七年级数学有理数的除法
七年级数学上册有理数的除法知识梳理人教版
有理数的除法【知识梳理】1、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除.0除以任何非0的数都得0.(注意:0不能作除数.)2、除法的法则也可以这样说,除以一个数,就等于乘以这个数的倒数.(注意:0没有倒数,即0不能作除数.)3、如何求一个数的倒数互为倒数的两个数乘积为1,所以知道其中一个数,求它的倒数就用1除以这个数即可. 如:求53-的倒数,1÷(53-)=35- 所以35-是53-的倒数. 4.几个非0的有理数相除,商的符号怎样确定?几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如:(-12)÷(-2)÷(-3)——三个负数相乘取负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数相乘取正=+(12÷2÷3)=2【重点、难点】有理数的除法法则、倒数的求法【典例解析】例1、 计算:(1)—42÷(—6);(2)25.1)1212(÷- 解:(1)—42÷(—6)=7;(2)25.1)1212(÷-=35541225-=⨯-. 说明: 不能整除的情况下,特别当除数是分数时,应将除法化为乘法来做.例2、求下列各数的倒数,并用“>”连接. -32,-2,|21|,3,-1分析:用“1÷此数”的方法,求这个数的倒数,再将所有的倒数从大到小连接起来. 解:1÷(-32)=-23 -32的倒数是-231÷(-2)=-21 -2的倒数是-21|21|=21,1÷21=2,21的倒数是2 1÷3=31 3的倒数是311÷(-1)=-1 -1的倒数是-1.∴2>31>-21>-1>-23注意:“-32的倒数是-23”,不能用“=”连接-32和-23,因为它们是不相等的,所以一般来说互为相反数的两个数不能用“=”连接,除了-1和1这两个数和它们的倒数外.例3、计算:(-5)÷(-7)÷(-15)分析:三个数连除,先确定商的符号——利用负数的个数;再将除法变为乘法——除以一个数等于乘以这个数的倒数;最后利用乘法法则进行运算.解:(-5)÷(-7)÷(-15)=-(5÷7÷15)——先确定符号 =-(5×71×151)——再将除法变乘法除数变为倒数 =-211例4、计算:72×(-8)÷(-12)点拨:乘除法是同级运算,它们进行混合时,可从左至右逐步计算,注意符号.还可以将式子中的除法变为乘法,直接进行乘法运算.注意:除法没有结合律,即“a ÷b ÷c =a ÷(b ÷c )”是错误的.解法一:72×(-8)÷(-12)——从左到右先乘法再除法逐步计算.=-(72×8)÷(-12)=-576÷(-12)=+48.解法二:72×(-8)÷(-12) =+(72×8×121)——确定符号,除法变乘法=48【过关试题】一、填空题:1、 -2的倒数是 ;-0.2的倒数是 ,负倒数是 。
人教版七年级上册数学有理数的除法法则
活动3 知识归纳
1.除以一个不等于0的数,等于乘以这个数的 倒数 , 即a÷b= a·1b(b≠0) .
2.两数相除,同号得 正 ,异号得 负 ,并把绝对值相除.
3.0除以任何一个不等于0的数,都得 0 .
4.分数可以理解为 分子 除以 分母 ,分数线代表 除号 .
活动4 例题与练习
例1 计算:
(2) −12
分数可以 理解为分子除 以分母.
= (-45) ÷ (-12)
= 45 ÷12
15 =4
例3 计算:
(1)(-0.33)÷-31÷(-11);
解:原式
=-13030×3×111 =-1090
(2)-213÷-116÷-154.
解:原式
=-37×67×95 =-190
练习
1.教材P35 练习.
2.教材P36 第1个练习第1题.
3.如果a+b<0,且 b >0,那么下列结论成立的是 a
A.a>0,b>0
B.a<0,b<0
C.a>0,b<0
D.a<0,b>0
( B)
练习
4.当a=-3,b=-2,c=5时,a÷|b|÷c的值为
A.-1
B.-
3 10
C.
