初一-平面直角坐标系动点问题(经典难题)
(完整版)初一平面直角坐标系动点问题(经典难题)
(2)在y轴上是否存在一点P,连接PA,PB,使 = ,
若存在这样一点,求出点P的坐标,若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论: 的值不变, 的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
5.观察下列有序数对:(3,﹣1)(﹣5, )(7,﹣ )(﹣9, )…根据你发现的规律,第100个有序数对是.
6、观察下列有规律的点的坐标:
依此规律,A11的坐标为,A12的坐标为.
7、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.
平面直角坐标系动点问题
(一)找规律
1.如图1,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )
图1
A.(4,0)B.(5,0)C.(0,5)D.(5,5)
(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.
(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.
(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?
4.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
七年级平面直角坐标系动点规律问题(经典难题)
平面直角坐标系动点问题(一)找规律1.如图1,一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )图1A .(4,0)B .(5,0)C .(0,5)D .(5,5)图22、如图2,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( ) A 、(13,13) B 、(﹣13,﹣13) C 、(14,14) D 、(﹣14,﹣14)3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2019个点的横坐标为 .4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。
图3(1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____); (2)写出点n A 4的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 .6、观察下列有规律的点的坐标:依此规律,A 11的坐标为 ,A 12的坐标为 .7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规律走下去,当机器人走到A 6时,A 6的坐标是 .8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2019次,点P 依次落在点201921,,,P P P 的位置,则点2019P 的横坐标为 .9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2019次跳动至点P 2019的坐标是 .图4 图5 10、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2019的坐标为 .1PAOyxP1. 如图,一个粒子在第一象限内及x 、y 轴上运动,在第一分钟内它从原点运动到()1,0,而后它接着按图所示在x 轴、y 轴平行的方向上来回运动,且每分钟移动1个长度单位,那么,在1989分钟后这个粒子所处的位置是( ).A .()35,44B .()36,45C .()37,45D .()44,352. 如果将点P 绕定点M 旋转180︒后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心,此时,点M 是线段PQ 的中点,如图,在直角坐标系中,ABO △的顶点A 、B 、O 的坐标分别为()1,0、()0,1、()0,0,点1P ,2P ,3P ,…中相邻两点都关于ABO △的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,O ,A ,B ,O ,…且这些对称中心依次循环,已知1P 的坐标是()1,1.试写出点2P 、7P 、100P 的坐标.3. 如图,在平面直角坐标系中,四边形各顶点的坐标分别为:()0,0A ,()7,0B ,()9,5C ,()2,7D .(1)求此四边形的面积.(2)在坐标轴上,你能否找到一点P ,使50PBC S =△?若能,求出P 点坐标;若不能,请说明理由.4. 如图①,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为()0,a 和()9,a ,点E在AB 上,且13AE AB =,点F 在OC 上,且13OF OC =.点G 在OA 上,且使GEC △的面积为20,GFB △的面积为16,试求a 的值.图②5. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,()1,2,()2,2……根据这个规律,第2019个点的横坐标为_______.6. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点()0,4A ,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =________(用含n 的代数式表示).7. 如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点()0,0,3的对应点是()1,1,16的对应点是()1,2-,那么2019的对应点的坐标是_______.8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动,求两个物体开始运动后的第2019次相遇地点的坐标.9. 在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,连接AC 、BD . (1)直接写出图中相等的线段、平行的线段; (2)已知()3,0A -、()2,2B --,点C 在y 轴的正半轴上.点D 在第一象限内,且5ACD S =△,求点C 、D 的坐标;(3)如图②,在平面直角坐标系中,已知一定点,()1,0M ,两个动点(),21E a a +、(),23F b b -+,请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM .若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由.图②10 . 如图,AOCD 是放置在平面直角坐标系内的梯形,其中O 是坐标原点.点A 、C 、D 的坐标分别为()0,8,()5,0,()3,8,若点P 在梯形内,且PAD POC S S =△△,PAO PCD S S =△△,求P 点的坐标.11. 操作与研究(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P B .