第三章 刚体动力学基础4..

合集下载

《刚体力学基础》课件

《刚体力学基础》课件

2
刚体在作用力学和运动学中的应用
说明刚体在作用力学和运动学研究中的应用,如力的分析和刚体的运动分析。
3
刚体力学与其他学科的关系
探讨刚体力学与其他学科的关系,如力学、工程学和物理学等的联系。
六、总结
1 刚体力学基础的重要性
总结刚体力学基础的重要性,强调其在物体运动研究中的价值。
2 接下来的深入研究方向
介绍刚体力学研究中所采用 的基本假设和运动条件,以 便准确描述刚体的运动。
二、刚体的运动学
1
刚体的平动运动和定点运动
讲解刚体的平动运动和定点运动,包括平移和旋转的概念以及运动轨迹。
2
刚体的旋转运动和欧拉角
解释刚体的旋转运动和欧拉角的概念,阐明旋转的自由度和描述方法。
3
刚体的复合运动
讲述刚体的复合运动,即平动和旋转运动的组合,展示不同运动方式的例子。
ห้องสมุดไป่ตู้
刚体静力学的经典问题
介绍刚体的平衡和力的平衡条件, 解释如何使刚体保持静止。
探讨刚体静力学中的经典问题, 如杠杆原理和平衡木问题。
牛顿第三定律在刚体上的 应用
讲解牛顿第三定律在刚体运动中 的应用,如碰撞和反作用力。
五、实际应用
1
刚体在机械和结构工程中的应用
展示刚体在机械和结构工程中的应用案例,如建筑物和机械装置。
提出刚体力学研究中的深入方向,如刚体动力学和非线性刚体力学。
3 刚体力学研究的意义
归纳刚体力学研究的意义,展示其对工程和科学领域的贡献。
三、刚体的动力学
牛顿第二定律在刚体 上的应用
探讨牛顿第二定律在刚体力学 中的应用,包括力和加速度的 关系。
刚体的角动量和角动 量定理

《刚体动力学 》课件

《刚体动力学 》课件

牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。

刚体力学[感悟]

刚体力学[感悟]

第三章刚体力学本章介绍刚体运动状态的描述(§3.1-§3.2)以及刚体受力与运动状态的关系(§3.3-§3.10)。

其内容包括:刚体运动学、刚体静力学和刚体动力学,重点掌握刚体运动学和刚体动力学。

刚体是指在任何情况下形状、大小都不发生变化的力学体系,它是一种理想物理模型,只要一个物体中任意两点的距离不因受力而改变,它就可以称为刚体。

§3.1 刚体运动的分析一、描述刚体位臵的独立变量刚体的特性是任意两点距离不因受力而变。

这种特性决定了确定刚体的位臵并不需要许多变量,而只要少数变量就行。

能完全确定刚体位臵的,彼此独立的变量个数叫刚体的自由度。

二、刚体运动的分类及其自由度1、平动:自由度3,可用其中任一点的坐标x、y、z描述;2、定轴转动:自由度1,用对轴的转角φ描述;3、平面平行运动:自由度3,用基点的坐标(x o,y o)及其对垂直平面过基点的轴的转角φ描述。

