相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据点到直线的距离公式,结合直线与圆的位置关系分别验证充分性,必要性即可得到结果.【详解】由题意可得直线:l y kx b =+与22:1O x y +=e 相交,2211b k <⇒<+当||1b <时,满足221b k <+,即“||1b <”是“直线l 与O 相交”的充分条件;当直线:l y kx b =+与22:1O x y +=e 相交时,不一定有||1b <,比如2,3b k ==也满足,所以“||1b <”是“直线l 与O 相交”的充分不必要条件.故选:A.8.已知直线l :20ax y --=和点(2,1)P ,(3,2)Q -,若l 与线段PQ 相交,则实数a 的取值范围是()A.3243a -≤≤ B.34a ≤-或23a ≥ C.4332a -≤≤ D.43a ≤-或32a ≥【答案】D 【解析】【分析】结合已知条件作图并求出直线l 的定点A ,然后分别求出直线AP 和直线AQ 的斜率,结合图像求解即可.【详解】由直线l :20ax y --=可知直线l 必过定点A (0,2)-,且直线l 的斜率为a ,如下图所示:由斜率公式可知,直线AP 的斜率为213022AP k --==-,直线AQ 的斜率为2240(3)3AQ k --==---,若l 与线段PQ 相交,只需要32AP a k ≥=或43AQ a k ≤=-,故实数a 的取值范围是43a ≤-或32a ≥.故选:D.9.当曲线214y x =-与直线330kx y k --+=有两个相异的交点时,实数k 的取值范围是A.120,5⎛⎫⎪⎝⎭B.2,25⎛⎤⎥⎝⎦C.20,5⎛⎤ ⎥⎝⎦D.122,5⎡⎫⎪⎢⎣⎭【答案】D 【解析】【分析】根据图像计算直线过()2,1时和相切时的斜率,计算得到答案.【详解】如图所示:∵曲线214y x =--,直线330kx y k --+=,∴()2214x y +-=,1y ≤,()33y k x =-+,圆心()0,1O ,直线过定点()3,3,直线过()2,1时,有两个交点,此时13k =-+,2k =,22221k k -=+,125k =,∴1225k ≤<.故答案选D.【点睛】本题考查了直线的半圆的交点问题,忽略掉y 的取值范围是容易犯的错误.10.人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设()11,A x y ,()22,B x y ,则欧几里得距离()()()221212,D A B x x y y =-+-曼哈顿距离()1212,d A B x x y y =-+-,余弦距离()(),1cos ,e A B A B =-,其中()cos ,cos ,A B OA OB =(O 为坐标原点).若点()2,1M ,(),1d M N =,则(),e M N 的最大值为()A.310110-B.72110-C.2515-D.515-【答案】C 【解析】【分析】根据题意分析可得N 在正方形ABCD 的边上运动,结合图象分析,OM ON的最大值,即可得结果.【详解】设(),N x y ,则(),211d M N x y =-+-=,即211x y -+-=,可知211x y -+-=表示正方形ABCD ,其中()()()()2,0,3,1,2,2,1,1A B C D ,即点N 在正方形ABCD 的边上运动,因为()()2,1,,OM ON x y ==,由图可知:当()cos ,cos ,M N OM ON = 取到最小值,即,OM ON最大,点N 有如下两种可能:①点N 为点A ,则()2,0ON = ,可得()25cos ,cos ,5M N OM ON ==;②点N 在线段CD 上运动时,此时ON 与DC同向,不妨取()1,1ON = ,则()310cos ,cos ,10M N OM ON ==;因为31025105>,所以(),e M N 的最大值为2515-.故选:C.二、填空题,共5小题,每小题4分,共20分.11.两平行直线1l :3420x y +-=与2l :3450x y +-=之间的距离是_____.