完整人教版七年级上整式练习
人教版七年级上册数学《整式》练习题(含答案)
2.1整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x6.下列单项式次数为3的是( )×3×4 417.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, , a 个 个 个 个8.下列整式中,单项式是( )+1 -y D.21+x 9.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -110.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是31 11.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2512.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,313.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式14.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 15.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个 三.填空题1填一填 整式-ab πr 2 232ab - -a+b 2453-+y x A 3b 2-2a 2b 2+b 3-7ab+5 系数次数项2.单项式: 3234y x -的系数是 ,次数是 ; 3.220053xy 是 次单项式;4.y x 342-的一次项系数是 ,常数项是 ;5.单项式21xy 2z 是_____次单项式. 6.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 7.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有8.x+2xy +y 是 次多项式.9.b 的311倍的相反数是 ; 10.设某数为x ,10减去某数的2倍的差是 ;11.42234263y y x y x x --+-的次数是 ;12.当x =2,y =-1时,代数式||||x xy -的值是 ;13.当y = 时,代数式3y -2与43+y 的值相等; 14.-23ab 的系数是 ,次数是 次.15.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .16.若2313m x y z -与2343x y z 是同类项,则m = . 17.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .18.单项式7532c ab 的系数是____________,次数是____________.19.多项式x2y+xy-xy2-53中的三次项是____________.20.当a=____________时,整式x2+a-1是单项式.21.多项式xy-1是____________次____________项式.22.当x=-3时,多项式-x3+x2-1的值等于____________.23.一个n次多项式,它的任何一项的次数都____________.24.如果3x k y与-x2y是同类项,那么k=____ ____.四、合并下列多项式中的同类项(1)3x2+4x-2x2-x+x2-3x-1;(2)-a2b+2a2b(3)a3-a2b+ab2+a2b-2ab2+b3;(4)2a2b+3a2b-12a2b(5)(2x+3y)+(5x-4y);(6)(8a-7b)-(4a-5b)(7)(8x-3y)-(4x+3y-z)+2z;(8)(2x-3y)-3(4x-2y)(9)3a2+a2-2(2a2-2a)+(3a-a2)(10)3b-2c-[-4a+(c+3b)]+c五.先去括号,再合并同类项:(1)(2x+3y )+(5x -4y ); (2)(8a -7b )-(4a -5b )(3)(8x -3y )-(4x+3y -z )+2z (4)(2x -3y )-3(4x -2y )(5)3a 2+a 2-2(2a 2-2a )+(3a -a 2) (6)3b -2c -[-4a+(c+3b )]+c六、求代数式的值1.当x =-2时,求代数式132--x x 的值。
(2021年整理)人教版七年级上整式练习
人教版七年级上整式练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级上整式练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级上整式练习的全部内容。
人教版七年级上整式练习1、下列各式是单项式的有(填序号):.①错误!;②abc;③b2;④-5ab2;⑤y+x;⑥-xy2;⑦-错误!;⑧c.2、若式子6a m b4是六次单项式,则m=.3、若一个圆柱形蓄水池,底面半径为r,高为h,则这个蓄水池最多可蓄水.4、某种股票原价格为a元,连续两天上涨,每次涨幅10%,则该股票两天后的价格为(A)A.1.21a元 B.1.1a元C.1。
2a元 D.(a+0.2)元5、下列关于单项式-错误!的说法中,正确的是( )A.系数是-错误!,次数是2B.系数是错误!,次数是2C.系数是-3,次数是3D.系数是-错误!,次数是36、多项式3x2y-xy3+5xy-1是一个()A.四次三项式 B.三次三项式C.四次四项式 D.三次四项式7、对于下列四个式子:①0。
1;②错误!;③错误!;④错误!.其中不是整式的是( )A.① B.② C.③ D.④8、若代数式mx2+5y2-2x2+3的值与字母x的取值无关,则m的值是9、若m、n互为相反数,则8m+(8n-3)的值是10、若多项式2x2+3x+7的值为10,则多项式6x2+9x-7的值为11、如图,在一个长方形休闲广场的中央设计一个圆形的音乐喷泉,若圆形音乐喷泉的半径为r米,广场的长为a米,宽为b米,则广场空地的面积表示为平方米.12、礼堂第一排有m个座位,后面每排都比前一排多一个座位,则第n排的座位数是()A.m+1 B.m+(n-1)C.m+(n+1) D.m+n13、如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( )A.3a+2b B.3a+4bC.6a+2b D.6a+4b14、用不同的方法表示出阴影部分的面积.(至少写出两种)15、当k=时,多项式x2+kxy-3y2-3xy-5中不含xy项.16、已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2项,则m+2n=17、化简:(1)4a2-3a+3-3(-a3+2a+1).先化简,再求值:(2) 错误!(-4x2+2x-8)-(错误!x-1),其中x=错误!;.18.有理数a、b、c在数轴上的位置如图所示,化简:|a-c|-|b|-|b-a|+|b+a|.19.有这样一道题:计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=2,y=-1.甲同学把x=2误抄成x=-2,但他计算的结果也是正确的,试说明理由,并求出这个结果.20、已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?21.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2 017,2 018个单项式.22、如果关于x的多项式ax4+4x2-错误!与3x b+5x是同次多项式,求错误!b3-2b2+3b-4的值.巩固练习:多项式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字母x的取值无关,试求多项式错误!a3-2b2-(错误!a3-3b2)的值.。
人教版数学七年级上册整式计算专项练习200题及答案详解
1当2已知,当3当4当5当当6若代数式7已知当8当9 C. D.如图所示的运算程序中,若开始输入的10B.C. D.按如图所示的程序计算:若开始输入的11 B.C.D.已知,则代数式的值是().12 B.C.D.已知,则式子的值为().13不能确定已知代数式的值是,则代数式的值是().14当时,代数式值为,那么当时,代数式的值是 ().1516化简17当18已知19已知代数式20化简21若22已知23如果24已知代数式25若代数式26整式化简求值:先化简,再求值:27已知整式化简求值:先化简,再求值:28已知三个有理数29已知30先化简,再求值31已知代数式32按照如图的运算顺序,输入33如图是一个数值转换机.若输入的34当35若36已知37已知多项式时,多项式的值是38已知.3940设41用整体思想解题:为了简化问题,我们往往把一个式子看成一个数42已知当43已知当44已知45先化简再求值:46设若代数式47若48已知49先化简再求值50若51已知52先化简,再求值:53先化简,在求值:5456当57化简求值:58化简:59请回答下列各题:60已知62已知63先化简,再求值:64先化简,再求值:65先化简,再求值:66回答下面问题;67先化简,再求值:68先化简,再求值:69化简再求值:70阅读框图并回答下列问题:.71先化简,再求值:72先化简,再求值.求73对于74先化简,再求值:75若76已知77已知78已知79奕铭在化简多项式80先化简,再求值81先化简,再求值:82先化简,再求值:83若84已知:85先化简再求值:86先化简,再求值:87已知88已知89已知90先化简,再求值:91已知92先化简,再求值:93若单项式94求多项式95设96已知97已知98求99若100若代数式1 23 4 5 67 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 26 2728 29 30 31 32 33 34 3536 37 38 39 40 41 4243 44 45 46 47 48 4950 51 52 53 54 55 5657 58 59 60 61 62 63 6465 66 67 68 69 70 7173 74 75 76 77 78 7981 82 83 84 85 8687 88 89 90 91 9293 94 9596 9798 99 100。
人教版七年级数学(上)第一章《整式》经典例题及练习含答案
人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
人教七年级数学上册-整式的加减(附习题)
练习1 若单项式-3amb2与单项式1 a3bn 是 3
同类项,则m=__3__,n=_2___.
知识点2 合并同类项的概念和法则
把多项式中的同类项合并成一项,叫做合并 同类项.
合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的指数 不变.
例如 4x2 2x 7 3x 8x2 2 4x2 8x2 2x 3x 7 2 (交换律) (4x2 8x2 ) (2 x 3 x) (7 2)(结合律) (4 8)x2 (2 3) x (7 2)(分配律)
(2)若x=5,y=3,求他的卫生间的面积.
解:(1)卧室面积为xy,厨房面积为 xy, 客厅面积为 × xy=xy. ∴卫生间面积为3xy-xy- xy-xy= xy. (2)当x=5,y=3时,
卫生间的面积= ×5×3=5 m2
课堂小结 所含字母相同,并且相同字母的指数也 相同的项叫做同类项.几个常数项也是同类项.
=2x2-2x2-3xy-2xy+5xy+y2-2y+1
=y2-2y+1 当x= 22 ,y=-1时,原式= 4
7
4. 某人购置了一套一室一厅的住宅,总面积为
3xy m2,其中卧室是长为x m,宽为y m的长方形,
客厅的面积为厨房的 3 ,厨房的面积是卧室
的
2 3
2
,还有一个卫生间.
(1)用x、y表示他的卫生间的面积.
