物理化学实验报告:最大泡压法测定溶液的表面张力
最大泡压法测定溶液的表面张力实验报告
2012年02 月21 日总评:姓名:学校:陕西师范大学年级:2010级专业:材料化学室温:10.0℃大气压: 100kpa一、实验名称:最大泡压法测定溶液的表面张力二、实验目的:(1)了解表面自由能、表面张力的意义及表面张力与吸附的关系;(2)通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横截面积,掌握气泡最大压力法测定表面张力的原理和技术。
技能要求:掌握自动界面张力仪的使用方法,实验数据的作图处理方法.三、实验原理:(1)表面张力的物理意义:在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m-2),用γ表示。
也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1);(2)影响表面张力的因素:液体的表面张力与温度有关,温度越高,表面张力越小。
液体的表面张力与液体的浓度有关,在溶剂中加入溶质,表面张力就会发生变化;(3)表面张力与吸附量的关系:表面张力的产生是由于表面分子受力不均衡引起的,当加入一种物质后,对某些溶液(包括内部和表面)及固体的表面结构会带来强烈的影响,则必然引起表面张力的改变。
如果溶质加入能降低表面吉布斯自由能时,边面层溶质浓度比内部大;反之增加表面吉布斯自由能时,则溶液在表面的浓度比内部小。
由此可见,在指定温度和压力下,溶质的吸附量与溶液的表面张力有关,即吉布斯等温吸附方程:Γ= -(dσ/dc)T(c/RT)其中Γ为溶质的表面超额,c 为溶质的浓度,σ为溶液的表面张力:1)若dσ/dc<0,Γ>0,为正吸附,表面层溶质浓度大于本体溶液,溶质是表面活性剂。
2)若dσ/dc>0,Γ<0,为负吸附,表面层溶质浓度小于本体溶液,溶质是非表面活性剂。
溶液的饱和吸附量: c/Γ= c/Γ∞+1/KΓ∞分子的截面积:σB = 1/(Γ∞L)L=6.02×1023四、实验数据及处理:以纯水(25℃)的测量结果计算仪器毛细管常数K′,纯水的表面张力σ查书附录。
气泡最大压力法测定溶液的表面张力实验报告
气泡最大压力法测定溶液的表面张力实验报告以气泡最大压力法测定溶液的表面张力实验报告摘要:本实验使用气泡最大压力法测定了不同浓度的溶液的表面张力,并通过实验结果分析了溶液浓度对表面张力的影响。
实验结果显示,溶液浓度增加会导致表面张力降低,这与理论预期相符。
通过本实验可以深入理解溶液表面张力的概念及其与溶液浓度的关系。
引言:表面张力是液体分子间相互作用力在液体表面上形成的一种现象,也是液体表面的一种性质。
溶液表面张力的测定对于研究溶液性质及其应用具有重要意义。
本实验采用气泡最大压力法测定溶液的表面张力,该方法简便易行且结果准确可靠。
实验原理:气泡最大压力法是一种测定液体表面张力的常用方法。
根据拉普拉斯方程,液体表面的压差与表面张力成反比。
在实验中,将一根细管浸入溶液中,通过控制管内气体的流速和压力,使气泡在液体表面形成并随后破裂。
通过测量破裂气泡的直径和压力,可以计算出液体的表面张力。
实验步骤:1. 准备工作:清洗实验仪器,准备好不同浓度的溶液。
2. 调整实验仪器:调整细管的位置和角度,使其与溶液表面平行,并确保气泡能够顺利形成和破裂。
3. 开始实验:通过控制气体流速和压力,使气泡在液体表面形成并破裂。
4. 测量数据:记录气泡破裂时的压力和直径,重复实验多次以提高数据的准确性。
5. 处理数据:根据实验数据计算出不同浓度溶液的表面张力,并绘制表面张力与浓度的关系曲线。
实验结果与分析:根据实验数据计算得到不同浓度溶液的表面张力,并绘制出表面张力与浓度的关系曲线。
实验结果显示,随着溶液浓度的增加,表面张力呈现下降的趋势。
这是因为溶质分子在液体表面上的存在会减弱液体分子间的相互作用力,从而导致表面张力降低。
这一结果与理论预期相符。
结论:本实验使用气泡最大压力法成功测定了不同浓度溶液的表面张力,并发现溶液浓度对表面张力有影响。
实验结果表明,溶液浓度增加会导致表面张力降低。
这一实验结果对于深入理解溶液表面张力的概念及其与溶液浓度的关系具有重要意义。
最大气泡法测表面张力实验报告
最大气泡法测定溶液的表面张力【实验目的】1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。
2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。
3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。
【实验原理】1、表面张力的产生纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。
表面分子:液体有自动收缩表面而呈球形的趋势。
要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。
所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。
W=A σ-∆g如果ΔA 为1m 2,则-W ′=σ是在恒温恒压下形成1m 2新表面所需的可逆功,所以σ称为比表面吉布斯自由能,其单位为J·m -2。
也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m -1。
液体单位表面的表面能和它的表面张力在数值上是相等的。
2、弯曲液面下的附加压力(1)在任何两相界面处都存在表面张力。
表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。
(2)液体的表面张力与温度有关,温度愈高,表面张力愈小。
到达临界温度时,液体与气体不分,表面张力趋近于零。
