2017年湖南省益阳市中考数学试卷(含答案解析)
081 (真题)2017年益阳市中考数学试卷(有答案)(2)
湖南省益阳市2019年中考数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)下列四个实数中,最小的实数是( ) A .﹣2 B .2C .﹣4D .﹣12.(5分)如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )A .{x ≥2x >−3B .{x ≤2x <−3C .{x ≥2x <−3D .{x ≤2x >−33.(5分)下列性质中菱形不一定具有的性质是( ) A .对角线互相平分 B .对角线互相垂直 C .对角线相等D .既是轴对称图形又是中心对称图形4.(5分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04用科学记数法表示为( )A .4×108B .4×10﹣8C .0.4×108D .﹣4×108 5.(5分)下列各式化简后的结果为3√2的是( ) A .√6 B .√12 C .√18 D .√366.(5分)关于x 的一元二次方程ax 2+bx +c=0(a ≠0)的两根为x 1=1,x 2=﹣1,那么下列结论一定成立的是( )A .b 2﹣4ac >0B .b 2﹣4ac=0C .b 2﹣4ac <0D .b 2﹣4ac ≤07.(5分)如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB=α,则拉线BC 的长度为(A 、D 、B 在同一条直线上)( )A .ℎsinαB .ℎcosαC .ℎtanαD .h•cosα8.(5分)如图,空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,在比例尺为1:4的三视图中,其主视图的面积是( )A .21π4cm 2B .21π16cm 2 C .30cm 2 D .7.5cm 2二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)9.(5分)如图,AB ∥CD ,CB 平分∠ACD .若∠BCD=28°,则∠A 的度数为 .10.(5分)如图,△ABC 中,AC=5,BC=12,AB=13,CD 是AB 边上的中线.则CD= .11.(5分)代数式√3−2x x−2有意义,则x 的取值范围是 .12.(5分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 .13.(5分)如图,多边形ABCDE 的每个内角都相等,则每个内角的度数为 .14.(5分)如图,在△ABC 中,AB=AC ,∠BAC=36°,DE 是线段AC 的垂直平分线,若BE=a ,AE=b ,则用含a 、b 的代数式表示△ABC 的周长为 .三、解答题(本大题8个小题,共80分)15.(8分)计算:|﹣4|﹣2cos60°+(√3﹣√2)0﹣(﹣3)2.16.(8分)先化简,再求值:x 2+2x+1x+1+x 2−1x−1,其中x=﹣2.17.(8分)如图,四边形ABCD 为平行四边形,F 是CD 的中点,连接AF 并延长与BC 的延长线交于点E .求证:BC=CE .18.(10分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分. 运动员甲测试成绩表 测试序号12345678910成绩(分) 7 6 8 7 7 5 8 7 8 7(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S 甲2=0.8、S 乙2=0.4、S 丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答) 19.(10分)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?20.(10分)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.21.(12分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.22.(14分)如图1,直线y=x+1与抛物线y=2x2相交于A、B两点,与y轴交于点M,M、N 关于x轴对称,连接AN、BN.(1)①求A、B的坐标;②求证:∠ANM=∠BNM;(2)如图2,将题中直线y=x+1变为y=kx+b(b>0),抛物线y=2x2变为y=ax2(a>0),其他条件不变,那么∠ANM=∠BNM是否仍然成立?请说明理由.2019年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2019•益阳)下列四个实数中,最小的实数是( ) A .﹣2 B .2C .﹣4D .﹣1【考点】2A :实数大小比较.【分析】根据选项中的数据,可以比较它们的大小,从而可以解答本题. 【解答】解:∵﹣4<﹣2<﹣1<2, 故选C .【点评】本题考查实数大小的比较,解答此类问题的关键是明确负数小于0小于正数.2.(5分)(2019•益阳)如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )A .{x ≥2x >−3B .{x ≤2x <−3C .{x ≥2x <−3D .{x ≤2x >−3【考点】C4:在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式解集的方法即可得出答案.【解答】解:∵﹣3处是空心圆点,且折线向右,2处是实心圆点,且折线向左, ∴这个不等式组的解集是﹣3<x ≤2. 故选D .【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.3.(5分)(2019•益阳)下列性质中菱形不一定具有的性质是( ) A .对角线互相平分 B .对角线互相垂直 C .对角线相等D .既是轴对称图形又是中心对称图形 【考点】L8:菱形的性质.【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.【点评】本题主要考查菱形的性质,熟练掌握菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线是解题的关键.4.(5分)(2019•益阳)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【考点】1J:科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000 000 04=4×10﹣8,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(5分)(2019•益阳)下列各式化简后的结果为3√2的是()A.√6B.√12 C.√18 D.√36【考点】22:算术平方根.【分析】根据二次根式的性质逐一化简可得.【解答】解:A、√6不能化简;B、√12=2√3,此选项错误;C、√18=3√2,此选项正确;D、√36=6,此选项错误;故选:C.【点评】本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.6.(5分)(2019•益阳)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤0【考点】AB:根与系数的关系;AA:根的判别式.【专题】11 :计算题.【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【解答】解:∵关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,∴b2﹣4ac>0,故选A【点评】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.(5分)(2019•益阳)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.ℎsinαB.ℎcosαC.ℎtanαD.h•cosα【考点】T8:解直角三角形的应用.【分析】根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=CDBC知BC=CDcos∠BCD=ℎcosα.【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=CD BC,∴BC=CDcos∠BCD=ℎcosα,故选:B.【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.(5分)(2019•益阳)如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A.21π4cm2B.21π16cm2C.30cm2D.7.5cm2【考点】U2:简单组合体的三视图.【分析】根据给出的空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,比例尺为1:4,可得其主视图的面积=长12×=3cm宽10×=2.5cm的长方体的面积,根据长方形面积公式计算即可求解.【解答】解:12×=3(cm)10×=2.5(cm)3×2.5=7.5(cm2)答:其主视图的面积是7.5cm2.故选:D.【点评】考查了简单几何体的三视图的知识,解题的关键是能得到立体图形的三视图和学生的空间想象能力.二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)9.(5分)(2019•益阳)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为124°.【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=28°,∵CB平分∠ACD,∴∠ACB=∠BCD=28°,∴∠A=180°﹣∠ABC ﹣∠ACB=124°, 故答案为:124°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和,熟练掌握平行线的性质是解题的关键.10.(5分)(2019•益阳)如图,△ABC 中,AC=5,BC=12,AB=13,CD 是AB 边上的中线.则CD= 6.5 .【考点】KS :勾股定理的逆定理;KP :直角三角形斜边上的中线.【分析】先根据勾股定理的逆定理判定△ABC 为直角三角形,然后根据直角三角形的性质即可得到结论.【解答】解:∵在△ABC 中,AC=5,BC=12,AB=13, ∴AC 2+BC 2=52+122=132=AB 2,∴△ABC 为直角三角形,且∠ACB=90°, ∵CD 是AB 边上的中线, ∴CD=6.5; 故答案为:6.5.【点评】本题考查了勾股定理的逆定理和直角三角形的性质的综合应用.先判定△ABC 为直角三角形是解题的关键.11.(5分)(2019•益阳)代数式√3−2x x−2有意义,则x 的取值范围是 x ≤32 .【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件以及分式有意义的条件即可求出答案. 【解答】解:由题意可知:{3−2x ≥0x −2≠0∴x ≤且x ≠2, ∴x 的取值范围为:x ≤故答案为:x ≤32【点评】本题考查二次根式的有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.12.(5分)(2019•益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为48.【考点】V6:频数与频率.【分析】设被调查的学生人数为x人,则有12x=0.25,解方程即可.【解答】解:设被调查的学生人数为x人,则有12x=0.25,解得x=48,经检验x=48是方程的解.故答案为48;【点评】本题考查频数与频率、记住两者的关系是解题的关键,属于基础题.13.(5分)(2019•益阳)如图,多边形ABCDE的每个内角都相等,则每个内角的度数为108°.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式即可得出结果.【解答】解:∵五边形的内角和=(5﹣2)•180°=540°,又∵五边形的每个内角都相等,∴每个内角的度数=540°÷5=108°.故答案是:108°.【点评】本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n﹣2)•180°.14.(5分)(2019•益阳)如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为2a+3b.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为:2a+3b.【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.三、解答题(本大题8个小题,共80分)15.(8分)(2019•益阳)计算:|﹣4|﹣2cos60°+(√3﹣√2)0﹣(﹣3)2.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】根据实数运算法则、零指数幂和特殊三角形函数值得有关知识计算即可.【解答】解:原式=4﹣2×+1﹣9,=﹣5.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.16.(8分)(2019•益阳)先化简,再求值:x2+2x+1x+1+x2−1x−1,其中x=﹣2.【考点】6D:分式的化简求值.【分析】根据分式的运算法则先化简单,再代入求值即可.【解答】解:原式=(x+1)2x+1+(x+1)(x−1)x−1=x+1+x+1=2x+2.当x=﹣2时,原式=﹣2.【点评】本题主要考查分式的化简求值,掌握分式的约分、加减运算是解题的关键.17.(8分)(2019•益阳)如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:BC=CE.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的对边平行且相等可得AD=BC,AD∥BC,根据两直线平行,内错角相等可得∠DAF=∠E,∠ADF=∠ECF,根据线段中点的定义可得DF=CF,然后利用“角角边”证明△ADF≌△ECF,根据全等三角形对应边相等可得AD=CE,从而得证.【解答】证明:如图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,又∵F是CD的中点,即DF=CF,∴△ADF≌△ECF,∴AD=CE,∴BC=CE.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,熟记性质并确定出三角形全等的条件是解题的关键.18.(10分)(2019•益阳)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)【考点】X6:列表法与树状图法;VC:条形统计图;VD:折线统计图;W4:中位数;W5:众数;W7:方差.【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是(7分);(2)易知x甲=7(分),x乙=7(分),x丙=6.3(分),根据题意不难判断;(3)画出树状图,即可解决问题;【解答】解:(1)甲运动员测试成绩的众数和中位数都是(7分).(2)∵x甲=7(分),x乙=7(分),x丙=6.3(分),∴x 甲=x 乙>x 丙,S 甲2>S 乙2 ∴选乙运动员更合适. (3)树状图如图所示,第三轮结束时球回到甲手中的概率是p =28=14.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(10分)(2019•益阳)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用. 【专题】12 :应用题;524:一元一次不等式(组)及应用.【分析】(1)设去年餐饮利润为x 万元,住宿利润为y 万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的利润为m 万元,根据题意列出不等式,求出不等式的解集即可得到结果. 【解答】解:(1)设去年餐饮利润x 万元,住宿利润y 万元, 依题意得:{x +y =20×80%x =2y +1,解得:{x =11y =5,答:去年餐饮利润11万元,住宿利润5万元; (2)设今年土特产利润m 万元,依题意得:16+16×(1+10%)+m ﹣20﹣11≥10,解之得,m≥7.4,答:今年土特产销售至少有7.4万元的利润.【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的不等及相等关系是解本题的关键.20.(10分)(2019•益阳)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.【考点】ME:切线的判定与性质.【分析】(1)连接OC,由AB是⊙O的直径可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性质结合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切线;(2)在Rt△OCD中,由勾股定理可求出OD的值,进而可得出BD的长.【解答】(1)证明:如图,连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切线.(2)解:在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD=√OC2+CD2=5,∴BD=OD﹣OB=5﹣3=2.【点评】本题考查了切线的判定与性质、勾股定理以及等腰三角形的性质,解题的关键是:(1)通过角的计算找出∠OCD=90°;(2)根据勾股定理求出OD 的长度.21.(12分)(2019•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M 、N 是一对“互换点”,若点M 的坐标为(m ,n ),求直线MN 的表达式(用含m 、n 的代数式表示);(3)在抛物线y=x 2+bx +c 的图象上有一对“互换点”A 、B ,其中点A 在反比例函数y=﹣的图象上,直线AB 经过点P (,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA :待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a ,b )和(b ,a ).①当ab=0时,它们不可能在反比例函数的图象上,②当ab ≠0时,由b =k a 可得a =kb ,于是得到结论;(2)把M (m ,n ),N (n ,m )代入y=cx +d ,即可得到结论;(3)设点A (p ,q ),则q =−2p ,由直线AB 经过点P (,),得到p +q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x 2+bx +c 得,于是得到结论. 