解:7x2-3x2-2x-2x2+5+6x =(7-3-2) x2+(-2+6)x+5 =2x2+4x+5
当x = -2时,原式=2×(-2)2+4×(-2)+5=5
人教版数学七年级上册 第2章 2.1整式同步测验题(一)(含答案)
整式同步测验题(一)一.选择题1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣44.在式子,2πx2y,,y2﹣5,π+6,中,多项式的个数是()A.1B.2C.3D.45.多项式4x2﹣xy2﹣x+1的三次项系数是()A.4B.﹣C.D.﹣6.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个7.下列说法正确的是()A.x不是单项式B.﹣15ab的系数是15C.单项式4a2b2的次数是2D.多项式a4﹣2a2b2+b4是四次三项式8.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+19.单项式﹣3ab的系数是()A.3B.﹣3C.3a D.﹣3a10.下列说法中错误的有()个.①绝对值相等的两数相等;②若a,b互为相反数,则=﹣1;③如果a大于b,那么a的倒数小于b的倒数;④任意有理数都可以用数轴上的点来表示;⑤x2﹣2x﹣33x3+25是五次四项式;⑥一个数的相反数一定小于或等于这个数;⑦正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个11.某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表示整式,多项式,单项式的关系,正确的是()A.B.C.D.二.填空题12.﹣πx2的次数是.13.多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个次五项式.14.单项式的次数为:.15.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.三.解答题16.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.17.已知多项式2x2+x3+x﹣5x4﹣(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有.(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b 的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.4.【解答】解:在式子,2πx2y,,y2﹣5,π+6,中,多项式有:,y2﹣5,共2个.故选:B.5.【解答】解:多项式4x2﹣xy2﹣x+1的三次项是﹣xy2,三次项系数是﹣.故选:B.6.【解答】解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.7.【解答】解:A、x是单项式,故原说法错误;B、﹣15ab的系数是﹣15,故此选项错误;C、单项式4a2b2的次数是4,故此选项错误;D、多项式a4﹣2a2b2+b4是四次三项式,正确.故选:D.8.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.9.【解答】解:单项式﹣3ab的系数是﹣3.故选:B.10.【解答】解:①如|2|=2,|﹣2|=2,2≠﹣2,即绝对值相等的两数不一定相等,故①错误;②若a,b互为相反数,当a和b,都不是0时,=﹣1,故②错误;③当a=2,b=﹣3时,a>b,但a的倒数大于b的倒数,故③错误;④任意有理数都可以用数轴上的点来表示,故④正确;⑤x2﹣2x﹣33x3+25是三次四项式,故⑤错误;⑥﹣3的相反数是3,3>﹣3,故⑥错误;⑦正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,故⑦错误;即错误的有6个,故选:C.11.【解答】解:代数式包括整式和分式,整式包括多项式和单项式,故正确的是选项D,故选:D.二.填空题12.【解答】解:单项式﹣πx2的次数是:2.故答案为:2.13.【解答】解:多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个六次五项式,故答案为:六.14.【解答】解:单项式的次数为:2+2=4.故答案为:4.15.【解答】解:多项式式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣7三.解答题(共4小题)16.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3+2x2+x﹣;(2)该多项式的次数是4,它的二次项是2x2,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|。
人教版七年级数学上册第二章 整式的加减 专题练习试题(含答案)
人教版七年级数学上册第二章整式的加减专题练习试题专题一、与整式加减相关的新定义问题方法指导:新定义问题,即给出一个新的数学符号标记,规定一种新的运算规则,并按新规定的运算规则进行计算.解题的关键是看懂规定的运算,将新规定的运算转化为整式加减运算问题,在转化过程中,要特别注意括号的作用.1.定义新运算:a#b=3a-2b,则(x+y)#(x-y)=x+5y.2.定义一种新运算:a⊕b=2a-b,a b=b-a,求(x⊕y)⊕(y x)=3x-y.专题二、利用数轴去绝对值符号化简1.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.有理数a,b在数轴上的位置如图所示,化简|a-b|-|b-a|的结果是(C)A.2a+2b B.2bC.0 D.2a4.有理数a,b在数轴上的位置如图所示,则化简|a-b|-2|a+b|的结果为(A)A.a+3b B.-3a-bC.3a+b D.-a-3b5.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C ,其位置如图所示,化简:2|b +c|-3|a -c|-4|a +b|.解:由数轴知,a <b <0<c ,且|b|<|c|,所以b +c >0,a -c <0,a +b <0,所以原式=2(b +c)-[-3(a -c)]-[-4(a +b)]=2b +2c +3(a -c)+4(a +b)=2b +2c +3a -3c +4a +4b=7a +6b -c.专题三、 整体思想在整式求值中的运用方法指导:整式的化简求值中,当单个字母的值不易求出或化简后的结果与已知值的式子相关联时,需要将已知式子的值整体代入计算.1.已知x -2y =5,那么5(x -2y)2-4(x -2y)-60的值为(B )A .55B .45C .80D .402.已知式子3y 2-2y +6的值是8,那么32y 2-y +1的值是(B ) A .1 B .2C .3D .43.若m -n =-1,则(m -n)2-2m +2n 的值为(A )A .3B .2C .1D .-14.若式子2x 2+3x +7的值是8,则式子4x 2+6x -9的值是(C )A .2B .-17C .-7D .75.已知x 2+2x -1=0,则3x 2+6x -2=1.6.如果m ,n 互为相反数,那么(3m -2n)-(2m -3n)=0.7.已知x =2y +3,则式子4x -8y +9的值是21.8.若2a -b =2,则6+4b -8a =-2.9.若a 2-5a -1=0,则5(1+2a)-2a 2的值为3.10.已知a 2+b 2=6,ab =-2,求(4a 2+3ab -b 2)-(7a 2-5ab +2b 2)的值.解:原式=-3a 2+8ab -3b 2=-3(a 2+b 2)+8ab ,因为a 2+b 2=6,ab =-2,所以原式=-3×6+8×(-2)=-34.专题四、 整式的化简与求值类型1 整式的加减运算1.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)3(m 2-2m -1)-2(m 2-3m)-3;解:原式=3m 2-6m -3-2m 2+6m -3=m 2-6.(3)-12(4x 2-2x -2)+13(-3+6x 2); 解:原式=-2x 2+x +1-1+2x 2=x.(4)3x2y-[2xy-2(xy-23x2y)+xy].解:原式=3x2y-(2xy-2xy+43x2y+xy)=3x2y-2xy+2xy-43x2y-xy=53x2y-xy.2.已知A=x2-2x+1,B=2x2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x2-2x+1+2(2x2-6x+3)=x2-2x+1+4x2-12x+6=5x2-14x+7.(2)2A-B=2(x2-2x+1)-(2x2-6x+3)=2x2-4x+2-2x2+6x-3=2x-1.类型2整式的化简求值3.先化简,再求值:(1)2(a2+3a-2)-3(2a+2),其中a=-2;解:原式=2a2+6a-4-6a-6=2a2-10.当a =-2时,原式=2×(-2)2-10=-2.(2)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12,y =-3; 解:原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时, 原式=-2×14-1-(-3)=32. (3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,b =14; 解:原式=2a 2b -2ab 2-3a 2b +3+2ab 2+1=-a 2b +4.当a =2,b =14时, 原式=-22×14+4=3. (4)(5a 2+3a -1)-3(a +a 2),其中a 2-2=0;解:原式=5a 2+3a -1-3a -3a 2=2a 2-1.因为a 2-2=0,即a 2=2,所以原式=2×2-1=3.(5)3x 2y -[2xy 2-2(xy -32x 2y)+xy]+3xy 2,其中|x -3|+(y +13)2=0. 解:原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.因为|x -3|+(y +13)2=0, 所以x =3,y =-13.所以原式=-1+13=-23.专题五、与整式的化简有关的说理题1.是否存在数m ,使化简关于x ,y 的多项式(mx 2-x 2+3x +1)-(5x 2-4y 2+3x)的结果中不含x 2项?若不存在,说明理由;若存在,求出m 的值.解:原式=mx 2-x 2+3x +1-5x 2+4y 2-3x=(m -6)x 2+4y 2+1.由题意,得m -6=0,所以m =6.2.有一道题“先化简,再求值:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因.解:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3=17x 2-8x 2-5x -4x 2-x +3+5x 2+6x -1-3=10x 2-1.因为当x =2 020和x =-2 020时,x 2的值相同,所以他计算的结果是正确的.3.已知关于x ,y 的多项式x 2+ax -y +b 与多项式bx 2-3x +6y -3的和的值与x 的取值无关,求式子3(a 2-2ab +b 2)-[4a 2-2(12a 2+ab -32b 2)]的值. 解:(x 2+ax -y +b)+(bx 2-3x +6y -3)=(b +1)x 2+(a -3)x +5y +b -3.因为该多项式的值与x 的取值无关,所以b +1=0,a -3=0.所以b =-1,a =3.原式=3a 2-6ab +3b 2-(3a 2-2ab +3b 2)=3a2-6ab+3b2-3a2+2ab-3b2=-4ab=12.4.嘉淇在计算一个多项式A减去多项式2b2-3b-5的差时,因一时疏忽忘了将两个多项式用括号括起来,因此得到的差是b2+3b-1.(1)求这个多项式A;(2)求这两个多项式运算的正确结果;(3)当b=-1时,求(2)中结果的值.解:(1)由题意,得A-2b2-3b-5=b2+3b-1,则A=(b2+3b-1)+(2b2+3b+5)=b2+3b-1+2b2+3b+5=3b2+6b+4.(2)这两个多项式运算的正确结果为(3b2+6b+4)-(2b2-3b-5)=3b2+6b+4-2b2+3b+5=b2+9b+9.(3)当b=-1时,原式=(-1)2+9×(-1)+9=1-9+9=1.5.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若a≠b,把这个两位数的十位数字与个位数字对换,得到一个新的两位数,则原两位数与新两位数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)由题意得,这两个数的和为(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.