【答案】35##0.6【解析】【分析】借助两平行线间距离公式计算即可得.【详解】35d ==.故答案为:35.12.如图,在正方体1111ABCD A B C D -中,M ,N 分别为DB ,11A C的中点,则直线1A M 和BN 的夹角的余弦值为______【答案】23【解析】【分析】建立空间直角坐标系,设正方体棱长为2,求出各点坐标,利用异面直线空间向量夹角公式进行求解.【详解】以D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,设正方体棱长为2,则()()()()12,0,2,1,1,0,2,2,0,1,1,2A M B N ,故1A M 和BN 的夹角的余弦值为114263A M BN A M BN⋅===⋅.故答案为:2313.已知圆22:(1)4C x y +-=,过点P 作圆的切线,则切线方程为________.【答案】5y =+【解析】【分析】先判断点P 在圆上,再由垂直关系得出切线方程.【详解】因为22(21)4+-=,所以点P 在圆上,设切线的斜率为k ,则1CP k k ⋅=-,3,3PC k k==∴=.则切线方程为25y x =+=+.故答案为:5y =+14.已知直线l 过点()4,1P 且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当三角形OAB 面积取最小值时直线l 的斜率为_____.【答案】14-##0.25-【解析】【分析】设出直线的截距式方程,由基本不等式得到三角形OAB 面积取最小值时的直线方程,从而得到直线的斜率.【详解】设 ,()0,B b ,其中,0a b >,设直线l 的方程为1x ya b+=,因为直线l 过点()4,1P ,所以411a b+=,由基本不等式可得411a b =+≥=,4≥,16ab ≥,当且仅当41a b=,即8a =,2b =时取等号,所以ab 的最小值为16,此时OAB △的面积取最小值8,直线l 的斜率为201084-=--.故答案为:14-.15.如图,在正方体1111ABCD A B C D -中,P 为1AC 的中点,1AQ t AB =,[]0,1t ∈,则下列说法正确的________(请把正确的序号写在横线上)①1PQ A B ⊥②当12t =时,//PQ 平面11BCC B③当13t =时,PQ 与CD 所成角的余弦值为11④当14t =时,1A Q ⊥平面1PAB 【答案】①②③【解析】【分析】建立空间直角坐标系,对A ,验证两向量的数量积是否为0;对B ,证明QP 与BC平行即可得;对C ,借助向量求出夹角的余弦值即可得;对D ,证明1A Q 与1AB不垂直即可得.【详解】建立如图所示的空间直角坐标系,设正方体的棱长为1,则(),0,Q t t ,所以111,,222QP t t ⎛⎫=-- ⎪⎝⎭ ,()11,0,1A B =-,所以10QP A B ⋅=,所以1PQ A B ⊥,①正确;当12t =时,110,,022QP BC ⎛⎫== ⎪⎝⎭ ,所以//PQ BC,又⊂BC 平面11BCC B ,PQ ⊄平面11BCC B ,从而//PQ 平面11BCC B ,②正确;当13t =时,111,,626QP ⎛⎫= ⎪⎝⎭, ᦙ,所以PQ 与CD 所成角的余弦值为1116cos ,11116DC QP DC QP DC QP⋅== ,③正确;当14t =时,113,0,44A Q ⎛⎫=- ⎪⎝⎭ ,()11,0,1AB = ,111310442A Q AB ⋅=-=-≠ ,所以1AQ 不垂直于1AB ,所以1AQ 不垂直于平面1PAB ,④错误.故答案为:①②③.三、解答题,共4小题,每小题10分,共40分.解答应写出文字说明,演算步骤或证明过程.16.已知ABC V 的顶点(1,5)A -,(2,1)B --,(4,7)C .(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AD 所在直线的方程;(3)求ABC V 的面积.【答案】(1)34170x y +-=(2)40x y +-=(3)14【解析】【分析】(1)利用直线垂直的性质求得高AD 的斜率,再利用直线的点斜式即可得解;(2)利用中位坐标公式求得点M 的坐标,再利用直线的两点式即可得解;(3)利用直线的两点式求得直线BC 的方程,再利用点线距离公式与两点距离公式即可得解.