【解答】解:(1)不一定,设这一对“互换点”的坐标为(a ,b )和(b ,a ). ①当ab=0时,它们不可能在反比例函数的图象上,②当ab ≠0时,由b =k a 可得a =k b ,即(a ,b )和(b ,a )都在反比例函数y =kx (k ≠0)的图象上;(2)由M (m ,n )得N (n ,m ),设直线MN 的表达式为y=cx +d (c ≠0). 则有{mc +d =n nc +d =m 解得{c =−1d =m +n ,∴直线MN 的表达式为y=﹣x +m +n ;(3)设点A (p ,q ),则q =−2p ,∵直线AB 经过点P (,),由(2)得12=−12+p +q ,∴p +q=1,∴p −2p =1,解并检验得:p=2或p=﹣1, ∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2), 将这一对“互换点”代入y=x 2+bx +c 得, ∴{1−b +c =24+2b +c =−1解得{b =−2c =−1,∴此抛物线的表达式为y=x 2﹣2x ﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(14分)(2019•益阳)如图1,直线y=x +1与抛物线y=2x 2相交于A 、B 两点,与y 轴交于点M ,M 、N 关于x 轴对称,连接AN 、BN .(1)①求A 、B 的坐标;②求证:∠ANM=∠BNM ;(2)如图2,将题中直线y=x +1变为y=kx +b (b >0),抛物线y=2x 2变为y=ax 2(a >0),其他条件不变,那么∠ANM=∠BNM 是否仍然成立?请说明理由. 【考点】HF :二次函数综合题.【分析】(1)①联立直线和抛物线解析式可求得A 、B 两点的坐标;②过A 作AC ⊥y 轴于C ,过B 作BD ⊥y 轴于D ,可分别求得∠ANM 和∠BNM 的正切值,可证得结论;(2)当k=0时,由对称性可得出结论;当k ≠0时,过A 作AE ⊥y 轴于E ,过B 作BF ⊥y 轴于F ,设A(x 1,ax 12)、B (x 2,ax 22),联立直线和抛物线解析式,消去y ,利用根与系数的关系,可求得NF BF=NE AE,则可证明Rt △AEN ∽Rt △BFN ,可得出结论.【解答】解:(1)①由已知得2x2=x+1,解得x=−12或x=1,当x=−12时,y=12,当x=1时,y=2,∴A、B两点的坐标分别为(−12,),(1,2);②如图1,过A作AC⊥y轴于C,过B作BD⊥y轴于D,由①及已知有A(−12,),B(1,2),且OM=ON=1,∴tan∠ANM=ACCN=121+12=13,tan∠BNM=BDDN=11+2=13,∴tan∠ANM=tan∠BNM,∴∠ANM=∠BNM;(2)∠ANM=∠BNM成立,①当k=0,△ABN是关于y轴的轴对称图形,∴∠ANM=∠BNM;②当k≠0,根据题意得:OM=ON=b,设A(x1,ax12)、B(x2,ax22).如图2,过A作AE⊥y轴于E,过B作BF⊥y轴于F,由题意可知:ax2=kx+b,即ax2﹣kx﹣b=0,∴x1+x2=k a,x1x2=−b a,∵NFBF−NEAE=b+ax22x2−b+ax12−x1=bx1+ax1x22+bx2+ax2x12x1x2=(x1+x2)(ax1x2+b)x1x2=ka[a⋅(−ba)+b](−ba)=0,∴NFBF=NEAE,∴Rt△AEN∽Rt△BFN,∴∠ANM=∠BNM.【点评】本题为二次函数的综合应用,涉及函数图象的交点、三角函数的定义、根与系数的关系、相似三角形的判定和性质等知识.在(1)②中求得两角的正切值是解题的关键,在(2)中利用根与系数的关系,整理求得NFBF=NEAE,是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
湖南2017中考数学试题及答案
湖南2017中考数学试题及答案一、选择题1. 已知直角三角形的一条腰为3cm,另一条腰为4cm,则该三角形的面积是多少?A. 6cm^2B. 8cm^2C. 12cm^2D. 24cm^2答案:C. 12cm^22. 坐标轴上的三点A(-3, 2),B(4, 6),C(8, -4)组成了一个三角形ABC,若点D(-1, y)在直线BC上,则y的值为多少?A. 5B. -2C. -5D. -8答案:A. 53. 若正方形的面积是64cm^2,则其对角线的长度是多少?A. 8cmB. 16cmC. 32cmD. 64cm答案:B. 16cm二、填空题1. 一个直角三角形的两个直角边长分别为5cm和12cm,则斜边长为____cm。
答案:13cm2. 某商品优惠前的价格是120元,优惠后的价格为原价的四分之三,则优惠后的价格为____元。
答案:90元3. 若A:B=3:5,且B:C=4:7,则A:C=____。
答案:12:35三、解答题1. 小明去菜市场买蔬菜,他有3张10元的钞票,5张5元的钞票,如果小明买了一些蔬菜共花了43元,他最多还能得到多少张10元的钞票?解答:设最多可以得到的10元钞票的张数为x,则可以得到5元钞票的张数为(43 - 10x)/5。
由题意可知:x ≤ 3 且(43-10x)/5为整数。
整理不等式,得到2x ≤ 13,所以x ≤ 6,但x要为整数,所以最多可以得到的10元钞票的张数为6。
答案:6张2. 某省份中考共有8000名考生,最终录取的人数占总考生数的30%,则最终录取的考生人数为多少?解答:最终录取的考生人数为8000 × 0.3 = 2400人。
答案:2400人4. 若一条铁丝长12m,剪成3段,第一段长y米,第二段长3米,第三段长5米,且y>5,则满足条件的y的取值范围是多少?解答:根据题意可得出y + 3 + 5 = 12。
整理得到y + 8 = 12,所以y = 4。
2017益阳数学答案
益阳市2017年普通初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题共8小题,每小题5分,共40分).二、填空题(本大题共6小题,每小题5分,共30分).9.124°; 10.6.5; 11. 1.5x ≤; 12.48; 13.108°; 14.23a b +. 三、解答题(本大题共8小题,第15、16、17小题每小题8分,第18、19、20小题每小题10分,第21小题12分,第22小题14分,共80分).15.解:原式=142192-⨯+- ······················································ 4分=5-. ··································································· 8分16.解:原式2(1)(1)(1)11x x x x x ++-=++- ··········································· 4分 1122x x x =+++=+. ··············································· 6分 当2x =-时,原式=2-. ············································ 8分17.证明:如图,∵四边形ABCD 是平行四边形,∴AD =BC ,A D ∥BC . ········································· 2分∴∠DAF =∠E ,∠ADF =∠ECF ,又∵F 是CD 的中点.即DF =CF ························· 4分 ∴ADF ∆≌ECF ∆. ··········································· 6分 ∴AD =CE .∴BC =CE . ······································· 8分18.解:(1)甲运动员测试成绩的众数和中位数都是7分 ··············· 3分(2)经计算=7x 甲(分),=7x 乙(分),=6.3x 丙(分)∵=x x 甲乙>x 丙,2S 甲>2S 乙∴选乙运动员更合适. ········································· 7分(3)2184p == ····························································· 10分 第17题解第20题19.解:(1)设去年餐饮利润x 万元,住宿利润y 万元, 依题意得:2080%21x y x y +=⨯⎧⎨=+⎩, 解得115x y =⎧⎨=⎩.答:去年餐饮利润11万元,住宿利润5万元. ·················· 6分(2)设今年土特产利润m 万元,依题意得:1616(110%)201110m +⨯++--≥ ,解之得,7.4m ≥,答:今年土特产销售至少有7.4万元的利润. ················· 10分 20.解:(1)如图,连接OC .∵AB 是⊙O 的直径,C 是⊙O 上一点,∴∠ACB=90°,即∠ACO+∠OCB=90° ∵OA =OC , ∠BCD=∠A ∴∠ACO=∠A=∠BCD∴∠BCD +∠OCB=90°,即∠OCD=90°∴CD 是⊙O 的切线. ··············································· 5分 (2)由(1)及已知有∠OCD=90°,OC =3,CD =4,据勾股定理得:OD =5∴BD=OD -OB=5-3 = 2. ········································ 10分 21.解:(1)不一定设这一对“互换点”的坐标为(,)a b 和(,)b a . ①当0ab =时,它们不可能在反比例函数的图象上,②当0ab ≠时,由k b a =可得ka b=,即(,)a b 和(,)b a 都在反比例函数ky x=(0)k ≠的图象上. ································ 3分(2)由M (m ,n )得N (n ,m ),设直线MN 的表达式为y cx d =+(0c ≠).则有mc d n nc d m +=⎧⎨+=⎩ 解得1c d m n =-⎧⎨=+⎩,∴直线MN 的表达式为y x m n =-++. ························· 7分(3)设点(,)A p q , 则2q p=-∵直线AB 经过点P (12,12),由(2)得1122p q =-++∴1p q +=,∴21p p-= 解并检验得:2p =或1p =-,∴1q =-或2q =∴这一对“互换点”是(2,1-)和(1-,2) ··············· 10分将这一对“互换点”代入2y x bx c =++得,∴12421b c b c -+=⎧⎨++=-⎩解得21b c =-⎧⎨=-⎩,∴221y x x =--. ·········· 12分22. 解:(1)①由已知得221x x =+,解得:12x =-或1x =当12x =-时,12y =;当1x =时,2y =∴A 、B 两点的坐标分别为(12-,12),( 1,2). ···· 3分②如图,过A 作A C ⊥y 轴于C ,过B 作BD ⊥y 轴于D .由①及已知有A (12-,12),B ( 1,2),OM =ON =1∴112tan 312AC ANM CN ∠===+,11tan 123BD BNM DN ∠===+∴tan ANM ∠=tan BNM ∠,∴ANM ∠=BNM ∠. ········································· 8分 (2)ANM ∠=BNM ∠成立, ··········································· 9分 ①当0k =,△ABN 是关于y 轴的轴对称图形, ∴ANM ∠=BNM ∠. ····································· 10分 ②当0k ≠,根据题意得:OM =ON =b ,设211(,)A x ax 、B 222(,)x ax .如图,过A 作A E ⊥y 轴于E ,过B 作BF ⊥y 轴于F . 由题意可知:2ax kx b =+,即20ax kx b --=∴1212,k bx x x x a a+==-∵222121b ax b ax NF NE BF AE x x ++-=-- 2211222112bx ax x bx ax x x x +++==121212()()x x ax x b x x ++[()]0()k ba b a a b a⋅-+==- ∴NF NE BF AE=,∴R t△AEN∽R t△BFN,∴ANM∠.∠=BNM…………………………………14分。
【数学】2017年湖南省益阳市中考真题
2017年湖南省益阳市中考真题注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上; 3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效; 4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分; 5.考试结束后,请将试题卷和答题卡一并交回.试题卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的)1.下列四个实数中,最小的实数是( )A .2-B .2C .4-D .1-2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )A .B .C .D . 3.下列性质中菱形不一定具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04用科学计数法表示为( )A .8410⨯B .8410-⨯C .80.410⨯D .8410-⨯5.下列各式化简后的结果为32的是()A .6B .12C .18D .366.关于x 的一元二次方程20(0)ax bx c a ++=≠的两根为11x =,21x =-,那么下列结论一定成立的是( ) A .240b ac ->B .240b ac -=C .240b ac -<D .240b ac -≤第2题图23x x ≤⎧⎨>-⎩23x x ≥⎧⎨<-⎩23x x ≤⎧⎨<-⎩23x x ≥⎧⎨>-⎩7.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为(A 、D 、B 在同一条直线上)( )A .sin h αB .cos hαC .tanhαD .cos h α⋅8.如图,空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,在比例尺为1:4的三视图中,其主视图的面积是( ) A .214πcm 2 B .2116πcm 2C .30cm 2D .7.5cm 2二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡...中对应题号后的横线上)9.如图,AB ∥CD ,CB 平分∠ACD .若∠BCD = 28°,则∠A 的度数为.10.如图,△ABC 中,5AC =,12BC =,AB =13,CD 是AB 边上的中线.则CD =. 11.代数式322xx --有意义,则x 的取值范围是. 12.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为. 13.如图,多边形ABCDE 的每个内角都相等,则每个内角的度数为.第7题图α第8题图第10题图第第9题图第13题图第14题图14.如图,在△ABC中,AB=AC,∠BAC = 36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.三、解答题(本大题8个小题,共80分)15.(本小题满分8分)计算:()0242cos6032(3)--︒+---16.(本小题满分8分)先化简,再求值:2221111x x xx x++-++-,其中2x=-.17.(本小题满分8分)如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:BC = CE.18.(本小题满分10分)第17题图垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么? (参考数据:三人成绩的方差分别为20.8S =甲、20.4S =乙、20.8S =丙)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)19.(本小题满分10分)测试序号1 2 3 4 5 6 7 8 9 10 成绩(分)7687758787我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?20.(本小题满分10分)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;第20题图(2)若⊙O的半径为3,CD=4,求BD的长.21.(本小题满分12分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M 、N 是一对“互换点”,若点M 的坐标为(,)m n ,求直线MN 的表达式(用含m 、n 的代数式表示);(3)在抛物线2y x bx c =++的图象上有一对“互换点”A 、B ,其中点A 在反比例函数2y x =-的图象上,直线AB 经过点P (12,12),求此抛物线的表达式.22.(本小题满分14分)如图1,直线1y x =+与抛物线22y x =相交于A 、B 两点,与y 轴交于点M ,M 、N 关于x 轴对称,连接AN 、BN . (1)①求A 、B 的坐标;②求证:∠ANM =∠BNM ;(2)如图2,将题中直线1y x =+变为(0)y kx b b =+>,抛物线22y x =变为2(0)y ax a =>,其他条件不变,那么∠ANM =∠BNM 是否仍然成立?请说明理由.参考答案第22题图2第22题图1一、选择题(本大题共8小题,每小题5分,共40分).题号 1 2 3 4 5 6 7 8 答案CDCBCABD二、填空题(本大题共6小题,每小题5分,共30分).9.124°; 10.6.5; 11. 1.5x ≤; 12.48; 13.108°; 14.23a b +.三、解答题(本大题共8小题,第15、16、17小题每小题8分,第18、19、20小题每小题 10分,第21小题12分,第22小题14分,共80分).15.解:原式=142192-⨯+- ································································· 4分=5-. ··································································· 8分16.解:原式2(1)(1)(1)11x x x x x ++-=++- ························································ 4分 1122x x x =+++=+. ··············································· 6分 当2x =-时,原式=2-. ················································ 8分17.