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图①,若点A 表示的数是3-,则点'A 表示的数是______;若点'B 表示的数是2,则点表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点'E 与点E 重合,则点E 表示的数是_________.(2)如图②,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位()0,0m n >>,得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.图①A B'-1-2-3-412340图②(二)几何综合问题1、已知点A 的坐标是(3,0)、AB=5,(1)当点B 在X 轴上时、求点B 的坐标、(2)当AB//y 轴时、求点B 的坐标2、如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?4.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形D C 3-1BA O x y PDCBAOx y (2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.5.已知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°,AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0). (1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC ?(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9? 求出此时Q 点的坐标.6.如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b 满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.8.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.。
平面直角坐标系。动点问题。好
平面直角坐标系。
动点问题。
好平面直角坐标系动点问题已知平面直角坐标系中,点A(4,0),点B(0,3),点P从点A出发,以每秒1个单位的速度在x轴上向右平移,点Q从B 点出发,以每秒2个单位的速度沿直线y=3向右平移,又P、Q两点同时出发,设运动时间为t秒。
1) 求当t为多少时,四边形OBPQ的面积为8.首先,可以求出四边形OBPQ的坐标:O(0,0),B(0,3),P(4+t,0),Q(2t,3)。
由于四边形OBPQ是平行四边形,所以它的面积可以用它的对角线之积来表示:S(OBPQ) = |OB| × |PQ|× sinθ。
其中,|OB| = 3,|PQ| = √[(4+t-2t)²+3²] = √(t²+16),θ是OB与PQ之间的夹角。
由于OB与PQ平行,所以θ = 0,sinθ = 0,因此S(OBPQ) = 0.所以,四边形OBPQ的面积始终为0,无法等于8,因此无解。
2) 连接AQ,当△APQ是直角三角形时,求Q的坐标。
由于△APQ是直角三角形,所以根据勾股定理,有AP²+PQ² = AQ²。
又因为AP = 4+t,PQ = 3-2t,所以可以列出方程:(4+t)² + (3-2t)² = AQ²。
化简后得到:AQ² = 25-8t+5t²。
又因为Q在直线y=3上,所以可以列出另一个方程:yQ = 3.将Q的坐标表示为(xQ。
yQ),则有xQ² + yQ² = AQ²,代入上面的方程,得到xQ² + 9 = 25-8t+5t²,化简后得到:xQ² = 16-8t+5t²。
因为Q在第二象限,所以xQ<0,因此xQ = -√(16-8t+5t²),yQ = 3.所以Q的坐标为(-√(16-8t+5t²)。
七年级下册数学平面直角坐标系中的动点问题
1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.2.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(4,0),点C 的坐标为(0,6),点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着 O —A —B —C —O 的路线移动(即沿着长方形的边移动一周). (1)点B 的坐标为_______________.(2)当点P 移动了4秒时,描出此时点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.3.如图,在平面直角坐标系中,四边形OABC 为正方形,A 点在x 轴负半轴上,C 点在y 轴负半轴上,边长为4,有一动点P 自O 点出发,以每秒2个单位长度的速度沿O —A —B —C —O 运动,则何时S △PBC =4?并求出此时P 点的坐标.4 .如图 , △ A BO 的三个顶点的坐标分别为 O ( 0 , 0 ) , A ( 5 , 0 ) , B ( 2 , 4 ) .( 1 ) 求 △O AB 的面积; ( 2 ) 若 O , B 两点的位置不变 , 点 M 在 x 轴上 , 则点 M 在什么 位置时 , △O BM 的面积是 △ O AB 的面积的 2 倍? ( 3 ) 若 O , A 两点的位置不变 , 点 N 由点 B 向上或向下平移得 到 , 则点 N 在什么位置时 , △O AN 的面积是 △ O AB 的面积的 2 倍? O AB C yA B C O yP。
七年级下册数学动点问题及压轴题(带答案)
七年级下册动点问题及压轴题1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.3.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象,(1)参照图②,求a、b及图②中的c值;(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.(3)当点P出发多少秒后,△APD的面积是矩形ABCD面积的.4.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.5.(本题12分)已知:在平面直角坐标系中,直线AB 分别与x 轴负半轴、y 轴正半轴交于点B (b ,0)、点A (0,a ),且a 、b 满足0|32|34=++++--b a b a ,点D (h ,m )是直线AB 上且不与A 、B 两点重合的动点(1) 求△AOB 的面积;(2) 如图1,点P 、点T 分别是线段OA 、x 轴正半轴上的动点,过T 作TE ∥AB ,连接TP .若∠ABO =n °,请探究∠APT 与∠PTE 之间的数量关系?(注:可用含n 的式子表达并说明理由)(3) 若32S △BOD ≥S △AOD ,求出m 的取值范围.。
动点问题经典例题
动点问题经典例题在数轴上,点A从原点出发,以每秒2个单位长度的速度向右运动,同时点B也从原点出发,以每秒3个单位长度的速度向左运动。
经过5秒,A、B两点之间的距离是多少?A. 5个单位长度B. 10个单位长度C. 15个单位长度D. 25个单位长度在一条直线上,甲车以每小时40千米的速度从A地出发向B地行驶,同时乙车以每小时60千米的速度从B地出发向A地行驶。
若A、B两地相距200千米,则两车相遇时,它们各自行驶了多少千米?A. 甲车100千米,乙车100千米B. 甲车80千米,乙车120千米C. 甲车120千米,乙车80千米D. 甲车60千米,乙车140千米在平面直角坐标系中,点P从原点出发,沿x轴正方向以每秒1个单位长度的速度移动。
