人教八年级下册数学-一次函数的概念教案与教学反思

合集下载

《一次函数》八年级数学教学反思

《一次函数》八年级数学教学反思

《一次函数》八年级数学教学反思•相关推荐《一次函数》八年级数学教学反思(精选13篇)在日常生活中,我们要在课堂教学中快速成长,反思过往之事,活在当下之时。

怎样写反思才更能起到其作用呢?以下是小编帮大家整理的《一次函数》八年级数学教学反思(精选13篇),仅供参考,欢迎大家阅读。

《一次函数》八年级数学教学反思篇1成为教师后才发现当好教师不容易。

结合一次函数的教学谈谈自己的几点肤浅感受、几处满意之笔、遗憾之点,以及对教材的几点不成熟的建议。

“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。

另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。

通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

教学完后,对新教材有了一些更深的认识。

肤浅感受:备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。

一、教材课时安排过紧有关。

初二教材的教学时间不够,教参函数第一节第二节二节课,第三节一次函数节,课时太少,本节要加一个复习课二、教学内容不好处理。

在“2.一次函数的图象”中有平移的问题,1.(1)将直线y=3x向下平移2个单位,得到直线_____________________;(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.与多位教师讨论后,我们用学案(下面的表)来处理,让学生更多一点感性认识,少一点理论上的结论2.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲环节二:概括一次函数图象的性质一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.(3)当b>0时,这时函数的图象与y轴的交点在:(4)当b>0时,这时函数的图象与y轴的交点在:待定系数法的引入上用“弹簧的长度y(厘米)”来讲的,太难,要先讲书上的“做一做:“已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),”三、难度不好处理:如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y=当m取什么值时,y是x的一次函数?当m取什么值是,y 是x的正比例函数。

《一次函数》八年级数学教学反思范文(精选6篇)

《一次函数》八年级数学教学反思范文(精选6篇)

《一次函数》八年级数学教学反思范文(精选6篇)《一次函数》八年级数学教学反思1这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。

通过充分的过程探究,学生得出了图象的性质,借助直观图象的性质而得到一次函数的性质。

真正的形成往往来源于真实的自主探究。

只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。

在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。

首先,要设计适合学生探究的素材。

教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。

当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。

但是能让学生理解和接受的知识才是最好的。

其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。

探究教学是追求教学过程的探究和探究过程的自然和本真。

只有这样探究才是有价值的,真知才会有生长性。

要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。

结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。

最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。

要做善于点燃学生探究欲望和智慧火把的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。

数学教学的过程是师生共同活动、共同成长与发展的过程。

真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,要彻底抛弃“唯书论”“唯师论”,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。

要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。

在教学设计中,要预设多种意外和可能,这样探究真知的过程就会艰辛并顺利展开。

人教版八年级数学下册19.2.2一次函数的概念优秀教学案例

人教版八年级数学下册19.2.2一次函数的概念优秀教学案例
本节课的教学目标是通过实例让学生理解一次函数的概念,掌握一次函数的性质,并能运用一次函数解决实际问题。为了达到这个目标,我设计了以下教学步骤:
1.通过生活实例引入一次函数的概念,激发学生的学习兴趣。
2.引导学生通过观察、分析、归纳一次函数的性质,加深对一次函数的理解。
3.运用一次函数解决实际问题,提高学生的应用能力。
五、案例亮点
1.生活实例引入:通过生动的打车软件费用计算实例,将一次函数的概念与学生的生活实际紧密联系起来,增强了学生的学习兴趣,提高了学生的课堂参与度。
2.问题导向:本节课以问题为导向,引导学生主动探究一次函数的性质,激发了学生的求知欲和自主学习能力,培养了学生的批判性思维。
3.小组合作:通过小组合作讨论,学生不仅能够共享彼此的知识和经验,还能培养团队合作意识和沟通能力,提高了学习效果。
3.运用一次函数解决实际问题,提高学生的应用能力,培养学生的实践操作能力。
4.采用小组合作、讨论交流的形式,培养学生的团队合作意识和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发学生学习数学的兴趣,树立学生学习数学的自信心。
2.通过对一次函数的学习,使学生体会数学的严谨性、逻辑性,培养学生的求真精神。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论,探究一次函数的性质。
2.鼓励学生提出疑问,引导学生敢于挑战权威,培养学生的批判性思维。
3.教师巡回指导,及时解答学生在讨论过程中遇到的问题。
(四)总结归纳
1.让学生回顾本节课所学内容,总结一次函数的概念、性质和解法。
2.引导学生通过归纳总结,提高对一次函数的理解和记忆。
在教学过程中,我将注重启发式教学,引导学生主动探究,培养学生的动手操作能力和思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导,使他们在课堂上都能有所收获。课后,及时进行教学反思,不断调整教学策略,以提高教学效果。