证明:如图,∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC . ·················································· 2分∴∠DAF =∠E ,∠ADF =∠ECF ,又∵F 是CD 的中点.即DF =CF ··························· 4分 ∴ADF ∆≌ECF ∆. ··········································· 6分∴AD =CE .∴BC =CE . ······································· 8分18.解:(1)甲运动员测试成绩的众数和中位数都是7分 ······························ 3分(2)经计算=7x 甲(分),=7x 乙(分),=6.3x 丙(分)∵=x x 甲乙>x 丙,2S 甲>2S 乙∴选乙运动员更合适. ···································································· 7分(3)2184p == ······························································ 10分 19.解:(1)设去年餐饮利润x 万元,住宿利润y 万元,第17题解第20题依题意得:2080%21x y x y +=⨯⎧⎨=+⎩,解得115x y =⎧⎨=⎩.答:去年餐饮利润11万元,住宿利润5万元. ·················· 6分 (2)设今年土特产利润m 万元,依题意得:1616(110%)201110m +⨯++--≥,解之得,7.4m ≥,答:今年土特产销售至少有7.4万元的利润. ······································ 10分 20.解:(1)如图,连接OC .∵AB 是⊙O 的直径,C 是⊙O 上一点,∴∠ACB=90°,即∠ACO+∠OCB=90° ∵OA =OC , ∠BCD=∠A ∴∠ACO=∠A=∠BCD∴∠BCD +∠OCB=90°,即∠OCD=90°∴CD 是⊙O 的切线. ····································································· 5分(2)由(1)及已知有∠OCD=90°,OC =3,CD =4,据勾股定理得:OD =5∴BD=OD -OB=5-3 = 2. ····························································· 10分 21.解:(1)不一定设这一对“互换点”的坐标为(,)a b 和(,)b a . ①当0ab =时,它们不可能在反比例函数的图象上, ②当0ab ≠时,由k b a =可得ka b=,即(,)a b 和(,)b a 都在反比例函数ky x=(0)k ≠的图象上. ············································ 3分 (2)由M (m ,n )得N (n ,m ),设直线MN 的表达式为y cx d =+(0c ≠).则有mc d n nc d m +=⎧⎨+=⎩解得1c d m n =-⎧⎨=+⎩,∴直线MN 的表达式为y x m n =-++. ························· 7分 (3)设点(,)A p q ,则2q p=-∵直线AB 经过点P (12,12),由(2)得1122p q =-++∴1p q +=,∴21p p-= 解并检验得:2p =或1p =-,∴1q =-或2q =∴这一对“互换点”是(2,1-)和(1-,2) ······································· 10分 将这一对“互换点”代入2y x bx c =++得,∴12421b c b c -+=⎧⎨++=-⎩解得21b c =-⎧⎨=-⎩,∴221y x x =--. ·········· 12分22.解:(1)①由已知得221x x =+,解得:12x =-或1x =当12x =-时,12y =;当1x =时,2y =∴A 、B 两点的坐标分别为(12-,12),( 1,2). ···· 3分②如图,过A 作AC ⊥y 轴于C ,过B 作BD ⊥y 轴于D .由①及已知有A (12-,12),B ( 1,2),OM =ON =1∴112tan 1312AC ANM CN ∠===+, 11tan 123BD BNM DN ∠===+ ∴tan ANM ∠=tan BNM ∠,∴ANM ∠=BNM ∠. ············································ 8分(2)ANM ∠=BNM ∠成立, ··········································· 9分①当0k =,△ABN 是关于y 轴的轴对称图形,∴ANM ∠=BNM ∠. ········································ 10分 ②当0k ≠,根据题意得:OM =ON =b ,设211(,)A x ax 、B 222(,)x ax .如图,过A 作AE ⊥y 轴于E ,过B 作BF ⊥y 轴于F . 由题意可知:2ax kx b =+,即20ax kx b --=∴1212,k bx x x x a a+==-∵222121b ax b ax NF NE BF AE x x ++-=-- 2211222112bx ax x bx ax x x x +++==121212()()x x ax x b x x ++ [()]0()k b a b a a b a⋅-+==- ∴NF NE BF AE=, ∴Rt △AEN ∽Rt △BFN ,∴ANM ∠=BNM ∠.…………………………………14分。
2017年益阳市中考数学试卷
2017年益阳市中考数学试卷一、选择题(共8小题;共40分)1. 下列四个实数中,最小的实数是 A. −2B. 2C. −4D. −12. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 A. x≥2,x>−3 B.x≤2,x<−3 C.x≥2,x<−3 D.x≤2,x>−33. 下列性质中菱形不一定具有的性质是 A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 既是轴对称图形又是中心对称图形4. 目前,世界上能制造出的最小晶体管的长度只有0.00000004 m,将0.00000004用科学记数法表示为 A. 4×108B. 4×10−8C. 0.4×108D. −4×1085. 下列各式化简后的结果为32的是 A. 6B.C. 18D. 366. 关于x的一元二次方程ax2+bx+c=0a≠0的两根为x1=1,x2=−1,那么下列结论一定成立的是 A. b2−4ac>0B. b2−4ac=0C. b2−4ac<0D. b2−4ac≤07. 如图,电线杆CD的高度为ℎ,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A,D,B在同一条直线上) A. ℎsinαB. ℎcosαC. ℎtanαD. ℎ⋅cosα8. 如图,空心卷筒纸的高度为12 cm,外径(直径)为10 cm,内径为4 cm,在比例尺为1:4的三视图中,其主视图的面积是 A. 21π4 cm2 B. 21π16cm2 C. 30 cm2 D. 7.5 cm2二、填空题(共6小题;共30分)9. 如图,AB∥CD,CB平分∠ACD.若∠BCD=28∘,则∠A的度数为______.10. 如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD= ______.11. 代数式3−2xx−2有意义,则x的取值范围是______.12. 学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为______ 人.13. 如图,多边形ABCDE的每个内角都相等,则每个内角的度数为______.14. 如图,在△ABC中,AB=AC,∠BAC=36∘,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为______.三、解答题(共8小题;共104分)15. 计算:∣−4∣−2cos60∘+ 3− 2 0− −3 2.16. 先化简,再求值:x 2+2x +1x +1+x 2−1x−1,其中 x =−2.17. 如图,四边形 ABCD 为平行四边形,F 是 CD 的中点,连接 AF 并延长与 BC 的延长线交于点E .求证:BC =CE .18. 垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球 10 个,每垫球到位 1 个记 1 分.运动员甲测试成绩表 测试序号12345678910成绩 分 7687758787(1)写出运动员甲测试成绩的众数和中位数; (2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为 s 甲2=0.8,s 乙2=0.4,s 丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)19. 我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?20. 如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.21. 在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如−3,5与5,−3是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M,N是一对“互换点”,若点M的坐标为m,n,求直线MN的表达式(用含m,n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A,B,其中点A在反比例函数y=−2x的图象上,直线AB经过点P12,12,求此抛物线的表达式.22. 如图1,直线y=x+1与抛物线y=2x2相交于A,B两点,与y轴交于点M,M,N关于x轴对称,连接AN,BN.(1)①求A,B的坐标;②求证:∠ANM=∠BNM;(2)如图2,将题中直线y=x+1变为y=kx+b b>0,抛物线y=2x2变为y= ax2a>0,其他条件不变,那么∠ANM=∠BNM是否仍然成立?请说明理由.答案第一部分1. C2. D3. C4. B5. C6. A7. B8. D 第二部分9. 124∘10. 6.511. x ≤1.512. 4813. 108∘14. 2a +3b第三部分15. 原式=4−2×12+1−9=−5.16. 原式= x +1 2x +1+ x +1 x−1 x−1=x +1+x +1=2x +2.当 x =−2 时,原式=−2.17. 如图,∵ 四边形 ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∴∠DAF =∠E ,∠ADF =∠ECF ,又 ∵F 是 CD 的中点,即 DF =CF ,在 △ADF 和 △ECF 中,∠ADF =∠ECF ,∠DAF =∠E ,DF =CF ,∴△ADF ≌△ECF AAS ,∴AD =CE ,∴BC =CE .18. (1) 甲运动员测试成绩的众数和中位数都是 7 分.(2) 经计算 x 甲=7(分),x 乙=7(分),x 丙=6.3(分).∵x 甲=x 乙>x 丙,s 甲2>s 乙2.∴ 选乙运动员更合适.(3) P =28=14. 19. (1) 设去年餐饮利润 x 万元,住宿利润 y 万元,依题意得: x +y =20×80%,x =2y +1.解得 x =11,y =5.答:去年餐饮利润 11 万元,住宿利润 5 万元. (2) 设今年土特产利润 m 万元,依题意得:16+16×1+10%+m−20−11≥10.解之得,m≥7.4.答:今年土特产销售至少有7.4万元的利润.20. (1)如图,连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90∘,即∠ACO+∠OCB=90∘.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD.∴∠BCD+∠OCB=90∘,即∠OCD=90∘.∴CD是⊙O的切线.(2)由(1)及已知有∠OCD=90∘,OC=3,CD=4,据勾股定理得:OD=5,∴BD=OD−OB=5−3=2.21. (1)不一定.设这一对“互换点”的坐标为a,b和b,a.①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由b=ka 和a=kb,即a,b和b,a都在反比例函数y=kxk≠0的图象上.(2)由M m,n得N n,m,设直线MN的表达式为y=cx+d c≠0,则有mc+d=n,nc+d=m,解得c=−1,d=m+n,∴直线MN的表达式为y=−x+m+n.(3)设点A p,q,则q=−2p,∵直线AB经过点P12,12,由(2)得12=−12+p+q,∴p+q=1,∴p−2p=1,解并检验得:p=2或p=−1,∴q=−1或q=2,∴这一对“互换点”是2,−1和−1,2,将这一对“互换点”代入y=x2+bx+c得,∴1−b+c=2,4+2b+c=−1,解得b=−2,c=−1,∴y=x2−2x−1.22. (1)①由已知得2x2=x+1,解得:x=−12或x=1,当x=−12时,y=12;当x=1时,y=2,∴A,B两点的坐标分别为 −12,12,1,2.②如图,过A作AC⊥y轴于C,过B作BD⊥y轴于D.A −12,12,B1,2,OM=ON=1,∴tan∠ANM=ACCN =121+12=13,tan∠BNM=BDDN=11+2=13,∴tan∠ANM=tan∠BNM,∴∠ANM=∠BNM.(2)∠ANM=∠BNM成立.理由如下:①当k=0,△ABN是关于y轴的轴对称图形,∴∠ANM=∠BNM.②当k≠0,根据题意得:OM=ON=b,设A x1,ax12,B x2,ax22.如图,过A作AE⊥y轴于E,过B作BF⊥y轴于F.ax2=kx+b,即ax2−kx−b=0,∴x1+x2=ka ,x1x2=−ba,∵NF−NE=b+ax222−b+ax121=bx1+ax1x22+bx2+ax2x12x1x2=x1+x2ax1x2+b12=kaa⋅ −ba+b−a=0.∴NFBF =NEAE,∴Rt△AEN∽Rt△BFN,∴∠ANM=∠BNM.。
2017年湖南省益阳市中考数学试卷(含答案解析版)(可编辑修改word版)
第 1 页(共 24 页)61218 2017 年湖南省益阳市中考数学试卷一、选择题(本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5 分)下列四个实数中,最小的实数是()A .﹣2B .2C .﹣4D .﹣12.(5 分)如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A .{ x ≥ 2 B .{ x ≤ 2 C .{ x ≥ 2 D .{ x ≤ 2x > ‒ 3 x < ‒ 3 x < ‒ 3 x >‒ 33.(5 分)下列性质中菱形不一定具有的性质是( ) A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形4.(5 分)目前,世界上能制造出的最小晶体管的长度只有 0.000 000 04m ,将 0.000000 04 用科学记数法表示为( )A .4×108B .4×10﹣8C .0.4×108D .﹣4×1085.(5 分)下列各式化简后的结果为 3 2的是()A .B .C .D .6.(5 分)关于 x 的一元二次方程 ax 2+bx +c=0(a ≠0)的两根为 x 1=1,x 2=﹣1,那么下列结论一定成立的是()A .b 2﹣4ac >0B .b 2﹣4ac=0C .b 2﹣4ac <0D .b 2﹣4ac ≤07.(5 分)如图,电线杆 CD 的高度为 h ,两根拉线 AC 与 BC 相互垂直,∠CA B=α,则拉线 BC 的长度为(A 、D 、B 在同一条直线上)( )36第 2 页(共 24 页)3 ‒ 2x x ‒ 2ℎℎ ℎ A .B .C .D .h•cosαsinαcosαtanα8.(5 分)如图,空心卷筒纸的高度为 12cm ,外径(直径)为 10cm ,内径为 4cm ,在比例尺为 1:4 的三视图中,其主视图的面积是( )21π 21πA . 4 cm 2B . 16cm 2 C .30cm 2 D .7.5cm 2二、填空题(本大题共 6 小题,每小题 5 分,共 30 分.把答案填在答题卡中对应题号后的横线上)9.(5 分)如图,AB ∥CD ,CB 平分∠ACD .若∠BCD=28°,则∠A 的度数为.10.(5 分)如图,△ABC 中,AC=5,BC=12,AB=13,CD 是 AB 边上的中线.则 CD= .11.(5 分)代数式 有意义,则 x 的取值范围是.12.(5 分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为 12 人,频率为 0.25,那么被调查的学生人数为 .13.(5 分)如图,多边形ABCDE 的每个内角都相等,则每个内角的度数为.14.(5 分)如图,在△ABC 中,AB=AC,∠BAC=36°,DE 是线段AC 的垂直平分线,若BE=a,AE=b,则用含a、b 的代数式表示△ABC 的周长为.三、解答题(本大题8 个小题,共80 分)15.(8 分)计算:|﹣4|﹣2cos60°+(3﹣2)0﹣(﹣3)2.16.(8 分)先化简,再求值:x2 + 2x + 1x + 1x2‒ 1+x‒ 1 ,其中x=﹣2.17.(8 分)如图,四边形ABCD 为平行四边形,F 是CD 的中点,连接AF 并延长与BC 的延长线交于点E.求证:BC=CE.18.(10 分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10 个,每垫球到位1 个记1 分.运动员甲测试成绩表第3 页(共24 页)(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S 丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)19.(10 分)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20 万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2 倍还多1 万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10 万元的纯利润.”请问今年土特产销售至少有多少万元的利润?20.