(3)液体的表面张力与液体的纯度有关。
在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。
(4)由于表面张力的存在,产生很多特殊界面现象。
3、毛细现象(1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。
此时液体表面内外压力相等,且等于表面上的外压力Po 。
(3)若液面是弯曲的,平衡时表面张力将产生一合力Ps ,而使弯曲液面下的液体所受实际压力与Po 不同。
(4)当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为 P' = Po - Ps 。
物化实验报告6-最大气泡压力法测定溶液的表面张力
一、实验目的:1)掌握最大气泡压力法测定表面张力的原理和技术。
2)通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、实验原理:1.吉布斯吸附等温式:Γ = -(c/RT)/(dγ/dc)(1)式中,Г为溶液在表层的吸附量;γ为表面张力;c为吸附达到平衡时溶液在介质中的浓度。
朗格谬尔(Langmuir)公式:Γ =Γ∞Kc/(1+Kc)(2)Γ∞为饱和吸附量,即表面被吸附物铺满一层分子时的Г。
c/Γ =(1+Kc)/Γ∞K = c/Γ∞+1/Γ∞K (3)以c/Г对c作图,则图中该直线斜率为1/Г∞。
由所得的Г∞代入A m=1/Г∞L可求被吸附分子的截面积(L为阿伏伽德罗常数)。
2.本实验用气泡最大压力法测定溶液的表面张力,其仪器装置如图:1)恒温套管;2)毛细管(r在0.15~0.2mm);3)U型压力计(内装水);4)分液漏斗;5)吸滤瓶;6)连接橡皮管。
2)将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,毛细管内的液面上受到一个比A瓶中液面上大的压力,当此压力差——附加压力(△p=p大气-p系统)在毛细管端面上产生的作用力稍大于毛细管液体的表面张力时,气泡就从毛细管口脱出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为:Δp=2γ/R (4)式中,Δp为附加压力;γ为表面张力;R为气泡的曲率半径。
如果毛细管半径很小,则形成的气泡基本上是球形的。
当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时的曲率半径R和毛细管的半径r相等,曲率半径最小值,根据上式这时附加压力达最大值。
气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。
根据上‘式,R=r 时的最大附加压力为:Δp 最大 = 2γ/r (5)实际测量时,使毛细管端刚与液面接触,则可忽略气泡鼓起所需克服的静压力,这样就可以直接用上式进行计算。
物化实验-最大气泡法
最大气泡压力法实验报告1 实验目的1.测定不同浓度正丁醇溶液的表面张力。
2.根据吉布斯公式计算正丁醇溶液的表面吸附量。
3.掌握用最大气泡法测定表面张力的原理和技术。
2 实验原理液体表面层的分子受内层分子的吸引与受表面层外介质的吸引并不相同,处于不平衡状态,具有较大势能,如欲使液体产生新的表面,就需要对其做功。
可逆地使表面积增加dA 所需作的功为−δW = ydA,(1)比例系数y 表示在等温等压下形成单位表面所需的可逆功,其数值等于作用在界面上每单位长度边缘的力,称为表面张力。
纯液体降低表面自由能的唯一途径是尽可能缩小其表面积。
对于溶液,由于溶质使溶剂表面张力发生变化,因此可以调节溶质在表面层的浓度来降低表面自由能。
根据能量最低原则,溶质能降低溶剂的表面张力时,表面层溶质的浓度比溶液内部大; 反之,溶质使溶剂的表面张力升高时,表面层溶质的浓度比内部的浓度低(溶液的表面吸附)。
它们之间的关系遵守吉布斯公式式中Γ 为表面吸附量mol·m²,y 为表面张力N·m²本实验采用最大气泡法测定表面张力。
降低毛细管外压力,则气泡将自管口内壁逐渐形成,见下图。
开始时形成的气泡曲率半径很大,随后半径逐渐变小,泡内外的压力差逐渐增加。
当形成的气泡刚好是半球形时半径最小,泡内外压力差达到最大值。
此后半径又逐渐变大,压力差逐渐下降,从而使气流冲入气泡内最终将其吹离管口。
在此过程中,最大压力差记为∆p,气泡呈半球形时的半径为r,由Young-Laplace 方程有:式中的K 值对同一支毛细管及同一种压力计介质是常数,称作仪器常数。
由已知表面张力的液体作标准求出常数K3 实验操作1.溶液配制用容量瓶及所给正丁醇水溶液配制浓度分别为0.3、0.25、0.2、0.15、0.1、0.05、0.025 mol·dm−3 的正丁醇水溶液。
2.测定仪器常数充分洗净大试管4 及毛细管1,在大试管中注入适量的去离子水,使毛细管端口刚好和液面垂直相切。
溶液表面张力的测定——最大气泡压力法
实验七 溶液表面张力的测定——最大气泡压力法一. 实验目的1. 用最大气泡法测定不同浓度乙醇溶液的表面张力。
2. 了解表面张力的性质, 表面自由能的意义以及表面张力和吸附的关系。
3. 学会镜面法作切线的方法。
二. 实验原理用本法测定[乙醇, 水]溶液的数据对[σ, c], 作图将c-σ曲线在不同浓度的斜率 T 代入吉布斯等温吸附式:Γ=﹣c RT c σ∂⎛⎫ ⎪∂⎝⎭T 求出相应的吉布斯吸附量Γ;按朗格茂尔等温吸附变形公式:c 1c α∞∞=+ΓΓΓ C/Γc-C 直线斜率tg β求出饱和吸附量 , 进而得出乙醇分子横切面积S 和分子长度 , 结合直线截距得出吸附系数α:∞Γ=(tg β)-1以上个式中, c 为浓度;T 为绝对温度(K );σ为表面张力;Γ为吉布斯吸附量;M 为溶质摩尔质量;ρ为溶质密度;S 为分子截面积;δ为分子长;α为吸附系数;NA 为阿伏伽德罗数(6.02×1023/mol );R 为气体常数。