【小问1详解】因为(1,5)A -,(2,1)B --,(4,7)C ,所以7(1)44(2)3BC k --==--,所以34AD k =-,则边BC 上的高AD 所在直线的方程为()3514y x -=-+,即34170x y +-=;【小问2详解】由题意可知M 是BC 的中点,所以()1,3M ,从而边BC 上的中线AM 所在直线的方程为315311y x --=---,即40x y +-=;【小问3详解】由题意知,边BC 所在直线的方程为()()()()127142y x ----=----,即4350x y -+=,所以点A 到直线BC 的距离145h ==,又10BC ==,所以ABC V 的面积为11141014225BC h ⋅=⨯⨯=.17.已知四边形ABCD 为正方形,O 为AC ,BD 的交点,现将三角形BCD 沿BD 折起到PBD 位置,使得PA AB =,得到三棱锥P ABD -.(1)求证:平面PBD ⊥平面ABD ;(2)棱PB 上是否存在点G ,使平面ADG 与平面ABD 夹角的余弦值为31111?若存在,求PG PB;若不存在,说明理由.【答案】(1)证明见解析(2)存在,12PG PB =【解析】【分析】(1)根据折叠前后的几何性质可得OP OB ⊥,结合线线垂直可得OP OA ⊥,根据面面垂直判定定理即可证得结论;(2)以O 为原点,以OA 为x 轴,以OB 为y 轴,以OP 为z 轴建立空间直角坐标系,根据空间向量的坐标运算,设()()0,,01PG PB λλλλ==-≤≤,分别求平面ADG 与平面ABD 的法向量,根据面面夹角余弦值公式列方程求解λ即可得结论.【小问1详解】因为四边形ABCD 为正方形,所以OA OB OC OD ===,,OC OB OA OB ⊥⊥,所以折起后,OA OB OP OD ===,OP OB ⊥,由于折起前有222OA OB AB +=,且折起后PA AB =,所以折起后有222OA OP PA +=,即OP OA ⊥,又OP OB ⊥,OA OB O = ,,OA OB ⊂平面ABD ,所以OP ⊥平面ABD ,又OP ⊂平面PBD ,所以平面PBD ⊥平面ABD .【小问2详解】存在,理由如下:由(1)知OP OB ⊥,OP OA ⊥,OA OB ⊥,所以以O 为原点,以OA 为x 轴,以OB 为y 轴,以OP 为z 轴建立空间直角坐标系,设1OA =,则()1,0,0A ,()0,1,0B ,()0,1,0D -,()0,0,1P ,则()1,1,0AD =--,()0,1,1PB =- ,()1,0,1AP =- ,假设存在满足题意的点G ,设()()0,,01PG PB λλλλ==-≤≤,则()1,,1AG AP PG λλ=+=--,设平面ADG 的法向量为(),,n x y z =,则·0·0AD n AG n ⎧=⎪⎨=⎪⎩ ,即()010x y x y z λλ--=⎧⎨-++-=⎩,令1x =,得1y =-,11z λλ+=-,即11,1,1n λλ+⎛⎫=- ⎪-⎝⎭ ,易知平面ABD 的一个法向量为()0,0,1m =,因为平面ADG 与平面ABD 夹角的余弦值为31111,所以21·3111cos ,11121n m n m n mλλλλ+-〈〉==+⎛⎫+ ⎪-⎝⎭,整理得22520λλ-+=解得12λ=或2λ=(舍),所以在棱PB 上存在点G ,使平面ADG 与平面ABD 311,且12PG PB =.18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,Q 为棱PD 的中点.(1)求证:PB ∥平面ACQ ;(2)若BA PD ⊥,再从条件①、条件②、条件③中选择若干个作为已知,使四棱锥P ABCD -唯一确定,并求:(i )直线PC 与平面ACQ 所成角的正弦值;(ii )点P 到平面ACQ 的距离.条件①:二面角P CD A --的大小为45 ;条件②:2PD =条件③:AQ PC ⊥.