(10 分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠BCD=∠A.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为3,CD=4,求BD 的长.第4 页(共24 页)2221.(12 分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N 是一对“互换点”,若点M 的坐标为(m,n),求直线MN 的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c 的图象上有一对“互换点”A、B,其中点A 在反比例函2 1 1数y=﹣x的图象上,直线AB 经过点P(,),求此抛物线的表达式.22.(14 分)如图1,直线y=x+1 与抛物线y=2x2相交于A、B 两点,与y 轴交于点M,M、N 关于x 轴对称,连接AN、BN.(1)①求A、B 的坐标;②求证:∠ANM=∠BNM;(2)如图2,将题中直线y=x+1 变为y=kx+b(b>0),抛物线y=2x2变为y=ax2(a >0),其他条件不变,那么∠ANM=∠BNM 是否仍然成立?请说明理由.第5 页(共24 页)第 6 页(共 24 页)2017 年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5 分)(2017•益阳)下列四个实数中,最小的实数是()A .﹣2B .2C .﹣4D .﹣1【考点】2A :实数大小比较.【分析】根据选项中的数据,可以比较它们的大小,从而可以解答本题.【解答】解:∵﹣4<﹣2<﹣1<2, 故选 C .【点评】本题考查实数大小的比较,解答此类问题的关键是明确负数小于 0 小于正数.2.(5 分)(2017•益阳)如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )A .{x ≥ 2 B .{ x ≤ 2 C .{ x ≥ 2 D .{x ≤ 2x > ‒ 3 x < ‒ 3 x < ‒ 3 x >‒ 3【考点】C4:在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式解集的方法即可得出答案.【解答】解:∵﹣3 处是空心圆点,且折线向右,2 处是实心圆点,且折线向左, ∴这个不等式组的解集是﹣3<x ≤2. 故选 D .【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右” 是解答此题的关键.3.(5 分)(2017•益阳)下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【考点】L8:菱形的性质.【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.【点评】本题主要考查菱形的性质,熟练掌握菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2 条对称轴,分别是两条对角线所在直线是解题的关键.4.(5 分)(2017•益阳)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04 用科学记数法表示为()A.4×108 B.4×10﹣8 C.0.4×108 D.﹣4×108【考点】1J:科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.第7 页(共24 页)第 8 页(共 24 页)6 12 18 【解答】解:0.000 000 04=4×10﹣8, 故选 B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a ×10n 的形式,其中 1≤|a |<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.5.(5 分)(2017•益阳)下列各式化简后的结果为 3 A . B . C . D . 【考点】22:算术平方根.【分析】根据二次根式的性质逐一化简可得. 2的是( )【解答】解:A 、 6不能化简; B 、 12=2 C 、 18=3 3,此选项错误; 2,此选项正确; D 、 36=6,此选项错误;故选:C .【点评】本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.6.(5 分)(2017•益阳)关于 x 的一元二次方程 ax 2+bx +c=0(a ≠0)的两根为 x 1=1, x 2=﹣1,那么下列结论一定成立的是( )A .b 2﹣4ac >0B .b 2﹣4ac=0C .b 2﹣4ac <0D .b 2﹣4ac ≤0【考点】AB :根与系数的关系;AA :根的判别式. 【专题】11 :计算题.【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【解答】解:∵关于 x 的一元二次方程 ax 2+bx +c=0(a ≠0)的两根为 x 1=1,x 2=﹣1,∴b 2﹣4ac >0,36第 9 页(共 24 页)故选 A【点评】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.(5 分)(2017•益阳)如图,电线杆 CD 的高度为 h ,两根拉线 AC 与 BC 相互垂直,∠CAB=α,则拉线 BC 的长度为(A 、D 、B 在同一条直线上)( )ℎ ℎ ℎ A .B .C .D .h•cosαsinαcosαtanα【考点】T8:解直角三角形的应用.CDCD 【分析】根据同角的余角相等得∠CAD=∠BCD ,由 os ∠BCD=BC 知 BC=cos∠BCD=ℎ. cosα【解答】解:∵∠CAD +∠ACD=90°,∠ACD +∠BCD=90°, ∴∠CAD=∠BCD ,CD在 Rt △BCD 中,∵cos ∠BCD=BC ,CDℎ∴BC=cos∠BCD =cosα,故选:B .【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.(5 分)(2017•益阳)如图,空心卷筒纸的高度为 12cm ,外径(直径)为 10cm ,内径为 4cm ,在比例尺为 1:4 的三视图中,其主视图的面积是( )第 10 页(共 24 页)21π 21πA. 4 cm 2 B .16 cm 2 C .30cm 2 D .7.5cm 2【考点】U2:简单组合体的三视图.【分析】根据给出的空心卷筒纸的高度为 12cm ,外径(直径)为 10cm ,内径为 4cm ,1 1比例尺为 1:4,可得其主视图的面积=长 12×4=3cm 宽 10×4=2.5cm 的长方体的面积,根据长方形面积公式计算即可求解. 1【解答】解:12× =3(cm )4 110× =2.5(cm )43×2.5=7.5(cm 2) 答:其主视图的面积是 7.5cm 2. 故选:D .【点评】考查了简单几何体的三视图的知识,解题的关键是能得到立体图形的三视图和学生的空间想象能力.二、填空题(本大题共 6 小题,每小题 5 分,共 30 分.把答案填在答题卡中对应题号后的横线上)9.(5 分)(2017•益阳)如图,AB ∥CD ,CB 平分∠ACD .若∠BCD=28°,则∠A 的度数为 124° .【考点】JA :平行线的性质.【分析】根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ ACB=∠BCD=28°,根据三角形的内角和即可得到结论.第 11 页(共 24 页)3 ‒ 2xx‒ 2 【解答】解:∵AB ∥CD , ∴∠ABC=∠BCD=28°, ∵CB 平分∠ACD , ∴∠ACB=∠BCD=28°,∴∠A=180°﹣∠ABC ﹣∠ACB=124°, 故答案为:124°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和,熟练掌握平行线的性质是解题的关键.10.(5 分)(2017•益阳)如图,△ABC 中,AC=5,BC=12,AB=13,CD 是 AB 边上的中线.则 CD= 6.5 .【考点】KS :勾股定理的逆定理;KP :直角三角形斜边上的中线.【分析】先根据勾股定理的逆定理判定△ABC 为直角三角形,然后根据直角三角形的性质即可得到结论.【解答】解:∵在△ABC 中,AC=5,BC=12,AB=13, ∴AC 2+BC 2=52+122=132=AB 2,∴△ABC 为直角三角形,且∠ACB=90°, ∵CD 是 AB 边上的中线, ∴CD=6.5; 故答案为:6.5.【点评】本题考查了勾股定理的逆定理和直角三角形的性质的综合应用.先判定 △ABC 为直角三角形是解题的关键.3 11.(5 分)(2017•益阳)代数式 有意义,则 x 的取值范围是 x ≤ 2.第 12 页(共 24 页)x ‒ 2 ≠ 0【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件以及分式有意义的条件即可求出答案. 【解答】解:由题意可知:{3 ‒ 2x ≥ 03∴x ≤2且 x ≠2,3∴x 的取值范围为:x ≤23故答案为:x ≤ 2【点评】本题考查二次根式的有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.12.(5 分)(2017•益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为 12 人,频率为 0.25,那么被调查的学生人数为 48 . 【考点】V6:频数与频率.12【分析】设被调查的学生人数为 x 人,则有 x =0.25,解方程即可.【解答】解:设被调查的学生人数为 x 人, 12则有 x =0.25,解得 x=48, 经检验 x=48 是方程的解. 故答案为 48;【点评】本题考查频数与频率、记住两者的关系是解题的关键,属于基础题.13.(5 分)(2017•益阳)如图,多边形 ABCDE 的每个内角都相等,则每个内角的度数为 108° .【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式即可得出结果.【解答】解:∵五边形的内角和=(5﹣2)•180°=540°,又∵五边形的每个内角都相等,∴每个内角的度数=540°÷5=108°.故答案是:108°.【点评】本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n﹣2)•180°.14.(5 分)(2017•益阳)如图,在△ABC 中,AB=AC,∠BAC=36°,DE 是线段AC 的垂直平分线,若BE=a,AE=b,则用含a、b 的代数式表示△ABC 的周长为2a+3b .【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】由题意可知:AC=AB=a+b,由于DE 是线段AC 的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC 的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,第13 页(共24 页)∵DE 是线段AC 的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC 的周长为:AB+AC+BC=2a+3b故答案为:2a+3b.【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.三、解答题(本大题8 个小题,共80 分)15.(8 分)(2017•益阳)计算:|﹣4|﹣2cos60°+(3﹣2)0﹣(﹣3)2.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】根据实数运算法则、零指数幂和特殊三角形函数值得有关知识计算即可.1【解答】解:原式=4﹣2×2+1﹣9,=﹣5.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.第14 页(共24 页)第 15 页(共 24 页)x 2 + 2x + 1 x 2 ‒ 116.(8 分)(2017•益阳)先化简,再求值: x + 1 + x‒ 1,其中 x=﹣2.【考点】6D :分式的化简求值.【分析】根据分式的运算法则先化简单,再代入求值即可. 【解答】解:原式=(x + 1)2 x + 1 + (x + 1)(x ‒ 1)x ‒ 1=x +1+x +1=2x +2.当 x=﹣2 时,原式=﹣2.【点评】本题主要考查分式的化简求值,掌握分式的约分、加减运算是解题的关键.17.(8 分)(2017•益阳)如图,四边形 ABCD 为平行四边形,F 是 CD 的中点,连接 AF 并延长与 BC 的延长线交于点 E .求证:BC=CE .【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质.【分析】根据平行四边形的对边平行且相等可得 AD=BC ,AD ∥BC ,根据两直线平行,内错角相等可得∠DAF=∠E ,∠ADF=∠ECF ,根据线段中点的定义可得DF=CF ,然后利用“角角边”证明△ADF ≌△ECF ,根据全等三角形对应边相等可得AD=CE ,从而得证.【解答】证明:如图,∵四边形 ABCD 是平行四边形, ∴AD=BC ,AD ∥BC ,∴∠DAF=∠E ,∠ADF=∠ECF ,又∵F 是CD 的中点,即DF=CF,∴△ADF≌△ECF,∴AD=CE,∴BC=CE.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,熟记性质并确定出三角形全等的条件是解题的关键.18.(10 分)(2017•益阳)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10 个,每垫球到位1 个记1 分.运动员甲测试成绩表测试序号 1 2 3 4 5 6 7 8 9 10成绩(分)7 6 8 7 7 5 8 7 8 7(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S 乙2=0.4、S 丙2=0.8)第16 页(共24 页)第 17 页(共 24 页)甲 乙(3) 甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)【考点】X6:列表法与树状图法;VC :条形统计图;VD :折线统计图;W4:中位数;W5:众数;W7:方差.【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是(7 分);(2)易知x 甲 = 7(分),x 乙 = 7(分),x 丙 = 6.3(分),根据题意不难判断;(3)画出树状图,即可解决问题;【解答】解:(1)甲运动员测试成绩的众数和中位数都是(7 分).(2)∵x 甲 = 7(分),x 乙 = 7(分),x 丙 = 6.3(分),∴x 甲 = x 乙>x 丙,S 2>S 2 ∴选乙运动员更合适. (3)树状图如图所示,2 1 第三轮结束时球回到甲手中的概率是p = 8 = 4.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(10 分)(2017•益阳)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入 20 万元创办农家乐(餐饮+住宿),一年时间就收回投资的 80%,其中餐饮利润是住宿利润的 2 倍还多 1 万元.(1) 求去年该农家乐餐饮和住宿的利润各为多少万元?(2) 今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润第 18 页(共 24 页)依题意得:{, y = 5 比去年会有 10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于 10 万元的纯利润.”请问今年土特产销售至少有多少万元的利润?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用. 【专题】12 :应用题;524:一元一次不等式(组)及应用.【分析】(1)设去年餐饮利润为 x 万元,住宿利润为 y 万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的利润为 m 万元,根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设去年餐饮利润 x 万元,住宿利润 y 万元, x + y = 20 × 80%x = 2y + 1解得:{x = 11,答:去年餐饮利润 11 万元,住宿利润 5 万元; (2)设今年土特产利润 m 万元,依题意得:16+16×(1+10%)+m ﹣20﹣11≥10, 解之得,m ≥7.4,答:今年土特产销售至少有 7.4 万元的利润.【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的不等及相等关系是解本题的关键.20.(10 分)(2017•益阳)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 在 AB 的延长线上,且∠BCD=∠A .(1) 求证:CD 是⊙O 的切线;(2) 若⊙O 的半径为 3,CD=4,求 BD 的长.【考点】ME:切线的判定与性质.【分析】(1)连接OC,由AB 是⊙O 的直径可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性质结合∠BCD=∠A,即可得出∠OCD=90°,即CD 是⊙O 的切线;(2)在Rt△OCD 中,由勾股定理可求出OD 的值,进而可得出BD 的长.【解答】(1)证明:如图,连接OC.∵AB 是⊙O 的直径,C 是⊙O 上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD 是⊙O 的切线.(2)解:在Rt△OCD 中,∠OCD=90°,OC=3,CD=4,∴OD= OC2 + CD2=5,∴BD=OD﹣OB=5﹣3=2.【点评】本题考查了切线的判定与性质、勾股定理以及等腰三角形的性质,解题的关键是:(1)通过角的计算找出∠OCD=90°;(2)根据勾股定理求出OD 的长度.第19 页(共24 页)第 20 页(共 24 页)2 2 2 2 nc + d = m d = m + n 21.(12 分)(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等) 的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1) 任意一对“互换点”能否都在一个反比例函数的图象上?为什么? (2) M 、N 是一对“互换点”,若点 M 的坐标为(m ,n ),求直线 MN 的表达式(用含 m 、n 的代数式表示);(3) 在抛物线 y=x 2+bx +c 的图象上有一对“互换点”A 、B ,其中点 A 在反比例函2 1 1 数 y=﹣x的图象上,直线 AB 经过点 P ( , ),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA :待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a ,b )和(b ,a ).