这两个数的差为(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),因为a,b都是整数,所以a-b也是整数.所以这两个数的差一定是9的倍数.专题六、规律探究类型1数式规律1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取的种子数是(2n+1)粒.2.按规律写出空格中的数:-2,4,-8,16,-32,64.3.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是13a+21b.4.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.5.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).6.观察以下图案和算式,解答问题:(1)1+3+5+7+9=25;(2)1+3+5+7+9+…+19=100;(3)猜想:1+3+5+7+…+(2n -1)=n 2.7.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .458.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .89.观察下列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n -1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n .(4)第2 019个单项式是-4 037x 2 019,第2 020个单项式是4 039x 2 020.类型2图形规律10.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为(D)A.3n B.6nC.3n+6 D.3n+311.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形中共有6_058个〇.…12.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.…。
人教版七年级数学上册 第二章 整式的加减 练习题
第二章 整式的加减2.1 整式第1课时 用字母表示数基础题知识点 用字母表示数(1)在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写.出现字母乘以数字,通常将数字写在字母前面.如:200×m 通常写作200m ;ab ×12通常写作12ab .(2)用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.1.某省参加课改实验区初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有(B ) A .(15+a )万人 B .(15-a )万人 C .15a 万人 D .(a -15)万人2.有三个连续偶数,最大的一个是2n +2,则最小的一个可以表示为(A ) A .2n -2 B .2n C .2n +1 D .2n -13.车上有100袋面粉,每袋50千克,取下x 袋,车上还有面粉(A ) A .50(100-x )千克 B .(50×100-x )千克 C .100(50-x )千克 D .50x 千克4.长方形的周长为10,它的长是a,那么它的宽是(C ) A .10-2a B .10-a C .5-a D .5-2a5.3月12日某班50名学生到郊外植树,平均每人植树a 棵,则该班一共植树50a 棵.6.商店上月收入为a 元,本月的收入比上月的2倍还多5元,则本月的收入为(2a +5)元.7.(云南中考)一台电视机原价是2 500元,现按原价的8折出售,则购买a 台这样的电视机需要2__000a 元. 8.用含字母的式子表示:(1)x 的2倍与5的和:2x +5;(2)x 与y 两数的差的平方:(x -y )2;(3)a 与b 的平方差:a 2-b 2.9.用字母表示图中阴影部分的面积.解:(1)阴影部分的面积为ab -bx. (2)阴影部分的面积为R 2-14πR 2.中档题10.若x 表示一个两位数,把数字3放在x 的左边,组成一个三位数是(D ) A .3x B .10x +3 C .100x +3 D .3×100+x11.礼堂第一排有m 个座位,后面每排都比前一排多1个座位,则第n 排座位个数是(B ) A .m +1 B .m +(n -1) C .m +(n +1) D .m +n12.一条河的水流速度为3 km/h,船在静水中的速度为x km/h,则船在这条河中顺水行驶的速度是(x +3)km/h. 13.体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元.则式子500-3a -2b 表示的数为体育委员买了3个足球,2个篮球后剩余的经费.14.(昆明期中)列式表示p 与q 的平方和的14是14(p 2+q 2).15.10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是10x +42015分.16.用式子表示:(1)a 与b 的积的4倍; 解:4ab.(2)x 的2倍与y 的5%的差; 解:2x -5%y.(3)a 与b 的和的平方;解:(a +b )2.(4)a 与b 的差的平方的c 倍.解:c (a -b )2.17.(曲靖月考)列式表示:(1)棱长为a cm 的正方体的表面积;(2)每件a 元的上衣,降价20%后的售价是多少元?(3)一辆汽车的行驶速度是v km/h,t h 行驶多少千米?解:(1)6a 2 cm 2. (2)0.8a 元. (3)vt km.综合题18.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价5%,乙超市一次性降价10%,在哪个超市购买这种商品合算?下列选项中正确的是(B ) A .甲超市 B .乙超市C .两个超市一样D .与商品的价格有关第2课时 单项式基础题知识点1 认识单项式表示数或字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式. 1.在3a ,x +1,-2,-b 3,0.72xy,2π,3x -14中,单项式有(C )A .2个B .3个C .4个D .5个2.下列单项式中,书写格式规范的是(B ) A .-1×kB.214x C .a ×c 2×8 D .x ÷3知识点2 单项式的系数、次数一个单项式中的数字因数叫做这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数. 3.(台州中考)单项式2a 的系数是(A ) A .2 B .2a C .1 D .a4.-4a 2b 的次数是(A ) A .3 B .2 C .4 D .-45.(曲靖月考)已知2x b -2是关于x 的3次单项式,则b 的值为(A ) A .5 B .4 C .6 D .76.关于单项式3.8×104xy 2,下列说法正确的是(B ) A .系数是3.8,次数是2B .系数是3.8×104,次数是3C .系数是3.8×104,次数是2 D .系数是3.8,次数是77.(教材P57练习T1变式)填表:单项式 -2a 53h -xy 2t 2-3vt 2 系数 -2 3 -1 1 -32 次数513228.如果-=7.9.将式子2a 2b 2c 和a 3x 2的共同点填在下列横线上:(1)都是五次单项式;(2)都有字母a .知识点3 单项式的应用10.学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,则捐给社区的图书为ab2册.11.列出单项式,并指出它们的系数和次数.(1)某班总人数为m 人,女生人数是男生人数的35,那么该班男生人数为多少?(2)长方形的长为x,宽为y,则长方形的面积为多少?解:(1)58m,系数是58,次数是1.(2)xy,系数是1,次数是2.易错点 对单项式中系数和次数的概念不清 12.下列关于单项式-3xy25的说法中,正确的是(D )A .系数是-35,次数是2B .系数是35,次数是2C .系数是-3,次数是3D .系数是-35,次数是3中档题13.单项式-3πxy 2z 3的系数和次数分别是(C ) A .-3π,5 B .-3,7 C .-3π,6 D .-3,6 14.下列说法正确的是(D ) A .x 的系数是0B .24x 与42y 的系数不相同 C .y 的次数是0D .34xyz 是三次单项式15.同时含有字母a,b,c 且系数为1的五次单项式有(C ) A .1个 B .3个 C .6个 D .9个16.(昆明月考)-5πxy 26的系数是-56π,次数是3.17.已知三个单项式:①πx 2;②-12xy 3;③-103x 3,按次数由小到大排列为①③②.(填序号)18.(教材P56例3变式)用单项式填空,并指出它们的系数和次数:(1)一台电脑原价a 元,现在加价20%出售,这台电脑现在的售价为65a 元,次数为1,系数为65;(2)一个长方体的长、宽、高分别是x,x,y,则它的体积是x 2y,次数为3,系数为1.19.若(m +2)x 3y |m|是关于x,y 的五次单项式,求m 的值. 解:由题意,3+|m|=5,所以|m|=2,m =±2. 又因为m +2≠0,所以m =2.综合题20.观察下列单项式:-x,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,….回答下列问题: (1)这组单项式的系数的规律是什么? (2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么? (4)请你根据猜想,写出第2 018,2 019个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数绝对值的规律是2n -1.(n 为正整数) (2)次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n.(4)第2 018个单项式是4 035x 2 018,第2 019个单项式是-4 037x 2 019.第3课时 多项式及整式基础题知识点1 多项式及整式的有关概念(1)几个单项式的和叫做多项式.多项式里,每个单项式叫做多项式的项,不含字母的项叫做常数项;次数最高项的次数,叫做多项式的次数.(2)单项式与多项式统称为整式.1.下列式子:2a 2b,3xy -2y 2,a +b2,4,-m,x +yz 2x ,ab -c π,其中多项式有(B )A .2个B .3个C .4个D .5个2.(曲靖期中)下列式子:x 2+2,1a +4,3ab 27,abc ,-5x,0中,整式的个数是(C )A .6B .5C .4D .33.多项式-x 2-12x -1的各项分别是(B )A .-x 2,12x,1B .-x 2,-12x,-1C .x 2,12x,1D .x 2,-12x,-14.(昆明月考)多项式xy 2+xy +1是(D ) A .二次二项式 B .二次三项式 C .三次二项式 D .三次三项式5.(佛山中考)多项式1+2xy -3xy 2的次数及最高次项的系数分别是(A ) A .3,-3 B .2,-3 C .5,-3 D .2,36.(大理期中)-3x 2y -x 3+xy 3是四次多项式. 7多项式 3a -1 -x +5x 2+7 -2x 2y +6xy 4-3 各项 3a,-1 -x,5x 2,7-2x 2y,6xy 4,-3次数 1 2 5 最高次项 3a 5x 2 6xy 4几次几项式一次二项式二次三项式五次三项式知识点2 求整式的值8.(湖州中考)当x =1时,式子4-3x 的值(A ) A .1 B .2 C .3 D .49.(重庆中考)若a =2,b =-1,则a +2b +3的值为(B ) A .-1 B .3 C .6 D .5知识点3 多项式的应用10.已知a 是两位数,b 是一位数,把a 写在b 的右边,就成为一个三位数.这个三位数可表示成(C ) A .10b +a B .ba C .100b +a D .b +10a11.甲、乙两个车间同时加工相同数量的零件,甲车间每小时加工a 个,乙车间每小时加工b 个(b <a ),5小时后,甲车间还剩20个零件未加工,此时乙车间未加工的零件个数为(A ) A .5a +20-5b B .5b +20-5a C .5a +20 D .5b +20中档题12.(红河期中)下列式子中,是二次三项式的是(C )A .a 2+b 2B .x +y +7C .5-x -y 2D .x 2-y 2+x -3x 213.如果一个多项式是五次多项式,那么它任何一项的次数(D ) A .都小于5 B .都等于5 C .都不小于5 D .都不大于514.(民大附中月考)按如图程序计算,若开始输入的值为x =3,则最后输出的结果是(D )A .6B .21C .156D .23115.