matlab--算法大全--第18章_变分法模型

合集下载

变分法——精选推荐

变分法——精选推荐

变分法综述1.变分法1.1.变分法起源变分法是17世纪末发展起来的一门数学分支,主要是古典变分法,它理论完整,在力学、光学、物理学、摩擦学、经济学、宇航理论、信息论和自动控制论等诸多方面有广泛应用。

20世纪中叶发展起来的有限元法,其数学基础之一就是变分法。

[1]变分法是处理泛函的数学领域,和处理函数的普通微积分相对。

譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。

变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。

有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A 到达不直接在它底下的一点B 。

在所有从A 到B 的曲线中必须极小化代表下降时间的表达式。

变分法的关键定理是欧拉-拉格朗日方程。

它对应于泛函的临界点。

在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。

它不能分辨是找到了最大值或者最小值(或者都不是)。

变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。

变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。

它们也在材料学中研究材料平衡中大量使用。

而在纯数学中的例子有,黎曼在调和函数中使用狄力克雷原理。

最优控制的理论是变分法的一个推广。

[2]同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,摩尔斯理论,或者辛几何。

变分一词用于所有极值泛函问题。

微分几何中的测地线的研究是很显然的变分性质的领域。

极小曲面(肥皂泡)上也有很多研究工作,称为Plateau 问题。

1.2变分问题类型固定边界的变分问题,可动边界的变分问题,条件极值变分问题和参数形式的变分问题。

[3](1)古典变分问题举例 例1:最速降线或捷线问题(Brachistorone or curve of Steepest descent )问题。

这是历史上出的第一个变分法问题,1696年约翰·伯努利提出的。

8.数学建模-变分法

8.数学建模-变分法
类似于函数 微分 是 函数增量的线性主部 的概念,泛函有一个 相应的 变分 的概念, 它规定为 泛函增量的线性主部 。
如记泛函自变量在 x0( t ) 处的增量为: δx( t ) = x( t ) – x0( t ) ,
由它引起的泛函的增量记作 ΔJ = J ( x0( t ) + δx( t ) ) – J ( x0( t ) ) , 如果 ΔJ 可以表为:
若 J ( x ( t ) ) 在 “点 ” x ( t ) 处达到极大 (或极小 )值 , 则必 有 在该 “点 ” 处的变分为零 的 结论: J ( x(t )) 0
这是因为对任意的小参数 a ,总成立: J ( x(t ) a x(t )) J ( x(t ))
所以
= k( x( t ) ) · (a ∙ δx( t ) )+ r ( x( t ) , a ∙δx( t ) )
2.设 S2 = { x ( t ) │ x ( t ) 为全体在区间 [ 0 ,1 ] 上可积的初等函数 } ,
G ( x (t )) x (t ) dt
0
1
即算出函数 x ( t ) 在区间 [ 0 ,1 ] 上的定积分之值。 例如,
G(e t ) e t dt e 1 , G(ln(t 1)) ln(1 t )dt 2 ln 2 1
一般而言,单位时间的生产费用应是生产率的函数,可以记作 f ( x’( t ) );
而单位时间的储存费用是产品累积数的函数,可以记为 g(x(t))。
于是从 t = 0 到 t = T 的总费用是:
C ( x(t )) [ f ( x' (t )) g ( x(t ))]dt
0

(完整版)偏微分方程的MATLAB解法

(完整版)偏微分方程的MATLAB解法

引言偏微分方程定解问题有着广泛的应用背景。

人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。

然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。

现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。

偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

常用的方法有变分法和有限差分法。

变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。

虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。

随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。

从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。

从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

变分法

变分法
其中常数c1,c2, r 可由条件
y B(x1,y1)
A(x0 , y0)
o C
y
x D
图1.2 曲边梯形的面积
y(x0) y0,
y(x1) y1,及
x1 x0
1[y(x)]2dx l
来确定。
引例3:由最小势能原理,变形全能随所选取的三个位移函 数ui(i=1,2,3)而变,[u]也是一个泛函。而ui必须满足的体积不 变条件
y=y(x),使图中曲边梯形ABCD的面积AS达到最大。
As
x1 ydx
x0
(1.2)
AS依y的选取而定,它也是一个泛函,约束条件为AB长度
l
x1 x0
1[ y(x)]2 dx const
(1.3)
这是带约束条件的泛函极值由间接
变分法,泛函As的极值曲线为
(x c2 )2 ( y c1 )2 r 2
x1 x0
F

y

d dx
(
F y
)

ydx
端点固定条件 y(x0 ) y(x1) 0 由基本引理式(1.18)

x1 x0
F

y

d dx
( Fy )
ydx
F d (F ) 0 y dx y
(1 20)
, yn )dx
fi (x, y1, y2 , , yn ) 0
(i 1, 2, , k)
y1, y2 , , yn , 1(x), 2 (x), , k (x)
新泛函欧拉方程组
F y j

d dx

F yj

(完整版)偏微分方程的MATLAB解法

(完整版)偏微分方程的MATLAB解法

引言偏微分方程定解问题有着广泛的应用背景。

人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。

然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。

现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。

偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

常用的方法有变分法和有限差分法。

变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。

虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。

随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。

从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。

从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

变分法模型概要

变分法模型概要

1 变分法简介
• 变分法是研究泛函极值问题的数学方法。 本节就变分法的基础知识作简要介绍,需 要深入了解的读者可阅读有关专著。
变分法的基本概念
1.泛函的定义
设 D 为一个函数集合,若对于每一个函数 y(x) D 都 有一个确定的实数 J 与之对应,则称 J 为定义在 D 上的一个 泛函,记作 J[( y(x)] 。D 称为泛函 J 的定义域。
(1)
3。泛函的极值
设 y(x) , y1(x) 为 [a , b] 上 的 连 续 函 数 , 则 称
max |
x[a , b]
y1 ( x)
y(x)
|
为函数
y(x)

y1 ( x)
的距离。而与
y(x)
的距离小于 的连续函数的全体称为函数 y(x) 的 邻域,即
U (y,)
{y1(x) |
(2) 用适当方式引入参数求解,可得极值曲线的参
数形式 x x(t) , y y(t) 。
情形 C 若函数 F 中不含 x ,则由欧拉方程(2)式及
d
dx
(
F
Fy' y')
y'
d dx
Fy '
Fy
0,
有 F y' Fy' C1 为一阶微分方程。如情形 B 的两种
解法即可得到极值曲线。
x0
(7)
这样就把条件极值的变分问题化成了无条件极值的变分
问题。对于泛函 v * 来说,其欧拉方程组为
F* yi
F d *
dx y ' j
0
( j 1,2, , n)
(8)
i 0
(i 1,2, , m)