【答案】(1)证明见解析(2)(i )13;(ii )33【解析】【分析】(1)连接BD ,交AC 于O ,连接OQ ,由OQ ∥PB 证明PB ∥平面ACQ ;(2)选择①②或①③或②③或①②③都能得到BA ⊥平面PAD ,建立空间直角坐标系,求出法向量,求解PC 与平面ACQ 所成角的正弦值,计算点P 到平面ACQ 的距离.【小问1详解】(1)连接BD ,交AC 于O ,连接OQ ,底面ABCD 是正方形,故O 是BD 的中点,又因为Q 为棱PD 的中点,所以,在PBD △中OQ ∥PB ,而OQ ⊂平面,ACQ PB ⊄平面ACQ ,所以PB ∥平面ACQ .【小问2详解】选①②:因为四边形ABCD 是正方形,所以,,BA AD AD CD BA ⊥⊥∥CD ,又因为BA PD ⊥,所以CD PD ⊥,因为二面角P CD A --的大小为45 ,平面PAD ⋂平面,,ABCD CD AD CD PD CD =⊥⊥,所以45ADP ∠= ,在PAD △中,2222cos 1PA AD PD AD PD ADP ∠=+-⋅⋅=,所以222PA AD PD +=,故PA AD ⊥,又因为,,,BA AD BA PD AD PD D AD PD ⊥⊥⋂=⊂、平面PAD ,所以BA ⊥平面PAD ,选①③:因为四边形ABCD 是正方形,所以,,BA AD AD CD BA ⊥⊥∥CD ,又因为BA PD ⊥,所以CD PD ⊥,因为二面角P CD A --的大小为45 ,平面PAD ⋂平面,,ABCD CD AD CD PD CD =⊥⊥,所以45ADP ∠= ,因为,,,CD PD CD AD AD PD D AD PD ⊥⊥⋂=⊂、平面PAD ,所以CD ⊥平面PAD ,又因为AQ ⊂平面PAD ,所以CD AQ ⊥,又因为,,AQ PC PC CD C PC CD ⊥⋂=⊂、平面PCD ,所以AQ ⊥平面PCD ,因为PD ⊂平面PCD ,所以AQ PD ⊥,又因为Q 为PD 中点,所以PA AD =,所以45APD ADP ∠∠== ,所以90PAD ∠= ,即PA AD ⊥,因为BA ∥,CD CD ⊥平面PAD ,所以BA ⊥平面PAD ,选②③:因为四边形ABCD 是正方形,所以,AD CD BA ⊥∥CD ,因为,,,CD PD CD AD AD PD D AD PD ⊥⊥⋂=⊂、平面PAD ,所以CD ⊥平面PAD ,又因为AQ ⊂平面PAD ,所以CD AQ ⊥,又因为,,AQ PC PC CD C PC CD ⊥⋂=⊂、平面PCD ,所以AQ ⊥平面PCD ,因为PD ⊂平面PCD ,所以AQ PD ⊥,又因为Q 为PD 中点,所以1PA AD ==,在PAD △中,222PA AD PD +=,故PA AD ⊥,因为BA ∥,CD CD ⊥平面PAD ,所以BA ⊥平面PAD ,选①②③同上.以A 为原点,,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则()()()()110,0,0,1,1,0,0,1,0,0,,,0,0,122A C D Q P ⎛⎫⎪⎝⎭,故()()110,,,1,1,0,1,1,122AQ AC PC ⎛⎫===- ⎪⎝⎭,令(),,m x y z = 为面ACQ 的一个法向量,则110,220.m AQ y z m AC x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩令1x =,则()1,1,1m =-,(i)因为1cos ,3m PC m PC m PC⋅===,所以直线PC 与平面ACQ 所成角的正弦值为13,(ii )由(i )知点P 到平面ACQ的距离133PC =.19.设二次函数23y x =-的图象与两坐标轴的交点分别记为M ,N ,G ,曲线C 是经过这三点的圆.(1)求圆C 的方程;(2)过(1,0)P -作直线l 与圆C 相交于A ,B 两点.(i )||||PA PB ⋅是否是定值?如果是,请求出这个定值;(ii )设(0,2)Q -,求22||||QA QB +的最大值.