某人买了50元的乘车月票卡,如果此人乘车的次数用m 表示,则记录他每次乘车后的余额n 元,如下表:次数m 余额n (元) 1 50-0.8 2 50-1.6 3 50-2.4 4 50-3.2 ……(1)写出用此人乘车的次数m 表示余额n 的公式; (2)利用上述公式,计算:乘了13次车还剩多少元钱? 解:(1)n =50-0.8m.(2)当m =13时,n =50-0.8×13=39.6(元). 答:乘了13次车还剩39.6元钱.16.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r 米,长方形长为a 米,宽为b 米.(1)分别列式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数). 解:(1)草地面积为4×14πr 2=πr 2(平方米),空地面积为(ab -πr 2)平方米. (2)当a =300,b =200,r =10时,ab -πr 2=300×200-100π≈59 686(平方米). 答:广场空地的面积约为59 686平方米.综合题17.如果关于x 的多项式ax 4+4x 2-12与3x b +5x 是同次多项式,求12b 3-2b 2+3b -4的值.解:由题意:若a =0,则b =2;若a ≠0,则b =4.当b =2时,原式=12×8-2×4+3×2-4=-2;当b =4时,原式=12×64-2×16+3×4-4=8.2.2 整式的加减 第1课时 合并同类项基础题知识点1 同类项的概念所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.1.(昆明期末)在下列单项式中,与3a 2b 是同类项的是(C )A .3x 2yB .-2ab 2C .a 2b D .3ab2.(昆明期末)在下列单项式中,不是同类项的是(C )A .-2x 2y 和-yx 2B .-3和0C .-a 2bc 和ab 2c D .-mnt 和-8mnt3.(昆明月考)若单项式2x m y 3与单项式-3y n x 2是同类项,则m =2,n =3. 4.指出下列多项式中的同类项: (1)3x -2y +1+5y -2x -3; 解:3x 与-2x,-2y 与5y,1与-3.(2)3x 2y -2xy 2+12xy 2-23yx 2.解:3x 2y 与-23yx 2,12xy 2与-2xy 2.知识点2 合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.5.合并同类项-4a 2b +3a 2b =(-4+3)a 2b =-a 2b 时,依据的运算律是(C ) A .加法交换律 B .乘法交换律 C .乘法分配律 D .乘法结合律6.(红河期中)下列式子中,能与2a 合并的是(C )A .2a 3B .-3a +bC .-10aD .-a 2b7.(昭通期中)下列计算正确的是(D )A .x 2+x 2=x 4B .x 2+x 3=2x 5C .3x -2x =1D .x 2y -2x 2y =-x 2y 8.计算:(1)15x +4x -10x ; 解:原式=9x.(2)-p 2-p 2-p 2;解:原式=-3p 2.(3)6x -10x 2+12x 2-5x ;解:原式=2x 2+x.(4)x 2y -3xy 2+2yx 2-y 2x.解:原式=3x 2y -4xy 2.知识点3 合并同类项的应用9.三个植树队,第一队种树x 棵,第二队种的棵数是第一队的2倍,第三队种的棵数是第一队的一半,三个队一共种树72x 棵. 10.小明阅读一本书,第一天看了全书的13,第2天看了全书的49,若全书共x 页,则小明还有29x 页没看.中档题11.把多项式2x 2-5x +x 2+4x -3x 2合并同类项后所得的结果是(D ) A .二次二项式 B .二次三项式 C .一次二项式 D .单项式12.(曲靖月考)若5a |x|b 2与-0.2a 3b |y|是同类项,则x,y 的值分别是(A ) A .x =±3,y =±2 B .x =3,y =2 C .x =-3,y =-2 D .x =3,y =-213.(临沧期中)若多项式x 2-3kxy -3y 2+6xy -8不含xy 项,则k =2.14.(大理期中)若关于x,y 的单项式-3x 3y m 与2x n y 2的和是单项式,则(m -n )n=-1. 15.计算:(1)(大理期中)2a 2b -3ab -14a 2b +4ab ;解: 原式=(2a 2b -14a 2b )+(-3ab +4ab )=-12a 2b +ab.(2)14a 2b -0.4ab 2-12a 2b +25ab 2-1.解:原式=(14a 2b -12a 2b )+(-0.4ab 2+25ab 2)-1=-14a 2b ―1.16.(教材P65练习T2变式)(曲靖月考)先合并同类项,再求值:7x 2-3+2x -6x 2-5x +8,其中x =-2.解:原式=x 2-3x +5.当x =-2时,原式=4+6+5=15.17.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)用含x,y 的式子表示地面总面积;(2)当x =4,y =2时,若铺1 m 2地砖的平均费用为30元,那么铺地砖的费用是多少元?解:(1)4xy +2y +4y +8y =(14y +4xy )m 2. (2)当x =4,y =2时,30(14y +4xy )=30×(14×2+4×4×2)=1 800. 答:铺地砖的费用是1 800元.综合题18.有这样一道题:当a =0.35,b =-0.28时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3的值.小明说:“本题中a =0.35,b =-0.28是多余的条件.”小强马上反对说:“这不可能,多项式中每一项都含有a 和b,不给出a,b的值怎么能求出多项式的值呢?”你同意哪名同学的观点?请说明理由.解:我同意小明的观点.理由:因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以a=0.35,b=-0.28是多余的条件,故小明的观点正确.第2课时去括号基础题知识点1 去括号如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.1.(大理期中)下列运算正确的是(D)A.4x2y-xy2=3x2yB.3(x-1)=3x-1C.-3a+7a+1=-10a+1D.-(x-6)=-x+62.下列各式中,去括号不正确的是(D)A.x+2(y-1)=x+2y-2B.x-2(y-1)=x-2y+2C.x-2(y+1)=x-2y-2D.x-2(y-1)=x-2y-23.去掉下列各式中的括号:(1)a-(-b+c)=a+b-c;(2)a+(b-c)=a+b-c;(3)(a-2b)-(b2-2a2)=a-2b-b2+2a2.知识点2 去括号化简4.化简-(a-1)-(-a-2)+3的值是(B)A.4 B.6 C.0 D.无法计算5.计算:3(2x+1)-6x=3.6.化简:(1)-16(x-0.5);解:原式=-16x+8.(2)(-x2+3)+(5x-7+2x2);解:原式=-x2+3+5x-7+2x2=x2+5x-4.(3)-3(2x2-xy)+4(x2+xy);解:原式=-2x2+7xy.(4)(4ab-b2)-2(a2+2ab-b2).解:原式=-2a2+b2.知识点3 去括号化简的应用7.长方形的一边等于3m+2n,另一边比它大m-n,则这个长方形的周长是(A)A.14m+6n B.7m+3nC.4m+n D.8m+2n易错点去括号时漏乘项或漏项变号8.化简:4a2-3a+3-3(-a3+2a+1).解:原式=4a2-3a+3+3a3-6a-3=3a3+4a2+(-3a-6a)+(3-3)=3a3+4a2-9a.9.(曲靖月考)下列去括号中错误的是(B )A .3x 2-(2x -y )=3x 2-2x +y B .x 2-34(x +2)=x 2-34x -2C .5a +(-2a 2-b )=5a -2a 2-b 2D .-(a -3b )-(a 2+b 2)=-a +3b -a 2-b 210.已知x 2y =2,则(5x 2y +5xy -7x )-(4x 2y +5xy -7x )的值为(C ) A.12B .-2C .2D .411.(曲靖月考)若式子2x -y 的值是5,则式子2y -4x +5的值为(B ) A .-15 B .-5 C .5 D .1512.式子(xyz 2-4yx -1)+(3xy +z 2yx -3)-(2xyz 2+xy )的值(B ) A .与x,y,z 的大小无关B .与x,y 大小有关,而与z 的大小无关C .与x 的大小有关,与y,z 的大小无关D .与x,y,z 大小都有关 13.化简:(1)3(a 2-ab )-5(ab +2a 2-1);解:原式=-7a 2-8ab +5.(2)(3a -2a 2)-[5a -13(6a 2-9a )-4a 2].解:原式=4a 2-5a.14.先化简,再求值:4x -[3x -2x -(x -3)],其中x =12.解:原式=4x -3. 当x =12时,原式=-1.15.已知x +4y =-1,xy =5,求(6xy +7y )+[8x -(5xy -y +6x )]的值. 解:原式=6xy +7y +8x -5xy +y -6x =xy +8y +2x=xy +2(x +4y ).当x +4y =-1,xy =5时,原式=5+2×(-1)=3.16.如图所示是两种长方形铝合金窗框.已知窗框的长都是y 米,窗框宽都是x 米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?解:由题意可知:做2个(1)型的窗框需要铝合金2(3x +2y )米;做5个(2)型的窗框需要铝合金5(2x +2y )米,所以共需铝合金:2(3x +2y )+5(2x +2y )=(16x +14y )米.17.(昭通期中)如图所示,用火柴棒摆金鱼,摆一条需要8根,摆两条需要14根,摆三条需要20根,则摆n条需要(6n+2)根.第3课时 整式的加减基础题知识点1 整式的加减运算一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 1.化简a -(5a -3b )+(2b -a )的结果是(B ) A .7a -b B .-5a +5b C .7a +5b D .-5a -b2.化简2(3x +1)+3(2-x )的结果为(C ) A .6x -4 B .3x +4 C .3x +8 D .9x +83.若A =x 2-xy,B =xy +y 2,则A +B 为(A )A .x 2+y 2B .2xyC .-2xyD .x 2-y 24.计算3a 2+2a -1与a 2-5a +1的差,结果正确的是(D )A .4a 2-3a -2B .2a 2-3a -2C .2a 2+7aD .2a 2+7a -25.化简:(x 2+y 2)-3(x 2-2y 2)=-2x 2+7y 2. 6.(昆明期中)计算:(1)(3a -2)-3(a -5); 解:原式=3a -2-3a +15 =13.(2)(4a 2b -5ab 2)-(3a 2b -4ab 2);解:原式=4a 2b -5ab 2-3a 2b +4ab 2=a 2b -ab 2.(3)m -2(m -n 2)-(m -n 2).解:原式=m -2m +2n 2-m +n 2=-2m +3n 2.7.(昭通期中)先化简,再求值:5(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-12,b =13.解:原式=15a 2b -5ab 2-ab 2-3a 2b =12a 2b -6ab 2. 当a =-12时,b =13时,原式=12×⎝ ⎛⎭⎪⎫-122×13-6×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-132=43.知识点2 整式加减的应用8.(民大附中月考)一个长方形的一边长3a +4b,另一边长为a +b,那么这个长方形的周长为8a +10b .9.兴客隆超市10月1日仓库里原有(5x 2-10x )桶食用油,中午休息时又购进同样的食用油(x 2-x )桶,下午清仓时发现该食用油只剩下5桶,请问:(1)兴客隆超市10月1日一共卖出多少桶食用油?(用含有x 的式子表示) (2)当x =5时,兴客隆超市这天一共卖出多少桶食用油?解:(1)根据题意,得(5x 2-10x )+(x 2-x )-5=5x 2-10x +x 2-x -5=6x 2-11x -5,即兴客隆超市10月1日一共卖出(6x 2-11x -5)桶食用油.(2)当x =5时,6x 2-11x -5=6×52-11×5-5=90, 即当x =5时,兴客隆超市这天一共卖出90桶食用油.易错点 列式时,减法的减式没有带括号10.一个多项式加上5x 2-4x -3得-x 2-3x,则这个多项式为-6x 2+x +3.中档题11.当x =2时,(x 2-x )-2(x 2-x -1)的值等于(D ) A .4 B .-4 C .1 D .012.(昭通期中)如图,从边长为(a +3)cm 的大正方形纸片中剪去一个边长为(a +1)cm 的小正方形(a >0),剩余部分沿虚线剪开,重新拼成一个长方形(不重叠无缝隙),则此长方形的周长为(A )A .