人教版八年级数学下册第十九章一次函数(图象信息)优秀教学案例

人教版八年级数学下册第十九章一次函数(图象信息)优秀教学案例
(二)过程与方法
1.通过小组合作、讨论的方式,引导学生观察、分析一次函数图象的特点,培养学生的观察能力和逻辑思维能力。
2.引导学生运用数形结合的思想,将实际问题转化为数学模型,提高学生分析问题和解决问题的能力。
3.通过对一次函数图象的探究,培养学生归纳总结的能力,使学生能够从具体实例中提炼出一般性规律。
二、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的表示方法,能够准确地识别一次函数的图象。
2.学会运用一次函数图象分析实际问题,掌握一次函数图象与实际问题之间的联系,提高解决问题的能力。
3.能够运用一次函数的性质,解决线性方程和不等式问题,为后续学习打下基础。
4.学会使用现代教育技术手段,如图形计算器、电脑软件等,绘制一次函数图象,提高实际操作能力。
人教版八年级数学下册第十九章一次函数(图象信息)优秀教学案例
一、案例背景
在我国初中数学教学中,一次函数是学生接触到的第一个具体的函数概念,它对于培养学生的函数思想具有重要的意义。人教版八年级数学下册第十九章一次函数,特别是图象信息部分,旨在帮助学生通过图象直观地理解一次函数的性质,提高学生运用数学知识解决实际问题的能力。在教学实践中,我们发现,由于一次函数图象信息的抽象性,学生往往难以把握其与实际问题的联系。为此,本教学案例将结合实际生活情境,运用现代教育技术手段,引导学生探究一次函数图象的特点及其应用,从而提高学生的数学素养和实际操作能力。在教学过程中,注重培养学生观察、分析、归纳和运用数学语言表达的能力,使学生在轻松愉快的氛围中掌握一次函数图象信息的内涵和应用。
4.鼓励学生积极参与课堂活动,敢于提出问题、表达观点,培养学生的表达能力和沟通能力。
(三)情感态度与价值观

(人教版)八年级数学下册19.2.2一次函数(3)教学反思

(人教版)八年级数学下册19.2.2一次函数(3)教学反思

(人教版)八年级数学下册19.2.2一次函数(3)教学反思
在导入新课时,通过一组练习,让学生对以前所学知识进行复习巩固,同时为新知识的学习奠定基础。

通过几种题型的练习,让学生思考和回答问题,令学生的数学语言概括能力,互助学习、合作学习的能力得到提高,因为之前学习了函数的图象和性质,学生的数形结合思想渗透也较好。

反而,在教学过程中,特别是学生解二元一次方程组,本来说很简单的,但很多学生计算都出现了问题,所以在后面的教学中,要加强学生的计算能力。

教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、归纳提高、讲练结合的教学方法,揭示知识的发生和形成过程。

先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。

在课堂总结环节应逐步培养学生学会总结的意识和习惯。

但有些细节还没把握好,譬如小组交流探讨时间较短等等,希望以后的课堂能更好的培养学生的合作交流能力。

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。

一次函数教学反思通用[15篇]

一次函数教学反思通用[15篇]

一次函数教学反思通用[15篇]一次函数教学反思1一、结合实际,引入概念正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想以及提高解题能力的基础,在数学教学过程中,数学概念的教学就尤为重要,对这项活动的把握是自始至终存在的教学难点。

本节课对一次函数、正比例函数的概念学习仅作“了解”要求,故我们根据实际问题列出函数表达式,进一步归纳得出形如y=kx+b(k,b为常数;k≠0) 的函数叫做一次函数,特别地,b当 b=0时,一次函数叫做正比例函数。