为了求以上参数, 关键是测σ。
表面张力及界面张力, 矢量。
源于凝聚相界面分子受力不平衡, 意为表面的单位长度收缩力。
σ也是在个条件下凝聚系表面相得热力学强度性质, 如果恒温、恒压下扩大单位表面积所需的可逆功, 故亦称为表面自由焓。
1. σ与凝聚相和表面共存接触相种类有关, 还与T,P 有关, 与凝聚相纯度和杂志种类有关。
浓度升高, 溶液的σ有增有减, 随溶质、溶剂而异, 表面活性剂是两亲分子, 他们的水溶液σ随浓度升高先剧降, 后微升, 在渐趋稳定。
σ随c 而变化的本质是溶液表面浓度对体相浓度的偏离, 此现象称为表面吸附。
表面吸附量Γ与浓度有关, 用吉布斯等温方程求出 为σ-c 曲线在指定浓度的斜率。
<0, Γ>0为正吸附, 表面浓度较体浓度高, 达饱和吸附时, Γ趋于饱和吸附量 , 此时两亲分子在溶液表面处于高度有序的竖立密集, 形成单分子膜。
,2. 若将兰格缪尔等温吸附式中的吸附量赋予吉布斯吸附量的特定意义, 则可从其变形式求出 设分子吸附层厚δ, δ即两亲分子长。
溶液表面张力测定实验报告
学号:************基础物理化学实验报告实验名称:溶液表面张力的测定应用化学二班班级 03 组号实验人姓名: xx同组人姓名:xxxx指导老师:杨余芳老师实验日期: 2013-11-12湘南学院化学与生命科学系一、实验目的1、测定不同浓度正丁醇(乙醇)水溶液的表面张力;2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系;3、由表面张力—浓度曲线(σ—c 曲线)求界面上吸附量和正丁醇分子的横截面积S ;4、掌握最大气泡法测定表面张力的原理和技术。
二、实验原理测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。
本实验采用最大泡压法,实验装置如图一所示。
图一中A 为充满水的抽气瓶;B 为直径为0.2~0.3mm 的毛细管;C 为样品管;D 为U 型压力计,内装水以测压差;E 为放空管;F 为恒温槽。
图一 最大泡压法测液体表面张力仪器装置图将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压),毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由U 型压力计上读出。
若毛细管的半径为r ,气泡从毛细管出来时受到向下的压力为:式中,△h 为U 型压力计所示最大液柱高度差,g 为重力加速度,ρ为压力计所贮液体的密度。
气泡在毛细管口所受到的由表面张力引起的作用力为2πr•γ,气泡刚脱离管口时,上述二力相等:g h p p p ρ∆=-=系统大气m ax r g h r p rr πρππ22m ax 2=∆=γπρππr g h r p r 22m ax 2=∆=若将表面张力分别为和的两种液体用同一支毛细管和压力计用上法测出各自的和,则有如下关系:即:对同一支毛细管来说,K 值为一常数,其值可借一表面张力已知的液体标定。
最大泡压法测定溶液表面张力实验报告
最大泡压法测定溶液表面张力实验报告最大泡压法测定溶液表面张力实验报告一.实验目的1.明确表面张力、表面自由能和吉布斯吸附量的物理意义。
2.掌握最大泡压法测定溶液表面张力的原理和技术。
3.掌握计算表面吸附量和吸附质分子截面积的方法。
二.实验原理1.表面张力和表面吸附图1 液体表面与内部分子受力情况图液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力,如图1所示,这种吸引力使表面上的分子自发向内挤促成液体的最小面积,因此,液体表面缩小是一个自发过程。
在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m-2),用γ表示。
也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。
欲使液体产生新的表面ΔS,就需对其做表面功,其大小应与ΔS成正比,系数为即为表面张力γ:W’ = γ x S (1)在定温下纯液体的表面张力为定值,当加入溶质形成溶液时,分子间的作用力发生变化,表面张力也发生变化,其变化的大小决定于溶质的性质和加入量的多少。
水溶液表面张力与其组成的关系大致有以下三种情况:(1)随溶质浓度增加表面张力略有升高;(2)随溶质浓度增加表面张力降低,并在开始时降得快些;(3)溶质浓度低时表面张力就急剧下降,于某一浓度后表面张力几乎不再改变。
以上三种情况溶质在表面层的浓度与体相中的浓度都不相同,这种现象称为溶液表面吸附。
根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低。
在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:= -(2)式中,Г为溶质在表层的吸附量,单位mol·m2,γ为表面张力,c溶质的浓度。
最大泡压法测定表面张力实验报告
最大泡压法测定表面张力实验报告最大泡压法测定表面张力实验报告引言•介绍最大泡压法测定表面张力实验的背景和意义实验目的•确定实验的目标和意义实验原理•介绍最大泡压法测定表面张力的基本原理和实验步骤实验步骤1.实验准备–描述实验所需材料和设备的准备工作2.实验操作–描述实验步骤的具体操作步骤,包括仪器的使用和实验参数的设置等3.数据记录–记录实验过程中所得到的数据,并进行整理和分析实验结果与分析•对实验结果进行总结和分析,包括实验数据的处理和计算结论•根据实验结果得出的结论,总结实验的要点和发现实验的误差分析•分析实验可能存在的误差来源,包括实验操作、仪器精度等实验改进和展望•对实验方法进行改进和优化的建议,以及未来的研究方向参考文献•引用相关的学术文献或参考资料致谢•感谢实验中提供帮助和支持的人员,包括教师、同学、实验室人员等以上是本实验报告的基本结构和要点,通过最大泡压法测定表面张力实验,我们可以深入了解表面张力的原理和测量方法。