变分模型

变分模型

变分模型变分法基本引理引理1. 若)(x f 在[x 1,x 2]上分段连续,0d )()(21≡⎰x x x x x f η,)}(0)(|)),((]),([{2121210x x x x C x x C C ηηηη==⋂∈=∈∀∞∞则 0)(≡x f .证:用反证法,设)(x f 不恒等于零,由)(x f 的分段连续性,存在),(21x x 的开子区间I ,使得在I 上 f 不变号,取在I 上为正,在I 的余集上等于零的函数∞∈0C η 积分得0d )()(21≠⎰x x x x x f η,矛盾。

引理2. 若)(x g 在[x 1,x 2]上分段连续,0d )()(21≡'⎰x x x x x g η,∞∈∀0C η 则 .const )(≡x g .证明: 用反证法,不然, 则存在常数C 及),(21x x 的两个距离大于零的开子区间I 1,I 2,使得, )()(21x g C x g >>, 11I x ∈∀,22I x ∈∀,取在21I I ⋃的余集上等于零的函数∞∈0C η且)(0)(21x x ηη'>>',11I x ∈∀,22I x ∈∀,则[]0d )()(021>'-≡⎰x x x x C x g η,矛盾.引理3. 若)(x g 在[x 1,x 2]上分段连续,)(x f 在[x 1,x 2]上可积[]0d )()()()(21≡'+⎰x x x x x g x x f ηη,∞∈∀0Cη则.const d )()(1⎰+=xx t t f x g证明: 令⎰=xx t t f x h 1d )()(, 则由分部积分得[][]⎰⎰'-='+≡2121d )()()(d )()()()(0x x x x x x x h x g x x x g x x f ηηη由引理2, .const )()(+=x h x g定理: 设F (x , y , z )是一阶连续可微函数,若有在[x 1,x 2]上连续且在(x 1,x 2)上分段一阶可微的函数y =y (x ), ],[21x x x ∈,使泛函(以函数y 为自变量的函数)⎰'=21d ),,(:)(x x x y y x F y G (1)达到极小(称这函数为极小函数),则y 必须满足方程:.const ))(),(,(d ))(),(,(1='-''⎰x y x y x F t t y t y t F y y xx (2)从而在y =y (x )的一阶导数的间断点,))(),(,(x y x y x F y ''也必须保持连续. 证明:设∞∈=0)(C x ηη,ε是任意实数,设y =y (x )是极小函数,考虑ε的函数:)(:)(εηε+=y G g =⎰'+'+21d ))()(),()(,(x x x x x y x x y x F ηεεη (3)(3)应在0=ε时达到极小值,由函数达到极值的必要条件,应成立0)0(='g (4) 在积分号内关于ε对(3)式求导,并取0=ε得⎰''+'=''21d ))](),(,()())(),(,([)0(x x y y x x y x y x F x x y x y x F g ηη由变分学基本引理3, 即得(2)式,证毕若))(),(,(x y x y x F y ''关于x 可微,求导得二阶常微分方程(称为Euler方程):0=''-'--''''y F y F F F y y y y x y y , (5)当 F 不显含x 时,方程为0=''-'-'''y F y F F y y y y y (6)两边乘上y '得02='''-'-''''y y F y F y F y y y y y关于x 积分一次得Euler 方程的初积分,.const ='-'y F F y (7)这只要对(7)式关于x 求导即可验证. 应用三例1. 最速下降线问题问题:设有不在同一铅垂线上的两点, M 1(0,0)和M 2(a ,b ), a >0, b ≥0, 取 y 轴方向向下. 建立这两点间的光滑轨道y =y (x ),],0[a x ∈. 要使光滑小块在M 1点从静止开始滑到M 2点所需的时间最少.建立数学模型:设速度为v ,小块下降的距离为y ,弧长为s , 时间为τ, 则有关系gy v 22=,τd d sv =,222(d )(1)(d )s y x '=+ (8) 其中g 为重力加速度常数.所需的时间T 与y 有关,由(8)得:x x gy x y v s d )(2)(1d d 2'+==τ 积分得x x gy x y y T ad )(2)(1)(02⎰'+=, 0)0(=y , b a y =)( (9)问题就是求)(min y T , st 0)0(=y , b a y =)( (10)这就是最速下降线的数学模型.应用(7)式于最速下降线模型,(因g 是非零常数可以去掉)得Euler 方程的初积分:c y y 2)1(2='+ (11)它是一阶隐方程,引入参数t , 设 )2/cot(t y =',得 )2/(sin 22t c y ==c (1- cos t ),所以,x t x y t t t c y d )2/cot(d d )2/cos()2/sin(2d ='== 消去y 得微分方程 t t c t t c x d )cos 1(d )2/(sin 2d 2-==, 积分得:1)sin (c t t c x +-=,)cos 1(t c y -=,它是旋轮线又称摆线,是以 c 为半径的圆周沿一直线滚动时,圆周上一点所描成的曲线. 见下图(取c 为单位) :在(0,0)点物体的速度是0, 因此,(0,0)点对应于t = 0,方程为)sin (t t c x -=,)cos 1(t c y -=,]2,0[π∈t (12)由曲线通过(a , b )可以确定c 的值,这可通过解方程组:)sin (t t c a -=,)cos 1(t c b -= (13)得到. 即先从tt tabsin cos 1--=解出t=t 0]2,0(π∈,再由(13)中第一式解出c . 由(8),(12)得t gc d d =τ, 所以最短时间为Tmin= t 0g c. 012345621.510.5例: 当b=0 时, gcπ2Tmin =.正好等于摆长为c 的单摆的周期. 2. 悬链线问题问题:设有长度为L 的,线密度为常数的柔软细线悬挂在不在同一铅垂线的两点上,问此线呈何形状.建立数学模型:设线所在平面为(x , y )平面,x 轴为水平方向,y 轴的方向朝上.设线的方程为y =y (x ), 悬挂点为M 1=(x 1,y 1), M 2=(x 2,y 2), 根据最小位能原理,线在平衡态时的形状应使得线的位能(不妨设线密度为1)x y y s y y U x x M M d 1d :)(21212⎰⎰'+==, (14)最小,其中线的长度等于L 是约束条件:L x y x x ='+⎰d 1212, (15)所以问题的数学模型为条件极值问题:min U (y ), st (15) 成立, (16) 如同求函数的条件极值问题一样,我们可以应用Lagrange 乘子法, 作辅助泛函.