在这里教师会引导学生观察x的次数,由此让学生加深对“一次”的理解。

然后教师马上举几个例子让学生判断,比如“ y=-2x+1”、“ y=x2+5”等等。

这里大部分学生能够从形式上正确判断,即达到了“了解”目的。

二、直观教学,激发主体探索。

(1)学生用描点法画出一次函数的图象,教师结合PPT展示,让学生从直观上看出一次函数图象是一条直线,进而利用直线公理得出可用两点法画一次函数图象。

(2)借助几何画板的动画演示让学生直接感受并发现一次函数的增减性。

当点在直线上运动时,横坐标向右移动而纵坐标向上移动,或者横坐标向右移动而纵坐标向下移动,则形象的理解“y随x的增大而增大”和“y随x的增大而减小”的意义。

学生在观看动画的过程中理解函数变化过程的规律,归纳出函数的增减性。

(3)借助几何画板的动画演示让学生直接感受并发现平移的规律,对于相同的.k值,随着b值的不同,函数图象上移或下移。

学生在观看动画的过程中理解函数图象平移的规律。

三、修正教学设计,改善教学。

环节一、正比例函数、一次函数的概念教学设计里只有两个实际问题分别来引入一次函数、正比例函数的概念。

需要多加几个实际问题来引入概念,毕竟学生对概念的认识和理解是一个难点。

环节二、一次函数的图象原设计中,在归纳出一次函数图象是一条直线后,我们用“两点确定一条直线”公理引出两点法来画一次函数的图象。

这里设计不足的是,用这两点画出来的图象就是该一次函数图象吗?如果加上以下的小环节也许就可以解决这个缺陷:(1)从画出的该直线上取两个点,让学生验证是否满足函数表达式;(2)由函数表达式取几个点的坐标,判断它们是否在所画的函数图象上。

《一次函数》八年级数学教学反思10篇

《一次函数》八年级数学教学反思10篇

《一次函数》八年级数学教学反思10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《一次函数》八年级数学教学反思10篇下面是本店铺分享的《一次函数》八年级数学教学反思10篇(一次函数教后反思),供大家参阅。

一次函数实践教学反思(3篇)

一次函数实践教学反思(3篇)

第1篇摘要:一次函数是中学数学教学中的重要内容,它不仅有助于学生掌握基础的数学知识,还能培养学生的逻辑思维能力和解决问题的能力。

本文通过对一次函数实践教学的反思,总结了教学过程中的成功经验和不足之处,并提出了相应的改进措施,以期为今后的教学提供借鉴。

一、引言一次函数是中学数学教学中的基础内容,它涵盖了函数的定义、性质、图像等内容。

在实践教学过程中,教师需要引导学生通过观察、分析、推理等方法,深入理解一次函数的本质,并能够运用一次函数解决实际问题。

本文通过对一次函数实践教学的反思,总结教学过程中的得失,以期为今后的教学提供参考。

二、实践教学过程中的成功经验1. 注重理论联系实际,提高学生的应用能力在实践教学过程中,我注重将一次函数的理论知识与实际生活相结合,通过举例说明一次函数在生活中的应用,如温度、速度、距离等。

例如,在讲解一次函数的图像时,我以气温变化为例,让学生观察气温与时间之间的关系,从而理解一次函数图像的特点。

这种教学方法有助于提高学生的应用能力,使他们能够将所学知识运用到实际生活中。

2. 采用多样化的教学方法,激发学生的学习兴趣为了激发学生的学习兴趣,我在教学中采用了多种教学方法。

例如,利用多媒体技术展示一次函数的图像,让学生直观地感受函数的变化规律;通过小组合作探究,让学生在交流讨论中共同解决问题;设计有趣的数学游戏,让学生在轻松愉快的氛围中学习。