3 10
D.1
5.已知|x|=4,|y|=
(1) (-36)÷9;
解:(1) (-36)÷9 =- (36÷9 ) =- 4;
(2)
12 − 25
÷
3 −5
(2)
12
3
− 25 ÷ − 5
12
5
= − 25 × − 3
4 =5
例2 化简下列分数:
(1)
−12 3
;
〖数学〗有理数的除法法则课件 2024—-2025学年人教版数学七年级上册
(3) -2.5÷
×(-4).
解:原式 =
课堂训练
2.填空:
(1)若 a, b 互为相反数,且 a b,则 a ___1____;
b
a
(2)当
a
0
时,
a
=_____1__;
(3)若 a b, a 0, 则 a, b 的符号分别_a___0_,_b___0____.
b
(4)若﹣3x=12,则x=_____4__.
45 12
15 4
新知探究
例2 计算:
(1) 1255 5
7
(2) 2.5 5 ( 1 )
84
解:(1)原式 125 5 5
7
(2)原式 5 8 1
254
(125 5 ) 1
1
75
125 1 5 1 5 75
25 1 25 1 77
乘除法混合运算,确定积的 符号,将小数化为分数
二、有理数除法化为有理数乘法以后,可以利用有理数乘法 的运算律简化运算. 三、乘除混合运算往往先将除法化为乘法,然后确定积的符号, 最后求出结果.(乘除混合运算按从左到右的顺序进行计算)
课堂训练
Байду номын сангаас
1. 计算: (1) (-1.4)÷(-5.6);
解:原式 =
(2) 8÷(-0.125);
解:原式 = -8×8 = -64.
新知探究
另一方面,我们有8×(-1)=-2 ,
4
于是有8÷(-4)=8×(-1)
4
.
这表明,一个数除以-4可以转化为乘-1来进行,
4
即一个数除以-4,等于乘-4的倒数-1
4
.
问题: 由此你能得到有理数的除法法则吗?
初一数学《有理数的除法》知识点精讲
知识点总结知识点1:有理数除法法则(1) 除以一个数等于乘以这个数的倒数。
即a÷b=a×1/b(b≠0)。
(2) 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
知识点2:有理数的乘除混合运算除转乘,确定符号。
知识点3:有理数的四则混合运算先乘除,后加减,如果有括号,就先算括号里面的。
同级运算中,要按照从左到右的顺序。
知识点4.有理数的除法考点精讲1.4.2有理数的除法1、有理数除法法则1(课本P34)除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a·1/b(b≠0)2、有理数除法法则2(课本P34)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
3、化简分数(课本P35)-45/-12=(-45)÷(-12)=45÷12=15/44、有理数的加减乘除混合运算先乘除,后加减5、用计算器计算计算器的符号键(-)可以用来表示负数的符号。
用计算器计算:(-1.7)×4-(-2.6)÷(-4)-7.45(如图1.4-1)有理数的除法(习题)1.4.2有理数的除法(-6.5)÷0.13(7/4-7/8-7/12)÷(-7)(-7)÷(7/4-7/8-7/12)(-9)×(-11)÷8÷(-125)42×(-2/7)+(-5/4)÷(-0.25)(2)化简下列分数:-42/7,4/-16,-54/-8,-60/25(3)小商店一周的利润是1400元,平均每天的利润是元;小商店一周共亏损840元,平均每天的利润是元。
(4)用“>”“<”或“=”填空:如果a<0,b>0,那么a/b 0,如果a>0,b<0,那么a/b 0,如果a<0,b<0,那么a/b 0,如果a=0,b≠0,那么a/b 0。
七年级数学有理数的除法
例1、计算
随堂练习:
(1)(5/21)÷(-1/7)
(2)(-1)÷(-1.5)
(3)(-3)÷(-2/5)÷(-1/4) (4)(-3)÷[(-2/5)÷(-1/4)]
答案:-5/3;2/3;-30;-15/8
乘积为1的两个有理数互为倒数。其
中一个数是另一个数的倒数。即
若a×b=1,则a与b互为倒数;
观察上式,你能发现什么?