同时,点Q从点(0,4)出发,沿y轴负方向以每秒2个单位长度的速度移动。
当P、Q两点之间的距离达到5个单位长度时,它们各自移动了多少秒?A. 1秒B. 2秒C. 3秒D. 4秒在一条环形跑道上,甲、乙两人同时同地同向出发进行跑步比赛。
甲的速度是每分钟400米,乙的速度是每分钟500米。
经过多少分钟,两人会再次相遇?A. 1分钟B. 5分钟C. 10分钟D. 无法确定在数轴上,点A和点B分别表示-3和7。
点A以每秒2个单位长度的速度向右移动,同时点B以每秒1个单位长度的速度向左移动。
经过多少秒,A、B两点之间的距离为15个单位长度?A. 2秒B. 4秒C. 6秒D. 8秒在平面直角坐标系中,点A从(0,0)出发,沿x轴正方向以每秒1个单位长度的速度移动。
同时,点B从(4,0)出发,沿x轴负方向以每秒2个单位长度的速度移动。
当A、B两点之间的距离为2个单位长度时,它们各自移动了多少秒?A. 1秒B. 1.5秒C. 2秒D. 2.5秒在一条直线上,甲、乙两人相距100米,甲以每秒6米的速度向乙走去,乙以每秒4米的速度向甲走来。
经过多少秒,甲、乙两人会相遇?A. 5秒B. 10秒C. 15秒D. 20秒在平面直角坐标系中,点P从原点出发,沿x轴正方向以每秒2个单位长度的速度移动。
人教七年级下第七章专题----平面直角坐标系中动点问题
专题----平面直角坐标系中动点问题1、如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3)(1)求a,b的值;(2)若点M在x轴的负半轴上,且△AMC的面积为6,求点M的坐标.(3)若点M在y轴的负半轴上,且△BMC的面积为8,求点M的坐标.2、如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3)(1)求a,b的值;=S△A BC,求点M的坐标.(2)若点M在x轴上,且2S△BMC(3)若点M在y轴上,且△BMC的面积为10,求点M的坐标.3.在平面直角坐标系中,O 为原点,点A (2,0),点B (0,3).(1)如图①,三角形AOB 的面积为;(2)如图①,在x 轴上是否存在点C ,使三角形ABC 的面积等于6.若存在,求点C 的坐标;若不存在,请说明理由.(3)如图②,将线段AB 向右平移2个单位长度,再向上平移1个单位长度,得到线段A 1B 1,求三角形OA 1B 1的面积;(4)如图①,在y 轴上是否存在点C ,使2S △A BC =S △OA 1B 1.若存在,求点C 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,A (﹣1,4),B (1,1),C (﹣4,﹣1).(1)三角形ABC 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0+3),将三角形ABC 作同样的平移得到三角形A 1B 1C 1.①画出平移后的三角形A 1B 1C 1,写出A 1B 1C 1的坐标;②求三角形ABC 的面积;(2)若将线段AB 沿水平方向平移一次,竖直方向平移一次,两次平移扫过的图形没有重叠部分.两次平移后B 点的对应点B 2的坐标为(1+a ,1+b ),已知线段AB 扫过的面积为20,请直接写出a ,b 的数量关系:.备用图5.已知:把三角形ABC向上平移4个单位长度,再向右平移3个单位长度,得到三角形A′B′C′.(1)在图中画出三角形A′B′C′;(2)写出点A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得三角形BCP与三角形ABC面积相等?若存在,请求出点P的坐标;若不存在,说明理由.6.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移2个单位长度,再向右平移1个单位长度后得到△A1B1C1,请画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△A1B1C1的面积;(3)点P在坐标轴上,且△A1B1P的面积是2,求点P的坐标.7.在平面直角坐标系中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为,若存在,请直接写出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,4),其中a,b满足关系式+(a﹣2)2=0.(1)求a,b的值;(2)如果在第一象限内有一点P(m,)请用含有m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积等于三角形ABC的面积?若存在,求出点P的坐标;若不存在,请说明理由.9.已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.10.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).;(1)求a,b的值及S△ABC=S三角形ABC,试求点M的坐标.(2)若点M在x轴上,且S三角形ACM=S三角形ABC,试求点M的坐标.(3)若点M在y轴上,且S三角形ACM11.在平面直角坐标系中,已知点A的坐标为(a,0),B点由A点向上平移6个单位长度得到,C点由A点向左平移2个单位长度再向上平移2个单位长度得到,回答下列问题:(1)根据题意写出B点与C点的坐标(用含a的式子表示):B;C;(2)若a=2,求三角形ABC的面积;(3)将C点向右平移m个单位,若三角形ABC的面积等于3,求m的值;(4)将线段BC向右平移n个单位,若三角形ABC的面积等于4,求n的值.12.已知,在平面直角坐标系中,点A,B的坐标分别是(﹣a,﹣a),(b,0)且+|b﹣2|=0.(1)求a,b的值;(2)在坐标轴上是否存在点C,使三角形ABC的面积是8?若存在,求出点C的坐标;若不存在,请说明理由.13.在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式:(a﹣2)2++|c﹣4|=0.(1)求A、B、C三点的坐标;(2)如果在第二象限内有一点P(m,),若四边形ABOP的面积与三角形ABC的面积相等,求点P的坐标.。
平面直角坐标系中的动点问题
回顾旧知
1.已知点A的坐标是(3,0),AB=5.(1)若点B
在x轴上时,则点B的坐标是
。(2)当
AB//y轴时,则点B的坐标是
。
2.已知点A的坐标是(3,0),点A运动的速度是
2个单位/秒。
(1)若点A沿x轴正半轴运动5秒,则点B坐标
为
。(2)若点A沿x轴运动5秒,则
点B坐标为
。
典例演练
例1.如图,在平面直角坐标系中,点A,B的坐标分 别为(-1,0),(3,0),现同时将点A,B分别向上 平移2个单位,再向右平移1个单位,分别得到点 A,B的对应点C,D,连接AC、BD、CD。 (1)求点C、D的坐标;
作业:
如图,平面直角坐标系中,四边形ABCD为长方形, 其中点A、C坐标分别为(-4,2)、(1,-4),且 AD//x轴,交y轴于点M,AB交x轴于点N. (1)求B、D两点坐标和长方形ABCD的面积; (2)一动点P从点A出发,以(1/2)个单位/秒的速 度沿AB向B运动,在点P运动过程中连接MP,OP,请 直接写出∠AMP、∠MPO、∠PON之间的数量关 系;
(2)若点P在线段BD上运动,写出∠CPO∠DCP、 ∠BOP的数量关系,并说明理由。 (3)若点P在直线BD上运动,请直接写出∠CPO、 ∠DCP、∠BOP的数量关系。
典例演练
例2、在长方形OABC中,OA=6,OC=4,点P是AB
边上的点,AP=3,以点 O为原点,OA所在直线为x