①当 ab=0 时,它k k们不可能在反比例函数的图象上,②当 ab ≠0 时,由b = a 可得a = b,于是得到结论;(2) 把 M (m ,n ),N (n ,m )代入 y=cx +d ,即可得到结论;2 1 1 (3) 设点 A (p ,q ),则q =‒ p ,由直线 AB 经过点 P ( , ),得到 p +q=1,得到 q=﹣1 或 q=2,将这一对“互换点”代入 y=x 2+bx +c 得,于是得到结论. 【解答】解:(1)不一定,设这一对“互换点”的坐标为(a ,b )和(b ,a ). ①当 ab=0 时,它们不可能在反比例函数的图象上,k k k②当 ab ≠0 时,由b = a 可得a = b ,即(a ,b )和(b ,a )都在反比例函数y = x(k ≠0)的图象上;(2)由 M (m ,n )得 N (n ,m ),设直线 MN 的表达式为 y=cx +d (c ≠0).则有{mc + d = n 解得{c =‒ 1,∴直线 MN 的表达式为 y=﹣x +m +n ;第 21 页(共 24 页) 4 + 2b + c =‒ 1 c =‒ 12(3)设点 A (p ,q ),则q =‒ p, 1 1 1 1 ∵直线 AB 经过点 P ( , ),由(2)得 =‒ + p + q , 2 2 2 2∴p +q=1,2∴p ‒ p= 1,解并检验得:p=2 或 p=﹣1,∴q=﹣1 或 q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入 y=x 2+bx +c 得,∴{ 1 ‒ b + c = 2解得{b =‒ 2, ∴此抛物线的表达式为 y=x 2﹣2x ﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(14 分)(2017•益阳)如图 1,直线 y=x +1 与抛物线 y=2x 2 相交于 A 、B 两点,与 y 轴交于点 M ,M 、N 关于 x 轴对称,连接 AN 、BN .(1)①求A、B 的坐标;②求证:∠ANM=∠BNM;(2)如图2,将题中直线y=x+1 变为y=kx+b(b>0),抛物线y=2x2变为y=ax2(a >0),其他条件不变,那么∠ANM=∠BNM 是否仍然成立?请说明理由.【考点】HF:二次函数综合题.【分析】(1)①联立直线和抛物线解析式可求得A、B 两点的坐标;②过A 作AC⊥y 轴于C,过B 作BD⊥y 轴于D,可分别求得∠ANM 和∠BNM 的正切值,可证得结论;(2)当k=0 时,由对称性可得出结论;当k≠0 时,过A 作AE⊥y 轴于E,过B 作BF⊥y 轴于F,设A(x1,a x12)、B(x2,a x22),联立直线和抛物线解析式,消N F NE去y,利用根与系数的关系,可求得BF= A E,则可证明Rt△AEN∽Rt△BFN,可得出结论.【解答】解:(1)①由已知得2x2=x+1,解得x=‒1或x=1,2当x=‒1时,y =21,当x=1 时,y=2,21 1∴A、B 两点的坐标分别为(‒,),(1,2);2 2②如图1,过 A 作AC⊥y 轴于C,过 B 作BD⊥y 轴于D,第22 页(共24 页)第 23 页(共 24 页) 3由①及已知有 A ( ‒ 1 1 , ),B ( 1,2),且 OM=ON=1, 2 2AC∴tan∠A NM = C N = 1 2 1 = 1 + 2 1 ,tan∠B NM = 3 BD D N 1 1 = 1 + 2 = ,∴tan ∠ANM=tan ∠BNM ,∴∠ANM=∠BNM ;(2)∠ANM=∠BNM 成立,①当 k=0,△ABN 是关于 y 轴的轴对称图形,∴∠ANM=∠BNM ;②当 k ≠0,根据题意得:OM=ON=b ,设A (x 1,a x 12)、B (x 2,a x 22).如图 2,过 A 作 AE ⊥y 轴于 E ,过 B 作 BF ⊥y 轴于 F ,第 24 页(共 24 页) 1 2由题意可知:ax 2=kx +b ,即 ax 2﹣kx ﹣b=0,k b∴x 1 + x 2 = a ,x 1x 2 =‒ a,N F NE b + ax 2 b + ax 2 bx + ax x 2 + bx + ax x 2 2 1 1 1 2 2 2 1 ∵ BF ‒ A E = x 2 ‒ ‒ x 1 = x x = k b(x 1 + x 2)(ax 1x 2 + b ) x x a [a ⋅ ( ‒ a ) + b ] = b = 0, 1 2 ( ‒ a )N F NE ∴BF = A E ,∴Rt △AEN ∽Rt △BFN ,∴∠ANM=∠BNM .【点评】本题为二次函数的综合应用,涉及函数图象的交点、三角函数的定义、根与系数的关系、相似三角形的判定和性质等知识.在(1)②中求得两角的正 N F NE切值是解题的关键,在(2)中利用根与系数的关系,整理求得BF = A E ,是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
湖南益阳数学(含答案) 2017年中考数学真题试卷
益阳市2017年普通初中毕业学业考试试卷数 学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上;3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效; 4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分; 5.考试结束后,请将试题卷和答题卡一并交回.试 题 卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个实数中,最小的实数是 A .2-B .2C .4-D .1-2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是A .B .C .D . 3.下列性质中菱形不一定具有的性质是 A .对角线互相平分 B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04用科学计数法表示为A .8410⨯B .8410-⨯C .80.410⨯D .8410-⨯5.下列各式化简后的结果为32的是 A .6B .12C .18D .366.关于x 的一元二次方程20(0)ax bx c a ++=≠的两根为11x =,21x =-,那么下列结论一定成立的是A .240b ac ->B .240b ac -=C .240b ac -<D .240b ac -≤7.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为(A 、D 、B 在同一条直线上)A .sin h αB .cos hαC .tan hαD .cos h α⋅第2题图23x x ≤⎧⎨>-⎩23x x ≥⎧⎨<-⎩23x x ≤⎧⎨<-⎩23x x ≥⎧⎨>-⎩第7题图α8.如图,空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,在比例尺为1:4的三视图中,其主视图的面积是 A .214πcm 2 B .2116πcm 2C .30cm 2D .7.5cm 2二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡...中对应题号后的横线上) 9.如图,AB ∥CD ,CB 平分∠ACD .若∠BCD = 28°,则∠A 的度数为 .10.如图,△ABC 中,5AC =,12BC =,AB =13,CD 是AB 边上的中线.则CD = . 11.代数式322xx --有意义,则x 的取值范围是 . 12.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 .13.如图,多边形ABCDE 的每个内角都相等,则每个内角的度数为 .14.如图,在△ABC 中,AB =AC ,∠BAC = 36°,DE 是线段AC 的垂直平分线,若BE =a ,AE =b ,则用含a 、b 的代数式表示△ABC 的周长为 .三、解答题(本大题8个小题,共80分)15.(本小题满分8分)计算:()242cos6032(3)--︒+---16.(本小题满分8分)先化简,再求值:2221111x x x x x ++-++-,其中2x =-. 17.(本小题满分8分)如图,四边形ABCD 为平行四边形,F 是CD 的中点, 连接AF 并延长与BC 的延长线交于点E . 求证:BC = CE .第8题图第10题图第第9题图第13题图第14题图第17题图18.(本小题满分10分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么? (参考数据:三人成绩的方差分别为20.8S =甲、20.4S =乙、20.8S =丙)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)19.(本小题满分10分)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元. (1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?20.(本小题满分10分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上, 且∠BCD =∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为3,CD =4,求BD 的长.测试序号 1 2 3 45 6 7 8 9 10 成绩(分)7687758787第20题图21.(本小题满分12分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M 、N 是一对“互换点”,若点M 的坐标为(,)m n ,求直线MN 的表达式(用含m 、n 的代数式表示);(3)在抛物线2y x bx c =++的图象上有一对“互换点”A 、B ,其中点A 在反比例函数2y x=-的图象上,直线AB 经过点P (12,12),求此抛物线的表达式.22.(本小题满分14分)如图1,直线1y x =+与抛物线22y x =相交于A 、B 两点,与y 轴交于点M ,M 、N 关于x 轴对称,连接AN 、BN . (1)①求A 、B 的坐标;②求证:∠ANM =∠BNM ;(2)如图2,将题中直线1y x =+变为(0)y kx b b =+>,抛物线22y x =变为2(0)y ax a =>,其他条件不变,那么∠ANM =∠BNM 是否仍然成立?请说明理由.第22题图2第22题图1益阳市2017年普通初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题共8小题,每小题5分,共40分).题号 1 2 3 4 5 6 7 8 答案CDCBCABD二、填空题(本大题共6小题,每小题5分,共30分).9.124°; 10.6.5; 11. 1.5x ≤; 12.48; 13.108°; 14.23a b +.三、解答题(本大题共8小题,第15、16、17小题每小题8分,第18、19、20小题每小题10分,第21小题12分,第22小题14分,共80分).15.解:原式=142192-⨯+- ······················································ 4分=5-. ···································································· 8分16.解:原式2(1)(1)(1)11x x x x x ++-=++- ··········································· 4分 1122x x x =+++=+. ··············································· 6分 当2x =-时,原式=2-. ············································· 8分17.证明:如图,∵四边形ABCD 是平行四边形,∴AD =BC ,A D ∥BC . ·········································· 2分∴∠DAF =∠E ,∠ADF =∠ECF ,又∵F 是CD 的中点.即DF =CF ·························· 4分 ∴ADF ∆≌ECF ∆. ············································ 6分∴AD =CE .∴BC =CE . ········································ 8分18.解:(1)甲运动员测试成绩的众数和中位数都是7分 ················ 3分(2)经计算=7x 甲(分),=7x 乙(分),=6.3x 丙(分)∵=x x 甲乙>x 丙,2S 甲>2S 乙∴选乙运动员更合适. ·········································· 7分(3)2184p == ····························································· 10分 第17题解第20题19.解:(1)设去年餐饮利润x 万元,住宿利润y 万元, 依题意得:2080%21x y x y +=⨯⎧⎨=+⎩, 解得115x y =⎧⎨=⎩.答:去年餐饮利润11万元,住宿利润5万元.··················· 6分(2)设今年土特产利润m 万元,依题意得:1616(110%)201110m +⨯++--≥ ,解之得,7.4m ≥,答:今年土特产销售至少有7.4万元的利润. ·················· 10分 20.解:(1)如图,连接OC .∵AB 是⊙O 的直径,C 是⊙O 上一点,∴∠ACB=90°,即∠ACO+∠OCB=90° ∵OA =OC , ∠BCD=∠A ∴∠ACO=∠A=∠BCD∴∠BCD +∠OCB=90°,即∠OCD=90°∴CD 是⊙O 的切线. ················································ 5分(2)由(1)及已知有∠OCD=90°,OC =3,CD =4,据勾股定理得:OD =5∴BD=OD -OB=5-3 = 2. ········································ 10分 21.解:(1)不一定设这一对“互换点”的坐标为(,)a b 和(,)b a .①当0ab =时,它们不可能在反比例函数的图象上,②当0ab ≠时,由k b a =可得k a b =,即(,)a b 和(,)b a 都在反比例函数ky x=(0)k ≠的图象上. ······························································ 3分 (2)由M (m ,n )得N (n ,m ),设直线MN 的表达式为y cx d =+ (0c ≠). 则有mc d n nc d m +=⎧⎨+=⎩ 解得1c d m n =-⎧⎨=+⎩,∴直线MN 的表达式为y x m n =-++. ························· 7分(3)设点(,)A p q , 则2q p=-∵直线AB 经过点P (12,12),由(2)得1122p q =-++∴1p q +=,∴21p p-= 解并检验得:2p =或1p =-,∴1q =-或2q =∴这一对“互换点”是(2,1-)和(1-,2) ··············· 10分 将这一对“互换点”代入2y x bx c =++得,∴12421b c b c -+=⎧⎨++=-⎩解得21b c =-⎧⎨=-⎩,∴221y x x =--.··········· 12分22. 解:(1)①由已知得221x x =+,解得:12x =-或1x =当12x =-时,12y =;当1x =时,2y =∴A 、B 两点的坐标分别为(12-,12),( 1,2). ···· 3分②如图,过A 作A C ⊥y 轴于C ,过B 作BD ⊥y 轴于D .由①及已知有A (12-,12),B ( 1,2),OM =ON =1 ∴112tan 1312AC ANM CN ∠===+,11tan 123BD BNM DN ∠===+ ∴tan ANM ∠=tan BNM ∠,∴ANM ∠=BNM ∠. ········································· 8分(2)ANM ∠=BNM ∠成立, ············································ 9分 ①当0k =,△ABN 是关于y 轴的轴对称图形, ∴ANM ∠=BNM ∠. ······································ 10分②当0k ≠,根据题意得:OM =ON =b ,设211(,)A x ax 、B 222(,)x ax .如图,过A 作A E ⊥y 轴于E ,过B 作BF ⊥y 轴于F . 由题意可知:2ax kx b =+,即20ax kx b --=∴1212,k bx x x x a a +==-∵222121b ax b ax NF NE BF AE x x ++-=-- 2211222112bx ax x bx ax x x x +++==121212()()x x ax x b x x ++[()]0()k ba b a a b a⋅-+==- ∴NF NEBF AE=, ∴R t △AEN ∽R t △BFN ,∴ANM ∠=BNM ∠.…………………………………14分随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( ) A .2B .2-C .12D .12-2.下列运算正确的是( ) A .336a a a +=B .222()a b a b -=-C .326()a a -= D .1226a a a ÷=3.如图是某几何体的三视图,这个几何体是( )A .圆锥B .长方体C .圆柱D .三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是( ) A .4和3.5B .4和3.6C .5和3.5D .5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .经过直线外一点,有且只有一条直线与这条直线平行6.如图,用尺规作图作AOC AOB ∠=∠的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,那么第二步的作图痕迹②的作法是( )A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( )A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y +=⎧⎨+=⎩8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n 和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株9.对于二次函数223y x mx =--,下列结论错误的是( ) A .它的图象与x 轴有两个交点 B .方程223x mx -=的两根之积为3- C .它的图象的对称轴在y 轴的右侧D .x m <时,y 随x 的增大而减小10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②AM DE BM =+;③2DE AD CM =⋅;④点N 为ABM ∆的外心.其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个). 13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB 两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:2021()(2017)(3)|2|3π---+---.18.解分式方程:2311x x x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan 55 1.4︒≈,tan 350.7︒≈,sin 550.8︒≈,sin 350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD 交AF 于点H .、……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AM NE的值;(3)在(2)的条件下,若AF k AB =(k 为大于2的常数),直接用含k 的代数式表示AM MF的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c 为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”. 已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.。