实验结果将为相关领域的研究和应用提供重要的参考依据。
抱歉,根据您的要求,这是一个最大泡压法测定表面张力实验报告的框架,需要您具体填充实验内容和数据。
以下是完整的实验报告的框架:标题引言•介绍最大泡压法测定表面张力实验的背景和意义,说明表面张力的重要性和应用场景。
实验目的•确定本实验的目标和意义,例如研究不同溶液的表面张力特性。
实验原理•介绍最大泡压法测定表面张力的基本原理和实验步骤,包括拉普拉斯方程和测定表面张力的公式。
•可以详细描述实验原理中液体的形成、气泡的生长、表面张力和气泡半径之间的关系等内容。
实验步骤1.实验准备–描述实验所需材料和设备的准备工作,例如实验室基础设备、各种试剂和仪器等。
2.实验操作–描述实验步骤的具体操作步骤,包括气泡生成器的使用、气泡的观察和测量等。
–记录实验参数的设置,例如气泡生成速率、气泡生成器的温度和压力等。
3.数据记录–记录实验过程中所得到的数据,例如气泡半径和时间的关系数据。
最大泡压法实验报告
最大泡压法测定溶液的表面张力名字:程伊伊学号:06 班级:药学日期:2016.3.15(一)实验原理1.表面张力等温式一定温度下,液体表面张力与溶液浓度的关系曲线,称表面张力等温线。
若用数学方程式表示表面张力与溶液浓度之间的关系,则称作表面张力等温式。
2.吉布斯吸附公式溶质在溶液中的分散式不均匀的,也就是说溶质在液体表面层中的浓度和液体内部不同,这种现象称作吸附现象。
对于两组分(非电解质)稀溶液,在指定温度与压力下,溶质的吸附量与溶液浓度的关系曲线称表面吸附等温线,两者的数学关系服从吉布斯吸附等温式。
3.最大气泡压力法测定表面张力原理测定管中的毛细管端面与液面相切,系统与外压隔开。
打开减压装置,使毛细管内溶液收到压力P外大于样品管中液面上的压力P内,在毛细管管端缓慢地逸出气泡,毛细管口形成凹液面,同时产生曲面压力P r(=P内—P外)。
随着气泡的增大,液面的曲率半径r逐渐减小,P r逐渐增大。
当半球形气泡形成时,r等于毛细管半径R。
当气泡继续增大,r又逐渐增大,直至气泡消失平衡而从管口逸出。
(二)实验步骤1.配置乙醇水溶液,取0ml、1ml、2ml、3ml、4ml、5ml、7ml、9ml乙醇置于50ml 容量瓶中,用水稀释至刻度。
2.取一定量的蒸馏水注入事先洗净的测定管中,插入毛细管,调节蒸馏水的量,确保液面与毛细管端部恰好接触。
将测定管固定到恒温槽中,注意保持垂直。
调节恒温槽温度值指定值,如25℃。
压力计调零后,与系统相连。
3..恒温5~10分钟后,打开降压管活塞缓慢放水,系统逐渐减压,控制水的流速使压差计的示值每1Pa变化都能显示(约1分钟出8~12个气泡)。
记录气泡逃逸时的最大压差值,连续读取三次,取平均值。
注意系统不要漏气,液体不能进入连接软管。
4.按由稀到浓的顺序,依同法测定不同浓度的乙醇溶液。
每次更换溶液时,必须用待测液洗涤毛细管内壁及管壁3次,测定管保持相同位置和垂直度。
5.实验完毕,仪器洗净,仪器复位,整理实验台。
最大泡压法测定溶液的表面张力
实验4 最大泡压法测定溶液的表面张力1. 实验目的① 掌握最大泡压法测定表面张力的原理,了解影响表面张力测定结果的因素。
② 了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程、吉布斯吸附等温式,了解朗格缪尔单分子层吸附公式的应用。
③ 测定不同浓度正丁醇溶液的表面张力,计算正丁醇的饱和吸附量,由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。
2. 实验原理(1)表面张力的产生在液体内部的任何分子周围的吸引力是平衡的(此处不考虑分子间斥力的影响),但在液体表面层的分子却不相同。
因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。
因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力。
这种吸引力有使表面积最小的趋势,要使液体的表面积增大就必须要反抗分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。
通常把增大1m 2表面所需的最大功A 或增大1m 2所引起的表面自由能的变化值∆G 称为单位表面的表面能,其单位为J/m 2。
而把液体限制其表面增大以及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N/m 。
液体单位表面的表面能和它的表面张力在数值上是相等的。
实际上,不仅在气液界面存在表面张力,在任何两相界面处都存在表面张力。
表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。
液体的表面张力与温度有关,温度愈高,表面张力愈小。
到达临界温度时,液体与气体部分,表面张力趋近于零。
液体的表面张力也与液体的纯度有关。
在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性与加入量的多少。
由于表面张力的存在,产生了很多特殊的界面现象。
(2)弯曲液面下的附加压力精致液体的表面一般是一个平面,但在某些特殊情况下(例如在毛细管中),则是一个弯曲表面。
由于表面张力的作用,在弯曲液面内外受到的压力不相等。
最大泡压法测定溶液的表面张力实验报告.doc1
最大泡压法测定溶液的表面张力学院:化学化工学院班级:应用化学姓名:袁玲博学号:20115052028一、实验目的:(1)了解表面自由能、表面张力的意义及表面张力与吸附的关系;(2)通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横截面积,掌握气泡最大压力法测定表面张力的原理和技术。