轴,OC所在直线为y轴,/秒的速度沿
O→A→B→C 路线运动,当点Q运动到点C时,停止
七年级平面直角坐标系动点规律问题
平面直角坐标系动点问题(一)找规律1.如图1,一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )图1A .(4,0)B .(5,0)C .(0,5)D .(5,5)图22、如图2,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( )A 、(13,13)B 、(﹣13,﹣13)C 、(14,14)D 、(﹣14,﹣14)3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2019个点的横坐标为 .4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。
图3(1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____);(2)写出点n A 4的坐标(n 是正整数);(3)指出蚂蚁从点100A 到101A 的移动方向.5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 .6、观察下列有规律的点的坐标:依此规律,A 11的坐标为 ,A 12的坐标为 .7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规律走下去,当机器人走到A 6时,A 6的坐标是 .8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2019次,点P 依次落在点201921,,,P P P 的位置,则点2019P 的横坐标为 .9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2019次跳动至点P 2019的坐标是 .图4 图510、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2019的坐标为 .1. 如图,一个粒子在第一象限内及x 、y 轴上运动,在第一分钟内它从原点运动到()1,0,而后它接着按图所示在x 轴、y 轴平行的方向上来回运动,且每分钟移动1个长度单位,那么,在1989分钟后这个粒子所处的位置是( ).A .()35,44B .()36,45C .()37,45D .()44,352. 如果将点P 绕定点M 旋转180︒后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心,此时,点M 是线段PQ 的中点,如图,在直角坐标系中,ABO △的顶点A 、B 、O 的坐标分别为()1,0、()0,1、()0,0,点1P ,2P ,3P ,…中相邻两点都关于ABO △的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,O ,A ,B ,O ,…且这些对称中心依次循环,已知1P 的坐标是()1,1.试写出点2P 、7P 、100P 的坐标.3. 如图,在平面直角坐标系中,四边形各顶点的坐标分别为:()0,0A ,()7,0B ,()9,5C ,()2,7D .(1)求此四边形的面积.(2)在坐标轴上,你能否找到一点P ,使50PBC S =△若能,求出P 点坐标;若不能,请说明理由.4. 如图①,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为()0,a 和()9,a ,点E 在AB 上,且13AE AB =,点F 在OC 上,且13OF OC =.点G 在OA 上,且使GEC △的面积为20,GFB △的面积为16,试求a 的值.5. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,()1,2,()2,2……根据这个规律,第2019个点的横坐标为_______.6. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点()0,4A ,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =________(用含n 的代数式表示).7. 如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点()0,0,3的对应点是()1,1,16的对应点是()1,2-,那么2019的对应点的坐标是_______.8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动,求两个物体开始运动后的第2019次相遇地点的坐标.9. 在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,连接AC 、BD .(1)直接写出图中相等的线段、平行的线段;(2)已知()3,0A -、()2,2B --,点C 在y 轴的正半轴上.点D 在第一象限内,且5ACD S =△,求点C 、D 的坐标;(3)如图②,在平面直角坐标系中,已知一定点,()1,0M ,两个动点(),21E a a +、(),23F b b -+,请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM .若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由.10 . 如图,AOCD 是放置在平面直角坐标系内的梯形,其中O 是坐标原点.点A 、C 、D 的坐标分别为()0,8,()5,0,()3,8,若点P 在梯形内,且PAD POC S S =△△,PAO PCD S S =△△,求P 点的坐标.11. 操作与研究(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P B .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图①,若点A 表示的数是3-,则点'A 表示的数是______;若点'B 表示的数是2,则点表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点'E 与点E 重合,则点E 表示的数是_________.(2)如图②,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位()0,0m n >>,得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.(二)几何综合问题1、已知点A 的坐标是(3,0)、AB=5,(1)当点B 在X 轴上时、求点B 的坐标、(2)当AB x ABDC S 四边形PAB S ∆ABDC S 四边形DCP BOP CPO ∠+∠∠DCP CPO BOP∠+∠∠知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°,AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0).(1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9 求出此时Q 点的坐标.6.如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立若存在,请直接写出符合条件的点M的坐标.7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b 满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等若存在,求出点P的坐标;若不存在,请说明理由.8.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ON F的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.。