⎰'++=21d 1)()(2x x x y y y G λ (17)它不显含x , 由(7)式得它的Euler 方程的初积分是:21y C y '+=+λ (18)引入参数t , 使得 t y sinh =', 于是 t y cosh 12='+, 从而得参数化的方程: t C y cosh =+λ, t y sinh ='; 消去y : 得 x t t t C d sinh d sinh =, 积分得:x =Ct +C 1, 消去t 得悬链线方程: CC x C y 1cosh-=+λ, 其中的常数由线长度L , 两个端点的位置(x 1, y 1), (x 2, y 2), 其中设x 2>x 1, (要求两点间的直线距离大于曲线长度L )所决定:Cx x C C x x C C C x C C x C L 2sinh 22cosh 2)sinh (sinh121211112--+=---= (18) Cx x C C x x C C C x C C x C y y 2sinh 22sinh 2)cosh (cosh12121111212--+=---=- (19) 可得 212212)(2sinh2y y L Cx x C --=-,用数值方法解出C , 代入(18)式 求出1C 就确定了悬链线(λ的作用只是在y 方向作一平移,若取C =λ,则由倍角公式, 得CC x C y 2sinh 212-=. C 1是最低点的横坐标. 3 最小曲面问题求曲线y =y (x ), 满足条件y (-L )=1, y (L )=1且使它绕x 轴旋转而成的曲面面积S 最小.不难得到这问题就是求以下目标泛函的最小问题.xx y x y y S LLd )(1)(2)(2⎰-'+=π (20)1)(,1)(==-L y L y解: 因(20)是(17)式中0=λ的特例, 故解为CC x C y 1cosh-=,由对称性, 01=C , 其中常数C 由边值条件得1cosh=CLC , 即 )1arccosh(CC L =, )1,0(∈C (21)从(21)的图像:得知,C 不是L 的单值函数, 经计算得知, 当C =Cm ≈0.55243412453088321725321729790124时,L 达到最大值Lmax ≈0.66274341934918158097474209710922,而当 L 在0和Lmax 之间时有两个C 值满足(21)式, 到底应取哪个C 值? 让我们根据(20)来计算旋转曲面面积:)2sinh 2(2C L C L C S +=π=)sinh cosh (2CLC L C L C +π)11(22C L -+=πL π4<(圆柱侧面积),可见应取较大的C 时面积S 较小, 所以得C x C y cosh=,)1arccosh(CC L =, 1>C ≥Cm 当L =Lmax 时的最小曲线的图像如下:0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1同时我们也得知,当L >Lmax 时,不存在连接(-L ,1), (L ,1) 两点的光滑曲线使得曲面面积最小, 实际上这时最小曲面由以下三段直线组成的折线绕x 轴旋转而成⎩⎨⎧∈=-=]1,0[,t t y Lx ⎩⎨⎧=-∈=0],[,y L L t t x ,⎩⎨⎧∈==]1,0[,t t y Lx 即最小曲面蜕化为两个圆和一条连接这两个圆的线段.可以通过肥皂膜的实验证实这个现象: 当两个直径相同平行放置的圆环之间距离大于直径的Lmax 倍时, 不存在连接两环的肥皂膜.另外, 从这个例子说明,Euler 方程的解不一定就是变分问题的解, 变分问题的解不一定是光滑函数.以下带* 号的是选用材料* 推广到多个未知函数的情况;设y =y (x ), z =z (x )是未知函数,现要求-0.6-0.4-0.20.20.40.61泛函:21(,)(,,)d x x G y z F x y z x =⎰的极小,同样我们可以考虑求二元函数:(,)(,)g G y z εδεηδκ=++的极小值问题, 其中∞∈==0)(),(C x x κκηη,如果y =y (x ), z =z (x )是使得泛函取得极小的函数,那么,(0,0)0,(0,0)0g g εκ==,类似的推导和计算得到Euler 方程组:* 推广到被积函数内含有高阶导数的情况; 21()(,,,)d x x G y F x y y y x '''=⎰这时,同样考虑ε的函数的极值问题()()g G y εεη=+可得21(0)[]d x y y y x g F F F x ηηη'''''''=++⎰用分部积分法得,x F xF x F F F g y y x x y x x y y d ]d dd d [|)()0(2121'''''''--+'+='⎰ηηηηη 取∞∈=0)(C x ηη,由引理3, 得Euler 方程0d d d d 22=+-'''y y y F xF x F*推广到被积函数内含有多个自变量的情况将得到偏微分方程设u =u (x ,y )是两个自变量的函数考虑有界区域D 上的积分⎰⎰=y x u u u y x F u G y x d d ),,,,()(的极小,同样设)(),(0D C y x ∞∈=ηη,ε是任意实数,固定y 和η,考虑ε的函数:)()(εηε+=u G g令0)0(='g ,即0d d )()0(=++='⎰⎰y x F F F g y x u y u x u ηηη变形为,y x F yF x y x F y F x F g y x y x u u u u u d d )]()([d d ][)0(⎰⎰⎰⎰∂∂+∂∂+∂∂-∂∂-='ηηη 由散度定理,上式右边第二项积分可化为边界上的积分,由于η在边界上为零, 边界上的积分等于零, 因此由η的任意性,得Euler 方程: 0=∂∂-∂∂-y x u u u F yF x F 实验题1:设在相距L 米的两电线杆之间架设直径为d 毫米的裸铜线, 问电线在无拉力的情况下长度应为多少可保证电线所受的拉力是安全的(自己选取适当的数据进行数值计算).若考虑到铜的弹性和温度的影响又该如何处理?实验题2(渡江问题) :设一条河为带状,y =0, y =1为河的两岸,河水的流动沿x 轴的正向,速度为y 的函数:v =v (y )=6y (1-y ), (河流的平均速度为1)现有人以匀速v 0从(0,0) 点出发游泳到达对岸(L ,1)点,L ≥0. 问游泳者在游泳中应如何调整游泳方向)(y θ,使得到达(L ,1)点的时间最短?( 对不同的L 和不同的 v 0讨论),最短时间为何? 用数值方法求解一些具体的例子.。

