自动控制理论系统框图
自动控制原理方框图
[注意]:
相临的信号相加点位置可以互换;见下例
X1(s)
X2(s)
X3(s)
Y (s)
X1(s)
X3(s)
X 2 (s)
Y (s)
同一信号的分支点位置可以互换:见下例
X1(s)
X (s) G(s) Y (s)
X 2 (s)
X (s) G(s) Y (s)
X 2 (s)
X1(s)
相加点和分支点在一般情况下,不能互换。
§2-3 控制系统的结构图与信号流图
一、结构图的组成和绘制
1、结构图的组成 由四种基本图形符号组成
(1)函数方块
R(s) r(t) G(s)
C(s) c(t)
(2)信号线
R(s) r(t)
(3)分支点(引出点)
R(s) r(t)
R(s) r(t) R(s) r(t)
(4)综合点(比较点或相加点)
R(s)
R
R1Cs
2I
2
(s)
UI (cs)(s)
R2
R1
Uc (s)
U c (s)
I1 (s)
Uc (s)
几点说明:
(1)在结构图中,每一个方框中的传递函数都应是考虑了负 载效应后的传递函数。
(2)描述一个系统的结构图不是唯一的,选择不同的中间变 量得到不同的结构图;
(3)结构图中的方框与实际系统的元部件并非一定是一一对 应的;
X1(s) G(s) X2(s) N(s)
Y (s)
N(s) ? Y (s) [X1(s) X 2 (s)]G(s), 又 : Y (s) X (s)1G(s) X 2 (s)N(s), N(s) G(s)
把相加点从环节的输出端移到输入端:
自动控制原理方框图
自动控制原理方框图自动控制原理方框图是指在自动控制原理的基础上,通过方框图的形式来描述和分析控制系统的结构和动态特性。
方框图是一种直观、简洁的表示方法,能够清晰地展现控制系统的各个组成部分之间的关系,有利于工程师们对控制系统进行分析、设计和调试。
在自动控制系统中,方框图是一种非常重要的工具,它能够帮助工程师们更好地理解系统的结构和工作原理,从而更好地进行系统的设计和优化。
方框图可以将控制系统的各个组成部分以及它们之间的相互作用清晰地表示出来,有利于工程师们对系统进行全面的分析和评估。
自动控制原理方框图主要包括系统的输入、输出、控制器、执行器和被控对象等几个基本组成部分。
通过方框图,我们可以清晰地看到这些组成部分之间的关系,以及它们是如何相互作用的。
这有助于工程师们更好地理解系统的工作原理,从而更好地进行系统的设计和调试。
在实际工程中,方框图常常被用于描述和分析各种类型的控制系统,比如PID控制系统、模糊控制系统、神经网络控制系统等。
通过方框图,工程师们可以清晰地看到系统的结构和动态特性,有助于他们更好地理解系统的工作原理,从而更好地进行系统的设计和调试。
除此之外,方框图还可以用于系统的故障诊断和故障排除。
通过对系统的方框图进行分析,工程师们可以清晰地看到系统中存在的问题,并且能够有针对性地进行故障排除。
这对于提高系统的可靠性和稳定性非常重要。
总的来说,自动控制原理方框图是一种非常重要的工具,它能够帮助工程师们更好地理解和分析控制系统,有助于他们更好地进行系统的设计和调试。
因此,掌握方框图的绘制和分析方法对于自动控制工程师来说是非常重要的。
希望通过本文的介绍,能够对方框图有一个更加清晰的认识。
自动控制原理与系统第三章 自动控制系统的数学模型
④将该方程整理成标准形式。即把与输入量有关的 各项放在方程的右边,把与输出量有关的各项放在 方程的左边,各导数项按降幂排列,并将方程中的 系数化为具有一定物理意义的表示形式,如时间常
二、微分方程建立举例
[例3-1]直流电动机的微分方程。
1.直流电动机(Direct-Current Motor)各物理量间的 关系。
②在各环节功能框的基础上,首先确定系统的 给定量(输入量)和输出量,然后从给定量开始,由
左至右,根据相互作用的顺序,依次画出各个环节, 直至得出所需要的输出量,并使它们符合各作用量 间的关系。
③然后由内到外,画出各反馈环节,最后在图上标 明输入量、输出量、扰动量和各中间参变量。
④这样就可以得到整个控制系统的框图。
①列出直流电动机各个环节的微分方程[参见 式3-1~式3-4],然后由微分方程→拉氏变换式→ 传递函数→功能框。今将直流电动机的各功能框列 于表3-1中。
②如今以电动机电枢电压作为输入量,以电动 机的角位移θ 为输出量。于是可由开始,按照电动 机的工作原理,由依次组合各环节的功能框,然后 再加上电势反馈功能框,如图3-15所示。
(或环节)的固有特性。它是系统的复数域模型,也 是自动控制系统最常用的数学模型。