2017年湖南省益阳市中考数学试卷-解析版
2017年湖南省益阳市中考数学试卷解析一、选择题(本大题共8小题,每小题5分,共40分.)1.下列四个实数中,最小的实数是( )A .﹣2B .2C .﹣4D .﹣1【考点】2A :实数大小比较.【分析】根据选项中的数据,可以比较它们的大小,从而可以解答本题.【解答】解:∵﹣4<﹣2<﹣1<2,故选C .【点评】本题考查实数大小的比较,解答此类问题的关键是明确负数小于0小于正数.2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )A .{x ≥2x >−3B .{x ≤2x <−3C .{x ≥2x <−3D .{x ≤2x >−3【考点】C4:在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式解集的方法即可得出答案.【解答】解:∵﹣3处是空心圆点,且折线向右,2处是实心圆点,且折线向左, ∴这个不等式组的解集是﹣3<x ≤2.故选D .【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.3.下列性质中菱形不一定具有的性质是( )A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【考点】L8:菱形的性质.【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.【点评】本题主要考查菱形的性质,熟练掌握菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线是解题的关键.4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【考点】1J:科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:0.000 000 04=4×10﹣8,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列各式化简后的结果为3√2的是()A.√6B.√12C.√18D.√36【考点】22:算术平方根.【分析】根据二次根式的性质逐一化简可得.【解答】解:A、√6不能化简;B、√√3,此选项错误;C、√18=3√2,此选项正确;D、√36=6,此选项错误;故选:C.【点评】本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.6.关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤0【考点】AB:根与系数的关系;AA:根的判别式.【专题】11 :计算题.【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【解答】解:∵关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,∴b2﹣4ac>0,故选A【点评】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.ℎsinαB.ℎcosαC.ℎtanαD.h•cosα【考点】T8:解直角三角形的应用.【分析】根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=CDBC 知BC=CDcos∠BCD=ℎcosα.【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=CDBC,∴BC=CDcos∠BCD =ℎcosα,故选:B.【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A .21π4cm 2B .21π16cm 2 C .30cm 2 D .7.5cm 2 【考点】U2:简单组合体的三视图.【分析】根据给出的空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,比例尺为1:4,可得其主视图的面积=长12×14=3cm 宽10×14=2.5cm 的长方体的面积,根据长方形面积公式计算即可求解.【解答】解:12×14=3(cm ) 10×14=2.5(cm ) 3×2.5=7.5(cm 2)答:其主视图的面积是7.5cm 2.故选:D .【点评】考查了简单几何体的三视图的知识,解题的关键是能得到立体图形的三视图和学生的空间想象能力.二、填空题(本大题共6小题,每小题5分,共30分)9.如图,AB ∥CD ,CB 平分∠ACD .若∠BCD=28°,则∠A 的度数为 124° .【考点】JA :平行线的性质.【分析】根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到结论.【解答】解:∵AB ∥CD ,∴∠ABC=∠BCD=28°,∵CB平分∠ACD,∴∠ACB=∠BCD=28°,∴∠A=180°﹣∠ABC﹣∠ACB=124°,故答案为:124°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和,熟练掌握平行线的性质是解题的关键.10.如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD= 6.5 .【考点】KS:勾股定理的逆定理;KP:直角三角形斜边上的中线.【分析】先根据勾股定理的逆定理判定△ABC为直角三角形,然后根据直角三角形的性质即可得到结论.【解答】解:∵在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∵CD是AB边上的中线,∴CD=6.5;故答案为:6.5.【点评】本题考查了勾股定理的逆定理和直角三角形的性质的综合应用.先判定△ABC为直角三角形是解题的关键.11.代数式√3−2x x−2有意义,则x 的取值范围是 x ≤32 . 【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件以及分式有意义的条件即可求出答案.【解答】解:由题意可知:{3−2x ≥0x −2≠0∴x ≤32且x ≠2, ∴x 的取值范围为:x ≤32故答案为:x ≤32 【点评】本题考查二次根式的有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.12.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 48 .【考点】V6:频数与频率.【分析】设被调查的学生人数为x 人,则有12x =0.25,解方程即可. 【解答】解:设被调查的学生人数为x 人,则有12x =0.25, 解得x=48,经检验x=48是方程的解.故答案为48;【点评】本题考查频数与频率、记住两者的关系是解题的关键,属于基础题.13.如图,多边形ABCDE 的每个内角都相等,则每个内角的度数为 108° .【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式即可得出结果.【解答】解:∵五边形的内角和=(5﹣2)•180°=540°,又∵五边形的每个内角都相等,∴每个内角的度数=540°÷5=108°.故答案是:108°.【点评】本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n﹣2)•180°.14.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为2a+3b .【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为:2a+3b.【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.三、解答题(本大题8个小题,共80分)15.(8分)计算:|﹣4|﹣2cos60°+(√3﹣√2)0﹣(﹣3)2.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】根据实数运算法则、零指数幂和特殊三角形函数值得有关知识计算即可.【解答】解:原式=4﹣2×12+1﹣9,=﹣5.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.16.(8分)先化简,再求值:x 2+2x+1x+1+x2−1x−1,其中x=﹣2.【考点】6D:分式的化简求值.【分析】根据分式的运算法则先化简单,再代入求值即可.【解答】解:原式=(x+1)2x+1+(x+1)(x−1)x−1=x+1+x+1=2x+2.当x=﹣2时,原式=﹣2.【点评】本题主要考查分式的化简求值,掌握分式的约分、加减运算是解题的关键.17.(8分)如图,四边形ABCD 为平行四边形,F 是CD 的中点,连接AF 并延长与BC 的延长线交于点E .求证:BC=CE .【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质.【分析】根据平行四边形的对边平行且相等可得AD=BC ,AD ∥BC ,根据两直线平行,内错角相等可得∠DAF=∠E ,∠ADF=∠ECF ,根据线段中点的定义可得DF=CF ,然后利用“角角边”证明△ADF ≌△ECF ,根据全等三角形对应边相等可得AD=CE ,从而得证.【解答】证明:如图,∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴∠DAF=∠E ,∠ADF=∠ECF ,又∵F 是CD 的中点,即DF=CF ,∴△ADF ≌△ECF ,∴AD=CE ,∴BC=CE .【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,熟记性质并确定出三角形全等的条件是解题的关键.18.(10分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号 1 2 3 4 5 6 7 8 9 10成绩(分)7 6 8 7 7 5 8 7 8 7(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)【考点】X6:列表法与树状图法;VC:条形统计图;VD:折线统计图;W4:中位数;W5:众数;W7:方差.【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是(7分);(2)易知x甲=7(分),x乙=7(分),x丙=6.3(分),根据题意不难判断;(3)画出树状图,即可解决问题;【解答】解:(1)甲运动员测试成绩的众数和中位数都是(7分).(2)∵x甲=7(分),x乙=7(分),x丙=6.3(分),∴x甲=x乙>x丙,S甲2>S乙2∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是p=28=14.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(10分)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用.【专题】12 :应用题;524:一元一次不等式(组)及应用.【分析】(1)设去年餐饮利润为x 万元,住宿利润为y 万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的利润为m 万元,根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设去年餐饮利润x 万元,住宿利润y 万元,依题意得:{x +y =20×80%x =2y +1, 解得:{x =11y =5, 答:去年餐饮利润11万元,住宿利润5万元;(2)设今年土特产利润m 万元,依题意得:16+16×(1+10%)+m ﹣20﹣11≥10,解之得,m ≥7.4,答:今年土特产销售至少有7.4万元的利润.【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的不等及相等关系是解本题的关键.20.(10分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠BCD=∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O的半径为3,CD=4,求BD的长.【考点】ME:切线的判定与性质.【分析】(1)连接OC,由AB是⊙O的直径可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性质结合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切线;(2)在Rt△OCD中,由勾股定理可求出OD的值,进而可得出BD的长.【解答】(1)证明:如图,连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切线.(2)解:在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD=√OC2+CD2=5,∴BD=OD﹣OB=5﹣3=2.【点评】本题考查了切线的判定与性质、勾股定理以及等腰三角形的性质,解题的关键是:(1)通过角的计算找出∠OCD=90°;(2)根据勾股定理求出OD的长度.21.(12分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣2x 的图象上,直线AB经过点P(12,12),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由b=ka 可得a=kb,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则q=−2p ,由直线AB经过点P(12,12),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由b=ka 可得a=kb,即(a,b)和(b,a)都在反比例函数y=kx(k≠0)的图象上;(2)由M (m ,n )得N (n ,m ),设直线MN 的表达式为y=cx+d (c ≠0). 则有{mc +d =n nc +d =m解得{c =−1d =m +n , ∴直线MN 的表达式为y=﹣x+m+n ; (3)设点A (p ,q ),则q =−2p, ∵直线AB 经过点P (12,12),由(2)得12=−12+p +q , ∴p+q=1,∴p −2p =1, 解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x 2+bx+c 得,∴{1−b +c =24+2b +c =−1解得{b =−2c =−1, ∴此抛物线的表达式为y=x 2﹣2x ﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(14分)如图1,直线y=x+1与抛物线y=2x 2相交于A 、B 两点,与y 轴交于点M ,M 、N 关于x 轴对称,连接AN 、BN .(1)①求A 、B 的坐标;②求证:∠ANM=∠BNM ;(2)如图2,将题中直线y=x+1变为y=kx+b (b >0),抛物线y=2x 2变为y=ax 2(a >0),其他条件不变,那么∠ANM=∠BNM 是否仍然成立?请说明理由.【考点】HF :二次函数综合题.【分析】(1)①联立直线和抛物线解析式可求得A 、B 两点的坐标;②过A 作AC ⊥y 轴于C ,过B 作BD ⊥y 轴于D ,可分别求得∠ANM 和∠BNM 的正切值,可证得结论;(2)当k=0时,由对称性可得出结论;当k ≠0时,过A 作AE ⊥y 轴于E ,过B 作BF ⊥y 轴于F ,设A(x 1,ax 12)、B (x 2,ax 22),联立直线和抛物线解析式,消去y ,利用根与系数的关系,可求得NF BF =NE AE ,则可证明Rt △AEN ∽Rt △BFN ,可得出结论.【解答】解:(1)①由已知得2x 2=x+1,解得x =−12或x=1, 当x =−12时,y =12,当x=1时,y=2, ∴A 、B 两点的坐标分别为(−12,12),( 1,2); ②如图1,过A 作AC ⊥y 轴于C ,过B 作BD ⊥y 轴于D ,由①及已知有A (−12,12),B ( 1,2),且OM=ON=1,∴tan∠ANM=ACCN =121+12=13,tan∠BNM=BDDN=11+2=13,∴tan∠ANM=tan∠BNM,∴∠ANM=∠BNM;(2)∠ANM=∠BNM成立,①当k=0,△ABN是关于y轴的轴对称图形,∴∠ANM=∠BNM;②当k≠0,根据题意得:OM=ON=b,设A(x1,ax12)、B(x2,ax22).如图2,过A作AE⊥y轴于E,过B作BF⊥y轴于F,由题意可知:ax2=kx+b,即ax2﹣kx﹣b=0,∴x1+x2=ka ,x1x2=−ba,∵NFBF −NEAE=b+ax22x2−b+ax12−x1=bx1+ax1x22+bx2+ax2x12x1x2=(x1+x2)(ax1x2+b)x1x2=ka[a⋅(−ba)+b](−ba)=0,∴NFBF =NEAE,∴Rt△AEN∽Rt△BFN,∴∠ANM=∠BNM.【点评】本题为二次函数的综合应用,涉及函数图象的交点、三角函数的定义、根与系数的关系、相似三角形的判定和性质等知识.在(1)②中求得两角的正切值是解题的关键,在(2)中利用根与系数的关系,整理求得NFBF =NEAE,是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2017年湖南省益阳市中考数学真题及答案