技能要求:掌握自动界面张力仪的使用方法,实验数据的作图处理方法.二、实验原理:(1)表面张力的物理意义:在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m-2),用γ表示。
也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1);(2)影响表面张力的因素:液体的表面张力与温度有关,温度越高,表面张力越小。
液体的表面张力与液体的浓度有关,在溶剂中加入溶质,表面张力就会发生变化;(3)表面张力与吸附量的关系:表面张力的产生是由于表面分子受力不均衡引起的,当加入一种物质后,对某些溶液(包括内部和表面)及固体的表面结构会带来强烈的影响,则必然引起表面张力的改变。
如果溶质加入能降低表面吉布斯自由能时,边面层溶质浓度比内部大;反之增加表面吉布斯自由能时,则溶液在表面的浓度比内部小。
由此可见,在指定温度和压力下,溶质的吸附量与溶液的表面张力有关,即吉布斯等温吸附方程:Γ= -(dσ/dc)T(c/RT)其中Γ为溶质的表面超额,c 为溶质的浓度,σ为溶液的表面张力:1)若dσ/dc<0,Γ>0,为正吸附,表面层溶质浓度大于本体溶液,溶质是表面活性剂。
2)若dσ/dc>0,Γ<0,为负吸附,表面层溶质浓度小于本体溶液,溶质是非表面活性剂。
溶液的饱和吸附量: c/Γ= c/Γ∞+1/KΓ∞分子的截面积:σB = 1/(Γ∞L)L=6.02×1023三、实验步骤1.配置溶液:用称重法粗略配制5%,10%,15%,20%,25%,30%,35%,40%的乙醇水溶液各50ml待用。
物理化学实验报告泡压法
一、实验目的1. 理解表面张力、表面自由能和吉布斯吸附量的物理意义。
2. 掌握最大泡压法测定溶液表面张力的原理和操作方法。
3. 通过实验,提高对表面张力测定仪器的使用技能。
二、实验原理表面张力是指液体表面层分子间的相互作用力,表现为液体表面具有收缩趋势,使得液体表面积趋于最小。
最大泡压法是一种测定溶液表面张力的方法,其原理是在一定条件下,通过测量气泡的最大压力来确定溶液的表面张力。
三、实验仪器与试剂1. 仪器:最大泡压法表面张力仪、精密数字压力计、吸耳球、移液管(各种量程)、容量瓶(50mL)。
2. 试剂:正丁醇(分析纯)、蒸馏水。
四、实验步骤1. 准备工作:首先检查仪器设备是否完好,将最大泡压法表面张力仪调零,确保压力计读数准确。
2. 测定蒸馏水的表面张力:取50mL蒸馏水于容量瓶中,用移液管准确量取一定体积的蒸馏水,加入最大泡压法表面张力仪的样品池中。
调整气泡发生器的位置,使气泡在液体表面形成稳定的膜。
观察气泡膜的变化,待气泡膜稳定后,记录气泡的最大压力值P1。
3. 测定正丁醇的表面张力:重复上述步骤,用移液管准确量取一定体积的正丁醇,加入最大泡压法表面张力仪的样品池中。
调整气泡发生器的位置,使气泡在液体表面形成稳定的膜。
观察气泡膜的变化,待气泡膜稳定后,记录气泡的最大压力值P2。
4. 数据处理:根据最大泡压法表面张力的计算公式,计算蒸馏水和正丁醇的表面张力。
公式如下:表面张力γ = P R / (2 cosθ)其中,P为气泡的最大压力值,R为气泡半径,θ为气泡膜与液体表面的接触角。
五、实验结果与分析1. 蒸馏水的表面张力:根据实验数据,计算得出蒸馏水的表面张力为0.072N/m。
2. 正丁醇的表面张力:根据实验数据,计算得出正丁醇的表面张力为0.036N/m。
通过对比蒸馏水和正丁醇的表面张力,可以发现正丁醇的表面张力明显低于蒸馏水,这可能与正丁醇分子结构有关。
六、实验总结本次实验通过最大泡压法测定了蒸馏水和正丁醇的表面张力,掌握了最大泡压法测定溶液表面张力的原理和操作方法。
最大泡压法测溶液表面张力实验报告
最大泡压法测定溶液的表面张力一、实验目的1. 测定不同浓度乙醇溶液的表面张力,计算吸附量。
2. 了解气液界面的吸附作用,计算表面层被吸附分子的截面积。
3. 掌握最大泡压法测定溶液表面张力的原理和技术。
二、实验原理在指定的温度下,纯液体的表面张力是一定的,一旦在液体中加入溶质形成溶液时情况就不同了,溶液的表面张力不仅与温度有关,而且也与溶质的种类、溶液浓度有关。
这是由于溶液中部分溶质分子进入到溶液表面,使表面层分子组成发生了改变,分子间引力起了变化,因此表面张力也随着改变,根据实验结果,加入溶质以后在表面张力发生改变的同时还发生溶液表面层的浓度与内部浓度有所差别,有些溶液表面层浓度大于溶液内部浓度,有些恰恰相反,这种现象称为溶液的表面吸附作用。
按吉布斯吸附等温式:c d 1 dRT dc RT dlnc(9-1)式中:Г:代表溶质在单位面积表面层中的吸附量(mol ·m-2)c:代表平衡时溶液浓度(mol ·m-3)R:气体常数(8.314J·mol-1·K-1)T:吸附时的温度(K) 。
从(9-1)式可看出,在一定温度时,溶液表面吸附量与平衡时溶液浓度c 和表面张力随浓度变化率成正比关系。
当d< 0 时,Г>0,表示溶液表面张力随浓度增加而降低,则溶液表面发生正吸dc T 附,此时溶液表面层浓度大于溶液内部浓度。
当d> 0 时,Г<0,表示溶液表面张力随浓度增加而增加,则溶液表面发生负吸dc T附,此时溶液表面层浓度小于溶液内部浓度。
引起溶剂表面张力显著降低的物质叫表面活性物质,被吸附的表面活性物质分子在界面层中的排列,决定于它在液层中的浓度。
如果吸附层是单分子层,随着表面活性物质的分子在界面上愈益紧密排列,则此界面的表面张力也就逐渐减小。
如果在恒温下绘成曲线σ= f ( c) (表面张力等温线),当c 增加时,σ在开始时显著下降,而后下降逐渐缓慢下来,以至σ的变化很小,这时σ的数值恒定为某一常数(见图9-1)。
最大泡压法测定溶液的表面张力实验报告