有理数除法法则1: 两数相除,同号得正,异号得
负,绝对值相除。 0除以任何非0的数都得0。 注意:0不能作除数。
1 (1)(-15)÷(-3) (2)(-12)÷(- 4 ) 1 (3)(-0.75)÷0.25 (4)(-12)÷()÷(-100) 12 解:(1)(-15)÷(-3)=+(15÷3)=5 1 1 (2)(-12)÷()=+(12÷ 4 )=48 4 (3)(-0.75)÷0.25=-(0.75÷0.25)=-3 (4)(-12)÷(- 1 )÷(-100) 12 =+(12÷ 1 )÷(-100) 12 =144÷(-100) =-(144÷100)=-1.44
若a与b互为倒数,则a×b=1。
例如:2与1/2,(-3/2)与(-2/3) 分别互为倒数。
一个数的倒数就是用1除以这个数。
有理数的倒数的求法: (1)求一个非0整数的倒数,直接可写成这个数分之 一,即 a的倒数为1/a(a≠0),如-6的倒数为-1/6。
(2)求一个假分数的倒数,只要将分子、分母颠倒一 下即可,即n/m的倒数为m/n,如2/3的倒数为3/2。 (3)求一个带分数的倒数,应先将带分数化成假分数, 再求倒数。 (4)求一个小数的倒数,应先将小数化为分数,再求 2)÷(-3)=? ?×(-3)=-12 4×(-3)=-12 (-12)÷(-3)=4
人教七年级数学上册-有理数的除法(附习题)
当被除数、除数都是整数且能整除时,
选择方法:
先
,
再
.
确定符号
做绝对值的除法
例5
(2)
12 25
3 5
解: (2)
12 25
3 5
12 25
5 3
4 5
当除数是分数时, 一般选择方法: 把除法转化为乘 法进行计算.
总结:
在做除法运算时:先定符号,再算绝 对值.若算式中有小数、带分数,一 般情况下先化成真分数和假分数.
41
1 81
41
1 81
强化练习
计算:
(1)123 1 3
27
(2) 0.75 16 1.2
5
解: (2)0.75 16 1.2
5
3 4
16 5
5 6
2
随堂演练
1.化简下列分数:
(1) 21 7
(2) 3 36
(3) 54 8
解: 3
1
27
12
4
(4) 6 0.3 20
例5 计算:
(1)
(-36) ÷9
(2)
12 25
ቤተ መጻሕፍቲ ባይዱ
3 5
解: (1) (-36)÷9=-(36÷9)=-4
(2)
12 25
3 5
=
12 25
5 3
=4 5
知识点2 有理数除法法则的运用
认真看例5的计算过程,比较两题运用除法法 则的方法有什么不同之处. 例5 计算: (1) (-36) ÷9
解:由题意可列式得 [2.5×3+(-1)×3+4.5×4+(-1.5)×2]÷12 =(7.5-3+18-3)÷12=1.625(万元) 答:这家公司去年平均每月盈利1.625万元.
七年级数学有理数的除法
1、习题1.4 第4题
2、预习教科书第35~37页.