变分法模型

变分法模型

欧拉方程中计算出对时间的导数时还可写为
证明
最近
证明
欧拉
例1、最速降线问题:设A,B是铅直平面上不在同一铅直线上的两 、最速降线问题:设A,B是铅直平面上不在同一铅直线上的两 点,求一曲线,当质点仅受重力作用,且初速为零,沿此曲线从 A滑行至B时,所需时间最短。 滑行至B
x
A y=y(x)
B y
欧拉公式
这就是一个需要利用变分法解决的最优控制问题!
1、基础知识介绍
1.1、控制系统(疾病的控制、机器的运转、人类的活动): x′ = f ( x, u , t ) 状态空间表达式 , y = g ( x, u , t ) x′ = Ax + Bu 线性系统状态空间表达式 y = Cx + Du
(2)、泛函的变分:泛函J ( x(t ))的自变量在x0 (t )处取得增量δ x(t ) = x(t ) − x0 (t )时 泛函的增量∆J =J ( x0 (t )+δ x(t )) − J ( x0 (t )) = L( x0 , δ x) + r ( x0 , δ x)=L( x0 , δ x) + o(δ x) 则泛函J ( x(t ))在x0 (t )处的变分为δ J ( x0 (t )) = L( x0 , δ x). (3)变分的性质 ∂ J ( x(t ) + αδ x(t )) |α =0 ∂α ii)若泛函J ( x(t ))的自变量在x0 (t )处取得极值,则δ J ( x0 (t ))=0 i)δ J ( x(t )) =
思考题
u∈W
1.3、设计最优控制系统常用的方法: 变分法:开集上泛函极值的必要条件 δ J=0 极小值原理:(1956年Pontryagin由变分法引申而来) 动态规划:50年代Bellman由分段决策研究而来,为分段(步)最优化

matlab编程实现二分法牛顿法黄金分割法最速下降matlab程序代码

matlab编程实现二分法牛顿法黄金分割法最速下降matlab程序代码

用二分法求解4224min ()f t t t t =--115[,.]t ∈内的极小值点,要求准 1.function [t d]=erfenfa(a,b)k=1; %记录循环次数while abs(a-b)>0.0005c=(a+b)/2;C(k)=c; %存储每次循环中点c 的值if ff(c)<0a=c;endif ff(c)==0t1=c;break ;endif ff(c)>0b=c;endk=k+1;endt=(a+b)/2; %最终符合要求的值d=f(t); %最优解Ckfunction y=f(t)y=t^4-2*t^2-4*t;function y=ff(t)y=4*t^3-4*t-4;运行结果>> [t d]=erfenfa(1,1.5)C =Columns 1 through 91.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.32621.3252Column 101.3247k =11t =1.3250d =-5.72902.黄金分割法 f (x)=x3-2x+1 初始区间[0, 3],收敛精度0.5function [t,f]=huangjinfenge(a,b)m=1-(sqrt(5)-1)/2;t2=a+m*(b-a)f2=g(t2);t1=a+b-t2f1=g(t1);while abs(t1-t2)>0.5if f1<f2a=t2;t2=t1f2=f1;t1=a+b-t2f1=g(t1);elseb=t1;t1=t2f1=f2;t2=a+m*(b-a)f2=g(t2);endendt=(t1+t2)/2;f=g(t);function y=g(t)y=t^3-2*t+1;运行结果> [t,f]=huangjinfenge(0,3)t2 =1.1459t1 =1.8541t1 =1.1459t2 =0.7082t =0.9271f =-0.0574>>3. 用牛顿法求解291min ()sin f x x x =--初始迭代点为x 0=0.4,要求准确到小数 点后第5位小数function [t1,d]=Newton(t0)t=t0-ff(t0)/fff(t0);k=1;%记录迭代次数T(1)=t;%存储迭代点while abs(t-t0)>0.000005t0=t;t=t0-ff(t)/fff(t);k=k+1;T(k)=t;endt1=t0;d=f(t1);kTfunction y=f(x)y=9*x^2-sin(x)-1;function y=ff(x)y=18*x-cos(x);function y=fff(x)y=18+sin(x);运行结果>> [t1,d]=Newton(0.4)k =3T =0.0586 0.0555 0.0555t1 =0.0555d =-1.0277>>4. 最速下降法验证课本上的例题求解291min ()sin f x x x =--初始迭代点为x 0=0.4, 要求准确到小数点后第5位小数function [G,g,X,F]=zuisu(X0)F(1)=f(X0);%存储x 点处的值G(:,1)=h(X0); %存储梯度向量g(1)=norm(G(:,1));%存储梯度模长X(:,1)=X0; %存储x 值A=[2,0;0,8];for j=1:2X(:,j+1)=X(:,j)-(G(:,j)'*G(:,j))/(G(:,j)'*A*G(:,j))*G(:,j); F(j+1)=f(X(:,j+1));G(:,j+1)=h(X(:,j+1));g(j+1)=norm(G(:,j+1));endif (G(:,2)'*G(:,1)<1E-10& G(:,3)'*G(:,2)<1E-10)disp(['相邻两搜索方向是正交的'])endfunction y=f(X)y=X(1)^2+4*X(2)^2;function n=h(X)n=[2*X(1),8*X(2)]';运行结果>> [G,g,X,F]=zuisu(X0)相邻两搜索方向是正交的G =2.0000 1.4769 0.2215 8.0000 -0.3692 0.8862g =8.2462 1.5224 0.9134X =1.0000 0.7385 0.1108 1.0000 -0.0462 0.1108F =5.0000 0.5538 0.0613 >>。