这些方法有助于提高学生的学习兴趣,使他们在主动探究中掌握知识。

3. 关注学生的个体差异,实施分层教学在实践教学过程中,我关注学生的个体差异,根据学生的不同学习基础,实施分层教学。

对于基础较好的学生,我鼓励他们深入探究一次函数的性质,拓展知识面;对于基础较差的学生,我耐心讲解,帮助他们克服困难,逐步提高。

这种分层教学有助于提高全体学生的学习效果。

三、实践教学过程中的不足之处1. 对一次函数知识的讲解不够深入在实践教学过程中,我发现部分学生对一次函数的性质理解不够深入,对于一些特殊情况的处理不够灵活。

《19.2.2 一次函数》教学设计教学反思-2023-2024学年初中数学人教版12八年级下册

《19.2.2 一次函数》教学设计教学反思-2023-2024学年初中数学人教版12八年级下册

《一次函数》教学设计方案(第一课时)一、教学目标1. 理解一次函数的概念,掌握一次函数的定义。

2. 能够识别一次函数图像,理解图像的性质。

3. 学会利用一次函数解决实际问题。

二、教学重难点1. 重点:理解一次函数的概念和图像性质,能够正确画出一次函数图像。

2. 难点:灵活运用一次函数解决实际问题。

三、教学准备1. 准备教学用具:黑板、白板、笔、尺子、彩色笔等。

2. 准备教学材料:一次函数例题、习题及相关练习题。

3. 设计教学方案:明确教学内容和步骤,设计互动环节,引导学生积极参与。

4. 安排教学时间:预计一课时(45分钟),合理安排各个教学环节的时间。

四、教学过程:本节课的主要教学目标是帮助学生理解一次函数的概念,并能够解决实际问题。

在教学过程中,我们将采用以下步骤:1. 引入:通过具体问题情境引入一次函数的概念,引导学生思考如何用函数模型来描述这些问题。

引入问题:假设你正在参加一场长跑比赛,你的速度是x公里/小时,你需要跑y公里。

请问你应该以什么样的速度进行比赛,才能确保在规定时间内完成比赛?这个问题将帮助学生理解一次函数的基本形式,即y=kx+b (k≠0)。

2. 探究:通过探究活动,让学生自己发现一次函数的特点和性质。

探究问题:画出y=2x+1的图像,并观察图像的特点。

通过图像,你能发现哪些关于一次函数的信息?这个探究活动将帮助学生直观地理解一次函数的特点和性质,例如,图像是一条直线,直线的交点坐标对应于函数上的一个点等。

3. 讲解:教师对一次函数的概念和性质进行详细讲解,包括正比例函数、反比例函数等特殊形式的一次函数。

讲解内容:一次函数的概念、表达式、性质、正比例函数、反比例函数等特殊形式的一次函数的特点和区别。

4. 练习:通过一系列的练习题,帮助学生巩固一次函数的概念和性质。

练习题包括选择题、填空题和解答题,涵盖了不同形式的一次函数的应用和计算。

通过这些练习题,学生可以加深对一次函数的理解和应用。

八年级数学《一次函数》教学反思

八年级数学《一次函数》教学反思

八年级数学《一次函数》教学反思八年级数学《一次函数》教学反思结合一次函数的教学谈谈自己的几点肤浅感受、几处遗憾之点!“一次函数”这一章的重点是一次函数的概念、图象和性质,由于学生初次接触函数的有关内容,因此,教科书对一次函数的讨论比较全面。

通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握二次函数、反比例函数的学习方法。

学习这一章后,我对新教材有了一些更深的认识。

纵观整章内容,一次函数的实际问题比较多,备课时我头一直很痛:想不通学生刚刚接触函数为什么就有这么多实际问题呢而且教材对一次函数的解析式与图象之间的关系讲解较少,例如k体现了图像的什么特征除了增减性外还有没有别的体现,在实际问题中的实际意义是什么b体现在什么方面等等。

在实际的.教学中的确遇到了以上困难,教学内容十分不好处理,课时又比较少,我还是附加了很多内容进去,否则有些题目真的不会做!说是素质教育,但学生还是要考试的呀。

1.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲:一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.(3)当b>0时,这时函数的图象与y轴的交点在:(4)当b>0时,这时函数的图象与y轴的交点在:要让学生学会化一次函数的草图,不但平时分析题目有好处,对中考中的许多问题都有用。

例如(1)y=2x+3不过第象限;(2)函数y=kx中y随x的增大而减小,那么y=kx+k不过第象限等等。

2.图像的平移问题:(1)将直线y=3x向下平移2个单位,得到直线_____________________;(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.现在学生就只能通过草图来研究,很浪费时间。

实际上在后面我们会学到图象平移的规律,与多位教师讨论后,我们用草图再结合b 的意义来解决,让学生多一点感性认识,少一点理论上的结论,这正是新课程对学生自主动手推导能力培养的一种体现!3.实际问题中k的意义:这个要根据具体的行程问题,销售问题等总结出来:k在时间、路程的图像中指速度,速度越大图像越陡,速度越小图像越缓。