3.对同一个系统,若选取不同的输出量或不同 的输入量,则其对应的微分方程表达式和传递函数 也不相同。
4.典型环节的传递函数有
对一般的自动控制系统,应尽可能将它分解为 若干个典型的环节,以利于理解系统的构成和系统 的分析。
它还清楚地表明了各环节间的相互联系,因此它是 理解和分析系统的重要方法。
①全面了解系统的工作原理、结构组成和支配系统 工作的物理规律,并确定系统的输入量(给定量)和 输出量(被控量) ②将系统分解成若干个单元(或环节或部件),然后 从被控量出发,由控制对象→执行环节→功率。
自动控制原理控制系统的结构图
比较点后移
R(s)
G(s)
比较点前移
+
Q(s)
C(s)
R(s)
+
C(s) G(s)
比较点后移
Q(s)
R(s)
+
C(s) G(s)
Q(s)
C(s) R(s)G(s) Q(s)
[R(s) Q(s) ]G(s) G(s)
R(s)
C(s) G(s)
+
Q(s)
G(s)
C(s) [R(s) Q(s)]G(s)
R(s)G(s) Q(s)G(1s6 )
(5)引出点旳移动(前移、后移)
引出点前移
R(s)
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
将 C(s) E(s)G(s) 代入上式,消去G(s)即得:
E(s) R(s)
1
H
1 (s)G(s)
1
1 开环传递函数
31
N(s)
+ E(s)
++
C(s)
R(s)
G1(s)
G2 (s)
-
B(s)
H(s)
(1)
打开反馈
C(s) R(s)
1
G(s) H (s)G(s)
前向通路传递函数 1 开环传递函数
注意:进行相加减旳量,必须具有相同旳量纲。
X1 +
+
X1+X2 R1(s)
自动控制原理方框图的化简课件
化简过程中的误差分析
误差来源分析
分析化简过程中可能产生的误差来源,如近似处理、线性化等。
误差传递与影响
评估误差对系统性能的影响,了解误差传递的方式和程度。
误差补偿与修正
根据误差分析结果,采取适当的补偿和修正措施,减小误差对系 统性能的影响。
化简后系统的性能分析
稳定性分析
通过化简后系统的传递函数或状态方程,分析系统的 稳定性。
方框图的组成元素
总结词
方框图由输入、输出、转换和反馈四个基本元素组成。
详细描述
方框图由输入、输出、转换和反馈四个基本元素组成。输入是系统接收的信号 或信息,输出是系统输出的信号或信息,转换是系统内部对输入进行处理的过 程,反馈则是系统对输出的反应或调整。
方框图的作用
• 总结词:方框图可以清晰地表示系统的结构、功能和动态特性。
04
方框图化简的注意事项
化简方法的适用性
确定化简方法的适用范围
01
不同的化简方法适用于不同类型和规模的方框图,应先判断所
处理的方框图是否适用。
理解化简方法的原理
02
掌握化简方法的原理和步骤,确保正确应用化简方法。
考虑化简后的系统性能
03
在化简方框图时,应考虑化简对系统性能的影响,如稳定性、
动态响应等。
02
通过化简方框图,可以快速识 别故障传递路径和关键环节, 提高故障诊断的效率和准确性 。
03
化简后的方框图可以作为故障 诊断的参考模型,为故障排除 提供指导和支持。
谢谢观看
• 详细描述:方框图具有多种作用。首先,它可以清晰地表示系统的结构,将复杂的系统分解为若干个简单的组成部分, 便于理解和分析。其次,通过方框图可以明确地表示出系统的功能,即各个组成部分的作用及其相互关系。此外,方框 图还可以表示系统的动态特性,例如信号的传递、处理和反馈过程,有助于揭示系统的动态行为和性能。在自动控制原 理中,方框图是分析和设计控制系统的重要工具之一。通过对方框图的分析,可以了解系统的性能、稳定性、可控性和 可观测性等方面的问题,为控制系统的设计和优化提供依据。
自动控制原理第二章方框图
R1C2s
(R1C1s 1)(R2C2s 1) R1C2s
(R1C1s 1)(R2C2s 1)
解法二:
ui (s)
-
1 I1(s) - 1 u(s)
R1
I (s) C1s
-
1
1 uo (s)
R2 I2(s) C2s
ui (s) 1
R1
ui (s) 1
R1
-
1
-
C1s
1 R1
-
1
-
C1s
1 R1
1
自动控制原理第二章方框图自动控制方框图闭环控制系统方框图串级控制系统方框图前馈控制系统方框图控制系统方框图单回路控制系统方框图过程控制系统的方框图自动调节系统方框图控制方框图
传递函数的表达形式
有理分式形式:G(s)
b0 s m a0 s n
b1s m1 a1s n1
bm1s an1s
bm an
H3
相加点移动 G3 G1
G3 G1
向同无类用移功动
G2
错!