4、定点转动:自由度3,用描述轴的方向的θ,ψ角和轴线的转角ψ描述。

5、一般运动:自由度6,用描述质心位臵的坐标(x c,y c,z c)和通过的定点的轴的三个角(θ,φ,ψ)描述。

§3.2 角速度矢量、角速度矢量及其与刚体中任本节重点是:掌握角位移矢量一点的线位移、线速度的相互关系。

理解有限转动时角位移不是矢量,只有无限小角位移才是矢量。

一、有限转动与无限小转动1、有限转动不是矢量,不满足对易律2、无限小转动是矢量,它满足矢量对易律。

①线位移△r与无限小角位移△n的关系设转轴OM,有矢量△n,其大小等于很小的转角Δθ,方向沿转轴方向,转轴的方向与刚体转动方向成右手螺旋,则△n称为角位移矢量。

由图3.2.1很容易求得即线位移△r=角位移△n与位矢r的矢量积。

②角位移和△n满足矢量对易律利用两次位移的可交换性,可证得该式表明:微小转动的合成遵循平行四边形加法的对易律,从而无限小角位移△n是一个矢量。

《刚体动力学 》课件

《刚体动力学 》课件

常用方法:拉格朗日方程、 哈密顿原理等
注意事项:需要熟练掌握 数学基础
数值法
定义:数值法 是一种通过数 值计算求解刚 体动力学问题
的方法
特点:精度高、 计算速度快、 适用于复杂问

常用算法:有 限元法、有限 差分法、有限
体积法等
应用领域:航 空航天、机械 制造、土木工
程等领域
近似法
近似法的定义和特点
刚体转动实例
风力发电机:利用风力驱动风车叶片旋转,通过变速器和齿轮装置将动力传递至发电机,最终 转化为电能。
搅拌机:利用电动机驱动搅拌器旋转,对物料进行搅拌、混合和输送等操作。
洗衣机:利用电动机驱动洗衣机的滚筒旋转,通过水和洗涤剂的作用将衣物清洗干净。
旋转木马:利用电动机驱动旋转木马旋转,使人们能够欣赏到各种美丽的景观和音乐。
物理教师
需要了解刚体 动力学知识的
相关人员
Part Three
刚体动力学概述
刚体定义
刚体:在运动过程中,其内部任意两点间的距离始终保持不变的物体 刚体运动:刚体的运动是相对于其他物体的位置和姿态的变化
刚体动力学:研究刚体运动过程中所受到的力、力矩以及运动状态变化规律的科学
刚体动力学的研究对象:各种工程实际中的刚体,如机械零件、构件、机构等
动能定理
定义:动能定理是描述物体动能变化的定理 表达式:动能定理的表达式为ΔE=W 应用范围:动能定理适用于一切具有动能变化的物理系统 注意事项:在使用动能定理时需要注意初始和终了状态的动能
Part Five
刚体动力学应用实 例
刚体平动实例
刚体平动定义 刚体平动应用实例1 刚体平动应用实例2 刚体平动应用实例3
刚体动力学在各领 域的应用

刚体力学基础第三章

刚体力学基础第三章

二、转动惯量J
对分立的质点系: J miri2
i
对刚体: 质量是连续分布
J r2dm
r 2dl 线分布,为线密度
J r 2ds 面分布,为面密度 r 2 dV 体分布,为体密度
z
dm
r
讨论
J r2dm
(1)转动惯量的物理意义:J表示刚体转动时惯性的大小
(2)转动惯量J的大小决定于
r 3dr
1 2
mR2
m
R 2
J
常 见 刚 体 的 转 动 惯 量
§3 刚体定轴转动定律
一、 力矩
使物体转动,必须给定一 个作用力,另外考虑转动与力 的作用点以及作用力的方向有 关,因此在研究物体转动中引
入力矩这一物理量。 (1)若刚体所受力 F在转动平面内
z
Od r
F
F
P
力臂:rsin = d 表示转轴到力作用线的垂直距离。
m
2(2
m
1
+
m
2
m 1+m 2
+
m
2
)g
T1
a m1 m1g T2 a m2 m2g
§4 力矩的功 动能定理
一、力矩的功
刚体在合外力矩作用下绕定轴转动而发生角位移时
d,A则力F矩 d对r刚体F作d了r功co。s F cos(900 )ds
F sin rd
Md
z
O d
dr
F
r P
元功:力矩对质点(或刚体)所作的 元功等于力矩和角位移的乘积
盘)。如A下降,B与水平桌面间的滑动摩擦系数为μ,
绳与滑轮之间无相对滑动,试求系统的加速度及绳中的
张力FT1和FT2。 受力分析 FT1