变分法

变分法

18
方法II 使用第二种试探波函数
( x ) Ae

x2
1. 对第二种试探波函数确定归一化系数:
1 ( x )* ( x )dx | A |
| A|
2
2
2



e
2
x2
dx | A |
2
2
2.求能量平均值

H( ) | A | | A |
2
ˆ * H dx




e e
x2
ˆ x 2 dx He [
2 d2 2 dx 2
2
x2

1 2
x ]e
2 2
x2
dx
2 1 2 1 2 8
19
3.变分求极值
dH ( ) 2 1 2 2 0 d 2 8
0 j j
I c* y* k k
k
ˆ G G c y d
j

ˆ = c* y* c j G G0 y j d k k
= c* c j G j G0 k
k j

j
y y d
* k j
= c* c j G j G0 kj k

1 2
1
2

代入上式得基态能量近似值为:
2 1 1 1 2 2 H 2 2 8 2
这正是精确的一维谐振子基态能量。这是因为若将 代入试探波函数,得:
( x ) Ae
x
2
1 2

9

变分法简介剖析课件

变分法简介剖析课件
变分法简介剖析课件
• 引言 • 变分法的基本概念 • 变分法的应用领域 • 变分法的实际案例解析 • 变分法的求解方法 • 变分法的未来展望
目录
Part
01
引言
主题介绍
什么是变分法
变分法是数学的一个重要分支,主要 研究函数的变分问题,即函数在某个 特定条件下的变化量。
变分法在数学中的地位
变分法的应用领域
近似解。
适用范围
适用于简单的问题,如一维问 题或某些特定形状的二维问题

优点
简单直观,易于理解。
缺点
对于复杂问题,可能需要大量 的计算资源和时间。
有限元素法
有限元素法
将变分问题转化为有限元方程组 ,通过求解该方程组得到近似解 。
缺点
计算量大,需要较高的计算资源 和时间。
适用范围
适用于各种形状和维度的复杂问 题。
变分法广泛应用于物理学、工程学、 经济学等领域,如最小作用原理、弹 性力学、经济学中的最优控制问题等 。
变分法在数学中占有重要地位,是解 决优化问题、微分方程和积分方程等 问题的有力工具。
课程目标
掌握变分法的基本概念和原理
01
通过本ቤተ መጻሕፍቲ ባይዱ程的学习,学生应掌握变分法的基本概念和原理,了
解变分的计算方法和性质。
们可以求解出这些路径的具体形式和性质。
工程学
在工程学中,变分法被用于解决结构优化、控制工程、流体动力学等领域的问题。
在工程学中,变分法被广泛应用于结构优化、控制工程和流体动力学等领域。在结构优化中,变分法可以帮助我们找到最优 的结构设计,使得结构的性能达到最优。在控制工程中,变分法可以帮助我们找到最优的控制策略,使得系统的性能达到最 优。在流体动力学中,变分法可以帮助我们找到最优的流体流动路径,使得流体的流动效率达到最优。

模煳数学+变分法+Matlab基础教程

模煳数学+变分法+Matlab基础教程

绪言任何新生事物的产生和发展,都要经过一个由弱到强,逐步成长壮大的过程,一种新理论、一种新学科的问世,往往一开始会受到许多人的怀疑甚至否定。

模糊数学自1965年L.A.Zadeh教授开创以来所走过的道路,充分证实了这一点,然而,实践是检验真理的标准,模糊数学在理论和实际应用两方面同时取得的巨大成果,不仅消除了人们的疑虑,而且使模糊数学在科学领域中,占有了自己的一席之地。

经典数学是适应力学、天文、物理、化学这类学科的需要而发展起来的,不可能不带有这些学科固有的局限性。

这些学科考察的对象,都是无生命的机械系统,大都是界限分明的清晰事物,允许人们作出非此即彼的判断,进行精确的测量,因而适于用精确方法描述和处理。

而那些难以用经典数学实现定量化的学科,特别是有关生命现象、社会现象的学科,研究的对象大多是没有明确界限的模糊事物,不允许作出非此即彼的断言,不能进行精确的测量。

清晰事物的有关参量可以精确测定,能够建立起精确的数学模型。

模糊事物无法获得必要的精确数据,不能按精确方法建立数学模型。

实践证明,对于不同质的矛盾,只有用不同质的方法才能解决。

传统方法用于力学系统高度有效,但用于对人类行为起重要作用的系统,就显得太精确了,以致于很难达到甚至无法达到。

精确方法的逻辑基础是传统的二值逻辑,即要求符合非此即彼的排中律,这对于处理清晰事物是适用的。

但用于处理模糊性事物时,就会产生逻辑悖论。

如判断企业经济效益的好坏时,用“年利税在100万元以上者为经济效益好的企业”表达,否则,便是经济效益不好的企业。

根据常识,显而易见:“比经济效益好的企业年利税少1元的企业,仍是经济效益好的企业”,而不应被划为经济效益不好的企业。

这样,从上面的两个结论出发,反复运用经典的二值逻辑,我们最后就会得到,“年利税为0者仍为经济效益好的企业”的悖论。

类似的悖论有许多,历史上最著名的有“罗素悖论”。

它们都是在用二值逻辑来处理模糊性事物时产生的。

变分法

变分法

1


1
b e
x A A
1
b H λ (1)
有等式约束条件的多元函数极值(5/5)
将上述的表达式代入式(1),可得
x A A
1

b A A
1

H H A A

1

1 H H A A b e
Ch.7 最优控制原理
目录(1/1)



7.1 最优控制概述 7.2 变分法 7.3 变分法在最优控制中的应用 7.4 极大值原理 7.5 线性二次型最优控制 7.6 动态规划与离散系统最优控制 7.7 Matlab问题 本章小结
变分法(1/1)
7.2 变分法
本节在讨论变分法之前,先简单讨论多元函数的极值问题, 然后引出 泛函的极值问题。
有不等式约束条件的多元函数极值(3/7)—定理7-1
min f ( x )
x
s.t.
g( x) 0
定理7-1(库恩-塔哈克定理) 对上述不等式约束的极值函数问 题,那么必存在p个不同时为零的数1,2,…,p,满足为
1) 2) 3)
λ g ( x* ) 0
i 0; i 1, 2,..., p
1
当矩阵H为行满秩矩阵时,矩阵H(A+A)-1H是可逆的,此时上 述解成立。
由极值问题的充分条件可知,当
2 L( x* , λ) A A 0 xx
时,上述极值为极小值。
有不等式约束条件的多元函数极值(1/7)
3. 有不等式约束条件的多元函数极值
有不等式约束条件的多元函数极值问题可描述为