人教版八年级下册数学第1课时 一次函数的概念教案与教学反思

人教版八年级下册数学第1课时 一次函数的概念教案与教学反思

19.2.2 一次函数青海一中李清第1课时一次函数的概念【知识与技能】1.理解一次函数的概念以及它与正比例函数的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题.【过程与方法】在探究过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.【情感态度】经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.【教学重点】1.一次函数的概念.2.根据已知信息写出一次函数的表达式.【教学难点】理解一次函数的定义及与正比例函数的关系.一、情境导入,初步认识引导学生一起回忆函数、正比例函数的概念和两者间的关系.问题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm,他们所在位置的气温是y℃,试用解析式表示y与x的关系.【分析】 y随x的变化规律是,从大本营向上海拔增加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x,变形可写成y=-6x+5.【教学说明】找出y与x的关系式后,引导学生观察这个函数式是不是正比例函数,它的形式与正比例函数解析式有什么异同?由学生共同讨论.二、思考探究,获取新知学生思考下列问题,写出对应的函数解析式:(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,h再减常数105,所得的差是G的值.(3)把一个长10cm,宽5cm的长方形的长减小xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.【答案】(1)C=7t-35;(2)G=h-105;(3)y=-5x+50.【教学说明】让学生观察所写解析式的特点,并让学生认识到:各小题表示变量的字母虽然不同,但结构相同.变量间对应关系反映出了一种函数形式,与所取符号无关,找出这些式子的共同点,才能概括出一般规律.【归纳总结】(1)一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫一次函数.(2)当b=0时,得y=kx,故正比例函数是一次函数的特例.三、典例精析,掌握新知例1 下列函数中哪些是一次函数?哪些正比例函数?①y=-2x;②2yx=-;③y=2x2-3;④y=13x+2.【答案】①④是一次函数,①是正比例函数.【教学说明】一次函数包括正比例函数.例2 某校校办工厂的现有年产值是15万元,计划今后每年增加2万元,由此可知,年产值发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果年数用x(年)表示,年产值用y(万)元表示,那么y与x之间有什么样的关系?(3)当年由1年增加到5年时,年产值是怎样变化的?【分析】由题意可知,现有年产值是15万元,以后每年增加2万元,可见,年数乘以2万元即为增加的产值.【答案】(1)在这个变化过程中,自变量是年数,因变量是年产值.(2)y=2x+15.(3)当年数由1年增加到5年时,年产值由17万元增加到25万元.例3托运行李P千克(P为整数)的费用为c元,已知托运第一个1千克须付2元,以后每增加1千克(不足1克的按1千克计)须增加费用5角,写出c与P的关系式,并计算出托运5千克行李的托运费.【分析】因为P千克可写成(P1)+1,其中1千克付费2元,P-1千克增加费用0.5(P-1),所以c=2+0.5(P-1)=0.5P+1.5.【答案】c=2+0.5(P-1)=0.5P+1.5.当P=5时,c=0.5×5+1.5=4(元).即5千克行李的托运费是4元.【教学说明】在写系式时,应注意(P-)千克是增加的重量.类似的问题还有用水、用电、话费结算等,它们都是以分段形式收费的.四、运用新知,深化理解1.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.2.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(单位:升随行驶时间x(单位:时)变化的函数关系式,并写出自变量x的取值范围,y是x 的一次函数吗?3.气温随着高度的增加而下降,下降的一般规律是从地面到高空11km处,每升高1km,气温下降6℃.高于11km时,气温几乎不再变化,设地面的气温为38℃,高空中xkm的气温为y℃.(1)当0≤x≤11时,求y与x的关系式.(2)求当x=2,5,8,11时y的值.(3)求在离地面13km的高空处,气温是多少度?(4)当气温是-16℃时,问在离地面多高的地方?【教学说明】上述问题由学生思考并得出结果.【答案】1.(1)v=2t,是一次函数;(2)第2.5秒时小球的速度是5米/秒.2.y=50-5x,0≤x≤10,y是x的一次函数.3.(1)0≤x≤11时,y与x之间的关系式为y=38-6x.(2)分别为26,8,-10,-28.(3)气温是-28℃.(4)离地面9km高的地方.五、师生互动,课堂小结问题1 反思函数、正比例函数、一次函数的概念及它们间的关系.问题2 就本节课所学、所想、所思、所获,交流体会.【教学说明】引导学生用语言表述个人见解,指导获取正确清晰的知识点和知识间联系.1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.本课时重点是引领学生从整体的高度把握一次函数与正比例函数的概念间的关系,教师应选取适当的材料帮助学生从不同的角度认识这个知识点,并通过一定的练习指导学生巩固认识.教学中可重点指导学生表述、交流个人体会,再互相分析,在师生的共同探讨中逐步抓住知识的本质,再鼓励学生主动地应用于解决问题中,获得实际应用能力. 【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。