《刚体动力学》课件

《刚体动力学》课件
动量定理公式:Ft=mv
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生

南京理工大学-高等动力学课后习题答案及考题解答

南京理工大学-高等动力学课后习题答案及考题解答

18、设 b, c 接触点为 P , a, c 接触点为 Q 。因为 C 球作纯滚动,所以 b, c 在接触点上有相同 的速度, a, c 在接触点上也有相同的速度。设沿 OC 方向上的单位矢量为 e 。
理工大机械论坛让你学习更轻松!
.n
Rω1 Rω Ω × k ' (1) Ω = ω1 k − 1 k ' (2) r r 2 Rω1 ' j 把(2)代入(1) : ε = r
.n
i i
ju s
i
tjx
= p i ' + q j ' + r k ' + ω × ( pi ' + q j ' + rk ' ) = p i ' + q j ' + r k ' + ω × ω
.cn
i
理工大机械论坛()
i i i
7、由题易得:ψ = −2
i
ϕ =4 θ =0
解得: ωC =
aωa − bωb a −b
1 vC = (aωa + bωb ) × e 2
第三篇 刚体动力学 第一章 物体的二次惯量矩(P254) (1) 薄片平面 ⇒ 2011-2 1、
Jz = Jx + J y
∵ 厚度为0, ∴ z = 0 Jz =
(V )
∫ ρ(x
2
+ y 2 )dV (1) J y =
ψ = ψ t = 15t
ω y = ω sinψ = 20sin15t
i
ω x = ω cosψ = 20 cos15t
∴ω = 20 cos15ti + 20sin15t j ⇒ ε = −300sin15ti + 300 cos15t j ⇒ ε = 300

大学物理课件第3章-刚体

大学物理课件第3章-刚体
大学物理课件第3章-刚体
刚体力学是大学物理课程的重要组成部分。它涵盖了刚体的定义、运动学、 动力学、静力学、力学、弹性和应用等多个方面内容,为学习者提供了全面 的知识体系。
刚体的定义
刚体的概念
刚体是指具有固定形状和 大小,并且内部各点相对 位置保持不变的物体。
理想刚体的定义
理想刚体是指无限刚度、 无限强度、不变形且能够 保持自身形状和大小的物 体。
刚体的动力学
刚体的动量
刚体的动量是其质 量乘以速度,刚体 受到外力时动量会 发生变化。
刚体的角动量
刚体的角动量是其 惯性矩乘以角速度, 刚体绕固定轴旋转 时角动量会发生变 化。
刚体的动能
刚体的动能是其质 量乘以速度的平方, 与速度和质量有关。
刚体的动力学定 理
动力学定理描述了 刚体受力和加速度 之间的关系,F = ma。
实际刚体的特点
实际刚体在外力作用下会 发生微小的形变,但变形 较小,可以近似看作刚体。
刚体的运动学
1
刚体的运动状态
刚体可以既进行平动运动,也可以进行转动运动。
2
刚体的平动运动
刚体的平动运动包括直线运动和曲线运动,由质心位置和速度决定。
3
刚体的转动运动
刚体的转动运动包括绕固定轴的转动,由角位移和角速度决定。
刚体的静力学
1 刚体的平衡条件
刚体在平衡状态下,力 矩和力的合力为零。
2 刚体的平衡性质
刚体在平衡状态下,质 心位置不变,不会发生 任何运动。
3 刚体的平衡实例
如天平平衡ቤተ መጻሕፍቲ ባይዱ桥梁平衡 等实际应用中,刚体的 平衡性质起到重要作用。
刚体的力学
刚体的受力分析
通过力的分析,可以确定刚体 受力的大小、方向和作用点。