【答案】(1)()2214x y ++=(2)(i )||||PA PB ⋅是定值,定值为2;(ii)12+【解析】【分析】(1)分别求出M ,N ,G 的坐标,假设圆的一般方程,代入求解即可;(2)(i )当直线的斜率不存在时,求出A B 、的坐标,进而可求||||PA PB 、的值,当直线斜率存在时,假设直线方程,与圆联立得到韦达定理,运用两点间的距离公式分别求出||||PA PB 、并化简,然后计算||||PA PB ⋅即可;(ii )同(i )分直线斜率存在和直线斜率不存在两种情况讨论,当直线斜率存在时,易求得2210QA QB +=,当直线斜率不存在时,运用两点间距离公式及韦达定理求出22QA QB +关于k 的表达式,结合函数性质即可求最大值.【小问1详解】设二次函数23y x =-与x 轴分别交于,M N ,与y 轴交于点G ,令0y =,则x =,即)(),MN ,令0x =,则=3y -,则()0.3G -,设圆C 的方程为220x y Dx Ey F ++++=,将点M 、N 、G的坐标代入可得3030930F F E F ⎧-+=⎪⎪++=⎨⎪-+=⎪⎩,解得023D E F =⎧⎪=⎨⎪=-⎩,则22230x y y ++-=,化为标准式为()2214x y ++=.【小问2详解】||||PA PB ⋅是定值.(i )当直线l 的斜率不存在时,则l 方程为1x =-,联立()22141x y x ⎧++=⎪⎨=-⎪⎩,可得11x y =-⎧⎪⎨=-⎪⎩或11x y =-⎧⎪⎨=-⎪⎩,即()()1,1,1A B --,则1PA =,1PB =,则2PA PB ⋅=;当直线l 的斜率存在时,设l 方程为()1y k x =+,设 ,联立直线与圆的方程()()22114y k x x y ⎧=+⎪⎨++=⎪⎩,消去y 可得()()()222212230k x k k x k k +++++-=,由韦达定理可得()22121222223,11k k k k x x x xk k -++-+==++,且PA ==,PB ==,则()()()212111PA PB k x x⋅==+++()()()()222221212222311111k k k k k k x x x x k k -+++-++=++++=++()222121k k-=+⨯=+;综上所述,2PA PB ⋅=是定值.(ii )由(i )可知,当直线l的斜率不存在时,()()1,1,1A B --,且()0,2Q -,则())222115QA =-+=+()()222115QB =-+=-,则2210QA QB +=;当直线l 的斜率存在时,设l 方程为()1y k x =+,则()()222222112222QA QB x kx k x kx k +=+++++++()()()()222221212124288k xx k kx x kk =++++++++()()()()()2222222222242*********111k k k k k k kk k kk k k k ⎡⎤⎡⎤+-++-⎢⎥⎢⎥=+-⨯++⨯+++⎢⎥++⎢⎥+⎣⎦⎣⎦()()2222222244(2)2(23)28811k k k k k kk k kk kk+-++=-+-+++++()22414141k k k k-+=+++()241141k k k -=++224(1)44141k k k-+++=++24(1)101k k +=++令1t k =+,则1k t =-222224(1)4410101011(1)22k t tQA QB k t t t ++=+=+=+++--+令24()1022tf t t t =+-+当0t =,即1k =-时,(0)10f =;当0t ≠,即1k ≠-时,244()10102222t f t t t t t=+=+-++-;2+(,)t t ∈-∞-⋃+∞当2+t t=,即t =,11k t =-=-时,()f t取最大值12+所以()22max12QA QB+=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学
教学内容:高二上学期数学综合练习题
一、选择题
1.已知实数a 、b 、c 满足b +c =6-4a +32a ,c -b =4-4a +2a ,则a 、b 、c 的大小 关系是( ).