变分法

变分法

变分法综述1.变分法1.1.变分法起源变分法是17世纪末发展起来的一门数学分支,主要是古典变分法,它理论完整,在力学、光学、物理学、摩擦学、经济学、宇航理论、信息论和自动控制论等诸多方面有广泛应用。

20世纪中叶发展起来的有限元法,其数学基础之一就是变分法。

[1]变分法是处理泛函的数学领域,和处理函数的普通微积分相对。

譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。

变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。

有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A 到达不直接在它底下的一点B 。

在所有从A 到B 的曲线中必须极小化代表下降时间的表达式。

变分法的关键定理是欧拉-拉格朗日方程。

它对应于泛函的临界点。

在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。

它不能分辨是找到了最大值或者最小值(或者都不是)。

变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。

变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。

它们也在材料学中研究材料平衡中大量使用。

而在纯数学中的例子有,黎曼在调和函数中使用狄力克雷原理。

最优控制的理论是变分法的一个推广。

[2]同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,摩尔斯理论,或者辛几何。

变分一词用于所有极值泛函问题。

微分几何中的测地线的研究是很显然的变分性质的领域。

极小曲面(肥皂泡)上也有很多研究工作,称为Plateau 问题。

1.2变分问题类型固定边界的变分问题,可动边界的变分问题,条件极值变分问题和参数形式的变分问题。

[3](1)古典变分问题举例 例1:最速降线或捷线问题(Brachistorone or curve of Steepest descent )问题。

这是历史上出的第一个变分法问题,1696年约翰·伯努利提出的。

变分法及其应用

变分法及其应用

变分法及其应用1.变分问题2.泛函与泛函的极值3.变分基本定理4.无约束泛函的极值问题5.带约束泛函的极值问题6.变分法在最优控制中的应用1. 变分问题变分法是17世纪末开始发展起来的一个数学分支。

微积分研究了函数的极值。

变分法是为了研究泛函的极值问题而产生的。

而泛函的极值问题在力学、最优控制等领域经常遇到。

为了解变分法所研究问题的特点,先介绍几个例子。

例 1.1(最速降线问题)。

设一质量为m 的质点,在重力作用下,从定点A 沿曲线下滑到定点B ,试确定一条曲线,使质点下滑的时间最短。

假定(1)A ,B 两点不在同一铅直线上,(2)质点在A 点处的初速为0v ,(3)不计曲线上的摩擦力和周围介质的阻力。

取坐标系xOy ,A 点的坐标为00(,)x y , B 点的坐标为11(,)x y ,过A ,B 两点任取一条 光滑曲线l ,设其方程为01:(),l y y x x x x =≤≤。

若质点从点A 沿曲线l 下滑到任意一点(,)P x y 处的速率为v ,由能量守恒定律可得22001()()2m v v mg y y -=-, 其中g 为重力加速度。

记 图1.1 最速降线2002v y gα=-, 则v =若s 表示弧 AP 的长度,由微分学知识,dsv dt=,并且ds =,则ds dt v ==。

沿曲线l 从A 点下滑到B 点所需时间为1xTldsT dtv===⎰⎰⎰。

(1.1)对于过A,B两点的每一条光滑曲线l,由积分(1.1)都有唯一确定的T值与之对应,即T是依赖于曲线()y y x=的,不妨记[]T T y=。

如果记集合1010011{()|()[,],(),()}D y x y x C x x y x y y x y=∈==,则最速降线问题归结为在集合D上求泛函[]T T y=的极小值问题,即求()y x D∈,使得1minxx=⎰。

这个问题由约翰.贝努利(Johann Bernoulli)1696年提出并研究。

数学建模常用的32种方法__18.第十八章 变分法模型

数学建模常用的32种方法__18.第十八章 变分法模型
1.1.2 泛函的极值
(3)
泛 函 J ( x(t)) 在 x0 (t) ∈ S 取 得 极 小 值 是 指 , 对 于 任 意 一 个 与 x0 (t) 接 近 的 x(t) ∈ S ,都有 J ( x(t)) ≥ J ( x0 (t)) 。所谓接近,可以用距离 d (x(t), x0 (t)) < ε来度量,
第十八章 动态优化模型
动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制 函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又 简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方 法。
§1 变分法简介 变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变
这一性能指标
∫ J (u(t)) = x(t f )e− δt f +
t f [ px(t) − u(t)]e− δt dt
0
为最大,其中 t f , x(t f ) 都是自由的。
2.3 模型求解 首先写出问题的哈密顿函数
H = [ px(t) − u(t)]e− δt + λ[− m(t) + g(t)m(t)]
而距离定义为
d (x(t), x0 (t)) =
max{| x(t) −
t1 ≤ t ≤ t2
x0 (t) |,| x& (t) −
x& 0 (t) |}
泛函的极大值可以类似地定义。 x0 (t) 称为泛函的极值函数或极值曲线。
1.1.3 泛函的变分
如同函数的微分是增量的线性主部一样,泛函的变分是泛函增量的线性主部。作为
⎪⎨⎧ dxd(tt11) = δx(t1) ⎪⎩x(t) = 1