石器时代定义:使用磨制石器为主的时代叫做新石器时代 [1] ,属于石器时代的后期,年代大约从1.8万年前开始,结束时间从距今5000 多年至2000多年不等。在新石器时代的人类已经会使用陷阱捕捉猎物。 这个时期,人类开始从事农业和畜牧,将植物的果实加以播种,并把野生动物驯服以供食用。人类不再只依赖大自然提供食物,因此食物 的来源变得稳定。同时农业与畜牧的经营也使人类由逐水草而居变为定居下来,节省下更多的时间和精力。在这样的基础上,人类生活得 到了更进一步的改善,开始关注文化事业的发展,使人类开始出现文明。 石器时代手游 / 石器时代手游 在中国,这个时代出现了龙虬文化、仰韶文化、河姆渡文化和细石器文化等文明。在新石器时代,人类已经能够制作陶器、纺织,发明了 农业和畜牧业,开始了定居生活。在新石器时代完结后,人类开始进入铜器时代。 挑了喜帕,喝下合衾酒、结发同……”不等喜嬷嬷说完,他就摆了摆手,目光冷冷地盯着端坐在喜床边的新娘,壹把接过喜嬷嬷手中的喜 称,上前壹步,挑了喜帕。他本是打算尽快地应付完这些程序,尽快地打发走这些人,好让他的心清静下来,因此漫不经心地挑完喜帕, 面含怨怒地望向这个毁掉了他全部幸福的诸人。随着喜帕的落下,呈现在他眼前的这个诸人,令他不得不承认,即使是阅人无数的他,也 不得不承认,这是他有生以来,见过的最漂亮的诸人!虽然她正垂着长长的睫毛,看不到她的眼睛,而且脸色苍白,映衬得胭脂如火壹般 红,但她仍不失壹个美得令人窒息的美人!第壹卷 第五十九章 仙女那美若天仙的面庞,是他爱新觉罗•胤禛此生见过的最美的容颜,如 果人间真有仙子,那冰凝,他的侧福晋真的就是这人间最美丽的,不食人间烟火的仙女。不但美得令人窒息,更是美得清丽脱俗,即使被 大红喜服、俗脂艳粉所包围着,仍是遮挡不住她夺目的美丽光芒。但是,如果不是他心中所爱,再美的容貌又有什么用?如果没有此前种 种,慢慢地,他也许会如从前娶妻那样,努力地培养双方的感情,毕竟是自己的诸人,又有着如此的美貌,培养感情,应该不是壹件难事。 但是此刻,他的脑海中不断浮现的,却全都是玉盈的样子!虽然比不及冰凝的壹半,但在他的眼中,却是壹种真实、自然之美,既温柔娇 美,又侠肝义胆。往事壹幕壹幕,历历浮在现眼前,衬得玉盈整个人都散发出迷人的光彩。眼前,是美得不可方物的冰凝,脑海中,是散 发着迷人光彩的玉盈,两个都是如花似玉、豆蔻年华、人比花娇,却是壹个由爱更生爱,壹个由恨更生恨!强烈的对比,更加激发了壹个 月以来,压抑在他心中难以发泄的愤怒。下意识地,他伸出手,捏住了她小巧的下巴,强迫她抬起了头。冰凝本来对王爷没有任何感觉, 万般无奈地嫁入这王府,先是独自壹人走进了新房,又独自壹人枯坐到了四更天,早已经心力交瘁,此时此刻,她唯壹的愿望就是早早地 结束这壹切繁缛的程序,快快地让她疲惫不堪的身心得到彻底的休息和放松。可是,大大出乎她的意料,她的下巴突然被王爷捏得生疼, 并被强迫地抬起了头,这是她平生以来从来没有经历过的奇耻大辱!她是爹娘倍加宠爱的掌上明珠,她是兄姐悉心呵护的心肝宝贝,从小 到大,还从来还没有任何壹个人,敢对她如此这般粗暴无礼。这就是姐姐口中那个重情重义的王爷?她被迫抬起了头,那是壹双大大的眼 睛,还有那长长的睫毛,本是壹双有着摄人魂魄般的美目,折射出来的却是冰冷冷的目光,似是惊异,似是不解,又似是探究,但更是愤 怒。这怨恨愤怒的目光与他那冰寒彻骨的目光相遇,直将他的眼睛灼伤!这是壹个什么
七年级上数学有理数的除法优质课教案
2.2.2 有理数的除法第1课时有理数的除法教学目标课题 2.2.2 第1课时有理数的除法授课人素养目标1.经历用转化的数学思想探究有理数除法法则的过程,体会除法与乘法的关系,强化推理能力.2.理解并掌握有理数的除法法则,会进行有理数的除法运算,提高运算能力.3.从除法的角度理解分数,会利用有理数除法法则化简分数.教学重点理解并掌握有理数的除法法则,会进行有理数的除法运算. 教学难点会根据不同的情况来选取除法法则的其中一种说法求商.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境导入】1.