(A )c ≥b >a (B )a >c ≥b
(C )c >b >a (D )a >c >b
2.设a 、b 为实数,且a +b =3,则b a 22+的最小值为( )
(A )6 (B )24
(C )22 (D )8
3.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a =
(A )-3 (B )-6
(C )23- (D )3
2 4.不等式0|22|33>+->+-x x
x x x 且的解集是( ). (A ){}20|<<x x
(B ){}5.20|<<x x
(C ){}
60|<<x x
(D ){}30|<<x x
5.直线0323=-+y x 截圆 422=+y x 得的劣弧所对的圆心角为( ). (A )
6π (B )4
π (C )3π (D )2π 6.若),lg (lg 21,lg lg ,1b a Q b a p b a +=
=>>),2
lg(b a R +=则( ) (A )Q P R << (B )R Q P << (C )R P Q << (D )Q R P <<
7.已知两条直线1L ∶y =x ,2L ∶ax -y =0,其中a 为实数,当这条直线的夹角在)12
π,0(内变动时,a 的取值范围是( ).
(A )(0,1) (B ))3,33(
(C ))3,1()1,3
3(
(D ))3,1(
8.直线23
1+-
=x y 的倾斜角是( ). (A ))3
1arctan(- (B )3
1arctan (C ))3
1arctan(π-+ (D ))3
1arctan(--π 9.两圆0222=-+x y x 与0422=++y y x 的位置关系是( ). (A )相离 (B )外切
(C )相交 (D )内切
10.11lg 9lg ⋅与1的大小关系是( ).
(A )111lg 9lg >⋅ (B )111lg 9lg =⋅
(C )111lg 9lg <⋅ (D )不能确定
11.已知椭圆的长轴、短轴、焦距长度之和为8,则长半轴的最小值是( ).
(A )4 (B )24
(C ))12(4- (D ))12(2-
12.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则q
p 11+等于( ). (A )2a (B )a
21 (C )4a (D )a
4 二、填空题
13.不等式5|2||1|<+++x x 的解集是 .
14.若正数a 、b 满足ab =a +b +3,则ab 的取值范围是 . 15.设双曲线)0(122
22b a b
y a x <<=-的半焦距为c ,直线过(a ,0)、(0,b )两点,已知原点到直线L 的距离为c 4
3,则双曲线的离心率为 . 16.过点P (2,1)的直线L 交x 轴、y 轴的正向于A 、B 则||||PB PA ⋅最小的直线L 的方程是 .
三、解答题
17.解不等式1|43|2+>--x x x .
18.自点(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射线所在直线与圆074422=+--+y x y x 相切,求光线L 所在直线方程.
19.已知)R ,10(log )(+∈≠>=x a a x x f a 且.若1x 、+∈R 2x 试比较)]()([2
121x f x f +与)2
(21x x f +的大小,并加以证明.
20.抛物线的顶点在原点,焦点在x 轴,而且被直线2x -y +1=0所截弦长为15,求抛物线的方程.
21.在平面直角坐标系中,在y 轴的正半轴上给定A 、B 两点,在x 轴正半轴上求一点C ,使∠ACB 取得最大值.
22.在面积为1的PMN ∆,,2
1tan =
M ,2tan -=N 求出以M 、N 为焦点且过点P 的椭圆的方程.
参考答案
一、选择题
ABBCC BCDCC CC
二、填空题
13.{};14|<<-x x 14.[9,+∞];15.2;16.x +y -3=0.
三、解答题
17.原不等式等价于
(Ⅰ)⎪⎩⎪⎨⎧+>--≥--.
143,04322x x x x x 或(Ⅱ)⎪⎩⎪⎨⎧+>---<--.