人教八年级下册数学-一次函数的概念教案与教学反思

人教八年级下册数学-一次函数的概念教案与教学反思

19.2.2 一次函数第1课时 一次函数的概念1.一次函数的定义及解析式的特点;(重点)2.一次函数与正比例函数的关系.(难点)一、情境导入1.仓库内原有粉笔400盒,如果每个星期领出36盒,求仓库内余下的粉笔盒数Q 与星期数t 之间的函数关系式.2.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米,求树高(米)与年数之间的函数关系式,并算一算4年后这些树约有多高.3.小徐的爸爸为小徐存了一份教育储蓄.首次存入1万元,以后每个月存入500元,存满3万元止.求存款数增长的规律.几个月后可存满全额?以上3道题中的函数有什么共同特点?二、合作探究探究点一:一次函数的定义【类型一】 辨别一次函数下列函数是一次函数的是( )A .y =-8xB .y =-8xC .y =-8x 2+2D .y =-8x+2 解析:A.它是正比例函数,属于特殊的一次函数,正确;B.自变量次数不为1,不是一次函数,错误;C.自变量次数不为1,不是一次函数,错误;D.自变量次数不为1,不是一次函数,错误.故选A.方法总结:一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.【类型二】一次函数与正比例函数已知y=(m-1)x2-|m|+n+3.(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?解析:(1)根据一次函数的定义,m-1≠0,2-|m|=1,据此求解即可;(2)根据正比例函数的定义,m-1≠0,2-|m|=1,n+3=0,据此求解即可.解:(1)根据一次函数的定义得2-|m|=1,解得m=±1.又∵m-1≠0即m ≠1,∴当m=-1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义得2-|m|=1,n+3=0,解得m=±1,n=-3.又∵m-1≠0即m≠1,∴当m=-1=-3时,这个函数是正比例函数.方法总结:一次函数解析式y=kx+b的结构特征:k≠0,自变量的次数为1,常数项b可以为任意实数.正比例函数y=kx的解析式中,比例系数k是常数,k≠0,自变量的次数为1.探究点二:根据实际问题求一次函数解析式【类型一】列一次函数解析式写出下列各题中y与x的函数关系式,并判断y是否是x的一次函数或正比例函数?(1)某村耕地面积为106(平方米),该村人均占有耕地面积y(平方米)与人数x(人)之间函关系;(2)地面气温为28℃,如果高度每升高1km,气温下降5℃,气温x(℃)与高度y(km)之间的函数关系.解析:(1)根据人均占有耕地面积y等于总面积除以总人数得出即可;(2)根据高度每升高1km,气温下降5℃,得出28-5y=x求出即可.解:(1)根据题意得y=106x,不是一次函数;(2)根据题意得28-5y=x,则y=-15x+,是次函数.方法总结:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学型来解决问题.需要注意的是实例的函数图象要根据自变量的取值范围来确定.【类型二】 确定一次函数解析式中系数的值已知一次函数y =kx +b 中,当自变量x =3时,函数值y =5;当x =-4时,y =-9.求k 和b 值.解析:把两组对值分别代入ykx +b 得到关于k 、的方程组,然后解方程组求出k 和b .解:(1)∵当自变量x =3时,函数值y =5,当x =-4时,y =-9,∴⎩⎨⎧3k +b =5,-4k +b =-9,解得⎩⎨⎧k =2,b =-1.方法总结:解决此类问题就是将自变量x 的及与它对应的函数值y 的值代入所设的解式,得到关于待定系数的方程或方程组解答即可.三、板书设计1.一次函数的定义2.一次函数与正比例函数的区别和联系3.根据实际问题求一次函数解析式在本节课的教学设计与教学实践中,不仅关注学生获得的知识,而且注重知识获得的过程和方法,同时关注学生的全面发展.由于教学方法得当,教学过程设计合理,师生互动关系平等、和谐,所以能较好的完成知识传授与促进学生发展的任务,在数学课堂教学改革的实践中取得较好的教学效果.【素材积累】1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。

人教版初中数学八年级下册 19.1 函数 初中八年级下册数学教案教学设计课后反思 人教版

人教版初中数学八年级下册 19.1 函数 初中八年级下册数学教案教学设计课后反思 人教版

一次函数复习课教学设计 授课人:龚家明一、 教学目标:1.进一步理解一次函数的定义2.能画出一次函数的图像,并能利用图像解决有关问题3.会利用待定系数法求一次函数解析式4.体会一次函数与方程和不等式的联系,能根据函数的图像写出一元一次不等式的解集二、教学流程:【活动一】1.观看微课:《一次函数》2.出示学习要求:五会求①.会求一次函数解析式;②.会确定一次函数图像的位置;③.会求点的坐标;④.会求直线围成的图形面积;⑤.会根据函数图像写出方程的解和不等式的解集【活动二】 关于一次函数483y x =-+,你能提出哪些问题或者能得到什么结论? 1.一次函数483y x =-+的图像是什么形状? 2.一次函数483y x =-+的图像经过哪些象限? 3.若Q (-6,b )在一次函数483y x =-+的图像上,求b 的值。