《大学物理期末复习》刚体动力学课件

《大学物理期末复习》刚体动力学课件
总结词
掌握弹性力对刚体运动的影响
详细描述
弹性力是刚体动力学中另一个重要的问题。解决这类问题需要掌握弹性力的计算方法, 包括胡克定律和弹性常数的概念,以及弹性力在不同运动状态下对刚体运动的影响。同 时,还需要考虑弹性力与刚体质量、加速度等因素的关系,以及弹性力对刚体振动和稳
定性的影响。
01
02
03
阻尼振动定义
刚体在受到阻尼作用下的 振动状态。
阻尼振动特点
振动的能量逐渐减小,最 终趋向于静止状态。
阻尼振动方程
通过求解刚体的运动方程 ,可以得到阻尼振动的解 。
05
刚体动力学中的常见问题 与解决方法
刚体在非惯性系中的运动问题
总结词
理解非惯性系中刚体的运动规律
详细描述
刚体在非惯性系中的运动问题主要涉及到相对运动和科里奥利力。解决这类问题需要理解非惯性系中 刚体的运动规律,掌握科里奥利力的计算方法,以及如何应用这些概念来分析具体的物理现象。
在实际应用中,可以通过合理设计结构、选择合适的材料、加强维护保养等方式来提高刚体的平衡与稳 定性。
刚体的平衡与稳定问题也是物理学中的一个重要研究领域,对于深入理解力学原理、发展新的技术手段 等方面具有重要意义。
04
刚体的振动与阻尼
刚体的自由振动
自由振动定义
刚体在没有任何外力作用下的振动状态。
自由振动特点
振动的周期和振幅与初始条件有关,不受外力影响。
自由振动方程
通过求解刚体的运动方程,可以得到自由振动的解。
刚体的受迫振动
1 2
受迫振动定义
刚体在外力作用下的振动状态。
受迫振动特点
振动的周期和振幅与外力有关,与初始条件无关 。

刚体力学基础 ppt课件

刚体力学基础  ppt课件

PPT课件
14
(2)用质量不计的细杆连接的五个质点, 如图55所示。转轴垂直于质点所在平面且通过o点, 转动 惯量为
JO=m.02 +2m(2l2) +3m(2l)2 +4ml2 +5m(2l2) =30ml2
2m
l
ml
l 3m
o
4m
l
5m
图5-5
PPT课件
15
例题5-2 质量连续分布刚体: J r 2dm
d( J )
dt
(5-3)
(Lz=J)
上式称为物体定轴转动方程。
对定轴转动的刚体, J为常量, d /dt=, 故式(6-16)
又可写成
M=J
(5-4)
这就是刚体定轴转动定理。
PPT课件
9
M=J
(5-4)
(5-4)表明, 刚体所受的合外力矩等于刚体的转动 惯量与刚体角加速度的乘积。
(5-6)
式中: r为刚体上的质元dm到转轴的距离。
PPT课件
12
三.平行轴定理
Jo=Jc+Md2
(5-7)
Jc 通过刚体质心的轴的转动 惯量;
M 刚体系统的总质量; d 两平行轴(o,c)间的距离。
Jo d Jc
o
C M
图5-3
PPT课件
13
例题5-1 质量离散分布刚体: J=Δmi ri2
fij ) 0
i
j( i j )

i
d ri Fi dt
i

( ri mii )
PPT课件
7
i
d ri Fi dt
i

第3章 刚体力学基础

第3章 刚体力学基础

刚体力学的基础知识包括刚体绕定轴转 动的动力学方程和动能定理,刚体绕定轴 转动的角动量定理及角动量守恒定律
-------------------------------------------------------------------------------
§3-1 刚体 刚体定轴转动的描述
dt
当输---出----功----率-----一----定----时----,-力----矩-----与----角----速----度-----成----反----比----。------------
3. 刚体定轴转动的动能定理:
W
2 1
Md
2 1
Jd
2 1
J d d
dt
W
2 1
Jd
第3章 刚体力学基础
§3.1 刚体 刚体定轴转动的描述 §3.2 刚体定轴转动的转动定律 §3.3 刚体定轴转动的动能定理 §3.4 刚体定轴转动的角动量定理和角动量 守恒定律
-------------------------------------------------------------------------------
➢刚体上各质元的角量(即角位移、角速度、角加速度) 相同,而各质元的线量(即线位移、线速度、线加速度) 大小与质元到转轴的距离成正比 。
-------------------------------------------------------------------------------
§3-2 刚体定轴转动的转动定律
对滑轮 , 由转动定律
T2R T1R J ④
由于绳不可伸长
aA aB R