G2
H1
G(s) G1G2 G2G3 1 G1G2 H1
G2
G1 H1
总的结构图如下:
ui (s)
-
1 I1(s) - 1 u(s)
R1
I (s) C1s
-
1
1 uo (s)
R2 I2(s) C2s
ui (s)
-
C2s
1 I1(s) - 1 u(s)
X 2 (s)
X (s) G(s) Y (s)
X 2 (s)
X1(s)
相加点和分支点在一般情况下,不能互换。
X 3 (s)
X (s)
自动控制原理 控制系统的结构图
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
自动控制理论第六讲 方框图
06
总结与展望
本讲内容总结
方框图基本概念
方框图的绘制方法
介绍了方框图的基本元素,包括方块、箭 头、分支点和交汇点等,以及它们在控制 系统中的含义。
详细讲解了如何根据控制系统的结构和功 能,选择合适的方块和连接方式,绘制出 清晰、准确的方框图。
方框图的分析方法
方框图在控制系统中的应用
介绍了方框图的分析步骤和方法,包括前 向通路、反馈通路、开环传递函数和闭环 传递函数的计算等。
梅森公式介绍
01
梅森公式是一种用于求解复杂控制系统方框图传递函
数的数学方法。
梅森公式应用步骤
02 首先找出所有前向通道、回路和不相交回路的传递函
数;然后按照梅森公式计算系统的总传递函数。
梅森公式在化简复杂方框图中的优势
03
能够简化计算过程,避免繁琐的代数运算,提高求解
效率。
实例分析:典型系统方框图化简过程
05
方框图在控制系统分析中的应用
稳定性分析:通过方框图判断系统稳定性
01
稳定性定义
系统受到扰动后,能够自动恢复到平衡状态的能力。
02 03
稳定性判据
通过方框图中各环节传递函数的极点位置,判断系统是否稳定。若极点 全部位于复平面的左半部分,则系统稳定;若有极点位于复平面的右半 部分,则系统不稳定。
结合实际工程问题进行实践
通过实际工程问题,将所学的方框图知识应用到实践中去,提高分析 和解决问题的能力。
拓展相关领域的知识
学习与自动控制理论相关的其他领域知识,如现代控制理论、智能控 制等,以完善自己的知识体系。
THANKS
感谢观看
方框图的作用
方框图是一种用图形符号表示系统各 环节间相互关系的图解表示法,它简 洁明了地表示了系统的结构和功能。
自动控制原理 第1章_自动控制系统的基础知识
第1章 自动控制系统的基础知识
教学重点
了解自动控制系统的基本结构和特点及其 工作原理; 了解闭环控制系统的组成和基本环节; 掌握反馈控制系统的基本要求-稳定性、 动态和稳态性能指标; 学会自动控制系统的类型及本质特征。
●
1.2 自动控制系统的基本原理
1.自动控制系统的基本概念
自动控制:没有人的直接干预,利用控制装置使被控对 象(如生产设备)的工作状态或被控制量按照预定的规 律运行。 ● 自动控制系统:实现上述自动控制的目的,由相互联系 和制约的各部件组成的具有特定功能的整体称为自动控 制系统。
●
2.自动控制系统的组成
教学难点
自动控制系统的基本工作原理,自动控制 系统的结构及特点、组成和基本环节,自 动控制系统的性能指标,自动控制系统的 类型。
概述:在人类社会走向信息化的今天,计算机、 通信、信息处理技术的发展对社会经济以及人类 生活产生了巨大影响。其中,自动控制作为一种 技术手段已经广泛地应用于工业、农业、国防以 及日常生活和社会科学的各个领域。 自控理论:自动控制理论就是研究自动控制共同 规律的科学技术,自动控制原理仅是工程控制论 中的一个分支,是研究控制系统分析和设计的一 般理论。 本章内容:本章是自动控制技术及应用的基础, 主要介绍自动控制的基本原理和概念,自动控制 系统的组成和分类,以及自动控制系统的性能指 标等。
●
2.现代控制理论
●
● ●