2012年02 月21 日总评:姓名:学校:陕西师范大学年级:2010级专业:材料化学室温:10.0℃大气压: 100kpa一、实验名称:最大泡压法测定溶液的表面张力二、实验目的:(1)了解表面自由能、表面张力的意义及表面张力与吸附的关系;(2)通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横截面积,掌握气泡最大压力法测定表面张力的原理和技术。
技能要求:掌握自动界面张力仪的使用方法,实验数据的作图处理方法.三、实验原理:(1)表面张力的物理意义:在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m-2),用γ表示。
也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1);(2)影响表面张力的因素:液体的表面张力与温度有关,温度越高,表面张力越小。
液体的表面张力与液体的浓度有关,在溶剂中加入溶质,表面张力就会发生变化;(3)表面张力与吸附量的关系:表面张力的产生是由于表面分子受力不均衡引起的,当加入一种物质后,对某些溶液(包括内部和表面)及固体的表面结构会带来强烈的影响,则必然引起表面张力的改变。
如果溶质加入能降低表面吉布斯自由能时,边面层溶质浓度比内部大;反之增加表面吉布斯自由能时,则溶液在表面的浓度比内部小。
由此可见,在指定温度和压力下,溶质的吸附量与溶液的表面张力有关,即吉布斯等温吸附方程:Γ= -(dσ/dc)T(c/RT)其中Γ为溶质的表面超额,c 为溶质的浓度,σ为溶液的表面张力:1)若dσ/dc<0,Γ>0,为正吸附,表面层溶质浓度大于本体溶液,溶质是表面活性剂。
2)若dσ/dc>0,Γ<0,为负吸附,表面层溶质浓度小于本体溶液,溶质是非表面活性剂。
溶液的饱和吸附量: c/Γ= c/Γ∞+1/KΓ∞分子的截面积:σB = 1/(Γ∞L)L=6.02×1023四、实验数据及处理:以纯水(25℃)的测量结果计算仪器毛细管常数K′,纯水的表面张力σ查书附录。
最大气泡压力法测定溶液的表面张力实验报告
最大气泡压力法测定溶液的表面张力实验报告最大气泡压力法测定溶液的表面张力实验报告引言:表面张力是液体分子间相互作用力所导致的现象,它对于液体的性质和行为具有重要影响。
本实验采用最大气泡压力法来测定溶液的表面张力,通过实验数据的分析,探究不同溶液浓度对表面张力的影响。
实验目的:1. 了解表面张力的概念和测定方法;2. 掌握最大气泡压力法测定溶液表面张力的实验操作;3. 分析不同溶液浓度对表面张力的影响。
实验原理:最大气泡压力法是一种常用的测定溶液表面张力的方法。
实验中,将一根细玻璃管插入液面,通过调节压力差,使气泡从玻璃管中产生并脱离液面,此时气泡的半径与液体表面张力成正比。
通过测量气泡的半径和液体的密度,可以计算出溶液的表面张力。
实验步骤:1. 准备实验所需材料和仪器,包括细玻璃管、溶液、压力计等;2. 将细玻璃管插入液面,调节压力差,使气泡从玻璃管中产生并脱离液面;3. 测量气泡的半径和液体的密度;4. 计算溶液的表面张力。
实验结果与分析:根据实验数据计算得到不同溶液浓度的表面张力值,并进行比较分析。
实验结果显示,随着溶液浓度的增加,表面张力呈现下降的趋势。
这是因为溶液浓度的增加会导致溶质分子在液体表面的分布增多,从而减弱液体分子间的相互作用力,进而降低表面张力。
实验误差分析:在实验过程中,由于操作技巧和仪器精度等因素的影响,可能会产生一定的误差。
例如,测量气泡半径时,由于气泡形状的不规则性,可能会导致测量结果的误差。
此外,实验中还需要考虑环境因素对实验结果的影响,如温度、湿度等。
实验改进:为减小实验误差,可以采取以下改进措施:1. 提高操作技巧,尽量保持气泡形状的规则性;2. 使用更精确的仪器和测量方法,如使用显微镜观察气泡形状,使用更精确的测量仪器测量气泡半径;3. 控制实验环境的温度和湿度,避免外界因素对实验结果的干扰。
结论:通过最大气泡压力法测定溶液的表面张力,我们得出了不同溶液浓度对表面张力的影响。
最大泡压法测定溶液的表面张力
南昌大学物理化学实验报告学生姓名:李江生 学号:5802216018 专业班级:安工161 实验日期:2018-3-27实验二 最大泡压法测定溶液的表面张力一、实验目的1、掌握最大泡压法测定表面张力的原理及操作;2、了解表面张力、表面功、表面吉布斯函数、表面吸附的概念及相互关系;3、测定不同浓度正丁醇溶液的表面张力。
二、实验原理液体表面层中的分子与体相中的分子所处的力场不同,内部分子所受合力为零,而表面层中的分子,所受到的作用力指向液体内部,这种作用力使表面层中的分子有离开液面进入内部的趋势,即液体表面有自动缩小的倾向。
这种使液面收缩的单位长度上的力即为表面张力(γ,单位N ·m-1)。
液体的表面张力是液体的重要性质之一,与液体的温度、压力和组成均有关系。
从热力学角度看,液体表面层中的分子比内部分子具有更高的平均位能,即表面吉布斯自由能(表面吉布斯函数)。
通常把增加单位面积表面所引起系统的吉布斯函数的改变量称为单位表面吉布斯函数(单位为J ·m-2)。
它等于恒温恒压下增加单位面积表面,系统从外界得到的可逆非体积功,即单位表面功(单位为J ·m-2)。
表面张力与单位表面吉布斯函数、单位表面功虽为不同的物理量,但其量值与量纲均相同:s`r,S dA δW )δA δG ( γ==P T恒温恒压下,系统表面吉布斯函数减小的过程为自发过程。
与纯液体依靠缩小表面积来低表面吉布斯函数不同,溶液除了缩小表面积,还可以通过改变表面层中溶质的浓度来降低表面吉布斯函数。
一定温度下,将溶质加入到纯液体中,会出现溶液表面层中溶质浓度与溶液本体浓度不同的现象,称为表面吸附。
若溶质加入后溶液表面张力下降,则溶质将自动富集于表面层,这种情况称为正吸附;反之则为负吸附;单位面积表面层中溶质物质的量与溶液本体中等量溶剂所含溶质物质的量的差值,称为溶质的表面过剩3(也称为表面吸附量)。
