SPSS作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计软件应用第一次作业
金融102班1005010259 于闯一.现有1992年-2006年国家财政收入和国内生产总值的数据如下表所示,请研究国家财政收入和国内生产总值之间的线性关系。
1.根据数据并作出散点图可以得知1992年-2006年国家财政收入和国内生产总值两
个变量之间具有一元线性关系。我们利用SPSS软件作出散点图,步骤如下:依次选择菜单“图形→旧对话框→散点/点状→简单分布”,具体操作如图所示:
并将“国内生产总值”作为x轴,“财政收入”作为y轴,得到如下所示图形。
图一:散点图
可以看出两变量具有较强的线性关系,可以用一元线性回归来拟合两变量。
2.为了便于数据分析所以定义三个变量,分别为“year”(年份)、“x”(国内生产总值)、“y”(财政收入)。
3.选择菜单“分析→回归→线性”,打开“线性回归”对话框,将变量“财政收入”作为因变量,“国内生产总值”作为自变量。
4.打开“统计量”对话框,选上“估计”和“模型拟合度”。单击“绘制(T)…”按钮,打开“线性回归:图”对话框,选用DEPENDENT作为y轴,*ZPRED为x轴作图。并且选择“直方图”和“正态概率图”作相应的保存选项设置,如预测值、残差和距离等。
○1变量输入和移去表
表中显示回归模型编号、进入模型的变量、移出模型的变量和变量的筛选方法。可以看出,进入模型的自变量为“国内生产总值”
○2模型综述表
R=0.989,说明自变量与因变量之间的相关性很强。R方(R2) =0.979,说明自变量“国内生产总值”可以解释因变量“财政收入”的97.9%的差异性。
○3方差分析表
表中显示因变量的方差来源、方差平方和、自由度、均方、F检验统计量的观测值和显著性水平。方差来源有回归、残差。从表中可以看出,F统计量的观测值为592.25,显著性概率为0.000,即检验假设“H0:回归系数B = 0”成立的概率为0.000,从而应拒绝原假设,说明因变量和自变量的线性关系是非常显著的,可建立线性模型。
○4回归系数表
表中显示回归模型的常数项、非标准化的回归系数B值及其标准误差、标准化的回归系数值、统计量t值以及显著性水平(Sig.)。从表中可看出,回归模型的常数项为-4993.281,自变量“国内生产总值”的回归系数为0.197。因此,可以得出回归方程:财政收入=-4993.281 + 0.197 ×国内生产总值。
回归系数的显著性水平为0.000,明显小于0.05,故应拒绝T检验的原假设,这也说明了回
归系数的显著性,说明建立线性模型是恰当的。
同时根据经济学上理论一国财政收入和该国GDP呈正相关关系,得到的模型中符号也与此相符。