J 1 mR2

刚体力学基础 ppt课件

刚体力学基础  ppt课件
k
O
F1
F

F2
F 对转轴的力矩
M rF2 sin
r
17
PPT课件
第三章 刚体力学
17
§3.2 刚体定轴转动的转动定律 二、转动定律 质点绕轴作圆周运 动,根据牛顿第二定律沿 切线方向的分量式
O
z
ri
Fii
mi
i
i
Fie
Fie sin i Fii sin i mi ait mi ri
z
O
r *
P
F
M Fr sin
0 π
π 2π
sin 0 力矩为正.
sin 0 力矩为负.
15
15
0 或 π sin 0 力矩为零. PPT课件 第三章 刚体力学
§3.2 刚体定轴转动的转动定律
力臂: 点 O 至力 F
的作用线的垂直距离.
3
PPT课件
第三章 刚体力学
3
教学基本要求
四 了解力矩的功和刚体转动动能的概念。
五 理解刚体对定轴的角动量概念,理解 刚体定轴转动的角动量定理,理解角动量守 恒定律。 六 了解经典力学的适用范围。
4
PPT课件
第三章 刚体力学
4
§3.1
刚体 刚体定轴转动的描述
一、刚体的平动和定轴转动 刚体:在力的作用下,大小和形状都保持不变的物体. 刚体最基本的运动形式是平动和定轴转动.
n n
18
18
§3.2 刚体定轴转动的转动定律
n 2 Fie ri sin i Fii ri sin i mi ri i 1 i 1 i 1

刚体动力学

刚体动力学

1 ml 2 12
5
将棒的端点取为坐标原点, 建立坐标系Oxy,取y 轴
为转轴。在距离转轴为x 处取棒元dx, 其质量为
m dm = dx
l
y
dx
o
x
l
=J
∫0l= x2 ml dx
1= m x3 l 3l 0
1 ml 2 3
6
常用的几个J
C R m 均匀圆环:
JC = mR2
C R m 均匀圆盘:
4
例:求长度为 l ,质量为m的均匀细棒对过中点
和端点轴的转动惯量。
解:将棒的中点取为坐标原点, 建立坐标系Oxy, 取y 轴 为转轴。在距离转轴为x 处取棒元dx, 其质量为
m dm = dx
l
y
−l
o
2
+l x
2
J
∫−+= ll//22 x2 ml dx
1= m x3 +l / 2
3l
−l / 2
m反映质点的平动惯性,J 反映刚体的转动惯性。
14
例 一根长为l、质量为m的均匀细直棒,一端有一固定的光 滑水平轴,可以在竖直平面内转动。最初棒静止在水平位置
,求由此下摆 θ 角时的角加速度和角速度。
解 棒下摆为加速过程,
l/2
外力矩为重力对O的力矩。
O
重力作用在棒的重心,当
θ
x
棒处在下摆θ 角时,重力
与转动惯量有关的因素:
刚体的质量、刚体的形状(质量分布)、转轴的位置3。
转动惯量的求法:
若刚体的质量连续分布 , 转动惯量中的求和号 用积分号代替
J = ∫ r 2dm = ∫∫∫r 2ρdV
线密度、面密度、体密度