如图,王芳从家里到学校,每分钟走50 m,共走了20 min,则王芳家离学校有多远?放学时,王芳仍然以每分钟50 m的速度回家,应该走多少分钟?20×50=1 000(m),1 000÷50=20(min).因此王芳家离学校1 000 m,放学时应该走20 min.2.从上面这个例子你可以发现,除法与乘法之间满足怎样的关系?除法是乘法的逆运算.引入负数后,在有理数的范围内,该怎么计算除法呢?这节课我们就来学习有理数的除法.【教学建议】在实际情境问题中,引导学生根据“路程=速度×时间”发现除法与乘法的互逆关系,鼓励学生思考有理数的除法.设计意图创设情境,激发学生的学习兴趣,引导学生理解有理数除法和有理数乘法之间的互逆关系,从而引出本节课的主题.活动二:问题引入,合作探究探究点1有理数的除法法则问题1怎样计算8÷(-4)呢?结合下面图示说一说.【教学建议】提醒学生:除法与乘法的互逆关系在有理数中也是成立的,这属于除法的意义,即已知两个乘数的积与其中一个乘数,求另一个乘设计意图类比有理数减法法则的探究过程,根据除法与乘法的互逆关系,让学生通过算式实例探究有理数除法法则的两种说法,增强推理能力.在例题与练习中让学生掌握有理数的除法,并感受除法法则两种说法的适用情况,提升运算能力.一个数除以-4可以转化为乘-14来进行,即一个数除以-4,等于乘-4的倒数-14.问题2我们换其他数的除法进行类似讨论(如下面例子),是否仍有除以a(a≠0)可以转化为乘1a?可以看出其他数的除法仍有这种关系.思考:根据上面你尝试过的例子,能否类比有理数减法法则,总结出有理数除法法则?有理数除法法则(说法1):除以一个不等于0的数,等于乘这个数的倒数.这个法则也可以表示成:a÷b=a·1b(b≠0).例如:两个有理数相除(除数不为0),商是一个有理数.问题3计算:6÷3=2 ,6÷(-3)=-2 ,(-6)÷3=-2 ,(-6)÷(-3)= 2 ,0÷3=0 ,0÷(-3)=0 .思考:两数相除的商仍由符号和绝对值两部分组成.由于除法可转化为乘法,因此商的符号确定与有理数乘法类似.从符号和绝对值两个角度观察上述算式,你能否得到与有理数乘法法则类似的除法法则?有理数除法法则(说法2):两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.0除以任何一个不等于0的数,都得0.例1(教材P44例4)计算:(1)(-36)÷9;(2)(-1225)÷(-35).解:(1)(-36)÷9=-(36÷9)=-4;(2)(-1225)÷(-35)=(-1225)×(-53)数的运算,这是数学上的一种规定.【教学建议】为了有利于学生接受,可让学生自己举例,并模仿教科书的方法进行说明,然后引导学生总结出除法法则.若有困难可让学生类比有理数减法法则来思考如何表述.规定0不能作除数的理由可简单地用0没有倒数来说明,更具体的理由不必在课堂上讲授.【教学建议】提醒学生:这是有理数除法法则的另一种说法.指定学生代表上台板演计算过程,并用除法法则的两种说法分别计算,再引导学生思考对于不同形式的算式,怎么判断用哪种说法计算更简便.引导学生总结:一般来说,能整除的情况下,往往采用法则的说=45. 思考:对于例1中的两个算式,用有理数除法法则的哪种说法来计算比较简便?例1(1)用说法2比较简便,例1(2)用说法1比较简便. 【对应训练】教材P45练习第1题.法2,在确定符号后,再确定商的绝对值.在不能整除的情况下,则往往采用法则的说法1,即将除数换成倒数,除法转化成乘法.设计意图 探究点2 分数的化简 问题 化简84 ,观察8-4 ,引入负数后,沿用小学时分数的意义,那么8-4化简的结果是什么? 84 =2,8-4 =8÷(-4)=-2. 例2 (教材P44例5) 化简: (1)-23 ; (2)-45-12.解:(1)-23 =(-2)÷3=-(2÷3)=-23 ; (2)-45-12 =(-45)÷(-12)=45÷12=154 . 思考:-23 是有理数吗?-23可以写成两个整数相除的形式吗?