研究对象:多输入-多输出系统(线性定常或非 线性时变) 研究方法:状态空间方法 代表人物:庞特里亚金(极大值原理)、贝尔曼 (动态规划原理)、卡尔曼(卡尔曼滤波)等
3.大系统理论和智能控制
自动控制理论 2-4 传递函数及方块图
1 C2s
1
uo (s)
C2s
1
uo (s)
C2s
18
结构图等效变换例子||例2-11
ui (s) 1
R1
-
R1
C2s
R1C1s 1 R2C2s 1
1 uo (s) C2s
ui (s) 1
R1
R1C2 s (R1C1s 1)( R2C2s 1) R1C2s
1 uo (s) C2s
G(s) uo(s)
1
- R1
R1C2 s
1 u(s)
C1s
1 R2C2s 1
uo (s)
16
ui (s) -
结构图等效变换例子||例2-11
1 R1C1s 1
R1C2 s 1
R2C2s 1
uo (s)
1
G(s) uo (s) (R1C1s 1)(R2C2s 1)
1
ui (s) 1
R1C2s
(R1C1s 1)(R2C2s 1) R1C2s
R
(s)
CR (s) R(s)
1
G1 (s)G 2 (s) G1 (s)G 2 (s)H(s)
N
(s)
C N (s) N(s)
1
G 2 (s) G1 (s)G 2 (s)H(s)
4、R(s) N(s)同时作用
C(s) CR (s) CN (s)(s) R (s)R(s) N (s)N(s)33
(R1C1s 1)(R2C2s 1)
17
解法二:
结构图等效变换例子||例2-11
ui (s)
-
1 I1(s) - 1 u(s)
R1
I (s) C1s
自动控制原理--系统的结构图
R(s)
C(s)
G(s)
(-)
B(s)
R(s) G(s)
B(s) G(s)
C(s) (-)
•相 加 点 的 移 动
3. 交换或合并相加点
C(s)=E1(s)+V2(s) = R(s)-V1(s)+V2(s) = R(s)+V2(s)-V1(s)
V2(s)
R(s)
E1(s)
C(s)
(-) V1(s)
系统动态结构图
定义:将系统中所有的环节用方框图表示, 图中标明其传递函数,并且按照在系统中各 环节之间的联系,将方框图连接起来。
系统动态结构图的绘制步骤:
● (1)首先按照系统的结构和工作原理,分解出各环 节并写出它的传递函数。
● (2)绘出各环节的动态方框图,方框图中标明它的 传递函数,并以箭头和字母符号表明其输入量和输 出量,按照信号的传递方向把各方框图依次连接起 来,就构成了系统结构图。
C(s)
G(s)
R(s)
1 G(s)H(s)
• 例2.9
R(s) G1(s)
G2(s)
(-)
G3(s)
(-)
C(s) G6(s)
G4(s) G5(s)
G 236 (G 2 G 3 )G 6
G 54 G 5 G 4
G
1
G 236 G 236G 54
G1
● 比较点和引出点的移动: 等效原则:前向通道和反馈通道传递函数都不变。
G4
(a)
(b)
•其 它 等 价 法 则
1. 等效为单位反馈系统
R(s)
C(s)
G(s)
(-)
H(s)
R(s) 1
自动控制原理
上一页 下一页
返回
1. 2自动控制系统的组成与系统原理 框图
• 把系统(或环节)的输出信号直接或经过一些环节又送回到 输入端的做法叫做反馈。如图1一3所示,把系统的输出信 号通过检测变送装置送回到系统输入端的就是反馈。当系 统反馈信号取负值,并与给定值相加时,属于负反馈;当 反馈信号取正值,与给定值相加时,属于正反馈。自动控 制系统的主反馈一般是负反馈。 • 从系统的输入量r(t)沿着箭头方向到系统的输出量c(t),称 该信号通道为前向通道。而从系统的输出量沿着箭头方向 到系统的输入端,则称该信号通道为反馈通道。
上一页 下一页
返回
1. 4对自动控制系统