刚体运动的动力学分析

刚体运动的动力学分析

刚体运动的动力学分析刚体运动是物理学中一个基础而重要的概念,研究刚体在运动过程中受到的力和运动参数之间的关系。

本文将对刚体的动力学进行深入分析,探讨刚体运动的基本原理和相关定律。

一、刚体的定义和特性刚体是指在运动过程中保持自身形状不变的物体。

与之相对应的是弹性体,弹性体在受到外力作用后会发生形变。

刚体的特性包括质量、形状和位置等方面的固有属性,这些属性决定了刚体在运动时的运动状态和受力情况。

二、刚体的运动描述1. 位移、速度和加速度刚体的位移是指刚体上某一点在运动过程中从一个位置到另一个位置的变化量。

速度是位移变化量与时间的比值,而加速度是速度变化量与时间的比值。

位移、速度和加速度是描述刚体运动状态的重要参数,它们与刚体所受到的力之间存在着一定的关系。

2. 角位移、角速度和角加速度对于刚体的旋转运动,除了位置的变化外,还需要考虑角度的变化。

角位移、角速度和角加速度是描述刚体旋转运动的重要参数,它们与刚体所受到的力矩之间存在特定的关系。

三、牛顿定律与刚体运动1. 第一定律:惯性定律刚体在不受外力作用时,将保持静止状态或匀速直线运动状态。

这是因为刚体具有惯性,不易改变其运动状态。

2. 第二定律:动量定律刚体所受合外力等于动量的变化率。

合外力越大,刚体的加速度越大;合外力越小,刚体的加速度越小。

3. 第三定律:作用-反作用定律刚体所受的作用力和反作用力大小相等、方向相反,且作用于不同的物体上。

这一定律描述了力的作用方式,为刚体运动提供了均衡和相互作用的基础。

四、刚体的转动定律刚体的转动运动与直线运动类似,同样遵循着牛顿定律。

利用转动力学原理,可以得到刚体在旋转过程中所受的力矩与角加速度之间的关系,进而分析刚体的运动状态和力的作用效果。

五、刚体运动的应用刚体运动的动力学分析广泛应用于物理学、工程学和运动学等领域。

在物理学中,刚体运动是解释物体运动规律的重要基础,为其他物理学定律的推导提供了依据。

在工程学中,刚体运动的分析可用于机械设计、运动控制和材料研究等方面。

大物第三章_刚体

大物第三章_刚体

F1
F
r
F2
M Z rF2 sin F2 d
F1 对转轴的力矩为零,在定轴转动中不予考虑
d r sin 是转轴到力作用线的距离,称为力臂。
转轴方向确定后,力对转轴的力矩方向可用+、-号表示
二、 刚体定轴转动定律
对刚体中任一质量元 mi
O’
Fi -外力
10
例题3-1
一飞轮转速n=1500r/min,受到制动后均匀
地减速,经t=50 s后静止。 (1)求角加速度a 和飞轮从制动开始到静止所转过
的转数N;
(2)求制动开始后t=25s 时飞
0
轮的加速度 ;
(3)设飞轮的半径r=1m,求在 t=25s 时边缘上一点的速
O a an v r at
度和加速度。
注意: 力矩、转动惯量必须对同一转轴而言 选定转轴的正方向,以便确定力矩、角速 度、角加速度的正负。 系统中同时有转动和平动:转动定律、平动定律
30
例3-7、一个质量为M、半径为R的定 滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂 一质量为m的物体而下垂。忽略轴处 摩擦,求物体m由静止下落高度h时 的速度和此时滑轮的角速度。
l / 2 h 2
2
25
例3-4、求质量为m、半径为R的均匀圆环的转动惯量。 轴与圆环平面垂直并通过圆心。 解:
J R dm R
2
2
dm mR
2
O
R
dm
J是可加的,所以若为薄圆筒
(不计厚度)结果相同。
26
例3-5、求质量为m、半径为R、厚为h的均匀圆盘的转 动惯量。轴与盘平面垂直并通过盘心。 解:取半径为r宽为dr的薄圆环,