matlab--算法大全--第18章_变分法模型

matlab--算法大全--第18章_变分法模型
所以
∂ J ( x + αδx ) − J ( x ) J ( x + αδx ) α = 0 = lim α →0 ∂α α L( x,αδx ) + r ( x, αδx ) = lim = L ( x , δx ) = δJ ( x )
α →0
α
1.1.4 极值与变分 利用变分的表达式(4)可以得到泛函极值与变分的关系: 若 J ( x (t )) 在 x0 (t ) 达到极值(极大或极小) ,则
此方程具有首次积分为
直线族 x = kt + c ,它包含于上面含有两个参数的直线族 x = c1t + c 2 中,于是,在
&Fx F−x & = c1 事实上,注意到 F 不依赖于 t ,于是有 d d d &Fx & + Fx &− & &Fx & Fx & ( Fx − Fx x x (F − x & ) = Fx x && & −x & = x &) = 0。 dt dt dt
再代回到(8)式,并利用泛函取极值的必要条件,有
d Fx & ]δxdt = 0 t0 dt 因为 δx 的任意性,及 δx (t 0 ) = δx (t f ) = 0 ,所以由基本引理得到著名的欧拉方程
δJ = ∫ [ Fx −
Fx −
它是这类最简泛函取极值的必要条件。 (9)式又可记作
d Fx & =0 dt
第十八章
动态优化模型
动态过程的另一类问题是所谓的动态优化问题, 这类问题一般要归结为求最优控制 函数使某个泛函达到极值。 当控制函数可以事先确定为某种特殊的函数形式时, 问题又 简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方 法。 §1 变分法简介 变分法是研究泛函极值问题的一种经典数学方法, 有着广泛的应用。 下面先介绍变 分法的基本概念和基本结果, 然后介绍动态系统最优控制问题求解的必要条件和最大值 原理。 1.1 变分法的基本概念 1.1.1 泛函 设 S 为一函数集合, 若对于每一个函数 x (t ) ∈ S 有一个实数 J 与之对应, 则称 J 是

matlab-差分方程模型

matlab-差分方程模型

分 析
• 体重变化由体内能量守恒破坏引起 • 饮食(吸收热量)引起体重增加
• 代谢和运动(消耗热量)引起体重减少
模型假设
1)体重增加正比于吸收的热量— —每8000千卡增加体重1千克; 2)代谢引起的体重减少正比于体重—— 每周每公斤体重消耗200千卡 ~ 320千卡(因人而异), 相当于70千克的人每天消耗2000千卡 ~ 3200千卡; 3)运动引起的体重减少正比于体重,且与运动 形式有关; 4)为了安全与健康,每周体重减少不宜超过1.5 千克,每周吸收热量不要小于10000千卡。
x
xk+1,xk+2,…=x0, yk+1,yk+2, …=y0
P P P P P P P P0 1 2 3 1 2 3 0
P0是稳定平衡点
y y2 y0 y3 y1 0 f g P4 P0 y
蛛 网 模 型 yk f ( xk ) xk 1 h( yk ) yk g ( xk 1 ) x1 y1 x2 y2 x3 设x1偏离x0 xk x0 , yk y0 xk x0 , yk y0
基本模型
w(k) ~ 第k周(末)体重 c(k) ~第k周吸收热量
w(k 1) w(k ) c(k 1) w(k )
1 8000(千克 /千卡) ~ 代谢消耗系数(因人而异)
1)不运动情况的两阶段减肥计划 • 确定某甲的代谢消耗系数 每周吸收20000千卡 w=100千克不变
第七章
差分方程模型
7.1 市场经济中的蛛网模型 7.2 减肥计划——节食与运动 7.3 差分形式的阻滞增长模型 7.4 按年龄分组的种群增长
7.1 市场经济中的蛛网模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