• • • • 1.4.2对自动控制系统的基本要求 对一个自动控制系统的基本要求为稳定性、快速性和准确性。 1.稳定性 对任何自动控制系统,首要条件是系统必须稳定。只有系统稳定,才 能正常工作。 • 稳定性是指系统受到扰动作用或给定值发生变化时,其动态过程的振 荡倾向和重新恢复状态的能力。 • 当系统受到扰动作用或给定值发生变化时,被控量就会偏离给定值, 如果经过系统的自身调节,系统能回到或接近原来的给定值,这样的 系统就是稳定的系统;否则,系统不能回到或接近原来的给定值,这 样的系统就是不稳定的系统。
上一页 下一页
返回
1. 4对自动控制系统
• 2.快速性 • 快速性是通过动态过渡过程时间的长短来表示的,如图1一11所示。 过渡过程时间越短,则快速性就越好;反之,过渡过程时间越长,则 快速性就越不好。 • 3.准确性 • 准确性是由系统达到稳态时,给定值与实际值之差来体现的,如图1 一12所示。它反映了系统的稳态精度。 稳定性、快速性和准确性往 往是互相制约的。在设计与调试的过程中,若过分强调某方面的性能, 则可能会使其他方面的性能受到影响。
自动控制原理第二章方框
在自动控制原理中,串联方框通常表示线性元件或环节,它们的输出是输入的线性变换。因此,当多 个串联方框连接在一起时,可以将它们的输出和输入端连接在一起,简化为一个单一的方框,这个方 框的传递函数是所有串联方框传递函数的乘积。
并联方框的简化
总结词
并联方框的简化是将多个并联的方框简化为单一方框,通过将多个方框的输出端合并为单一输出实现。
输入信号的特性
决定了系统输出信号的变 化规律,是分析系统性能 的重要依据。
常见的输入信号
阶跃信号、正弦信号数
描述系统内部动态特性的数学模型, 表示系统输出与输入之间的函数关系。
传递函数的定义
传递函数的性质
与时间变量无关,只与系统内部参数 有关,决定了系统对输入信号的响应 特性。
方框图的绘制方法
01
02
03
确定系统组成部分
首先需要确定系统的各个 组成部分,并了解它们的 功能和相互关系。
绘制方框图
根据各组成部分之间的关 系,使用方框、箭头和文 字绘制方框图。
标注参数和变量
在方框图中标注各组成部 分的参数和变量,以便于 分析和设计。
02
方框图的组成
输入信号
输入信号
表示系统外部对系统的激 励或作用力,是系统输入 端所接收的信号。
VS
详细描述
在自动控制原理中,反馈环是由一系列的 串联和并联方框组成的闭环系统。为了简 化方框图,可以将反馈环中的某些环节省 略,从而消除反馈环。这种简化方法可以 减少系统的复杂性和计算难度,但需要注 意保留必要的反馈环节以保持系统的稳定 性和性能。
04
方框图的分析
稳定性分析
1
稳定性分析是控制系统的重要特性,它决定了系 统在受到扰动后能否回到平衡状态。
自动控制原理控制系统的结构图
I1(s)
I2 (s)
CR1s
7
i2
C
i
i1 R1
ui
R2
uo
(3)
I(s) I1(s) I2 (s)
I2 (s)
I (s)
I1(s)
(4)U o (s) R2 I (s)
I (s)
Uo (s)
R2
8
(1)Ui (s)
(3)
- Uo(s)
I2 (s)
(2)
1
I1(s)
I1(s)
I2 (s)
- Uo (s)
(d)
将图(b)和(c)组合起来即得到图(d),图(d)为该 一阶RC网络的方框图。
11
2.3.3 系统结构图的等效变换和简化
为了由系统的方框图方便地写出它的闭环传递函 数,通常需要对方框图进行等效变换。
方框图的等效变换必须遵守一个原则,即: 变换前后各变量之间的传递函数保持不变
在控制系统中,任何复杂系统的方框图都主要由 串联、并联和反馈三种基本形式连接而成。
u
o
idt c
对其进行拉氏变换得:
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
10