最新大学物理第3章-刚体力学基础课件ppt

最新大学物理第3章-刚体力学基础课件ppt
对所有质元的同样的式子求和:
∑Fi risini+ ∑ fi rsi ini = (∑ mi ri2 )
一对内力的力矩之和为零,所以有
∑ Fi ri sini = (∑mi ri2)
只与刚体的形状、质量分布和转轴位置有关
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
令J= ∑mi ri2 J为刚体对于定转轴的转动惯量
对平动的刚体列出牛顿第二定律方程,对定轴转动的刚体 列出定轴转动定律方程;
注意利用角量与线量的关系。
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
例5: 已知光滑桌面,滑轮半径R,质量为Mc,两物体质 量分别为m1 m2 ,求两物体的加速度和绳的张力.
m2
a
m1
g
m1 解:
m1 m 2
T m 1m 2 g
1 3
mLL2
Jo
2 5
mo
R2
mO
J L 2 J 0 m 0 d 2 J 0 m 0 ( L R ) 2
J1 3m L L 25 2m oR 2m o(L R )2
大学物理学A
第一篇 力学基础
大学物理学A
匀质矩形薄板
转轴通过中
心垂直板面
I=
m 12
(a2 + b2
)
匀质细圆环
转轴通过中 心垂直环面
FT 1mAa
m BgF T2 m Ba
RTF 2 RTF 1 J
a R
FN
PmAAO
FT1
x
第3章 刚体力学基础
FT1
FC
PC
FT 2
FT 2
O
mB

《刚体动力学》PPT课件

《刚体动力学》PPT课件

ox
l x
2
为转轴, 如图所示。在距离转轴为x 处取棒元dx,
其质量为
m dm dx
l
7
根据式(5-4), 应有
J
l / 2 l / 2
x
2
m l
dx
1 3
m l
x3
l /2 l / 2
1 ml2 8.3 102 kg m2 12
棒的转动动能为
Ek
1 2
J 2
1 0.083 632 J 2
(2) 闸瓦对飞轮施加的 摩擦力矩所作的功。
d
闸瓦
N
解:为了求得飞轮从制 飞轮
f
动到停止所转过的角度
和摩擦力矩所作的功A, 必须先求得摩擦力、摩擦力矩
和飞轮的角加速度。
27
闸瓦对飞轮施加的摩擦力的大小等于摩擦系数与
正压力的乘积
f N 0.50 500 N 2.5 102 N
方向如图所示。摩擦力相对z 轴的力矩就是摩擦
1.7 102J
8
例2 计算质量为m,长为l 的细棒绕一端的转动惯量。
解: J r2dm
z
dm dx m dx
l
Oo
dm
r2 x2
x dx
x
J l x2 m dx 1 m x3 l
0l
3l 0
J 1 ml2 3
对质量均匀分布的门对门轴的转动惯量也相同。
9
例5-3 如图半圆形匀质细杆,半径为 R,
cosi
因为dsi = ri d, 并且cosi = sini , 所以
dAi Firi sini d Mzid 19
dAi Firi sini d Mzid
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可以证明,此式也适用于在物体转动过程中,J发生变 说明: 化的过程,而M = J 仅适用于转动惯量不变的过程。
University physics AP Fang
积分形式的角动量定理
M
d( J ) dt
J2 J1
Mdt d( J ) ( Mdt为元冲量矩)
d(J ) J2 J1
University physics AP Fang
例1:一根长为 l ,质量为 m 的均匀细直棒,可绕轴 O 在竖直 平面内转动,初始时它在水平位置 求:它由此下摆 角时的 解:用机械能守恒定律方便求解 O

m
l
x

1 1 2 mg lsin J 2 2 1 2 J ml 3
University physics AP Fang
二、刚体绕定轴转动的角动量定理 将刚体的角动量对时间求导
dL d ( J ) dt dt 刚体对确定轴的转动惯量不变,则 dL d J J dt dt d M ( J ) (刚体定轴转动的角动量定理) dt
作用在绕定轴转动刚体上的合外力矩等于刚体对该轴 的角动量对时间的导数。
此题也可用机械能守恒定律方便求解
University physics AP Fang
3-4-4刚体定轴转动的功能原理 1 1 1 2 2 2 2 一、转动动能 E K J J C ml 2 2 2 1 1 2 EK JC mvC 2 J J ml2 z C 2 2