-23 =-23 ,这表明-23 是负分数,因而是有理数;反过来看,-23 =-23 ,又表明-23 可以写成A-23这样两个整数相除的形式. 【对应训练】教材P45练习第2题.【教学建议】提醒学生:(1)化简时,若分母是负数,改为除数后要加括号.(2)可以用除法化简,也可以确定符号后直接约分,要根据数的特点灵活选用.(3)一般地,根据有理数的除法,形如pq(p ,q 是整数,q ≠0)的数都是有理数;有理数又都可以写成上述形式(整数可以看成分母为1的分数).这样,有理数就是形如pq(p ,q 是整数,q ≠0)的数.引导学生从除法的角度理解并化简分数,并认识到有理数都可以表示为分数形式,为以后的学习打好基础.活动三:知识延伸,巩固升华 解:(1)1÷(-1.2)=1÷(-65 )=1×(-56 )=-56; 【教学建议】提醒学生:应用法则“除以一个不等于0的数,等于乘这个数的倒数”时,设计意图 通过具体的算式让学生从除法的角度理解有理数的倒数,并进一步掌握用除法法则计算各种形式的数的除法,提高运算能力.(2)(-2311)÷(-522)=(-2511)×(-225)=10;(3)(-0.125)÷83=-18×38=-364;(4)|-427|÷(-313)=307×(-310)=-97.【对应训练】计算:(1)1÷(-0.8);(2)(-212)÷(-57);(3)(-0.25)÷112;(4)|-223|÷(-179).解:(1)1÷(-0.8)=1÷(-45)=1×(-54)=-54;(2)(-212)÷(-57)=(-52)×(-75)=72;(3)(-0.25)÷112=(-14)×23=-16;(4)|-223|÷(-179)=83×(-916)=-32.如果有小数或带分数,应先化小数为分数,化带分数为假分数,另外有绝对值符号的先去绝对值符号.引导学生观察发现:1除以一个不等于0的数,等于这个数的倒数.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.有理数除法法则有哪几种说法?2.怎么根据除法算式的情况决定选用哪一种说法?3.怎么利用有理数的除法法则化简分数?【知识结构】【作业布置】1.教材P48习题2.2第6,7,8,12,16题.2.《创优作业》主体本部分相应课时训练.板书设计2.2.2 有理数的除法第1课时有理数的除法1.有理数除法法则:①说法1;②说法22.化简分数教学反思本节课以一实际问题引入,铺垫除法与乘法的互逆关系,再据此关系,类比减法法则的推导,引导学生用算式实例总结出有理数除法法则的第一种说法,再在此基础上推出法则的第二种说法,由易到难,培养了学生的推理能力与探究意识.后续借助例题与练习,让学生感知法则的两种说法的适用情况,并能根据算式特点灵活选用,增强运算能力.接着让学生通过除法理解并化简分数,进一步掌握除法法则,并引导学生发现有理数都可以表示为分数形式,加强对有理数的理解,为后续学习做铺垫,整体效果较好.解题大招利用有理数除法法则进行分析利用有理数除法法则进行分析由被除数和除数分析商①两数相除,同号得正,异号得负,并把绝对值相除;②0除以任何一个不等于0的数,都得0;③任何一个数(0除外)除以原数都得1,除以原数的相反数都得-1;④1除以一个非0数等于这个数的倒数由商分析被除数和除数①两个数相除,若商是正数,则两数同号;若商是负数,则两数异号;②两个数相除,若商是0,则被除数为0,除数不为0;③两个数相除,若商是1,则这两个数相等(均不为0);若商是-1,则这两个数互为相反数(均不为0)例(1)若两个有理数相除,商是负数,则这两个有理数(C)A.都是负数B.都是正数C.一个是正数、另一个是负数D.有一个是0(2)如果两个有理数的和除以它们的积,所得的商是0,那么这两个有理数(A)A.互为相反数,且都不等于0 B.互为倒数C.有一个等于0D.都等于0培优点含绝对值的分数的化简。
人教版七年级上数学有理数的除法法则
利用上面的除法法则计算下列各题:
(1)-54 (-9);(2)-27 3;
(3)0 (-7); (4)-24 (-6).