平面直角坐标系相关动点问题(教师用教案有答案)
平面直角坐标系相关动点问题1、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.2、如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么A2020坐标为()A.(2020,1) B.(2020,0)C.(1010,1) D.(1010,0)3、如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一条长为2019个单位长度且没有弹性的细线(线的粗细不略不计)的一端固定在点A处,并按A-B-C-D-A-的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,0)B.(1,1)C.(-1,1)D.(-1,-2)4、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…,如果(1,0)是第一个点,探究规律如下:(1)坐标为(3,0)的是第个点,坐标为(5,0)的是第个点;( 2 )坐标为(7,0)的是第个点;(3)第74个点的坐标为.解:(1)由图可知,坐标为(3,0)的点是第1+2+3=6个点,坐标是(5,0)的点是第1+2+3+4+5=15个点,故答案为:6,15;(2)坐标为(7,0)的点是第1+2+3+4+5+6+7=28个点,故答案为:28;(3)∵(11,0)是第1+2+3+…+11=66个点,(12,11)是第1+2+3+…+12=78个点,∴第74个点是(12,7),故答案为:(12,7).5、如图,平面直角坐标系中,过点A(0,2)的直线a垂直于y轴,M(9,2)为直线a上一点.若点P从点M出发,以2cm/s的速度沿直线a向左移动;点Q从原点同时出发,以1cm/s的速度沿x轴向右移动,多久后线段PQ平行于y轴?解:设当PQ∥y轴时,点P的运动时间为xs,依题意有9-2x=x,解得x=3.故3秒后线段PQ平行于y轴.6、在平面直角坐标系中(以1cm为单位长度),过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每秒2cm的速度沿直线a向左移动;点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,(1)几秒后PQ平行于y轴?(2)若四边形AOQP的面积为10cm2,求点P的坐标.解:(1)设x秒后PQ平行于y轴.∵AP∥OQ,∴当AP=OQ时,四边形AOQP是平行四边形,∴PQ平行于y轴.由AP=OQ,得9-2x=x,解得x=3.故3秒后PQ平行于y轴;(2)设y秒后四边形AOQP的面积为10cm2,则1(y+9-2y)×4=10,解得y=4,2所以AP=9-2y=9-2×4=1,故点P的坐标为(1,4).7、如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,以每秒1cm的速度,沿A-B-C路线向点C运动;动点Q从点O出发,以每秒2cm的速度,沿O-E-D路线向点D运动.若P、Q两点同时出发,其中一点到达终点时,另一点也停止运动.(1)直接写出B、C、D三点的坐标;(2)当点P、Q两点出发5秒时,求△OPQ的面积.8、如图1,在平面直角坐标系中,OA=7,OC=18,将点C先向上平移7个单位,再向左平移4个单位,得到点B.(1)写出点B的坐标;(2)如图2,若点P从点C出发,以2个单位长度/秒的速度沿CO方向移动,同时点Q从点O出发以1个单位长度/秒的速度沿OA方向移动,设移动的时间为t秒(0<t<7).①试求出四边形BQOP的面积;②若记△ABQ的面积为S1,△PBC的面积记为S2,当S1<S2时,求t的取值范围.解:(1)将点C先向上平移7个单位,即点C落在AB的延长线上,纵坐标为7,横坐标为18,再向左平移4个单位,横坐标变为18-4=14,故其坐标为(14,7);9、如图,已知A(1,0),点B在y轴上,将△OAB沿x轴负方向平移,平移后的图形为△DEC,且点C的坐标为(-2,3)(1)直接写出点E的坐标;(2)点P是线段CE上一动点,写出∠CBP,∠PAD,∠APB之间的数量关系,并证明你的结论。
初一年级平面直角坐标系动点问题(经典难题)
平面直角坐标系动点问题(一)找规律1. 如图1,一只跳蚤在第一象限及x 轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1), 然后接着按图中箭头所示方向跳动[即(0, 0)T( 0, 1)^( 1, 1)T( 1 , 0)T…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) 7*A.( 4, 0) B . (5, 0) C . (0, 5) D . (5, 5)图2 2、如图2,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2, 4, 6, 8,…,顶点依次用A1, A2, A B,A4,…表示,则顶点A55的坐标是3. 如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1, 0),( 2, 0),(2,1),( 1 ,1),( 1 , 2),(2 , 2),…的规律排列,根据这个规律,第2015个点的横坐标为 .4. 在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。
A (13, 13)B (—13,—13)C (14, 14)A,__A3D、(—14, —14)图3(1 )填写下列各点的坐标:Ai ( _____ , ____ ), A3 ( ______ , ____ ), A2 ( ______ , ___ );(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点Aoo到Aoi的移动方向.5、观察下列有序数对:(3, - 1) (- 5,寺)(7,-寺)(-9,壬)…根据你发现的规律,第100个有序数对是_______ .6、观察下列有规律的点的坐标:Ai (b 1) 扣Q “ 4) A. (4, 2) 去6 7) A s临-->3 A*(7, 10) A3 (S s4).......................... ,依此规律,A ii的坐标为_______________ , A i2的坐标为_______________ .7、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是_______________.8、如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2008次,点P依次落在点9、如图,在平面直角坐标系上有个点P (1, 0),点P第1次向上跳动1个单位至点Pi ( 1, 1),紧接着第2次向左跳动2个单位至点(-1, 1),第3次向上跳动1个单位,第向右跳动3个单位,第5次又向上跳动1 单位,第6次向左跳动4个单位,…,依规律跳动下去,点P第100次跳动至点Pi oo的坐标是P24次个此___________________________________________________________ .