O
i
z
v ri mi
Li miv i ri mi ri 2
2 L Li miv i ri ( mi ri )
P
i
i
L J

(刚体绕定轴转动的角动量)
刚体的角动量是描述刚体绕定轴转动状态的物理量; 角动量 L=J 与质点动量 p=mv 相对应。
对于一有限过程
A dA
12Leabharlann 211 2 2 1 2 1 J J d( J ) 2 1 Ek 2 2 2
绕定轴转动刚体在任一过程中动能的增量,等于在该过
程中作用在刚体上所有外力所作功的总和。这就是绕定 轴转动刚体的——动能定理 讨论: 当 2 1 力矩作正功 A > 0 当 2 1 力矩作负功 A < 0
机械能守恒
mgh v (mr J Z ) / (2r ) 0
2 2 2
2 v mgh 2 (mr 2 J Z ) 2r
2 d h d v 1 mg 2v 2 ( mr J Z ) dt dt 2r
dh v, dv a dt dt mgr 2 a 2 常量 mr J Z
University physics AP Fang
例:一根长为 l ,质量为 m 的均匀细直棒,可绕轴 O 在竖直平 面内转动,初始时它在水平位置 求:它由此下摆 角时的
1 解:M mglcos 2
由动能定理

O

m
l
x

C
mg
l A Md mgcosd 0 0 2 1 2 lmg 1 2 sin 0 J 0 J ml 3 2 2 3gsin 3gsin 1 / 2 2 ( ) l l
求:物体A对Z 轴的转动惯量Jz。设绳子
不可伸缩,绳子、各轮质量及轮轴 处的摩擦力矩忽略不计。 解:分析(机械能)
EP 2 mgh
2 2
EP1 0 Ek 1 0
Ek 2 mv 2 / 2 J Z 2 / 2
v (mr J Z ) / (2r )
2
University physics AP Fang
C
mg
3gsin l
2
3gsin 1 / 2 ( ) l
University physics AP Fang
例2:图示装置可用来测量物体的转动惯量。待测物体A装在转
动架上,转轴Z上装一半径为r 的轻鼓轮,绳的一端缠绕 在鼓轮上,另一端绕过定滑轮悬挂一质量为 m 的重物。 重物下落时,由绳带动被测物体 A 绕 Z 轴转动。今测得 重物由静止下落一段距离 h,所用时间为t,
• 刚体绕质心转动的动能 • 质心携带总质量绕定轴作圆运动的动能 二、刚体重力势能 —— 各质元重力势能之和 取任意质元 E Pi mi gyi Δ mi

质心
E P mi gyi
m
m y mg
i
yc
yi
i
mgyC
Ep=0
University physics AP Fang
2 mgr h 1 at 2 1 2 t2 2 2 mr J Z
2 gt J Z mr 2 ( 1) 2h
若滑轮质量不可忽略,怎样?
University physics AP Fang
3-5 刚体的角动量定理与角动量守恒定律
3-5-1 刚体绕定轴转动的角动量定理
一、刚体绕定轴转动的角动量 在刚体上任取一质点P 质点P对z轴的角动量为
三、刚体的机械能
1 E E K E P J 2 mgyC 2
四、定轴转动的功能原理 当 A外 + A非保内 = 0 时,有
E Ek E p 恒量
(系统的机械能守恒定律) 对含有刚体的力学系统,若在运动过程中,只有保 守内力作功,而外力和非保守内力都不作功,或作功 的总和始终为零,则该系统的机械能守恒。
Xi’an Jiaotong University
Aiping Fang
apfang@ 3 / 31 / 2012
University physics AP Fang
3-4-3 刚体绕定轴转动的动能定理 —— 力矩功的效果 1 2 d )d Jd d( J ) dA Md ( J 2 dt

t2
t1
Mdt
(
t2
t1
Mdt 为冲量矩)
(定轴转动角动量定理的积分形式) 定轴转动刚体在某段时间内所受合外力矩的冲量矩等 于刚体在同一时间内角动量的增量。
相关文档
最新文档