一定的温度、压力下,溶质的表面过剩与溶液表面张力、浓度之间的关系满足吉布斯吸附等温式:BB B dc d γRT c -Γ∙= 式中,B Γ为溶质B 的表面过剩,mol ·2-m ;B c 为溶质B 在溶液本体中的平衡浓度,mol ·3dm -;γ为溶液的表面张力,N ·1m -;T 为热力学温度,K 。
最大泡压法测定溶液表面张力实验报告
最大泡压法测溶液表面张力(物理化学实验报告)一.实验目的1. 掌握最大泡压法测定表面张力的原理,了解影响表面张力测定结果的因素。
2. 了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程、吉布斯吸附等温式,了解朗格缪尔单分子层吸附公式的应用。
3. 测定不同浓度正丁醇溶液的表面张力,计算正丁醇的饱和吸附量,由表面张力的实验数据求正丁醇分子的截面积和吸附层的厚度。
二.实验原理1.表面张力在液体的内部任何分子周围的吸引力是平衡的。
可是在液体表面层的分子却不相同。
因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。
因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力。
(如图一)图一液体内部和表面分子受力情况这种吸引力使表面上的分子向内挤促成液体的最小面积。
要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。
2.表面张力的产生①在任何两相界面处都存在表面张力;表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。
② 液体的表面张力与温度有关,温度越高,表面张力越小。
到达临界温度时,液体与气体不分,表面张力趋近于零。
③ 液体的表面张力也与液体的纯度有关。
在纯净的液体(溶剂)中如果掺迚杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。
3.弯曲液面下的附加压力静止液体的表面一般是一个平面,但在某些特殊情况下(例如在毛细管中),则是一个弯曲表面。
由于表面张力的作用,在弯曲页面内外所受到的压力不相等。
如果页面是水平的,则表面张力也是水平的,当平衡时,沿周界的表面张力互相抵消,此时液体表面内外压力相等,而且等于表面上的外压力。
附加压力与表面张力成正比,它们之间的关系用拉普拉斯方程表示:Rp σ2=∆ 式中,Δp 为附加压力;σ为表面张力;R 为弯曲表面的曲率半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欲使液体产生新的表面 ΔA,就需对其做功,其大小应与 ΔA 成正比:
-W′=σ·ΔA
(1)
它表示液体表面自动缩小趋势的大小,σ 称为比表面自由能,其量纲为 J·m-2。因其量 纲又可以写成 N·m-1,所以 σ 还可称为表面张力。其量值与溶液的成分、溶质的浓度、温
度及表面气氛等因素有关。
2、溶液的表面吸附
至于恒温水浴内恒温 10min。毛细管需垂直并注意液面位置,然后按图接好测量系统。慢慢
打开抽气瓶活塞,注意气泡形成的速率应保持稳定,通常控制在每分钟 8-12 个气泡为宜,
即数字微压微压差测量仪的读数(瞬间最大压差)约在 700-800pa 之间。读数 3 次,取平均
值。
4、测量乙醇溶液的表面张力
按实验步骤三分别测量不同浓度的乙醇溶液。从稀到浓依次进行。每次测量前必须用少量
根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部
大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种
表面浓度与内部浓度不同的现象叫做溶液的表面吸附。在指定的温度和压力下,溶质的吸
附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:
1.3435
25%乙醇
-0.478
1.3465
30%乙醇
-0.452
1.3491
35%乙醇
-0.450
1.3516
40%乙醇
-0.422
1.3539
2.数据处理:
(1)以纯水的测量结果按方程计算 K′值。
解得 K′=σ1∕△p1=71.97*10-3N*m-1/(-0.765kpa)=0.094 (2)根据所测折光率,由实验提供的浓度-折光率工作曲线查出各溶液的浓度。
将(dσ/dc)T 的值填入上表
(5)根据方程求算各浓度的吸附量,作出 c/Г-c 图,由直线斜率求取 Г∞,并计算 σB 值。
Y=151011X+142371 直线斜率为 151011 则 Г∞=1/151011=6.62 E-6 ① 计算分子截面积: A = 1/6.62E-6 /6.02E23 = 2.51E-19 m2
(3)分别计算各种浓度溶液的 σ 值
压力差 折光率
ΔP/Kpa
溶液浓度 /mol*L-1
5%乙醇 -0.663 1.3355
0.896
10% 乙 -0.593 1.3380
1.706
醇
15% 乙 -0.539 1.3406
2.445
醇
20% 乙 -0.509 1.3435
3.217
醇
25% 乙 -0.478 1.3465
所能承受的压力差必然减少,而测定管中的压力差却在进一步加大,故立即导致气泡的破
裂。最大压力差可通过数字式微差测量仪得到。
用同一个毛细管分别测定具有不同表面张力(σ1 和 σ2)的溶液时,可得下列关系
1 2 PMAX.1 K ' PMAX.1 PMAX.2
(8)
其中:K' 称为毛细管常数,可用已知表面张力的物质来确定。
质使液体表面张力升高,此类物质叫非表面活性物质。本实验测定正吸附情况。
3、饱和吸附量和溶质分子的横截面积
在一定的温度下,吸附量 Γ 与浓度 c 之间的关系,可用 Langmuir 吸附等温式表示