(4a +12)cmB .(4a +8)cmC .(2a +6)cmD .(2a +4)cm13.(昆明期中)数a,b 在数轴上对应点的位置如图所示,化简a -|b -a|=b .14.某商场一月份的销售额为a 元,二月份比一月份销售额多b 元,三月份比二月份减少10%,第一季度的销售额总计为(2.9a +1.9b )元;当a =2万元,b =5 000元时,第一季度的总销售额为67__500元.15.计算:2a 2-[-2a +a (2a +1)].解:原式=2a 2-(-2a +2a 2+a )=2a 2+2a -2a 2-a =a.16.(大理期中)(1)先化简,再求值:x 2-2(x 2-3xy )+3(y 2-2xy )-2y 2,其中x =12,y =-1;解:原式=x 2-2x 2+6xy +3y 2-6xy -2y 2=-x 2+y 2. 当x =12,y =-1时,原式=-(12)2+(-1)2=34.(2)已知x +y =6,xy =-1,求式子2(x +1)-(3xy -2y )的值. 解:原式=2x +2-3xy +2y =2(x +y )-3xy +2.当x +y =6,xy =-1时,原式=12+3+2=17.综合题17(1)带阴影的方框中的9个数之和与方框正中心的数有什么关系?(2)不改变方框的大小如果将带阴影的方框移至其他几个位置试一试,你能得出什么结论?你知道为什么吗?(3)这个结论对于任何一个月的日历都成立吗?解:(1)带阴影的方框中的9个数之和是11的9倍.(2)带阴影的方框中的9个数之和是正中间数的9倍.理由:设方框正中心的数为x,则其余八个数分别为:x-8,x -7,x-6,x-1,x+1,x+6,x+7,x+8.阴影的方框中的9个数之和为:(x-8)+(x-7)+(x-6)+(x-1)+x+(x+1)+(x+6)+(x+7)+(x+8)=9x,所以带阴影的方框中的9个数之和是正中间数的9倍.(3)这个结论对任何一个月的日历都成立.计算:(1)(x-1)-(2x+1);解:原式=-x-2.(2)2(a-1)-(2a-3)+3;解:原式=4.(3)(大理期中)(2a-3b)-3(2b-3a);解:原式=11a-9b.(4)2(2a2+9b)+3(-5a2-4b);解:原式=-11a2+6b.(5)3(x3+2x2-1)-(3x3+4x2-2);解:原式=2x2-1.(6)(7x2+5x-3)-(5x2-3x+2);解:原式=7x2+5x-3-5x2+3x-2=2x2+8x-5.(7)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(8)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(9)a3b+(a3b-2c)-2(a3b-c);解:原式=a3b+a3b-2c-2a3b+2c=0.(10)-7x2-2(6x2-5xy)+(3y2+xy-x2).解:原式=-7x2-12x2+10xy+3y2+xy-x2=-20x2+11xy+3y2.类型1 化简后直接代入求值 1.先化简,再求值:(1)(4a +3a 2-3-3a 3)-(-a +4a 3),其中a =-2;解:原式=-7a 3+3a 2+5a -3. 当a =-2时, 原式=55.(2)(昆明期中)6x 2-[3xy 2-2(2xy 2-3)+7x 2],其中x =4,y =-12.解:原式=6x 2-3xy 2+4xy 2-6-7x 2,=-x 2+xy 2-6. 当x =4,y =-12时,原式=-42+4×(-12)2-6=-21.2.已知A =4ab -2b 2-a 2,B =3b 2-2a 2+5ab,当a =1.5,b =-12时,求3B -4A 的值.解:3B -4A =3(3b 2-2a 2+5ab )-4(4ab -2b 2-a 2)=9b 2-6a 2+15ab -16ab +8b 2+4a 2=17b 2-2a 2-ab. 当a =1.5,b =-12时,原式=17×(-12)2-2×1.52-1.5×(-12)=17×14-92+34=12.类型2 整体代入求值3.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.解:原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10.4.已知||m +n -2+(mn +3)2=0,求2(m +n )-2[mn +(m +n )]-3[2(m +n )-3mn]的值. 解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n )-2mn -2(m +n )-6(m +n )+9mn =-6(m +n )+7mn =-12-21 =-33.类型3 利用“无关”求值5.若式子(2x 2+ax -y +6)-(2bx 2-3x +5y -1)的值与字母x 的取值无关,求式子12a 2-2b +4ab 的值.解:(2x 2+ax -y +6)-(2bx 2-3x +5y -1)=(2-2b )x 2+(a +3)x -6y +7.由题意,得2-2b =0,a +3=0. 所以a =-3,b =1.将a,b 的值代入式子12a 2-2b +4ab,得12×9-2×1+4×(-3)×1=-192.章末复习(二) 整式的加减分点突破知识点1 用字母表示数1.用式子表示“a,b 两数的和与c 的积”是(C ) A .a +bc B .ab +c C .(a +b )c D .a (b +c )2.(大理期中)今年某种药品的单价比去年上涨了10%,如果今年的单价是a 元,那么去年的单价为(C ) A .(1+10%)a 元 B .(1-10%)a 元 C.a1+10%元D.a1-10%元知识点2 整式的相关概念3.在整式-0.3x 2y,0,x +12,-22abc 2,13x 2,-14y,-13ab 2+12 中,其中单项式有 (C )A .3个B .4个C .5个D .6个4.(文山期中)多项式2x 2y 3-5xy 2-3的次数和项数分别是(A ) A .5,3 B .5,2 C .8,3 D .3,35.(昭通期中)单项式-37a 3b 的系数是-37,次数是4.6.多项式-3xy +5x 3y -2x 2y 3+5的次数是5,最高次项系数是-2.知识点3 整式的加减及其应用 7.下列去括号正确的是(A ) A .-(2x -5)=-2x +5 B .-12(4x +2)=-2x +2C.13(2m -3n )=23m +n D .-(23m -2x )=-23m -2x8.(昭通期中)如果15a 2b 3与-14a x +1b y是同类项,那么xy =3.9.计算:(1)8a +7b -12a -5b ;解:原式=(8-12)a +(7-5)b =-4a +2b.(2)a 2+(5a 2-2a )-2(a 2-3a ).解:原式=a 2+5a 2-2a -2a 2+6a=4a 2+4a.10.先化简,再求值:(2-a 2+4a )-(5a 2-a -1),其中a =-2.解:原式=2-a 2+4a -5a 2+a +1=-6a 2+5a +3.当a =-2时,原式=-31.11.某公园里一块草坪的形状如图中的阴影部分(长度单位:m ).(1)用整式表示草坪的面积;(2)若a =2,求阴影部分的面积.解:(1)(7.5+12.5)(a +2a +a )+7.5×2a +7.5×2a =110a (cm 2).(2)当a =2时,110a =110×2=220(m 2).知识点4 整式的规律探究12.观察下面由※组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52…请猜想1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=(n +2)2.常考题型演练13.一种商品进价为a 元,按进价增加25%定出标价,再按标价的9折出售,那么每件还能盈利(A )A .0.125aB .0.15aC .0.25aD .1.25a14.已知-2x m +1y 3与13x 2y n -1是同类项,则m,n 的值分别为(A ) A .m =1,n =4 B .m =1,n =3C .m =2,n =4D .m =2,n =315.关于x 的多项式(a -4)x 3-x b +x -b 是二次三项式,则a =4,b =2.16.(大理期中)已知2a -3b 2=2,则8-6a +9b 2的值是2.17.(民大附中月考)观察给出的一列式子:x 2y,12x 4y 2,14x 6y 3,-18x 8y 4,…,根据其蕴含的规律可知这一列式子中的第8个式子是-1128x 16y 8. 18.计算:(1)3ab -a 2-2ab -3a 2;解:原式=ab -4a 2.(2)5(3a 2b -ab 2-1)-(ab 2+3a 2b -5);解:原式=12a 2b -6ab 2.(3)7ab -3(a 2-2ab )-5(4ab -a 2).解:原式=2a 2-7ab.19.已知x 2-x +1的2倍减去一个多项式得到3x 2+4x -1,求这个多项式.解:2(x 2-x +1)-(3x 2+4x -1)=2x 2-2x +2-3x 2-4x +1=-x 2-6x +3.故这个多项式为-x 2-6x +3.20.(民大附中月考)化简求值:5a 2+3b 2+2(a 2-b 2)-(5a 2-3b 2),其中|a +1|+(b -12)2=0. 解:由题意知:a +1=0,b -12=0, 所以a =-1,b =12. 原式=5a 2+3b 2+2a 2-2b 2-5a 2+3b 2=2a 2+4b 2.当a =-1,b =12时,原式=2×(-1)2+4×(12)2=2×1+4×14=2+1=3.21.(大理期中)某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按3元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按3元/立方米收费,超过部分按3.5元/立方米计费.设每户家庭月用水量为x 立方米.(1)当x 不超过20时,应收水费为3x 元;当x 超过20时,应收水费为(3.5x -10)元(用x 的式子表示);(2)小明家第二季度用水情况为:四月份用水15立方米,五月份用水22立方米,六月份用水25立方米,请帮小明计算一下他家这个季度应交多少元水费?解: 3×15+3.5×22-10+3.5×25-10=189.5(元).答:小明家这个季度应交189.5元水费.。
人教版七年级上第二章整式的加减同步练习题(1)含解析
人教版七年级上第二章整式的加减同步练习题(1)含解析学校:___________姓名:___________班级:___________考号:___________一、填空题1.括号前面是“+”号,去掉括号,括号里的每一项都_______符号;括号前面是“-”号,去掉括号,括号里的每一项都_______符号.2.添括号:(1)222312x x x -+=+(_____); (2)221a a a -+=-(_________); (3)264a b c a -+-=-(_____)2a =+(_____);(4)(3)(3)[x y z x y z x +-+-+-=+(_____)][x -(_____)];(5)22()669()6m n m n m n +--+=+-(_____)9+.3.单项式23xm +1y 2-n 与2y 2x 3的和仍是单项式,则mn =_____.4.一台扫描仪的成本价为n 元,销售价比成本价提高了30%,为尽快打开市场.按销售价的八折优惠出售,则优惠后每台扫描仪的实际售价为______元.5.35a -=,且a 在原点左侧,则=a _________. 6.已知4a b -=,则多项式2211()9()()5()42a b a b a b b a -------的值______.二、单选题7.化简:﹣(﹣2)=( )A .﹣2B .﹣1C .1D .28.下列去括号正确的是( )A .()3236a a --=-B .()3232a a --=-C .()3232a a --=-- D .()3236a a --=-+9.(﹣1)2022的相反数是( )A .﹣1B .2022C .﹣2022D .110.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元 11.若A 是一个四次多项式,B 是一个三次多项式,则A B -是( )A .七次多项式B .七次整式C .四次多项式D .四次整式 12.疫情期间,小明去药店买口罩和消毒液(每包口罩单价相同,每瓶消毒液价格相同).若购买20包口罩和15瓶消毒液,则身上的钱还少25元,若购买19包口罩和13瓶消毒液,则他身上的钱会剩下15元,若小明购买16只口罩和7瓶消毒液,则( )A .他身上的钱会剩下135元B .他身上的钱会不足135元C .他身上的钱会剩下105元D .他身上的钱会不足105元三、解答题13.