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
Ui (s)
I(s)
(b)
Uo (s)
I(s)
(c)
Uo (s)
Ui (s)
I(s)
Uo (s)
自动控制理论实验
自动控制理论实验实验一典型环节的时域响应学号:姓名:实验一 典型环节的时域响应一、实验目的1. 掌握典型环节模拟电路的构成方法,传递函数及输出时域函数的表达式。
2. 熟悉各种典型环节的阶跃响应曲线。
3. 了解各项参数变化对典型环节动态特性的影响。
二、 实验设备Pc 机一台,TD-ACC+教学实验系统一套三、 实验原理及内容1. 比例环节1) 结构框图图1-1 比例环节的结构框图2) 传递函数K S C S R =)()( 3) 阶跃响应K t C =)( )0(≥t 其中 01/R R K =4)模拟电路图1-2 比例环节的模拟电路图5)阶跃响应i.R0=200k R1=100k输入方波幅值4.615V,输出方波幅值2.307V,实测比例放大倍数和理论值一致。
ii.R0=200k R1=200k输入方波幅值3.897V ,输出方波幅值3.927V ,实测比例放大倍数和理论值在误差允许范围内。
2. 积分环节1) 结构框图图1-3 积分环节的结构框图2) 传递函数TSS C S R 1)()(=3) 阶跃响应t Tt C 1)(=)0(≥t 其中 C R T 0= 4) 模拟电路图1-4 积分的模拟电路图5)阶跃响应i.R0=200kΩC=1uF积分时间常数T=200ms,理论值T=200ms,实测值和理论值结果一致。
ii.R0=200kΩC=2uF积分时间常数T=406.3ms ,理论值T=400ms ,实测值和理论值结果接近。
3. 比例积分环节1) 结构框图图1-5 比例积分环节的结构框图2) 传递函数TSK S C S R 1)()(+=3) 阶跃响应t TK t C 1)(+= )0(≥t 其中 01/R R K = ;C R T 0= 4) 模拟电路图1-6 比例积分环节的模拟电路图5)阶跃响应i.R0=200k R1=200k C=1u积分时间常数T=203.1ms,理论值T=200ms,实测值和理论值结果接近。
自动控制系统的基本组成及方块图
y
100%
y
2.余差C(静态偏差) :新的稳态值与给定值之差。
反映了控制系统的控制精确度,希望余差越小越好。
3.衰减比和衰减率 :
衰减比:表示过渡过程的衰减程度。 过渡过程同方向前后相邻两峰值的比。
n B B
n<1,过渡过程是发散振荡;
n=1,过渡过程是等幅振荡;
n>1,过渡过程是衰减振荡。
测量变送器:直接测量被控变量,并转换成标准统一信 号的仪表(TT表示)。
第四节 过程控制系统的质量指标
一、系统的静态、动态和扰动作用 自动控制系统在运行中有两种状态:
1. 静态(稳态):干扰及给定值保持不变,被控参数 不随时间变化,整个系统处于相对的平衡状态, 系统的各个组成环节都暂不动作,输出信号处 于相对静止状态。 各变量(或信号)的变化率为零。
控 制 器: 根据测量值与给定值所的偏差按一定的数学 运算规律输出操纵值(TC表示)。
控制作用u:控制信号。
执 行 器: 通常指调节阀,也可以是变频调速机构等。
控制参数q: 受执行器控制的工艺变量。
被控参数y:要求实施控制的参数,一般是工艺操作的物 理量。
控制过程: 被控制的机器或设备(换热器)。 干 扰 f:引起被控变量发生变化的各种因素。
LC—液位控制器 FC—流量控制器 TC—温度控制器 PC—压力控制器
AT—成分变送器 AC—成分控制器
如图所示为一反应器温度控制系统流程图,A、 B两种物料进入反应器进行反应,通过改变进入夹套 的冷却水流量来控制反应器内的温度不变。试画出 该温度控制系统的方框图,并指出该系统的被控过 程、被控参数、控制参数及可能影响被控参数的干 扰是什么?