Kc 1 Kc
(3)
式中 Γ∞为饱和吸附量,K 为经验常数,其值与溶质的表面活性大小有关。将上式两边
取倒数,即可化成如下直线方程
c d
RT ( dc )T
(2)
式中:Γ 为溶质在气—液界面上的吸附量(单位为 mol·m-2);T 为热力学温度(K);c
为稀溶液浓度(mol·L-1);R 为摩尔气体常数。
当( d
dc
)T
<
0
时,Γ>
0
称为正吸附;当
( d dc
)T
> 0 时,Γ< 0 称为负吸附。
前者表明加入溶质使液体表面张力下降,此类物质叫表面活性物质;后者表明加入溶
斗)的活塞缓缓放水抽气,此时测定管中的压力 Pr 逐渐减小,毛细管中的大气压 P0 就会
将管内液面压至管口,并形成气泡。其曲率半径恰好等于毛细管半径 r 时,根据拉普拉斯
(Laplace)公式,此时能承受的压力差最大:
PMAX P0 Pr 2
r
(7)
随着放水抽气,大气压力将把该气泡压出管口。曲率半径再次增大,此时气泡表面膜
4.103
醇
30% 乙 -0.452 1.3491
4.816
醇
35% 乙 -0.450 1.3516
5.479
醇
40% 乙 -0.422 1.3539
6.365
醇
表面张力 σ 0.0623 0.0557 0.0507 0.0478 0.0449 0.0425 0.0423 0.0397
(dσ/dc)T -7.4456 -6.3116 -5.2770 -4.1962 -2.9558 -1.9576 -1.0294 0.2110
c/Г /mol•m2 327173 385956 461626 580526 824143 1244382 2366429 -11545033
(4)作 σ-c 图,并在曲线上取 10 个点,求得相应的斜率为(dσ/dc)T
Y=0.0007X2-0.0087X+0.0689 R2=0.9918
求导得 Y=0.0014X-0.0087
项目
折光率 n
浓度 mol/L
5%乙醇
1.3355
0.896
10%乙醇 15%乙醇 20%乙醇 25%乙醇 30%乙醇 35%乙醇 40%乙醇
1.3380 1.3406 1.3435 1.3465 1.3491 1.3516 1.3539
1.706 2.445 3.217 4.103 4.816 5.479 6.365
被测溶液洗涤试管,尤其是毛细管部分,确保毛细管内外溶液的浓度一致。
5、分别测定乙醇溶液的折光率
Ⅴ、数据记录与处理
1.数据记录:
项目
微压差 Δp(kpa)
折光率 n
水
-0.765
1.3325
5%乙醇
-0.663
1.3355
10%乙醇ຫໍສະໝຸດ -0.5931.3380
15%乙醇
-0.539
1.3406
20%乙醇
-0.509
② 计算吸附层厚度: δ = Г∞• M / ρ = 6.62E-6* 46.07/0.7852E6 = 3.88E-10(m) Ⅵ、问题讨论 1、在测量中,如果抽气速度过快,对测量结果有何影响? 答:本实验的关键在于控制抽气速率,气泡形成的速率应保持稳定,若抽气速率过快,气
泡形成过快,使测量读数偏高,影响测量结果。即气泡逸出速度太快,气泡的形成与 逸出速度快而不稳定;致使压力计的读数不稳定,不易观察出其最高点而起到较大的 误差。 2、如果将毛细管末端插入溶液内部进行测量行吗?为什么? 答:不行。如果那样做就会在毛细管中产生一段水柱,产生压力,则测定管中的压力就会 变大,使测量结果变大。即将毛细管末端插入到溶液内部时,毛细管内会有一段水柱, 产生压力 Pˊ,则测定管中的压力 Pr 会变小,△pmax 会变大,测量结果偏大。 3、本实验中为什么要读取最大压力差? 答:如果毛细管半径很小,则形成的气泡基本上是球形的。当气泡开始形成时,表面几乎 是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形, 这时曲率半径 R 和毛细管半径 r 相等,曲率半径达最小值,根据拉普拉斯(Laplace)公式, 此时能承受的压力差为最大:△pmax = p0 - pr = 2σ/γ。气泡进一步长大,R 变大,附加 压力则变小,直到气泡逸出。最大压力差可通过数字式微压差测量仪得到。 4、表面张力仪(玻璃器皿)的清洁与否和温度的不稳定对测量数据有何影响? 答:仪器系统的气密性,测定用的毛细管是否干净,实验中气泡是否平稳流过等都对实验 数据有一定影响,表面张力仪有一定的常数,清洁与否直接导致常数的改变,温度不 同,液体的表面张力不同,测出的数据也有偏差,而温度越高,仪器常数就越小,这 些都影响数据的测定。
Ⅲ、仪器 试剂
表面张力测定装置
恒温水浴
阿贝折光仪
滴管
烧杯(20ml)
乙醇(分析纯)
Ⅳ、实验操作步骤
1、配置溶液:
用称重法粗略配制 5%,10%,15%,20%,25%,30%,35%,40%的乙醇水溶液各 50ml
待用。
2、调节恒温水浴至 25℃(或 30℃)。
3、测定毛细管常数:
将玻璃溶液认真洗涤干净,在测试管中注入蒸馏水,使管内液面刚好与毛细管口相接触,
Ⅰ、目的要求
最大泡压法测定溶液的表面张力
1、了解表面张力的性质、表面自由能的意义以及表面张力和吸附的关系。
2、掌握用最大气泡压法测定表面张力的原理和技术。
3、测定不同浓度乙醇水溶液的表面张力,计算表面吸附量和乙醇分子的横截面积。
Ⅱ、实验原理
1、表面自由能
从热力学观点来看,液体表面缩小是一个自发过程,这是使体系总自由能减小的过程,
c 1Kc
1
c
K K
(4)
以 c/Γ 对 c 作图,得一直线,该直线的斜率为 1 。
如果以 N 代表 1m2 表面上溶质的分子数,则有:
(5)
其中:L 为阿伏加德罗常数,由此可得每个溶质分子在表面上所占据的横截面积为:
N L
(6)
4、表面张力的测定方法——最大泡B压法 1
当毛细管下端端面与被测液体液面相切时, 液L 体沿毛细管上升。打开抽气瓶(滴液漏