4.若点M (4,1b ),N (5,2b )在一次函数483y x =-+的图像上,比较1b 和2b 的大小。

5.你能画出一次函数483y x =-+的图像吗? 【活动三】6.你能求出直线l :483y x =-+与两坐标轴的交点坐标吗? 7.你能求出图中哪些线段的长?哪些角的度数?(参考数据:tan37°=34,tan39°=45) 8.你能求出直线l :483y x =-+与两坐标轴围成的三角形面积吗? 9.设点H 是直线l :483y x =-+上的一个动点,当12AOH S ∆=时,求点H 的坐标。

【活动四】10.如图,直线1l 过原点,且1l ∥l ,请直接写出直线1l 的解析式。

11.将1l :43y x =-怎样平移可以得到直线l :483y x =-+? 12.你能根据图像直接写出方程4803x -+=的解吗? 13.你能根据图像直接写出不等式4803x -+<的解集吗? 总结:通过本节课的学习,你有哪些收获要与同学分享?哪些困惑要向老师和同学请教?。

人教版八年级下册第十九章:19.2.2一次函数(教案)

人教版八年级下册第十九章:19.2.2一次函数(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体运动速度与时间的关系?”(如骑自行车速度与时间的关系)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的定义、图像性质和增减性这两个重点。对于难点部分,如一次函数解析式的求解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如物品售价与购买数量的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过观察物体运动过程中速度与时间的变化,演示一次函数的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b是常数,且k≠0。它是描述两个变量之间线性关系的重要数学工具,广泛应用于物理、经济等领域。
2.案例分析:接下来,我们来看一个具体的案例。以物体匀速直线运动为例,分析速度与时间的关系,展示一次函数在实际中的应用,以及它如何帮助我们解决问题。
-一次函数的增减性:明确斜率k的正负与函数增减的关系;
-实际问题中的应用:学会将一次函数应用于解决实际问题,如距离、速度等问题。
举例:讲解斜率k和截距b的概念时,可以通过实际例图(如交通图、温度变化图等)来解释其在图像上的具体表现,加深学生的理解。
2.教学难点
-一次函数解析式的求解:如何从给定的图像或条件中找出斜率k和截距b,列出一次函数的解析式;

新人教版八年级数学下册《一次函数》教学反思(共五则范文)

新人教版八年级数学下册《一次函数》教学反思(共五则范文)

新人教版八年级数学下册《一次函数》教学反思(共五则范文)第一篇:新人教版八年级数学下册《一次函数》教学反思本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。

求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的思想学习函数。

通过本节课的教学发现:1、有一小部分的学生还是不懂得看函数图像。

2.用一次函数解析式解决实际问题时,不注意自变量的取值范围。

3.结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。

另外,运用知识解决实际问题是学生学习的目的,是重点,但也是学生的难点,需要慢慢的加强训练。

1.一次函数的图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的信息,解决更多的实际问题。

2.我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。

第二篇:八年级数学下册一次函数教学设计八年级数学下册一次函数教学设计教学目标1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、能根据问题信息写出一次函数的表达式。