一般取 n=4:1--10:1
自动控制原理(2-2)2.5 框图及其化简方法
2.5 框图及其化简方法
• 引言
• 结构图的组成
• 系统结构图的建立
• 闭环系统的结构图
• 结构图的简化和变换规则
引 言
根据不同的功能,可将系统划分为若干环节或者 叫子系统,每个子系统的功能都可以用一个单向 性的函数方块来表示。 方块中填写表示这个子系统的传递函数,输入量 加到方块上,那么输出量就是传递结果。
按照上述方程的顺序,从输出量开始绘制系统的
结构图,其绘制结果如图2-7(c)所示(注意这是一个 还没有经过简化的系统结构图)。 注意:一个系统可以具有不同的结构图,但由结 构图得到的输出和输入信号的关系都是相同的。
三、闭环系统的结构图
R( s)
+ -
E ( s)
C (s)
G( s)
B( s ) H ( s)
图2-9 扰动作用下的闭环系统结构图
如果有扰动存在,根据线性系统满足叠加性原理的 性质,可以先对每一个输入量单独地进行处理,然后
将每个输入量单独作用时相应的输出量进行叠加,就
二、系统结构图的建立
–
建立控制系统各部件的微分方程(注意相邻 元件之间的负载效应影响);
–
对各微分方程在零初始条件下进行拉氏变换,
并作出各元件的方块图; 按照系统中各变量的传递顺序,依次将各元 件的框图连接起来,便得到系统结构图。
–
例2-8 在图2-7(a)中,电压u1(t)、u2(t)分别为输入量和 输出量,绘制系统的结构图。
根据系统中信息的传递方向,将各个子系统的函数 方块用信号线顺次连接起来,就构成了系统的结构 图,又称系统的方块图。 系统的结构图实际上是系统原理图与数学方程的 结合,因此可以作为系统数学模型的一种图示。
总结自动控制系统实例框图
文件编号: 31-C7-EC -7D -7A整理人 尼克自动控制系统实例框图自动控制原理知识要点与习题解析第2章 控制系统的数学模型数学模型有多种表现形式:传递函数、方框图、信号流图等。
r(t) n(t); c(t) e(t) ⋯ ; G(s) H(s) Φ(s) Φe (s) Φn (s) Φen (s);P32 (自动控制原理p23)1.知控制系统的方框图如题2-17图所示,试用方框图简化方法求取系统的传递函数。
P33解: 方框图简化要点,将回路中的求和点、分支点等效移出回路,避免求和点与分支点交换位置。
(e)Φ(s)=G 1G 2G 31+G2H 1−G 1G 2H 1+G 2G 3H 2+G 4;P37 (p73)2-21 试绘制与题2-21图中系统方框图对应的信号流图,并用梅森增益公式求传递函数C (s )/R (s ) 和误差传递函数E (s )/R (s )E (s)C (s)R (s)G 4(s) G 1(s)G 2(s)G 3(s)题2-1 7图 控制系统方框图(e)C (s)R (s) - - G 4(s)H 1(s)H 2(s) G 1(s) G 2(s) G 3(s)C (s)R (s)-G 4(s)H 1(s)/G 3(s) H 2(s)G 1(s)G 2(s)G 3(s)/[1+G 2 (s)H 1(s)] 题2-17解图 控制系统简化方框图H 1(s) C (s)R (s)--G 4(s)H 1(s) H 2(s)G 1(s)G 2(s)G 3(s) 1/G 3(s) 1/G 3(s)注:P21(2) 依据系统方框图绘制信号流图首先确定信号流图中应画出的信号节点,再根据方框图表明的信号流向,用支路及相应的传输连接信号节点。
步骤如下,(a)系统的输入为源点,输出为阱点;(b)在方框图的主前向通路上选取信号节点,即相加点后的信号和有分支点的信号,两信号是同一个信号时只作为一个节点;(c)其它通路上,仅反馈结构求和点后的信号选作节点; (d)最后,依据信号关系,用支路连接这些节点。
自动控制理论系统框图