计算下列各题:(1)223x y x y -;(2)222227378337ab a b ab a b ab -+++--.14.先化简,后求值:24x y ﹣[6xy ﹣2(4xy ﹣2)﹣2x y ]+1,其中x =﹣1,y =2.15.如图,化简|a |﹣|b |﹣|c |.参考答案:1. 不改变 改变【解析】略2. 31x -+ 1a - 264b c -+ 32b c -+- 3y z -+ 3y z -+ m n +【分析】根据添括号法则逐一求解即可.【详解】解:(1)()22231231-+=+-+x x x x ;(2)()2211-+=--a a a a ;(3)()()264264232-+-=--+=+-+-a b c a b c a b c ;(4)()()(3)(3)33+-+-+-=+-+--+⎡⎤⎡⎤⎣⎦⎣⎦x y z x y z x y z x y z ;(5)()22()669()69+--+=+-++m n m n m n m n .故答案为:(1)31x -+;(2)1a -;(3)264b c -+,32b c -+-;(4)3y z -+,3y z -+;(5)m n +.【点睛】本题主要考查了添括号法则,熟练掌握添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号是解题的关键. 3.1【分析】根据单项式的和是单项式,可得两个单项式是同类项,根据同类项,可得m 、n 的值,根据代数式求值,可得答案.【详解】解:依题意得:m +1=3,2﹣n =2,m =2,n =0,∴mn =20=1.故答案为:1.【点睛】本题考查了合并同类项,利用单项式的和是单项式得出同类项是解题的关键. 4.1.04n【分析】根据题意可以用代数式表示出优惠后的每台扫描仪的实际售价.【详解】由题意有,优惠后每台扫描仪的售价为:n ×(1+30%)×80%=1.04n ,故答案为:1.04n .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式. 5.-2【分析】利用数轴及绝对值得出a 的值,再根据a 在原点左侧确定a 的值即可.【详解】∴35a -=,∴a -3=5或a -3=-5,∴a =8或a =-2,∴a 在原点左侧,∴a =-2.故答案为 -2【点睛】本题主要考查了数轴,解题的关键是利用数轴及绝对值得出a 的值.6.20-【分析】先利用整式的加减运算化简,然后整体代入4a b -=求解即可.【详解】解:∴4a b -=, ∴2211()9()()5()42a b a b a b b a ------- ()()2144a b a b =---- 214444=-⨯-⨯ 20=-,故答案为:-20.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握相关知识进行求解.7.D【分析】根据去括号原则去括号即可.【详解】由于括号前是负号,去括号后原括号里各项的符号都要改变,故原式=2.故选D .【点睛】本题考查去括号原则,解决本题的关键是熟练应用去括号原则.8.D【分析】根据去括号法则逐项进行判断即可.【详解】()3236a a --=-+,故D 正确.故选:D .【点睛】本题主要考查了去括号法则,括号前面是正号的把括号和正号去掉,括号里的每一项符号不变,括号前是负号的把括号和负号都去掉,括号里的每一项符号发生改变. 9.A【分析】先求出(﹣1)2022,再根据相反数的定义即可求解.【详解】解:(﹣1)2022=1,1的相反数是﹣1.故选:A .【点睛】本题考查了相反数的定义及有理数的乘方,熟练掌握相反数的定义及-1的偶数次方等于1是解题的关键.10.C【分析】根据题意列求得购买乙种读本()100x -本,根据单价乘以数量即可求解.【详解】解:设购买甲种读本x 本,则购买乙种读本()100x -本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100)x -元故选C【点睛】本题考查了列代数式,理解题意是解题的关键.11.D【分析】根据题意,利用整式的加减法则进行判断即可.【详解】解:∴A 是一个四次多项式,B 是一个三次多项式,∴A B -可能是四次多项式,也可能是四次单项式,∴A B -一定是四次整式,故选D .【点睛】本题考查了整式的加减.熟练掌握运算法则是解本题的关键.12.A【分析】设每包口罩x 元,每瓶消毒液y 元,根据小明带的总钱数是不变的,可得到:20x +15y -25=19x +13y +15,整理可得到x +2y =40.小明购买16只口罩和7瓶消毒液会消费16x +7y ,再利用20x +15y -25-(16x +7y )即可表示出小明身上剩下的钱数,代入计算即可.【详解】解:设每包口罩x 元,每瓶消毒液y 元,∴小明带的总钱数是不变的,∴20x +15y -25=19x +13y +15,整理得:x +2y =40.小明购买16只口罩和7瓶消毒液会消费:16x +7y ,∴剩余的钱为:20x +15y -25-(16x +7y )=20x +15y -25-16x -7y=4x +8y -25将x +2y =40代入得:4×40-25=135即小明身上的钱会剩下135元.故选:A【点睛】本题考查了字母表示数,代数式求值,整式加减运算,能够准确分析题意,找到不变量是解决本题的关键.13.(1)22x y -(2)284ab +【分析】(1)根据合并同类项法则计算即可;(2)根据合并同类项法则计算即可.(1)解:原式()22132x y x y =-=-;(2)解:原式()()222222773387384ab ab a b a b ab ab =-+-++-=+.【点睛】本题考查了整式的加减运算,熟练掌握合并同类项时,将系数相加,字母和字母指数不变是解题的关键.14.52x y +2xy ﹣3;3【分析】先去括号,再合并 同类项,即可化简,然后把x 、y 值代入许即可.【详解】解:42x y ﹣[6xy ﹣2(4xy ﹣2)﹣2x y ]+1=24x y ﹣6xy +2(4xy ﹣2)+2x y + 1=42x y ﹣6xy +8xy ﹣4+2x y + 1=25x y +2xy ﹣3,当x =﹣1,y =2时,原式=5×2(1) ×2+2×(﹣1)×2﹣3=10﹣4﹣3=3.【点睛】本题考查整化简求值,熟练掌握整式加减混合运算法则、去括号法则是解题的关键. 15.a +b +c【分析】根据绝对值的含义和求法,化简即可.【详解】解:由数轴可得:a >0,b <0,c <0,∴|a |=a ,|b |=-b ,|c |=-c ,∴原式=a ﹣(﹣b )﹣(﹣c )=a +b +c .【点睛】此题主要考查了数轴上的点的正负性,绝对值的含义和求法,要熟练掌握数轴上的点的正负性以及绝对值的化简方法是解题的关键.。
2023-2024学年七年级数学上册《第二章 整式》同步练习题有答案(人教版)
2023-2024学年七年级数学上册《第二章整式》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法正确的是()A.单项式x没有系数B.mn2与−12n2m是同类项C.3x3y的次数是3 D.多项式3x-1的项是3x和12.在代数式x−3y2中,含y的项的系数是()A.-3 B.3 C.-32D.323.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.常数项是1C.四次项的系数是7 D.﹣7xy3﹣2x3y2+0.3x2y+1是整式4.若单项式-2x2y3的系数是m,次数是n,则mn的值为()A.-2 B.-6 C.-4 D.-35.下列式子:x2+2,1a +4与3ab7,abc,﹣5x,0中,整式的个数有()A.3个B.4个C.5个D.6个6.若2x2+x m+4x3-nx2-2x+5是关于x的五次四项式,则-n m的值为()A.-25 B.25 C.-32 D.327.若多项式k(k−2)x3+kx2−2x2−6是关于x的二次多项式,则k的值为().A.0 B.1 C.2 D.以上都错误8.下列说法:①a为任意有理数,a2总是正数;②如果|a|=−a,则a是负数;③单项式−4a3b的系数与次数分别为—4和4;④代数式t2、−a+b3、2b都是整式.其中正确的有()A.4个B.3个C.2个D.1个二、填空题9.单项式﹣3πx2y24的系数是,次数是.10.)多项式3x|m|y2+(m+2)x2y﹣1是四次三项式,则m的值为.11.把多项式6x−7x2+9按字母x的降幂排列为.12.多项式﹣53x3y2﹣7xy2+4x4﹣26为次四项式.13.关于x的多项式(a+1)x2+2x a+1+3x3−a(x≠0)合并后是三项式,则a的值为.(提示:当x≠0时,x0=1)三、解答题14.已知整式(m+2)x2+3x6−n−5是关于x的三次二项式,求m2n+mn2的值.x2y m+1+x2y2−3y2+8是六次四项式,单项式2x2n y5−m与该多项式次数相同,15.已知多项式−35求m,n的值.16.已知式子:ax5+bx3+3x+c,当x=0时,该式的值为﹣1.(1)求c的值;(2)已知当x=1时,该式的值为﹣1,试求a+b+c的值;(3)已知当x=3时,该式的值为﹣1,试求当x=﹣3时该式的值;(4)在第(3)小题的已知条形下,若有3a=5b成立,试比较a+b与c的大小.17.对于多项式(n-1)x m+2-3x2+2x(其中m是大于-2的整数).(1)若n=2,且该多项式是关于x的三次三项式,求m的值;(2)若该多项式是关于x的二次单项式,求m,n的值;(3)若该多项式是关于x的二次二项式,则m,n要满足什么条件?18.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式-2x2-4x+1的一次项系数,b 是x2y4的次数为c.最小的正整数,单项式−12(1)a= ,b= ,c= .(2)若将数轴在点B处折叠,则点A与点C 重合(填“能”或“不能”);(3)若数轴上M、N两点之间的距离为2022(M在N的左侧),且M、N两点在B处折叠后互相重合,则M、N表示的数分别是:M:;N:(4)若在数轴上任意画出一条长是2022个单位的线段,则此线段盖住的整数点的个数是。
人教版七年级数学上册第二章整式作业练习题六(含答案) (83)
人教版七年级数学上册第二章整式作业练习题六(含答案) 下列说法中正确的是( )A .0不是单项式B .ba 是单项式C .单项式256x yπ-的系数是56-,次数是4 D .32x -是整式【答案】D【解析】【分析】利用单项式及整式的定义判定即可.【详解】A. 0是单项式,故此选项错误,B.ba 是分式,故此选项错误,C. 单项式256x y π-的系数是5π6-,次数是3,故此选项错误, D. .32x -是整式,故此选项正确,故选D.【点睛】本题考查的是单项式和整式,熟练掌握两者定义是解题的关键.22.对于多项式﹣x 3﹣3x 2+x ﹣7,下列说法正确的是()A .最高次项是x 3B .二次项系数是3C .常数项是7D .是三次四项式【答案】D【解析】根据几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:多项式﹣x3﹣3x2+x﹣7最高次项是﹣x3,二次项系数是﹣3,常数项是﹣7,是三次四项式,故选D.【点睛】此题主要考查了多项式,题目比较基础,关键是掌握和多项式有关的定义.23.下列各整式中,次数为5次的单项式是()A.xy4B.xy5C.x+y4D.x+y5【答案】A【解析】【分析】根据单项式的次数是所有字母的指数和,可得答案.【详解】解:A、是5次单项式,故A正确;B、是6次单项式,故B错误;C、是多项式,故C错误;D、是5次多项式,故D错误;故选:A.本题考查了单项式,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.24.单项式﹣23a2b的系数和次数分别是()A.23,2 B.23,3 C.﹣23,2 D.﹣23,3【答案】D【解析】【分析】根据单项式的系数定义:字母前面的数字,和次数定义:所有字母指数之和,即可求出答案.【详解】根据系数和次数的定义得:-23a2b的系数是-23,次数是:3.故选D.【点睛】此题考查了单项式;根据单项式的系数和次数的定义,找出得数是解题的关键.25.用同样大小的围棋子按如图所示的方式摆图案,按照这样的规律摆下去,第12个图案的围棋子个数是()A.16 B.28 C.29 D.38【解析】【分析】 仔细观察图形的变化可知:当为第奇数个图案时,棋子的个数为12n +×4+1=2n+3个;当为第偶数个图案时,棋子的个数为(2n +1)×4=2n+4,由此规律即可解决问题.【详解】第一个图形有5=2+3个棋子,第二个图形有8=2×2+4个棋子,第三个图形有9=2×3+3个棋子,第四个图图形12=2×4+4个棋子,… 当奇数个图案时,棋子的个数为12n +×4+1=2n+3个; 当为偶数个图案时,棋子的个数为(2n +1)×4=2n+4个, 所以第12个图案的围棋子个数是2×12+4=28个,故选B .【点睛】本题考查了规律型——图形的变化类,分第奇数个图案与第偶数个图案分别进行讨论,从而得出规律是解题的关键.26.