益阳市2017年普通初中毕业学业考试试卷 数学参考答案及评分标准一、选择题(本大题共8小题,每小题4分,共32分)二、填空题(本大题共5小题,每小题4分,共20分)9.3; 10.9x =-; 11.2.16; 12.80;13.60︒.三、解答题(本大题共2小题,每小题6分,共12分)14.解:原式3131=+-=.…………………………………………………………………6分 15.解:∵EF ∥BC ,∴180100BAF B ∠=︒-∠=︒.……………………………………………………2分∵AC 平分BAF ∠,∴1502CAF BAF ∠=∠=︒,………………………………………………………4分∵EF ∥BC ,∴50C CAF ∠=∠=︒.…………………………………………………题号 1 2 3 4 5 6 7 8 答案 D B C C D D A B…………6四、解答题(本大题共3小题,每小题8分,共24分)16.解:21(2)(2)(1)2x x x +-+-- 212421x x x =+-+-+22x =-……………………………………………………………………………6分当3x =时,原式2(3)2=-1=.…………………………………………………8分17.解:(1)被调查的学生人数为:1220%60÷=(人);……………………………2分 (2)如图……………………5分(3)全校最喜爱文学类图书的学生约有24120048060⨯=(人).………………8分18.解:设AD x =米,则(82)AC x =+米.在Rt ABC ∆中,tan ABBCA AC ∠=,∴tan 2.5(82)AB AC BCA x =⋅∠=+.…………2分第17题解图 4 8 12 类别 人数文学 艺体 科普 其他 16 O 20 24在Rt ABD ∆中,tan ABBDA AD ∠=,∴tan 4AB AD BDA x =⋅∠=.……………………4分∴2.5(82)4x x +=,∴4103x =.………………………………………………………6分 ∴41044546.73AB x ==⨯≈.答:AB 的长约为546.7米. …………………………………………………………8分五、解答题(本大题共2小题,每小题10分,共20分)19.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元.依题意得:351800,4103100;x y x y +=⎧⎨+=⎩解得250,210.x y =⎧⎨=⎩ 答:A 、B 两种型号电风扇的销售单价分别为250元、210元.……………4分(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30)a -台.依题意得:200170(30)a a +-≤5400,解得:10a ≤.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元.………7分(3)依题意有:(250200)(210170)(30)1400a a -+--=,解得:20,a =此时,10a >.所以在(2)的条件下超市不能实现利润1400元的目标. …………………10分20. 解:(1)∵直线33y x =-+与x 轴、y 轴分别交于点A 、B ,∴(1,0)A ,(0,3)B .又抛物线2(2)y a x k =-+经过点(1,0)A ,(0,3)B ,∴0,43;a k a k +=⎧⎨+=⎩解得1,1.a k =⎧⎨=-⎩即a ,k 的值分别为1,1-.………………………………………………3分(2)设Q 点的坐标为(2,)m ,对称轴2x =交x 轴于点F ,过点B 作BE 垂直于直线2x = 于点E .在Rt AQF ∆中,22221AQ AF QF m =+=+,在Rt BQE ∆中,22224(3)BQ BE EQ m =+=+-.∵AQ BQ =,∴2214(3)m m +=+-,∴2m =.∴Q 点的坐标为(2,2).………………………………………………………6分(3)当点N 在对称轴上时,NC 与AC 不垂直.所以AC 应为正方形的对角线.又对称轴2x =是AC 的中垂线,所以,M 点与顶点(2,1)P -重合,N 点为点P 关于x 轴的对称点,其坐标为(2,1). 此时,1MF NF AF CF ====,且AC MN ⊥,∴ 四边形AMCN 为正方形.在Rt AFN ∆中,222AN AF NF =+=,即正方形的边长为2.……10分六、解答题(本题满分12分)21.解:(1)过点C 作CE AB ⊥于E .在Rt BCE ∆中,60B ∠=︒,4BC =.∴3sin 4232CE BC B =⋅∠=⨯=, ∴Q E 第20题解图N (M ) F x B O A 1 -1 y C P23AD CE ==. ………………………………………………………………2分(2)存在.若以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似,则PCB ∆必有一个角是直角. ……………………………………………………3分①当90PCB ∠=︒时,在Rt PCB ∆中,4,60BC B =∠=︒,8PB =, ∴2AP AB PB =-=.又由(1)知23AD =,在Rt AD P ∆中 ,23tan 32AD DPA AP ∠===,∴60DPA ∠=︒,∴D PA B ∠=∠.∴AD P∆∽CPB ∆. ………………………………………………………………5分②当90CPB ∠=︒时,在Rt PCB ∆中,60B ∠=︒,4BC =, ∴2PB =,23PC =,∴8AP =. 则AD AP PC PB ≠且AD AP PB PC≠,此时PCB ∆与AD P ∆不相似. ∴存在AD P ∆与CPB ∆相似,此时2x =.………………………………………7分(3)如图,因为Rt AD P ∆外接圆的直径为斜边PD , ∴22112()24PD x S ππ+=⋅=⋅.①当210x <<时,作BC 的垂直平分线交BC 于H ,交AB 于G ;作PB 的垂直平分线交PB 于N ,交GH 于M ,连结BM .则BM 为PCB∆外接圆的半径.在Rt GBH ∆中,122BH BC ==,30MGB ∠=︒,∴4BG =, 又111(10)5222BN PB x x ==-=-,∴112GN BG BN x =-=-. 在Rt GMN ∆中,∴31tan (1)32MN GN MGN x =⋅∠=-. 在Rt BMN ∆中,222211676333BM MN BN x x =+=-+, ∴22211676()333S BM x x ππ=⋅=-+. ②当02x <≤时,2211676()333S x x π=-+也成立. …………………………10分∴22121211676()4333x S S S x x ππ+=+=⋅+-+2732113()1277x ππ=-+. ∴当327x =时,12S S S =+取得最小值1137π. ………………………………12分D C B A 第21题解图2 P 60° N G M H D CBA 第21题解图1P 60°E (P ) P。
2017年初中毕业升学考试(湖南益阳卷)数学(带解析)
绝密★启用前2017年初中毕业升学考试(湖南益阳卷)数学(带解析)学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、下列四个实数中,最小的实数是( ) A .B .C .D .2、如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )A .B .C .D .3、下列性质中菱形不一定具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形4、目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04用科学计数法表示为( ) A .B .C .D .5、下列各式化简后的结果为的是( ) A .B .C .D .6、关于的一元二次方程的两根为,,那么下列结论一定成立的是( ) A .B .C .D .7、如图,电线杆CD 的高度为,两根拉线AC 与BC 相互垂直,∠CAB=,则拉线BC 的长度为(A 、D 、B 在同一条直线上)( )A .B .C .D .8、如图,空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,在比例尺为1:4的三视图中,其主视图的面积是( )A .cm 2 B .cm 2 C .cm 2 D .cm 2第II 卷(非选择题)二、填空题(题型注释)9、如图,AB ∥CD ,CB 平分∠ACD .若∠BCD = 28°,则∠A 的度数为 .10、如图,△ABC 中,,,AB=13,CD 是AB 边上的中线.则CD= .11、代数式有意义,则的取值范围是 .12、学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 .13、如图,多边形ABCDE 的每个内角都相等,则每个内角的度数为 .14、如图,在△ABC 中,AB=AC ,∠BAC = 36°,DE 是线段AC 的垂直平分线,若BE=三、计算题(题型注释)15、计算:四、解答题(题型注释)16、先化简,再求值:,其中.17、如图,四边形ABCD 为平行四边形,F 是CD 的中点,连接AF 并延长与BC 的延长线交于点E .求证:BC = CE .18、垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分. 运动员甲测试成绩表(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么? (参考数据:三人成绩的方差分别为、、)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)19、我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?20、如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠BCD=∠A . (1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为3,CD=4,求BD 的长.21、在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么? (2)M 、N 是一对“互换点”,若点M 的坐标为,求直线MN 的表达式(用含、的代数式表示); (3)在抛物线的图象上有一对“互换点”A 、B ,其中点A 在反比例函数22、如图,直线与抛物线相交于A 、B 两点,与轴交于点M ,M 、N关于轴对称,连接AN 、BN .(1)①求A 、B 的坐标; ②求证:∠ANM=∠BNM ; (2)如图,将题中直线变为,抛物线变为,其他条件不变,那么∠ANM=∠BNM 是否仍然成立?请说明理由.参考答案1、C2、D3、C4、B5、C6、A7、B8、D9、124°10、6.511、x≤12、4813、108°14、2a+3b16、2x+2,-217、证明见解析18、(1)7;7(2)选乙运动员更合适(3)19、(1)去年餐饮利润11万元,住宿利润5万元(2)今年土特产销售至少有7.4万元的利润20、(1)证明见解析(2)221、(1)不一定(2)直线MN的表达式为y=﹣x+m+n(3)抛物线的表达式为y=x2﹣2x﹣122、(1)①(-,),(1,2)②证明见解析(2)∠ANM=∠BNM成立【解析】1、试题分析:根据选项中的数据,可以比较它们的大小﹣4<﹣2<﹣1<2,故选C.考点:实数大小比较2、试题分析:根据在数轴上表示不等式解集的方法,可由﹣3处是空心圆点,且折线向右,2处是实心圆点,且折线向左,可得这个不等式组的解集是﹣3<x≤2.故选D.考点:在数轴上表示不等式的解集3、试题分析:根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;4、试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.因此0.000 000 04=4×10﹣8,故选B.考点:科学记数法—表示较小的数5、试题分析:根据二次根式的性质逐一化简可得:A、不能化简;B、=2,此选项错误;C、=3,此选项正确;D、=6,此选项错误;故选:C.考点:算术平方根6、试题分析:由一元二次方程有两个不相等的实数根,根据关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,确定出根的判别式的符号b2﹣4ac>0,故选A考点:1、根与系数的关系;2、根的判别式7、试题分析:根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=知BC==.故选:B.考点:解直角三角形的应用8、试题分析:根据给出的空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,比例尺为1:4,可得其主视图的面积=长12×=3cm宽10×=2.5cm的长方体的面积,根据长方形面积公式计算即可得3×2.5=7.5(cm2)即其主视图的面积是7.5cm2.故选:D.考点:简单组合体的三视图9、试题分析:根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到∠A=180°﹣∠ABC﹣∠ACB=124°,故答案为:124°.考点:平行线的性质10、试题分析:先根据勾股定理的逆定理,由△ABC中,AC=5,BC=12,AB=13,可得AC2+BC2=52+122=132=AB2,即△ABC为直角三角形,且∠ACB=90°,然后由CD是AB边上的中线,可根据直角三角形的性质得CD=6.5;故答案为:6.5.考点:1、勾股定理的逆定理;2、直角三角形斜边上的中线11、试题分析:由题意可知:∴x≤且x≠2,∴x的取值范围为:x≤故答案为:x≤考点:二次根式有意义的条件12、试题分析:设被调查的学生人数为x人,则有=0.25,解得x=48,经检验x=48是方程的解.故答案为48;考点:频数与频率13、试题分析:根据多边形的内角和公式由五边形的内角和=(5﹣2)•180°=540°,然后根据五边形的每个内角都相等,可得每个内角的度数=540°÷5=108°.故答案是:108°.考点:多边形内角与外角14、试题分析:由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长△ABC的周长为:AB+AC+BC=2a+3b. 故答案为:2a+3b.考点:1、等腰三角形的性质;2、线段垂直平分线的性质15、试题分析:根据实数运算法则、零指数幂和特殊三角形函数值得有关知识计算即可.试题解析:原式=4﹣2×+1﹣9,=﹣5.考点:1、实数的运算;2、零指数幂;3、特殊角的三角函数值16、试题分析:根据分式的运算法则先化简单,再代入求值即可.试题解析:==x+1+x+1=2x+2.当x=﹣2时,原式=﹣2.考点:分式的化简求值17、试题分析:根据平行四边形的对边平行且相等可得AD=BC,AD∥BC,根据两直线平行,内错角相等可得∠DAF=∠E,∠ADF=∠ECF,根据线段中点的定义可得DF=CF,然后利用“角角边”证明△ADF≌△ECF,根据全等三角形对应边相等可得AD=CE,从而得证.试题解析:如图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,又∵F是CD的中点,即DF=CF,∴△ADF≌△ECF,∴AD=CE,∴BC=CE.考点:1、平行四边形的性质;2、全等三角形的判定与性质18、试题分析:(1)观察表格可知甲运动员测试成绩的众数和中位数都是(7分);(2)易知=7(分),=7(分),=6.3(分),根据题意不难判断;(3)画出树状图,即可解决问题;试题解析:(1)甲运动员测试成绩的众数和中位数都是(7分).(2)∵=7(分),=7(分),=6.3(分),∴=>,>∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是P(求回到甲手中)=.考点:1、列表法与树状图法;2、条形统计图;3、折线统计图;4、中位数;5、众数;6、方差19、试题分析:(1)设去年餐饮利润为x万元,住宿利润为y万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的利润为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.试题解析:(1)设去年餐饮利润x万元,住宿利润y万元,依题意得:,解得:,答:去年餐饮利润11万元,住宿利润5万元;(2)设今年土特产利润m万元,依题意得:16+16×(1+10%)+m﹣20﹣11≥10,解之得,m≥7.4,答:今年土特产销售至少有7.4万元的利润.考点:1、一元一次不等式的应用;2、二元一次方程组的应用20、试题分析:(1)连接OC,由AB是⊙O的直径可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性质结合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切线;(2)在Rt△OCD中,由勾股定理可求出OD的值,进而可得出BD的长.试题解析:(1)如图,连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切线.(2)在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.考点:切线的判定与性质21、试题分析:(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.试题解析:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.考点:1、反比例函数图象上点的坐标特征;2、待定系数法求一次函数解析式;3、待定系数法求二次函数解析式22、试题分析:(1)①联立直线和抛物线解析式可求得A、B两点的坐标;②过A作AC⊥y轴于C,过B作BD⊥y轴于D,可分别求得∠ANM和∠BNM的正切值,可证得结论;(2)当k=0时,由对称性可得出结论;当k≠0时,过A作AE⊥y轴于E,过B作BF⊥y 轴于F,设A、B,联立直线和抛物线解析式,消去y,利用根与系数的关系,可求得,则可证明Rt△AEN∽Rt△BFN,可得出结论.试题解析:(1)①由已知得2x2=x+1,解得x=-或x=1,当x=-时,y=,当x=1时,y=2,∴A、B两点的坐标分别为(-,),(1,2);②如图1,过A作AC⊥y轴于C,过B作BD⊥y轴于D,由①及已知有A(-,),B(1,2),且OM=ON=1,∴tan∠ANM==,tan∠BNM=,∴tan∠ANM=tan∠BNM,∴∠ANM=∠BNM;(2)∠ANM=∠BNM成立,①当k=0,△ABN是关于y轴的轴对称图形,∴∠ANM=∠BNM;②当k≠0,根据题意得:OM=ON=b,设A、B.如图2,过A作AE⊥y轴于E,过B作BF⊥y轴于F,由题意可知:ax2=kx+b,即ax2﹣kx﹣b=0,∴,,∵=====0∴,∴Rt△AEN∽Rt△BFN,∴∠ANM=∠BNM.考点:二次函数综合题。