J ( y ( x )) = ∫ 2πy ( x ) 1 + y ' 2 ( x ) dx
x1
x2
(1)
容许函数集可表示为
S = { y ( x) | y ( x) ∈ C 1 [ x1 , x 2 ], y ( x1 ) = y1 , y ( x 2 ) = y 2 }
最简单的一类泛函表为
(2 ) (3)
化简得
y' 1 + y'2
= c1
y = c1 1 + y ' 2
2
令 y ' = sht ,代入上式, y = c1 1 + sh t = c1cht
dy c1 shtdt = = c1dt y' sht 积分之,得 x = c1t + c2 x − c2 消去 t ,就得到 y = c1ch 。 c1
由于
dx =
这是悬链线方程。 1.2.3 最简泛函的推广 最简泛函取极值的必要条件可以推广到其它情况。 (ⅰ)含多个函数的泛函
t1 ≤ t ≤ t 2
泛函的极大值可以类似地定义。 x0 (t ) 称为泛函的极值函数或极值曲线。 1.1.3 泛函的变分 如同函数的微分是增量的线性主部一样, 泛函的变分是泛函增量的线性主部。 作为 泛函的自变量,函数 x (t ) 在 x0 (t ) 的增量记为
δ x (t ) = x (t ) − x0 (t )
也称函数的变分。由它引起的泛函的增量记作
ΔJ = J ( x0 (t ) + δx (t )) − J ( x 0 (t ))
如果 ΔJ 可以表为
-218-
ΔJ = L( x0 (t ), δx (t )) + r ( x0 (t ), δx (t )) 其中 L 为 δx 的线性项,而 r 是 δx 的高阶项,则 L 称为泛函在 x0 (t ) 的变分,记作 δJ ( x0 (t )) 。用变动的 x(t ) 代替 x0 (t ) ,就有 δJ ( x (t )) 。
(9)
& − Fx &=0 Fx − Ftx x & − Fxx &x &x &&
(10)
通常这是 x (t ) 的二阶微分方程,其通解的两个任意常数由(7)式中的两个端点条件确 定。 1.2.2 最简泛函的几种特殊情形 & ,即 F = F (t , x ) (i) F 不依赖于 x 这时 Fx & ≡ 0 ,欧拉方程为 Fx ( t , x ) = 0 ,这个方程以隐函数形式给出 x ( t ) ,但它一 般不满足边界条件,因此,变分问题无解。 &) (ii) F 不依赖 x ,即 F = F (t , x 欧拉方程为
泛函变分的一个重要形式是它可以表为对参数 α 的导数:
δJ ( x (t )) =
这是因为当变分存在时,增量
∂ J ( x (t ) + αδx (t )) α = 0 ∂α
(4)
ΔJ = J ( x (t ) + αδx ) − J ( x (t )) = L( x (t ),αδx ) + r ( x (t ),αδx ) 根据 L 和 r 的性质有 L( x (t ),αδx ) = αL( x (t ), δx ) r ( x (t ), αδx ) r ( x (t ), αδx ) lim = lim δx = 0 α →0 α →0 α αδx
d &) = 0 Fx & (t , x dt & = ϕ (t , c1 ) ,积分后得到 & ) = c1 ,由此可求出 x 将上式积分一次,便得首次积分 Fx & (t , x
可能的极值曲线族
& &Fx x &x & =0 & = 0 或 Fx & = 0 ,则得到含有两个参数的直线族 x = c1t + c2 。 x x 由此可设 & &x & = 0 ,如果 &
& (t ))dt J = ∫ F (t , x (t ), x
t0
*
tf
(6)
的极值,一般是用泛函极值的必要条件去寻找一条曲线 x (t ) ,使给定的二阶连续可微 ,记为 x (t ) 。 函数 F 沿该曲线的积分达到极值。常称这条曲线为极值曲线(或轨线) 1.2.1 端点固定的情况 设容许曲线 x (t ) 满足边界条件
y (0) = 0, y ( x 2 ) = y 2
最速降线满足欧拉方程,因为
F ( y, y ' ) =
1 + y'2 y
不含自变量 x ,所以方程(10)可写作
Fy − Fyy ' y '− Fy ' y ' y ' ' = 0
ቤተ መጻሕፍቲ ባይዱ等价于
d ( F − y ' Fy ' ) = 0 dx
作一次积分得
对应在 S 上的泛函,记作 J ( x (t )) 。 S 称为 J 的容许函数集。 通俗地说,泛函就是“函数的函数” 。 绕x轴 例如对于 xy 平面上过定点 A( x1 , y1 ) 和 B ( x 2 , y 2 ) 的每一条光滑曲线 y ( x ) , 旋转得一旋转体,旋转体的侧面积是曲线 y ( x ) 的泛函 J ( y ( x )) 。由微积分知识不难写 出
J ( y ( x)) = 2π ∫ y ( x) 1 + y ' 2 ( x) dx
x1
x2
S = { y | y ∈ C [ x1 , x2 ], y ( x1 ) = y1 , y ( x2 ) = y 2 }
1

因 F = y 1 + y'
2
不包含 x ,故有首次积分
F − y ' Fy ' = y 1 + y ' 2 − y ' y
ϕ ( x ) ∈ C[ x1 , x2 ] , ∀η ( x ) ∈ C 1 [ x1 , x2 ] ,η ( x1 ) = η ( x2 ) = 0 ,有


x2
x1
ϕ ( x )η ( x )dx ≡ 0 ,
ϕ ( x ) ≡ 0, x ∈ [ x1 , x 2 ] 。
1.2 无约束条件的泛函极值 求泛函
积分之,得
θ
θ
c1 (θ − sin θ ) + c 2 2 由边界条件 y (0) = 0 ,可知 c2 = 0 ,故得 c1 ⎧ x = (θ − sin θ ) ⎪ ⎪ 2 ⎨ ⎪ y = c1 (1 − cosθ ). ⎪ ⎩ 2 x=
这是摆线(圆滚线)的参数方程,其中常数 c1 可利用另一边界条件 y ( x 2) = y 2 来确定。 例 2 最小旋转面问题
tf t0
& )δx + Fx & )δx & ]dt = ∫ [ Fx (t , x, x & (t , x, x
对上式右端第二项做分布积分,并利用 δx (t 0 ) = δx (t f ) = 0 ,有
(8)

tf
t0
& )δx &dt = − ∫ Fx & (t , x, x
tf
tf
t0
d & )δxdt , Fx & (t , x, x dt
-220-
这时 Fx = 0, Ftx & = 0, Fxx & = 0 ,欧拉方程为
&) & ,即 F = F ( x (iii) F 只依赖于 x
x = ∫ ϕ (t , c1 )dt
另外若 Fx 则除了上面的直线族外, 又得到含有一个参数 c 的 &x & = 0 有一个或几个实根时,
& ) 情况下,极值曲线必然是直线族。 F = F(x &) & ,即 F = F ( x, x (iv) F 只依赖于 x 和 x 这时有 Ftx & = 0 ,故欧拉方程为 &Fxx &Fx Fx − x x & −& &x & =0
再代回到(8)式,并利用泛函取极值的必要条件,有
d Fx & ]δxdt = 0 t0 dt 因为 δx 的任意性,及 δx (t 0 ) = δx (t f ) = 0 ,所以由基本引理得到著名的欧拉方程
δJ = ∫ [ Fx −
Fx −
它是这类最简泛函取极值的必要条件。 (9)式又可记作
d Fx & =0 dt
例 1 (最速降线问题)最速降线问题是历史上变分法开始发展的第一个问题。它是 约翰·贝努里(J. Bernoulli)于 1696 年提出的。问题的提法是这样的:设 A 和 B 是铅 直平面上不在同一铅直线上的两点,在所有连结 A 和 B 的平面曲线中,求一曲线,当 质点仅受重力作用,且初速为零,沿此曲线从 A 滑行至 B 时,使所需时间最短。 解 将 A 点取为坐标原点, x 轴水平向右, y 轴垂直向下, B 点为 B ( x 2 , y 2 ) 。根 据能量守恒定律,质点在曲线 y ( x ) 上任一点处的速度
此方程具有首次积分为
直线族 x = kt + c ,它包含于上面含有两个参数的直线族 x = c1t + c 2 中,于是,在
&Fx F−x & = c1 事实上,注意到 F 不依赖于 t ,于是有 d d d &Fx & + Fx &− & &Fx & Fx & ( Fx − Fx x x (F − x & ) = Fx x && & −x & = x &) = 0。 dt dt dt
相关文档
最新文档