点P第2009次跳动至点F2QQ9的坐标是_____________ .-3 ^2~7 2 3 t图4 图510、如图5,已知A( 1,0),A2( 1,1),A3 (- 1, 1), A4 (- 1,—1), A s (2,—1),….则点A2007的坐标为______________(二)几何综合问题1、已知点A的坐标是(3, 0)、AB=5,( 1)当点B在X轴上时、求点B的坐标、(2)当AB//y轴时、求点B的坐标2、如图,已知A、B两村庄的坐标分别为(2, 2)、( 7, 4), 一辆汽车在X轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.(3 )请在图中画出汽车行驶到什么位置时,距离两村的和最短?8 164B2A» 1 | 1 11111111-512115111114. 如图,在平面直角坐标系中,点A, B的坐标分别为(一1 , 0) , ( 3, 0),现同时将点A, B分别向上平移2个单位,再向右平移1个单位,分别得到点A B的对应点C, D,连接AC, BD CD(1) 求点C, D的坐标及四边形ABDC勺面积绻边形ABDC⑵在y轴上是否存在一点P,连接PA, PB,使S PAB =S四边形ABDC ,若存在这样一点,求出点P的坐标,若不存在,试说明理由.⑶点P是线段BD上的一个动点,连接PC PO当点P在DCP BOP DCP 给出下列结论:①的值不变,②BD上移动时(不与CPO的值不变,B, D重合)CPO BOP有一个是正确的,请你找出这个结论并求其值.其中有且只5. 已知:在平面直角坐标系中,四边形ABCD是长方形,/ A=Z B=Z C=/ D=90°, AB// CDAB=CD=8cm, AD=BC=6cm D点与原点重合,坐标为(0,0).(1)写出点B的坐标.(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动,动点Q从点C出发以每秒4个单位长度的速度沿射线CD方向匀速运动,若P,Q两点同时出发,设运动时间为t秒,当t为何值时,PQ/ BC?(3)在Q的运动过程中,当Q运动到什么位置时,使厶ADC的面积为9?求出此时Q点的坐6.如图在平面直角坐标系中, A (a, 0), B ( b, 0),( Y P—>BAX0(D) W --------- CQ7: X1, 2).且|2a+b+1|+ Q时乱-4=0.(1) 求a、b 的值;(2) ①在y轴的正半轴上存在一点②在坐标轴的其他位置是否存在点M使“C^&ABC仍成立?若存在,请直接写出符M,使S AABC,求点M的坐标.合条件的点M的坐标.7.如图,在下面的直角坐标系中,已知 A (0, a), B ( b, 0), C(b, 4)三点,其中a, b满足关系式(1 )求a,b的值;(2)如果在第二象限内有一点P(m式子表示四边形ABOP勺面积;(3)在(2)的条件下,是否存在点的面积与厶ABC的面积相等?若存在, 若不存在,请说明理由.&在平面直角坐标系中,点 A ( a, b)是第四象限内一点,AB丄y轴于B,且B (0, b)是2y轴负半轴上一点,b =16, S^AOE=12.(1)求点A和点B的坐标;(2)如图1,点D为线段0A (端点除外)上某一点,过点D作A0垂线交x轴于E,交直线AB于F,/ EOD Z AFD的平分线相交于N,求/ ONF的度数.(3)如图2,点D为线段0A(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F, / EOD /AFD的平分线相交于点N若记/ ODF a, 请用a的式子表示/ ONF的大小,并说明理由.。
七年级动点题
七年级动点题
1. 在平面直角坐标系中,点A(2,3),B(5,7),C(8,4),求线段AB的中点D 的坐标。
2. 在平面直角坐标系中,点P(x,y)满足条件x+y=6,且P点的横坐标与纵坐标之和为10,求点P的坐标。
3. 在平面直角坐标系中,点A(-3,4),B(5,-2),C(0,1),求线段AB的长度。
4. 在平面直角坐标系中,点A(2,3),B(5,7),C(8,4),求线段AC的长度。
5. 在平面直角坐标系中,点A(-2,1),B(3,-4),C(5,6),求三角形ABC的面积。
6. 在平面直角坐标系中,点A(-4,2),B(6,-3),C(1,5),求线段AB的垂直平分线的方程。
7. 在平面直角坐标系中,点A(-1,-2),B(3,4),C(5,-6),求三角形ABC的内心I的坐标。
8. 在平面直角坐标系中,点A(2,3),B(5,7),C(8,4),求三角形ABC的外心O的坐标。
9. 在平面直角坐标系中,点A(-3,4),B(5,-2),C(0,1),求三角形ABC的高CD的长度。
10. 在平面直角坐标系中,点A(2,3),B(5,7),C(8,4),求三角形ABC的周长。
初一数学下册动点问题
初一数学下册中的动点问题例1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3) 在x 轴上是否存在一点F ,使得三角形DFC 的面积是三角形DFB 面积的2倍,若存在请求出点F 的坐标;若不存在请说明理由。
ABDCS 四边形P D CBAOxy(4)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合),设△CDP 与△BOP 的面积和为S ,则S 的取值范围是什么?(5)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:例2在平面直角坐标系中,点A,B 分别是x 轴,y 轴上的点,且OA=a ,OB=b ,其中a,b 满足1632=+-+-+a b b a ,将B 向左平移18个单位得到点C 。
(1)求点A,B,C 的坐标;(2)点M,N 分别为线段BC ,OA 上的两个动点,点M 从点B 以1个单位/秒的速度向左运动,同时点N 从点A 以2个单位/秒的速度向右运动,设运动时间为t 秒(0≤t ≤12).①当BM=ON 时,求t 的值。
②是否存在一段时间,使得BOACNACM S S 四边形四边形<21?若存在,求出t 的取值范围结论,并求其值。
确的,请你找出来这个其中有且只有一个是正是定值是定值;,BOPCPODCP OPC BOP DCP ∠∠+∠∠∠+∠练习:1.如图,在长方形ABCD中,边AB=8,BC=4,以点O为原点,OA,OC所在的直线为y轴和x轴,建立直角坐标系.(1)点A的坐标为(0,4),则B点坐标为______,C点坐标为______;(2)当点P从C出发,以2单位/秒速度向CO方向移动(不超过O点),Q 从原点O出发以1单位/秒速度向OA方向移动(不超过A点),P,Q同时出发,在移动过程中,四边形OPBQ的面积是否变化?若不变,求其值;若变化,请说明理由.如图AB∥CD,动点P所在的位置不同,∠PCD,∠PAB,∠APB三个角的关系就不同。
七年级平面直角坐标系动点规律问题(经典难题)(可编辑修改word版)
于 △ ABO 的一个顶点对称,点 P1 与点 P2 关于点 A 对称,点 P2 与点 P3 关于点 B 对称,点 P3 与点 P4 关于点 O 对称,点 P4 与点 P5 关于点 A 对称,点 P5 与点 P6 关于点 B 对称,点 P6 与 点 P7 关于点 O 对称,…对称中心分别是 A , B , O , A , B , O ,…且这些对称中心依次
律走下去,当机器人走到 A6 时,A6 的坐标是
.