1)43(,04322x x x x x ⎩⎨⎧<<-<<-⎩
⎨⎧-<>≤≥⇒.31,41,15,14x x x x x x 或或或 .13135-≠<<-<>⇒x x x x 且或或
∴ 原不等式的解集为}{1.3135|-≠<<-<>x x x x x 且或或.
18.已知圆的标准方程是,1)2()2(22=-+-y x 它关于x 轴的对称圆的方程是.1)2()2(22=++-y x
设光线L 所在直线方程是
).3(3+=-x k y
由题设知对称圆的圆心C ′(2,-2)到这条直线的距离等于1,即11|55|2=++=
k k d . 整理得,01225122=++k k 解得3
443-=-=k k 或. 故所求的直线方程是)3(433+-
=-x y ,或)3(343+-=-x y , 即3x +4y -3=0,或4x +3y +3=0.
19.2121log log )()(x x x f x f a a +=+2log )2(
),(log 12121x x x x f x x a a +=+=. ∵ 1x 、+∈R x 2, ∴ 22121)2
(
x x x x +≤. 当且仅当1x =2x 时,取“=”号. 当1>a 时,有)2
(
log )(log 2121x x x x a a +≤. ∴ ≤)(l o g 2121x x a )2(l o g 21x x a +≤.)2
(log ]log [log 212121x x x x a a a +≤+. 即)2
()]()([2121
21x x f x f x f +≤+. 当10<<a 时,有a a x x log )(log 21≥⋅221
)2
(x x +. 即).2
()]()([212121x x f x f x f +≥+ 20.设抛物线的方程为ax y =2,则 ⎩⎨⎧+==.12,2x y ax y 把②代入①化简得
01)4(42=+-+x a x ③
设弦AB 的端点),(11y x A 、),(22y x B ,则1x 、2x 是方程③的两实根,由韦达定理,得 4
1,442121=-=+x x a x x . ∵ 2=k ,由公式
2212)(1x x k d -⋅-=
∴ 212214)(515x x x x -+⋅= =4
14)44(52⨯--⋅a . ① ②
化简整理,得048-8-2=a a ,解得1a =12,2a =-4.故抛物线的方程为2y =12x ,或2y =-4x .
21.设βα=∠=∠BCO ACB ,,再设),0(a A 、B (0,b )、C (x ,0).则,)tan(x a =+βα x b =βtan . ])tan[(tan ββαα-+=
2
1tan )tan(1tan )tan(x ab
x b x a +-=⋅++-+=ββαββα ab b a x
ab x b a x ab x b a 22-=⋅-≤+-=. 当且仅当,x ab x =∵,2ab x =,∴,时ab x =αt a n 有最大值,最大值为ab
b a 2-, ∴ x y tan =在)2π,0(内为增函数.∴ 角α的最大值为ab
b a 2arctan -.此时C 点的做标为).0,(ab
图1 图2
22.以M 、N 所在直线为x 轴,以线段MN 的垂直平分线为y 轴建立直角坐标系.
设所求椭圆方程为,122
22=+b
y a x 分别记M 、N 、P 的坐标为M (-c ,0)、N (c ,0)、P (0x ,0y ). ∵ )πt a n (t a n P N M ∠-=α2
1t a n ,2)2(t a n ==--=∠-=M P N M . 则得c x c y c x c y +=--=-0000)(2)(2和.由此
解得c y c x 3
4,3500==. 又由,2||c MN =求得△MNP 在MN 上的高为c 34,从而由1=∆MNP S 可得2
3=c ,于是)0,23(-M 、)0,23(N 、)3
32,635(P , 易得3
15||,3152||==PN PM . 由椭圆的定义,得,2||||a PN PM =+
∴ 2
15|)||(|21=+=
PN PM a ∴ 4152=a , 易得32=b .
故所求椭圆的方程为31542
2y x +1=.。

相关文档
最新文档