(完整word版)2017年湖南省益阳市中考数学试卷(含答案解析版)
2017年湖南省益阳市中考数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)下列四个实数中,最小的实数是( )A.﹣2 B.2 C.﹣4 D.﹣12.(5分)如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A .B .C .D .3.(5分)下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形4.(5分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0。
000 000 04用科学记数法表示为()A.4×108 B.4×10﹣8 C.0。
4×108 D.﹣4×108第1页(共32页)5.(5分)下列各式化简后的结果为3的是()A . B . C . D .6.(5分)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤07.(5分)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)( )A .B .C .D.h•cosα8.(5分)如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A .cm2B .cm2 C.30cm2D.7。
5cm2第2页(共32页)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)9.(5分)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A 的度数为.10.(5分)如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD= .11.(5分)代数式有意义,则x的取值范围是.12.(5分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类"的频数为12人,频率为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年湖南省益阳市中考数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)下列四个实数中,最小的实数是()A.﹣2 B.2 C.﹣4 D.﹣12.(5分)如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.B.C.D.3.(5分)下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形4.(5分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×1085.(5分)下列各式化简后的结果为3的是()A.B. C. D.6.(5分)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤07.(5分)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC 的长度为(A、D、B在同一条直线上)()A.B.C.D.h•cosα8.(5分)如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A.cm2B.cm2C.30cm2D.7.5cm2二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)9.(5分)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为.10.(5分)如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD=.11.(5分)代数式有意义,则x的取值范围是.12.(5分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为.13.(5分)如图,多边形ABCDE的每个内角都相等,则每个内角的度数为.14.(5分)如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.三、解答题(本大题8个小题,共80分)15.(8分)计算:|﹣4|﹣2cos60°+(﹣)0﹣(﹣3)2.16.(8分)先化简,再求值:+,其中x=﹣2.17.(8分)如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:BC=CE.18.(10分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)19.(10分)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?20.(10分)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.21.(12分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.22.(14分)如图1,直线y=x+1与抛物线y=2x2相交于A、B两点,与y轴交于点M,M、N 关于x轴对称,连接AN、BN.(1)①求A、B的坐标;②求证:∠ANM=∠BNM;(2)如图2,将题中直线y=x+1变为y=kx+b(b>0),抛物线y=2x2变为y=ax2(a>0),其他条件不变,那么∠ANM=∠BNM是否仍然成立?请说明理由.2017年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2017•益阳)下列四个实数中,最小的实数是()A.﹣2 B.2 C.﹣4 D.﹣1【分析】根据选项中的数据,可以比较它们的大小,从而可以解答本题.【解答】解:∵﹣4<﹣2<﹣1<2,故选C.【点评】本题考查实数大小的比较,解答此类问题的关键是明确负数小于0小于正数.2.(5分)(2017•益阳)如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.B.C.D.【分析】根据在数轴上表示不等式解集的方法即可得出答案.【解答】解:∵﹣3处是空心圆点,且折线向右,2处是实心圆点,且折线向左,∴这个不等式组的解集是﹣3<x≤2.故选D.【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.3.(5分)(2017•益阳)下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.【点评】本题主要考查菱形的性质,熟练掌握菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线是解题的关键.4.(5分)(2017•益阳)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000 000 04=4×10﹣8,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(5分)(2017•益阳)下列各式化简后的结果为3的是()A.B. C. D.【分析】根据二次根式的性质逐一化简可得.【解答】解:A、不能化简;B、=2,此选项错误;C、=3,此选项正确;D、=6,此选项错误;故选:C.【点评】本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.6.(5分)(2017•益阳)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤0【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【解答】解:∵关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,∴b2﹣4ac>0,故选A【点评】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.(5分)(2017•益阳)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h•cosα【分析】根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=知BC==.【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=,∴BC==,故选:B.【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.(5分)(2017•益阳)如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A.cm2B.cm2C.30cm2D.7.5cm2【分析】根据给出的空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,比例尺为1:4,可得其主视图的面积=长12×=3cm宽10×=2.5cm的长方体的面积,根据长方形面积公式计算即可求解.【解答】解:12×=3(cm)10×=2.5(cm)3×2.5=7.5(cm2)答:其主视图的面积是7.5cm2.故选:D.【点评】考查了简单几何体的三视图的知识,解题的关键是能得到立体图形的三视图和学生的空间想象能力.二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)9.(5分)(2017•益阳)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为124°.【分析】根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=28°,∵CB平分∠ACD,∴∠ACB=∠BCD=28°,∴∠A=180°﹣∠ABC﹣∠ACB=124°,故答案为:124°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和,熟练掌握平行线的性质是解题的关键.10.(5分)(2017•益阳)如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD= 6.5.【分析】先根据勾股定理的逆定理判定△ABC为直角三角形,然后根据直角三角形的性质即可得到结论.【解答】解:∵在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∵CD是AB边上的中线,∴CD=6.5;故答案为:6.5.【点评】本题考查了勾股定理的逆定理和直角三角形的性质的综合应用.先判定△ABC为直角三角形是解题的关键.11.(5分)(2017•益阳)代数式有意义,则x的取值范围是x.【分析】根据二次根式有意义的条件以及分式有意义的条件即可求出答案.【解答】解:由题意可知:∴x≤且x≠2,∴x的取值范围为:x≤故答案为:x【点评】本题考查二次根式的有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.12.(5分)(2017•益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为48.【分析】设被调查的学生人数为x人,则有=0.25,解方程即可.【解答】解:设被调查的学生人数为x人,则有=0.25,解得x=48,经检验x=48是方程的解.故答案为48;【点评】本题考查频数与频率、记住两者的关系是解题的关键,属于基础题.13.(5分)(2017•益阳)如图,多边形ABCDE的每个内角都相等,则每个内角的度数为108°.【分析】根据多边形的内角和公式即可得出结果.【解答】解:∵五边形的内角和=(5﹣2)•180°=540°,又∵五边形的每个内角都相等,∴每个内角的度数=540°÷5=108°.故答案是:108°.【点评】本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n﹣2)•180°.14.(5分)(2017•益阳)如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为2a+3b.【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为:2a+3b.【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.三、解答题(本大题8个小题,共80分)15.(8分)(2017•益阳)计算:|﹣4|﹣2cos60°+(﹣)0﹣(﹣3)2.【分析】根据实数运算法则、零指数幂和特殊三角形函数值得有关知识计算即可.【解答】解:原式=4﹣2×+1﹣9,=﹣5.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.16.(8分)(2017•益阳)先化简,再求值:+,其中x=﹣2.【分析】根据分式的运算法则先化简单,再代入求值即可.【解答】解:原式==x+1+x+1=2x+2.当x=﹣2时,原式=﹣2.【点评】本题主要考查分式的化简求值,掌握分式的约分、加减运算是解题的关键.17.(8分)(2017•益阳)如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:BC=CE.【分析】根据平行四边形的对边平行且相等可得AD=BC,AD∥BC,根据两直线平行,内错角相等可得∠DAF=∠E,∠ADF=∠ECF,根据线段中点的定义可得DF=CF,然后利用“角角边”证明△ADF≌△ECF,根据全等三角形对应边相等可得AD=CE,从而得证.【解答】证明:如图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,又∵F是CD的中点,即DF=CF,∴△ADF≌△ECF,∴AD=CE,∴BC=CE.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,熟记性质并确定出三角形全等的条件是解题的关键.18.(10分)(2017•益阳)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是(7分);(2)易知(分),(分),(分),根据题意不难判断;(3)画出树状图,即可解决问题;【解答】解:(1)甲运动员测试成绩的众数和中位数都是(7分).(2)∵(分),(分),(分),∴>,>∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(10分)(2017•益阳)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?【分析】(1)设去年餐饮利润为x万元,住宿利润为y万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的利润为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设去年餐饮利润x万元,住宿利润y万元,依题意得:,解得:,答:去年餐饮利润11万元,住宿利润5万元;(2)设今年土特产利润m万元,依题意得:16+16×(1+10%)+m﹣20﹣11≥10,解之得,m≥7.4,答:今年土特产销售至少有7.4万元的利润.【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的不等及相等关系是解本题的关键.20.(10分)(2017•益阳)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.【分析】(1)连接OC,由AB是⊙O的直径可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性质结合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切线;(2)在Rt△OCD中,由勾股定理可求出OD的值,进而可得出BD的长.【解答】(1)证明:如图,连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切线.(2)解:在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.【点评】本题考查了切线的判定与性质、勾股定理以及等腰三角形的性质,解题的关键是:(1)通过角的计算找出∠OCD=90°;(2)根据勾股定理求出OD的长度.21.(12分)(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(14分)(2017•益阳)如图1,直线y=x+1与抛物线y=2x2相交于A、B两点,与y轴交于点M,M、N关于x轴对称,连接AN、BN.(1)①求A、B的坐标;②求证:∠ANM=∠BNM;(2)如图2,将题中直线y=x+1变为y=kx+b(b>0),抛物线y=2x2变为y=ax2(a>0),其他条件不变,那么∠ANM=∠BNM是否仍然成立?请说明理由.【分析】(1)①联立直线和抛物线解析式可求得A、B两点的坐标;②过A作AC⊥y轴于C,过B作BD⊥y轴于D,可分别求得∠ANM和∠BNM的正切值,可证得结论;(2)当k=0时,由对称性可得出结论;当k≠0时,过A作AE⊥y轴于E,过B作BF⊥y轴于F,设、B,联立直线和抛物线解析式,消去y,利用根与系数的关系,可求得,则可证明Rt△AEN∽Rt△BFN,可得出结论.【解答】解:(1)①由已知得2x2=x+1,解得或x=1,当时,,当x=1时,y=2,∴A、B两点的坐标分别为(,),(1,2);②如图1,过A作AC⊥y轴于C,过B作BD⊥y轴于D,由①及已知有A(,),B(1,2),且OM=ON=1,∴,,∴tan∠ANM=tan∠BNM,∴∠ANM=∠BNM;(2)∠ANM=∠BNM成立,①当k=0,△ABN是关于y轴的轴对称图形,∴∠ANM=∠BNM;②当k≠0,根据题意得:OM=ON=b,设、B.如图2,过A作AE⊥y轴于E,过B作BF⊥y轴于F,由题意可知:ax2=kx+b,即ax2﹣kx﹣b=0,∴,∵===,∴,∴Rt△AEN∽Rt△BFN,∴∠ANM=∠BNM.【点评】本题为二次函数的综合应用,涉及函数图象的交点、三角函数的定义、根与系数的关系、相似三角形的判定和性质等知识.在(1)②中求得两角的正切值是解题的关键,在(2)中利用根与系数的关系,整理求得,是解题的关键.本题考查知识点较多,综合性较强,难度适中.。