8、如图,将边长为 1 的正三角形 OAP 沿 x 轴正方向连续翻转 2019 次,点 P 依次落在点
P1, P2 ,, P2019 的位置,则点 P2019 的横坐标为
.
y
P
AO
P1
x
9、如图,在平面直角坐标系上有个点 P(1,0),点 P 第 1 次向上跳动 1 个单位至点
3.如图 3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,
其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),
(1,2),(2,2),…的规律排列,根据这个规律,第 2019 个点的横坐
标为
.
4.在平面直角坐标系中,一蚂蚁从原点 O 出发,按向上、向右、向下、向右的方向依次 不断移动,每次移动 1 个单位,其行走路线如下图所示。
C.(0,5)
D.(5,5)
图2 2、如图 2,所有正方形的中心均在坐标原点,且各边与 x 轴或 y 轴平行.从内到外,它们 的边长依次为 2,4,6,8,…,顶点依次用 A1,A2,A3,A4,…表示,则顶点 A55 的坐 标是( )
(完整)初一年级平面直角坐标系动点问题(经典难题).docx
完美 WORD 格式 .整理平面直角坐标系动点问题(一)找规律1.如 1,一只跳蚤在第一象限及 x 、y 上跳,在第一秒,它从原点跳到( 0,1),然后接着按中箭所示方向跳 [ 即( 0,0)→( 0,1)→( 1,1)→( 1,0)→⋯ ] ,且每秒跳一个位,那么第35 秒跳蚤所在位置的坐是()1A.( 4, 0)B.(5,0)C.(0,5)D.(5,5)22、如2,所有正方形的中心均在坐原点,且各与x 或 y 平行.从内到外,它的依次2, 4,6, 8,⋯,点依次用A1,A2, A3, A4,⋯表示,点A55的坐是()A、( 13, 13)B、( 13, 13)C、( 14, 14)D、( 14, 14)3.如 3,在平面直角坐系中,有若干个横、坐分整数的点,其序按中点的坐分( 1,0),( 2,0),( 2,1),(1,1),( 1,2),( 2 , 2 ),⋯的律排列,根据个律,第2015 个点的横坐.4.在平面直角坐系中,一从原点O 出,按向上、向右、向下、向右的方向依次不断移,每次移 1 个位,其行走路如下所示。
3(1)填写下列各点的坐:A1(____,____), A3(____,____), A12(____,____);(2)写出点A4n的坐(n是正整数);(3)指出从点A100到 A101的移方向.5.察下列有序数:( 3, 1)( 5,)( 7,)( 9,)⋯根据你的律,第100 个有序数是.6、察下列有律的点的坐:依此律, A11的坐,A12的坐.7、以 0 原点,正,正北方向x , y 正方向建立平面直角坐系,一个机器人从原点 O点出,向正方向走 3 米到达 A1点,再向正北方向走 6 米到达 A2,再向正西方向走 9 米到达 A3,再向正南方向走12 米到达 A4,再向正方向走15 米到达 A5,按此律走下去,当机器人走到A6, A6的坐是.8、如,将 1 的正三角形OAP 沿x正方向翻2008 次,点P依次落在点P, P , P,, P的位置,点P的横坐.12320082008yPA O P1x9、如,在平面直角坐系上有个点P(1,0),点 P 第 1 次向上跳 1 个位至点P1( 1,1),接着第 2 次向左跳 2 个位至点P2( 1,1),第 3 次向上跳 1 个位,第 4 次向右跳 3 个位,第 5 次又向上跳1个位,第 6 次向左跳 4 个位,⋯,依此律跳下去,点 P 第 100 次跳至点P100的坐是.点P第2009次跳至点P2009的坐是.4510、如 5,已知 A l( 1,0),A2( 1,1),A3( 1,1),A4( 1, 1),A5( 2, 1),⋯.点 A2007的坐.(二)几何综合问题1、已知点 A 的坐是( 3, 0)、 AB=5,( 1)当点 B 在 X 上、求点 B 的坐、( 2)当AB//y 、求点B的坐2、如,已知A、B 两村庄的坐分(2, 2)、( 7, 4),一汽在x 上行,从原点O出.(1)汽行到什么位置离A 村最近?写出此点的坐.(2)汽行到什么位置离B 村最近?写出此点的坐.(3)在中画出汽行到什么位置,距离两村的和最短?86B4A2-5510-24.如图,在平面直角坐标系中,点 A, B 的坐标分别为(- 1, 0),( 3,0),现同时将点 A, B分别向上平移 2 个单位,再向右平移 1 个单位,分别得到点 A,B 的对应点 C,D,连接 AC,BD,CD.(1) 求点 C, D 的坐标及四边形ABDC的面积S四边形ABDC yC DA O B-13x(2) 在y 轴上是否存在一点P,连接PA, PB,使S PAB=S四边形 ABDC,若存在这样一点,求出点 P 的坐标,若不存在,试说明理由.yC DA O B-13x(3) 点 P 是线段 BD上的一个动点,连接PC, PO,当点 P 在 BD上移动时(不与B, D 重合)DCP BOP DCPCPO给出下列结论:①的值不变,②的值不变,其中有且只CPO BOP有一个是正确的,请你找出这个结论并求其值.yC D5.已知 : 在平面直角坐标系中 , 四边形ABCD是长方形 , ∠A=∠B=∠C=∠D=90°,AB∥ CD, AB=CD=8cm,AD=BC=6cm, D点与原点重合,坐标为(0,0).( 1)写出点 B 的坐标.( 2)动点P从点A出发以每秒 3 个单位长度的速度向终点B匀速运动,动点 Q从点 C出发以每秒 4 个单位长度的速度沿射线CD方向匀速运动,若 P, Q两点同时出发,设运动时间为t秒 , 当t为何值时 , PQ∥BC?(3)在Q的运动过程中 , 当Q运动到什么位置时 , 使△ADQ的面积为 9? 求出此时Q点的坐标.6.如图在平面直角坐标系中,A( a,0),B( b,0),(﹣1, 2).且 |2a+b+1|+=0.(1)求 a、 b 的值;(2)①在 y 轴的正半轴上存在一点 M,使 S△COM= S△ABC,求点 M的坐标.②在坐标轴的其他位置是否存在点 M,使 S△COM= S△ABC仍成立?若存在,请直接写出符合条件的点 M的坐标.7.如图,在下面的直角坐标系中,已知A( 0, a), B( b,0), C( b, 4)三点,其中 a, b满足关系式.(1)求 a, b 的值;(2)如果在第二象限内有一点P( m,),请用含 m的式子表示四边形 ABOP的面积;(3)在( 2)的条件下,是否存在点P,使四边形 ABOP的面积与△ ABC 的面积相等?若存在,求出点 P 的坐标;若不存在,请说明理由.8.在平面直角坐标系中,点A( a, b)是第四象限内一点, AB⊥y轴于 B,且 B( 0, b)是2y 轴负半轴上一点, b =16, S△AOB=12.(1)求点 A 和点 B 的坐标;(2)如图 1,点 D 为线段 OA(端点除外)上某一点,过点 D 作 AO垂线交 x 轴于 E,交直线AB于 F,∠ EOD、∠ AFD 的平分线相交于N,求∠ ONF的度数.(3)如图 2,点 D为线段 OA(端点除外)上某一点,当点 D 在线段上运动时,过点 D 作直线 EF 交 x 轴正半轴于 E,交直线 AB 于 F,∠EOD,∠A FD的平分线相交于点 N.若记∠ ODF=α,请用α的式子表示∠ ONF 的大小,并说明理由.。
初一-平面直角坐标系动点问题(经典难题)
1 平面直角坐标系动点问题
(一)找规律
1.如图1,一只跳蚤在第一象限及
x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动
[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是(
)图1
A .(4,0)
B .(5,0)
C .(0,5)
D .(5,5)
图2
2、如图2,所有正方形的中心均在坐标原点,且各边与
x 轴或y 轴平行.从内到外,它们的边长依次为
2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点