多项式4x 2﹣2xy 2-12y+2的次数、一次项系数分别为( ) A .6,3 B .3,3 C .3,12 D .3,﹣12【答案】D【分析】直接利用多项式的次数确定方法和一次项系数的确定方法分析即可.【详解】 解:多项式2214222x xy y --+的次数、一次项系数分别为:3,12-. 故选D .【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.27.下列说法中,正确的是( )A .0是单项式B .单项式x 2y 的次数是2C .多项式ab +3是一次二项式D .单项式﹣13πx 2y 的系数是﹣13【答案】A【解析】【分析】直接利用单项式的定义以及单项式的次数以及系数的定义和多项式的次数与项数确定方法分析得出答案.【详解】A. 0是单项式,正确.B. 单项式x 2y 的次数是3,错误.C. 多项式ab+3是二次二项式,错误.D. 单项式﹣13πx2y的系数是﹣13π,错误.故答案选:A.【点睛】本题考查的知识点是多项式,单项式,解题的关键是熟练的掌握多项式,单项式.28.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑤个图案中三角形的个数为().A.14个B.15个C.16个D.17个【答案】C【解析】【分析】第①个图案中的三角形个数为:1;从第二个图形开始每个图形中三角形的个数可以表示为:44n-,即可求出第⑤个图案中三角形的个数.【详解】∵第①个图案中的三角形个数为: 1;第②个图案中的三角形个数为:4244⨯-=;第③个图案中的三角形个数为:4348⨯-=;……∴第⑤个图案中的三角形个数为: 45416.⨯-=故选C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果.29.下列说法中正确的是( )A .-32xy 的系数是-2,次数是5.B .单项式-27m m a b π+-的系数是π,项数是9.C .多项式-7x y +47x +π-2的次数是8,项数是3 D .2242a b -+是二次四项式【答案】C【解析】【分析】根据单项式的系数是数字部分,次数是字母指数和,可判断A 、B ,根据多项式的项、次数,可判断C 、D ,可得答案.【详解】A 、单项式的系数是-8,次数是3,故A 错误;B 、单项式的系数是-π,故B 错误;C 、多项式的次数是8,项数是3,故C 正确;D 、多项式是二次三项式,故D 错误;故选C .【点睛】本题考查了多项式,多项式的次数是多项式中次数最高项的次数.30.下列说法错误的是( )A.﹣xy的系数是﹣1B.3x3﹣2x2y2﹣32y3的次数是4 C.当a<2b时,2a+b+2|a﹣2b|=5bD.多项式()2318x-中x2的系数是﹣3【答案】D【解析】【分析】根据单项式的系数是数字部分可判断A,根据多项式的次数是多项式中次数最高项的单项式的次数,可判断B,根据差的绝对值是大数减小数,可判断C,根据多项式中项的系数是数字因数,可判断D.【详解】解:A、-xy的系数是-1,故A正确;B、3x3-2x2y2-32y3的次数是4,故B正确;C、当a<2b时,2a+b+2|a-2b|=2a+b+4b-2a=5b,故C正确;D、多项式()2318x-中x2的系数是-38,故D错误;故选:D.【点睛】本题考查多项式,利用了多项式中的项的系数是数字因数.。
人教版七年级数学上册整式练习题(含答案)
人教版七年级数学上册整式练习题(含答案)一.判断题1) x+1/3 是关于x的一次两项式.(×)2) -3不是单项式.(√)3) 单项式xy的系数是1.(×)4) x^3+y^3是6次多项式.(×)5) 多项式是整式.(√)二.选择题1.在下列代数式中:1/2ab,(a+b)^2/2,ab^2+b+1,32/2x+y,x^3+x-3中,多项式有(B.3个)2.多项式-23m^2-n^2是(A.二次二项式)3.下列说法正确的是(A.3x^2-2x+5的项是3x^2,-2x,5)4.下列说法正确的是(B.x^3-y^3与2x^2-2xy-5都是多项式)5.下列代数式中,不是整式的是(D.-20)6.下列多项式中,是二次多项式的是(B.3x^2)7.x减去y的平方的差,用代数式表示正确的是(B.x^2-y^2)8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b 米/分,则他的平均速度是(2ab/(a+b))米/分。
9.下列单项式次数为3的是(C.1/3xy^4)10.下列代数式中整式有(A.4个)。
11.下列整式中,单项式是(D.(x+1)/2)。
12.下列各项式中,次数不是3的是(B.x^2+y+1)。
13.下列说法正确的是(B.π不是整式,D.单项式-x^2y的系数是-1)。
14.在多项式x^3-xy^2+25中,最高次项是x^3.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
改写后的文章:给定一些代数式,其中包括多项式和分式。
需要计算这些代数式的值或者进行简化。
首先,对于一个分式,我们可以将分子和分母分别展开,然后进行化简。
例如,对于分式 $\frac{x+1}{x-1}$,我们可以将其展开为 $\frac{x}{x-1}+\frac{1}{x-1}$,然后进行化简得到$\frac{x}{x-1}+1+\frac{1}{x-1}$。
人教版七年级上册数学《第二章2.1 整式 》课后练习题
七年级上册数学《第二章2.1 整式 》课后练习一、单选题1.在代数式2141,,42,,3235x y a mn b ---+中,多项式的个数是( ) A .4 B .3 C .2 D .12.单项式4223ab c -的系数与次数分别是( ) A .2,5- B .2,5 C .2,63- D .2,73- 3.多项式2213x -的常数项是( ) A .1B .1-C .13D .13- 4.下列代数式:20,,,,,2273a x x y m x x y +-++,其中单项式有m 个,多项式有n 个,整式有t 个,则m +n +t 等于( ) A .12B .13C .14D .15 5.多项式2435a b ab -+-的项为( )A .24,3a b ab -,5B .2435a b ab -+-C .24,3a b ab -,5-D .24,3a b ab ,56.将多项式232332a b b ab a +--按b 的降幂排列正确的是( )A .322223b ab a b a -+-B .322332a a b ab b +-+C .322332a a b ab b --+-D .322332a a b ab b -+-+7.在下列说法中,正确的是( ) A .单项式234a b -的系数是3-,次数是2 B .单项式m π的系数是1,次数是2 C .单项式822ab c 的系数是2,次数是12D .单项式225x y -的系数是25-,次数是3 8.下列说法中正确的有( ).(1)单项式a 既没有系数,也没有次数;(2)单项式8210xy ⨯的系数是2;(3)单项式m -的系数与次数都是1;(4)单项式2r π的系数是2π.A .1个B .2个C .3个D .4个 9.已知一组按规律排列的式子:4628,,,,357a a a a L ,则第2018个式子是( ) A .20182017a B .20184034a C .40364035a D .40344033a二、填空题10.已知单项式532y x a b +与2244x y a b --的和仍是单项式,则x y +=____.11.已知关于x 的多项式4323(5)(1)53x m x n x x -++--+不含3x 项和2x 项,则m =__________,n =__________.12.写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为_____.(写出一个即可)13.若多项式7223343m x y x y x y +-+是按字母x 降幂排列的,则m 的值是______. 14.单项式237a b π的系数是________,次数是________.15.有a 名男生和b 名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块,这a 名男生和b 名女生一共搬了____块砖(用含a 、b 的代数式表示) 16.下图是用棋子摆成的“小屋”,按照这样的方式摆下去,第6个这样的“小屋”需要______枚棋子.三、解答题17.若2312x y a b 与463a b 是同类项,求33333442y x y y x y --+的值.18.已知多项式2134331m x y x y x +-+--是五次四项式,且单项式233n m x y -与该多项式的次数相同.(1)求m ,n 的值; (2)把这个多项式按x 的降幂排列.19.把多项式321110.25 1.584m m m m x ax x b x -+--++(m 为大于3的正整数)按x 的降幂排列.20.把下列各多项式先按x 的降幂排列,再按x 的升幂排列.(1)243327x x x --+;(2)4423182x y xy x y -+-.21.(1)已知多项式x 2y m+1+xy 2-2x 3+8是六次四项式,单项式-x 3a y 5-m 的次数与多项式的次数相同,求m ,a 的值;(2)已知多项式mx 4+(m -2)x 3+(2n +1)x 2-3x +n 不含x 2和x 3的项,试写出这个多项式,再求当x =-1时多项式的值.22.阅读下列材料,并完成填空.你能比较20172018和20182017的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n (n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)①1221;②2332;③3443;④4554;⑤5665;⑥6776;⑦7887;(2)归纳第(1)问的结果,可以猜想出n n+1和(n+1)n的大小关系;(3)根据以上结论,可以得出20172018和20182017的大小关系.23.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…(1)表中第8行的最后一个数是_________,第8行共有_________个数;(2)用含n的代数式表示:第n行的第一个数是_________,最后一个数是________,第n 行共有_________个数.答案1.B2.D3.D4.A5.C6.A7.D8.A9.C10.1 11.-5 112.答案不唯一,如251x x -++ 13.4或3或214.7π 5 15.4030a b +16.35 17.40-.18.解(1)∵多项式2134331m x y x y x +-+--是五次四项式,∴2+m+1=5,∴m=2,又∵单项式233n m x y -与该多项式的次数相同,∴2n+3-m=5,∴n=2;(2)该多项式为:2334331x y x y x -+--,按x 的降幂排列为4323331x x y x y -+--.19.解∵m 为大于3的正整数,∴m+2>m>m-1>m-3,∴把多项式321110.25 1.584m m m m x ax x b x -+--++(m 为大于3的正整数)按x 的降幂排列为213111.50.2548m m m m ax x x b x +---+++. 20.解(1)按x 的降幂排列:432273x x x -++-,按x 的升幂排列:234372x x x -++-;(2)按x 的降幂排列:4324182x x y xy y -+-, 按x 的升幂排列:4234182y xy x y x -+-+. 21.解(1)由题意得:2+m +1=6,3a +5-m =6,解得:m =3,a =;(2)∵多项式m +(m -2)+(2n +1)-3x +n 不含x 2和x 3的项,∴m -2=0,2n +1=0,解得:m=2,n=-,即多项式为2-3x-,当x=-1时,原式=2+3-=4.22.解(1)①∵12=1,21=2,∴12<21;②∵23=8,32=9, ∴23<32;③∵34=81,43=64, ∴34>43;④∵45=1024,54=625, ∴45>54;∴⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2时,n n+1>(n+1)n;(3) ∵2017>2,∴20172018>2018201723.解(1)∵第2行的最后一个数的4=22,第3行的最后一个数的9=32,第4行的最后一个数的16=42,第5行的最后一个数的25=52,…,依此类推,第8行的最后一个数的82=64,共有数的个数为:82﹣72=64﹣49=15,故答案为:64,15;(2)第(n﹣1)行的最后一个数是(n﹣1)2,所以,第n行的第一个数是(n﹣1)2+1,最后一个数是n2,第n行共有n2﹣(n﹣1)2=2n﹣1个数,故答案为:(n﹣1)2+1,n2,2n﹣1.。
人教版七年级数学上册整式的加减练习题