1、图1是一个液位控制系统原理图.自动控制器通过比较实际液位与希望液位来调整气动阀门的开度,对误差进行修正,从而达到保持液位不变的目的。
(1)画出系统的控制方框图(方框内可用文字说明),并指出什么是输入量,什么是输出量。
(2)试画出相应的人工操纵液位控制系统方块图.解:(1)系统控制方框图如图1所示.如图所示,输入量:希望液位;输出量:实际液位.(2)相应的人工操纵液位控制系统方块图如图2所示.希望液位实际液位肌肉、手阀门水箱眼睛图2脑2、图2是恒温箱的温度自动控制系统。
要求:(1)指出系统的被控对象、被控量以及各部件的作用,画出系统的方框图;(2)当恒温箱的温度变化时,试述系统的调节过程;(3)指出系统属于哪种类型?图2 温度控制系统解:(1)被控对象:恒温箱;被控量:温度;电阻丝:加热;热电偶:测温;电位器:比较;电压放大、功率放大:误差信号放大;电机、减速器、调压器:执行部件。
电机减速器调压器(2)设给定温度T0,当T 〉T0时,e 〈0,电机反转,调压器给出电压下降,恒温箱温度T 下降;反之,当T<T0时,e 〉0,电机正转,调压器给出电压上升,恒温箱温度T 上升. (3)系统属于恒值控制系统.3、 图3是仓库大门自动控制系统原理图。
(1) 说明系统自动控制大门开闭的工作原理; (2) 画出系统方框图.图3放大器伺服电动机绞盘关门开关开门开关门u仓库大门自动控制系统原理图、解:(1)工作原理:当合上开门开关时,电位器桥式测量电路产生一个偏差电压信号.此偏差电压经放大后,驱动伺服电动机带动绞盘转动,使大门向上提起。
与此同时,与大门连在一起的电位器电刷上移,使桥式测量电路重新达到平衡,电动机停止转动,开门开关自动断开。
反之,当合上关门开关时,伺服电动机反向转动,带动绞盘转动使大门关闭,从而实现远距离自动控制大门开启的要求。
(2)仓库大门自动控制系统原理方框图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、图1是一个液位控制系统原理图。
自动控制器通过比较实际液位与希望液位来调整气动阀门的开度,对误差进行修正,从而达到保持液位不变的目的。
(1)画出系统的控制方框图(方框内可用文字说明),并指出什么是输入量,什么是输出量。
(2)试画出相应的人工操纵液位控制系统方块图。
解:
(1)系统控制方框图如图1所示。
如图所示,输入量:希望液位;输出量:实际液位。
(2)相应的人工操纵液位控制系统方块图如图2所示。
希望液位实际液位
肌肉、手阀门水箱
眼睛
图2
脑
2、图2是恒温箱的温度自动控制系统。
要求:(1)指出系统的被控对象、被控量以及各部件的作用,画出系统的方框图;
(2)当恒温箱的温度变化时,试述系统的调节过程;
(3)指出系统属于哪种类型
图2 温度控制系统解:(1)被控对象:恒温箱;被控量:温度;
电阻丝:加热;热电偶:测温;电位器:比较;电压放大、功率放大:误差信号放大;
电机、减速器、调压器:执行部件。
电机
减速器
调压器
(2)设给定温度T0,当T>T0时,e<0,电机反转,调压器给出电压下降,恒温箱温度T 下降;反之,当T<T0时,e>0,电机正转,调压器给出电压上升,恒温箱温度T 上升。
(3)系统属于恒值控制系统。
3、 图3是仓库大门自动控制系统原理图。
(1) 说明系统自动控制大门开闭的工作原理; (2) 画出系统方框图。
图3放大器
伺服电动机
绞盘
关门开关
开门开关
门
u
仓库大门自动控制系统原理图
、解:(1)工作原理:当合上开门开关时,电位器桥式测量电路产生一个偏差电压信号。
此偏差电压经放大后,驱动伺服电动机带动绞盘转动,使大门向上提起。
与此同时,与大门连在一起的电位器电刷上移,使桥式测量电路重新达到平衡,电动机停止转动,开门开关自动断开。
反之,当合上关门开关时,伺服电动机反向转动,带动绞盘转动使大门关闭,从而实现远距离自动控制大门开启的要求。
(2)仓库大门自动控制系统原理方框图:。