A 55的坐标是()
A 、(13,13)
B 、(﹣13,﹣13)
C 、(14,14)
D 、(﹣14,﹣14)3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,
其顺序按图中点的坐标分别为(
1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第
2015个点的横坐标为.4.在平面直角坐标系中,一蚂蚁从原点
O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。
图3
(1)填写下列各点的坐标:
1A (____,____),3A (____,____),12A (____,____);(2)写出点n A 4的坐标(n 是正整数);
(3)指出蚂蚁从点
100A 到101A 的移动方向.。
平面直角坐标系动点问题
1、如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7),(1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
设从出发起运动了x 秒。
①请用含x 的代数式分别表示P,Q 两点的坐标;②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标,若不存在,说明理由?xx2、(1)在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD。
①直接写出图中相等的线段、平行的线段;②已知A(-3,0)、B(-2,-2),点C在y轴的正半轴上,点D在第一象限内,且=5,求点C、D的坐标;x(2)在平面直角坐标系中,如图,已知一定点M(1,0),两个动点E(a,2a+1)、F(b,-2b+3),请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM。
若存在,求以点O、M、E、F为顶点的四边形的面积,若不存在,请说明理由。
3、如图,A、B两点同时从原点O出发,点A以每秒m个单位长度沿x轴的负方向运动,点B以每秒n个单位长度沿y轴的正方向运动。
(1)若|x+2y-5|+|2x-y|=0,试分别求出1秒钟后A、B两点的坐标。
(2)如图,设∠BAO的邻补角和∠ABO的邻补角平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由。
(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系动点问题
(一)找规律
1.如图1,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,
1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所
在位置的坐标是()
图1
A.(4,0)B.(5,0)C.(0,5)D.(5,5)
图2 2、如图2,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()
A、(13,13)
B、(﹣13,﹣13)
C、(14,14)
D、(﹣14,﹣14)
3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2015个点的横坐标为 .
4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。
图3
(1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____); (2)写出点n A 4的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.
5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 . 6、观察下列有规律的点的坐标:
依此规律,A 11的坐标为 ,A 12的坐标为 .
7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规
律走下去,当机器人走到A 6时,A 6
的坐标是 .
8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点
1232008P P P P ,,,
,的位置,则点2008P 的横坐标为 .
9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此
规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2009次跳动至点P 2009的坐标是 .
图4 图5
10、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2007的坐标为 .
1P
A
O
y
x
P
(二)几何综合问题
1、已知点A的坐标是(3,0)、AB=5,(1)当点B在X轴上时、求点B的坐标、(2)当AB//y轴时、求点B的坐标
2、如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.
(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.
(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.
(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?
4.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形
(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=
ABDC S 四边形,
若存在这样一点,求出点P 的坐标,若不存在,试说明理由.
(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①
DCP BOP CPO ∠+∠∠的值不变,
5.已知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°,
AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0).
(1)写出点B的坐标.
(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动, 动点Q从点C 出发以每秒4个单位长度的速度沿射线CD方向匀速运动,若P,Q两点同时出发,设运动时间为t秒,当t为何值时,PQ∥BC?
(3)在Q的运动过程中,当Q运动到什么位置时,使
△ADQ的面积为9? 求出此时Q点的坐标.
6.如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;
(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.
②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.
7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式.
(1)求a,b的值;
(2)如果在第二象限内有一点P(m,),请用含m
的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.
8.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.
(1)求点A和点B的坐标;
(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.
(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.。