人教版七年级数学上册整式的加减练习题整式的加减专项练1.化简1) 15x + 4x - 10x = 9x2) -p - p - p = -3p3) 2a + 6b - 7a - b = -5a + 5b4) 5x - 7xy + 3x + 6xy - 4x = -2xy + 4x5) 5a - (2a - 4b) = 3a + 4b6) 2x + 3(2x - x) = 7x7) (6a^2 - 4ab - 4(2a^2 + ab)) / 2 = -5a^2 - 2ab8) -3(2x - xy) + 4(x + xy - 6) = -6x + 5xy - 209) 3a + 2 - (-4a) = 7a + 210) 2(x + 3) - (5 - x)^2 = 7x - x^2 - 1612) (st - 3st + 6) / 2 = -st + 313) (a - a) - (a - 2a + 1) = -a + 114) 2(3b^2 - a^3b) - 3(2b^2 - a^2b - a^3b) - 4a^2b = -a^3b - 6b^215) 2(3y - 5y - 6) - (y - 2 + 3y) = -4y - 816) (2x - 3y) - (3x + 2y + 1) = -x - 2y - 117) 3(-ab + 2a) - (3a - b) + 3ab = -2ab + 6a - b18) a - [(ab - a^2) + 4ab] - ab = -a^2 - 3ab19) 3x - [7x - (4x - 3) - 2x] = -2x + 320) m^2n + 3mn^2 + 6 - 8nm^2 + mn^2 = -8nm^2 + m^2n + 4mn^2 + 621) 2(2a - 3b) + 3(2b - 3a) = -5a - 5b22) 7ab - 4ab + 5ab - 4ab + 6ab = 10ab23) (4a - 3a) - (2a + a - 1) + (2 - a) + 4a = 8a24) 2(2x - 3y) - (3x + 2y + 1) = -x - 8y - 125) -(3a - 4ab) + [a - 2(2a + 2ab)] = -5a - 4ab26) 当a = 3,b = -4时,3(2ab - ab - a) - (6ab - 3ab + 3) = -3.XXX的说法有道理,因为题目中已经给出了a和b的值,所以条件是多余的。
4.2++整式的加法与减法+同步练习+2024-2025学年+人教版数学七年级上册
4.2 整式的加法与减法 同步练习一、单选题1.下列各组式子中,是同类项的是( )A .2bc 与2abcB .23x y 与23xyC .a 与1D .23a b 与2a b 2.计算523m m m =,则○处运算符号是( )A .+B .-C .×D .÷3.若3m x y -与n x y -是同类项,则2m n +的值为( )A .2B .3C .4D .54.在解方程()()4327x x -=-+的过程中,去括号正确的是( )A .1227x x -=-+B .12427x x -=-+C .1227x x -=--D .12427x x -=--5.把53x +错算成()53x +,结果比原来( )A .多8B .少8C .多12D .少12 6.已知:34y x -=,那么代数式()()26323x y y x x -----的值为( ) A .3 B .6 C .3- D .6- 7.已知飞机的无风航速为km /h x ,风速为60km/h ,则飞机顺风飞行4h 的行程比逆风行驶3h 的行程多( )kmA .760x -B .607x -C .420x -D .420x + 8.已知:关于x ,y 的多项式2223342ax bxy x x xy y ++--+不含二次项,则34a b -的值是( )A .-3B .2C .-17D .18二、填空题9.写出342x y -的一个同类项: .10.若代数式22m x y -与335n x y -是同类项,则代数式n m = .11.已知2465x xy -=-,2328y xy -=,则式子2223x xy y --的值是 .12.已知实数s t a b ,,,满足2211242s a b t b a +=++=+,,若2223k s t =+-,则k 的值是 13.将小圆圈按如图所示的规律摆放下去,如果用n 表示六边形一边上的小圆圈数,m 表示这个六边形中小圆圈的总数,请写出m 和n 满足的关系式是 .三、解答题14.合并同类项:(1)2222222x y xy x y xy x y --++-;(2)()()22223224a b ab ab a b ---+. 15.先化简,再求值:()()2222242523a b ab a b a b ab +-+--,其中12a =-,2b =. 16.某校七年级三个班级的学生在植树节这天义务植树,一班植树a 棵,二班植树的棵数比一班的3倍多40棵,三班植树的棵数比二班的一半少30棵.(1)求三个班共植树多少棵?(用含a 的式子表示);(2)当30a =时,三个班中哪个班植树最多?17.点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB a b ,例如:数轴上表示1-与2-的两点间的距离()12121=---=-+=;而()22x x +=--,所以2x +表示x 与2-两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示2-和5-两点之间的距离 ;(2)若数轴上表示点x 的数满足32x -=,那么x = ;(3)若数轴上表示点x 的数满足44x -<<,求44x x -++的值.1 参考答案:1.D 2.B 3.D 4.D 5.C 6.D 7.D 8.C 9.34x y (答案不唯一) 10.9 11.212-12.3 13.2331m n n =-+ 14.(1)2xy -(2)222a b ab -- 15.23a b ;3216.(1)()5.530a +棵(2)二班 17.(1)3(2)1或5(3)8。
数学人教版七年级上册整式加减计算题以及解题步骤
整式加减计算题例题例1、合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解:(1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号)=2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (及时合并同类项)=2a+8a-8b (去中括号)=10a-8b(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0,求C。
解:(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2A-B+C=0∴C=-2A+B=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3.计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)=-m2-mn-n2 (按m的降幂排列)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2。
初一数学上册整式练习题
2021-2022学年度 秋季 七年级上学期 人教版数学初一数学上册整式练习题1、计算或化简)753(132)1(22-+-++-x x x x(2)(4x 2y-3xy 2)-(1+4x 2-3xy 2)(3) 22314[(3)3]22x x x x ---+2.先化简,后求值:(1)1)32(34922---+y xy x xy ,其中1=x ,1-=y(2)()()[]a a a a a 3252a 52222-----,其中a=4(3)(x 3-2y 3-3 x 2y )-[3(3x 3-2y 3)-4x 2y ],其中x= -2, y= -13.已知2222539,822y xy x B x y xy A -+=+-=,求(1)B A -;(2)B A 23+-。
4.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3,求()cd x cd b a x -++-25.当多项式()()13212x 522--+---x n x m 不含二次项和一次项时,求m 、n 的值。
6.解答题(1) ()()的值。
求且若b a c c b a a -⋅=-=++-32,21,0212(2) 已知m n n m -=-,且4m =,3n =,求 的值2()m n +=(3)若单项式-3a 2-m b 与b n+1a 2是同类项,求代数式m 2-(-3mn+3n 2)+2n 2的值.人教版七年级数学上册必须要记、背的知识点1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上整式练习
1、_________________________________________________ 下列各式是单项式的有(填序号):_________________________________________ .
X + 1 2 2 2 1
①一^;②abc;③b ;④—5ab :⑤y + x;⑥—xy;⑦—㊁;⑧c.
2、若式子6a m b4是六次单项式,则m=_____ .
3、若一个圆柱形蓄水池,底面半径为r,高为h,则这个蓄水池最多可蓄水_________ .
4、某种股票原价格为a元,连续两天上涨,每次涨幅10%则该股票两天后的价格为(A)
A. 1.21a 元 B . 1.1a 元
C. 1.2a 元 D . (a + 0.2)元
5、下列关于单项式一3xy的说法中,正确的是()
5
3
A. 系数是一?次数是2
5
3
B. 系数是3,次数是2
5
C. 系数是一3,次数是3
3
D. 系数是—3,次数是3
5
2 3
6、多项式3x y—xy + 5xy —1 是一个()
A.四次三项式 B .三次三项式
C.四次四项式D .三次四项式
7、对于下列四个式子:①0.1 :②x+y:③2④彳.其中不是整式的是()
2 m n
A.① B .② C .③ D .④
8若代数式mx+ 5y2—2x2+ 3的值与字母x的取值无关,则m的值是__________ 9、若m n互为相反数,则8m+ (8n —3)的值是 ___________
10、若多项式2x 2 + 3x +
7的值为10,则多项式6x 2 + 9x — 7的值为 11、如图,在一个长方形休闲广场的中央设计一个圆形的音乐喷泉,若圆形音乐喷泉
的半径为r 米,广场的长为a 米,宽为b 米,则广场空地的面积表示为
方米.
A . 3a + 2b C . 6a + 2b 14、用不同的方法表示出阴影部分的面积.(至少
写出两种)
时,多项式x 2+ kxy — 3y 2— 3xy — 5中不含xy 项. _ _ 4 3 2 ___ 3 2
16、已知关于x 的多项式3x — (m + 5)x + (n — 1)x — 5x + 3不含x 和x 项,贝卩m +2n=
17、化简:(1) 4a — 3a + 3—3( — a + 2a + 1).
1 2 1 1
12、礼堂第一排有m 个座位,后面每排都比前一排多一个座位,则第 n 排的座位数是
A . m +1
.m + (n — 1) C. m +(n + 1) .m + n
13、如图,将边长为 3a 的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为 2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为
[ ----- H .....................
丄
.3a + 4b
.6a + 4b
15、当 k =
先化简,再求值:(2) 4(—4x+ 2x —8) —(2X—1),其中x=2;.
18. 有理数a、b、c在数轴上的位置如图所示,化简:|a —c| —|b| —|b —a| + |b + a|.
19 .有这样一道题:计算(2x3—3x2y —2xy2) —(x3—2xy2+ y3) + ( —x3+ 3x2y—y3)的值, 其中x = 2, y = — 1.甲同学把x = 2误抄成x= —2,但他计算的结果也是正确的,试说明理由,并求出这个结果.
20、已知一个两位数,其十位数字是a,个位数字是b.
(1) 写出这个两位数;
(2) 若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?
21. 观察下列单项式:—x, 3x2,—5x3, 7x4,…,—37x19, 39x20,…,回答下列问题:
(1) 这组单项式的系数的规律是什么?
(2) 这组单项式的次数的规律是什么?
(3) 根据上面的归纳,你可以猜想出第n个单项式是什么?
(4) 请你根据猜想,写出第2 017,2 018个单项式.
1 1
22、如果关于x的多项式ax4+ 4x2—㊁与3x b+ 5x是同次多项式,求尹3—2b2+ 3b—4的值.
巩固练习:多项式(2x2+ ax—y + 6) —(2bx2—3x + 5y —1)的值与字母x的取值无关,试
1 1
求多项式~a3—2b2—(~a3—3b2)的值.。