能利用一次函数解决简单的实际问题。

3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

教学重点和难点1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

教学过程1、复习:函数与正比例函数的概念和它们之间的关系。

2、问题:某登山队大本营所在地的气温为15℃.海拔每升高1km 气温下降6℃,登山队员由大本营向上登高xkm时,他们所在的位置的气温是y℃。

试用解析式表示y与x的关系。

3、反思:这个函数是正比例函数吗?它与正比例函数有什么不同?这种形式函数还会有吗?中下层的学生对登高xkm,气温下降多少度不能想出来,课堂上应及时点拨在对旧知的复习中突出函数是对变量间关系的刻画,正比例函数则是对某一类关系共性的抽象反映。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.2.2 一次函数
青海一中 李清
上大附中 何小龙
第1课时 一次函数的概念
1.一次函数的定义及解析式的特点;(重点)
2.一次函数与正比例函数的关系.(难点)
一、情境导入
1.仓库内原有粉笔400盒,如果每个星期领出36盒,求仓库内余下的粉笔盒数Q 与星期数t 之间的函数关系式.
2.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米,求树高(米)与年数之间的函数关系式,并算一算4年后这些树约有多高.
3.小徐的爸爸为小徐存了一份教育储蓄.首次存入1万元,以后每个月存入500元,存满3万元止.求存款数增长的规律.几个月后可存满全额?
以上3道题中的函数有什么共同特点?
二、合作探究
探究点一:一次函数的定义
【类型一】 辨别一次函数
下列函数是一次函数的是( )
A .y =-8x
B .y =-8x
C .y =-8x 2+2
D .y =-8x
+2 解析:A.它是正比例函数,属于特殊的一次函数,正确;B.自变量次数不为1,不是一次函数,错误;C.自变量次数不为1,不是一次函数,错误;D.自变量次数不为1,不是一次函数,错误.故选A.
方法总结:一次函数解析式的结构特征:k ≠0;自变量的次数为1;常数项b 可以为任意实数.
【类型二】 一次函数与正比例函数
已知y =(m -1)x 2-|m |+n +3.
(1)当m 、n 取何值时,y 是x 的一次函数?
(2)当m 、n 取何值时,y 是x 的正比例函数?
解析:(1)根据一次函数的定义,m -1≠0,2-|m |=1,据此求解即可;(2)根据正比例函数的定义,m -1≠0,2-|m |=1,n +3=0,据此求解即可.
解:(1)根据一次函数的定义得2-|m |=1,解得m =±1.又∵m -1≠0即m ≠1,∴当m =-1,n 为任意实数时,这个函数是一次函数;
(2)根据正比例函数的定义得2-|m |=1,n +3=0,解得m =±1,n =-3.又m -1≠0即m 1,∴当m =-1,n =-3时,这个函数是正比例函数.
方法总结:一次函数解析式y =kx +b 的结构特征:k ≠0,自变量的次数为1,常数项b 可以为任意实数.正比例函数y =kx 的解析式中,比例系数k 是常数,k ≠0,自变量的次数为1.
探究点二:根据实际问题求一次函数解析式
【类型一】 列一次函数解析式
写出下列各题中y 与x 的函数关系式,并判断y 是否是x 的一次函数或正比例函数?
(1)某村耕地面积为106(平方米),该村人均占有耕地面y (平方米)人数x (人)之间的函数关系;
(2)地面气温为28℃,如果高度每升高1km ,气温下降5℃,气温x (℃)与高度y (km)之间的函数关系.
解析:(1)根据人均占有耕地面积y 等于总面积除以总人数得出即可;(2)
根据高度每升高1km ,气温下降5℃,得出28-5y =x 求出即可.
解:(1)根据题意得y =106x ,不是一次函数;
(2)根据题意得28-5y =x ,则y =(1,5)x +
285,是一次函数. 方法总结:根据实际问题确定一次函数关系式关键是懂题意,立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
【类型二】 确定一次函数解析式中系数的值
已知一次函数y =kx +b 中,当自变量x =3时,函数值y =5;当x =4时,=-9.求k 和的值
解析:把两组对应值分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程组求出k 和b .
解:(1)∵当自变量x =3时,函数值y =5,当x =-4时,y =-9,∴⎩⎨⎧3k +b =5,-4k +b =-9,解得⎩
⎨⎧k =2,b =-1. 方法总结:解决此问就是将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组解答即可.
三、板书设计
1.一次函数的定义
2.一次函数与正比例函数的区别和联系
3.根据实际问题求一次函数解析式
在本节课的教学设计与教学实践中,不仅关注学生获得的知识,而且注重知识获得的过程和方法,同时关注学生的全面发展.由于教学方法得当,教学过程设计合理,师生互动关系平等、和谐,所以能较好的完成知识传授与促进学生发展的任务,在数学课堂教学改革的实践中取得较好的教学效果.
【素材积累】
1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。

倘若你想达成目标,便得摘心中描绘出目标达成后的景象;那么,梦想必会成真。

求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。

桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。

你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。

2、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。

倘若你想达成目标,便得摘心中描绘出目标达成后的景象;那么,梦想必会成真。

求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。

桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。

你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。

【素材积累】
1、冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘摘这广漠的荒原上,闪着寒冷的银光。

2、抬眼望去,雨后,青山如黛,花木如洗,万物清新,青翠欲滴,绿意径直流淌摘心里,空气中夹杂着潮湿之气和泥土草木的混合气味,扑面而来,清新而湿热的气流迅疾钻入人的身体里。

脚下,雨水冲刷过的痕迹跃然眼前,泥土地上,湿湿的,软软的。

相关文档
最新文档