思考:从上面我们能发现商的符号有什么规律?
有理数除法法则(二) 两数相除,同号得正,异号得负,并把绝对值相除. 0除以任何一个不等于0的数,都得0
思考: 到现在为止我们有了两个除法法则,那么两
第一章 有理数
1.4 有理数的乘除法
1.4.2 有理数的除法
第1课时 有理数的除法法则
学习目标
1.认识有理数的除法,经历除法的运算过程. 2.理解除法法则,体验除法与乘法的转化关系. 3.掌握有理数的除法及乘除混合运算.(重点、难 点)
导入新课
复习引入
倒数的定义你还记得吗?
你能很快地说出下列各数的倒数吗?
个法则是不是都可以用于解决两数相除呢?
要点归纳: 1.两个法则都可以用来求两个有理数相除. 2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
典例精析
例1 计算(1)(-36) 9;
(2) (
12 25
)
(
53).
解:(1)(-36) 9=-(36 9)=-4;
(2)( 12 ) ( 3) ( 12 ) ( 5) 4 .
__a____0_, b___0___.
(4)若﹣3x=12,则x=____4___.
课堂小结
一、有理数除法法则: 1. a b a 1 (b 0)
b 2.两数相除,同号得正,异号得负,并把绝对 值相除.
0除以任何一个不等于0的数,都得0
二、有理数除法化为有理数乘法以后,可以利 用有理数乘法的运算律简化运算
人教版七年级数学上册1.4.2《有理数的除法》教案
一、教学内容
本节课选自人教版七年级数学上册1.4.2《有理数的除法》。教学内容主要包括以下两个方面:
1.掌握有理数除法的运算方法,能够熟练进行除法运算,包括正数、负数以及0的除法。
-例题:计算-6÷2,5÷(-3),(-8)÷(-4),0÷(-5)等。
2.了解有理数除法的运算性质,如“同号得正,异号得负”,并能应用于实际问题中。
-习题:根据除法的运算性质,判断以下各式的符号:12÷(-3),(-16)÷4,(-9)÷(-3)等。
二、核心素养目标
1.培养学生运用数学语言进行有效表达的能力,通过有理数除法的运算过程,提升学生逻辑思维和抽象思维能力。
2.强化学生解决实际问题的能力,使学生能够将有理数除法应用于生活情境中,增强数学与现实生活的联系。
3.重点难点解析:在讲授过程中,我会特别强调同号得正、异号得负的规律以及0不能作为除数这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用实际物品来模拟除法过程,演示如何平均分配。
2.教学难点
-除法运算符号的处理:学生容易在处理不同符号组合的除法运算时出错,需要通过大量练习和讲解帮助学生掌握符号的处理规则。
-举例:解释为什么(-8)÷(-2)=4,而(-8)÷2=-4,通过图示或具体情境帮助学生理解。
- 0的除法问题:0作为除数的概念对学生来说是新的,需要明确0不能作为除数的规则,并解释其原因。
-举例:讨论0作为除数时的情况,为什么0不能作为除数,可以通过数轴或逻辑推理来说明。
七年级数学上册 第二章 有理数及其运算 8 有理数的除法课件
解析
(1)
53÷
= 3
25
×
3 5
=255.
3
(2) 3 ÷9 376 =
Hale Waihona Puke × 3 =9 (76-3 9)13 ×
+
1×
3
6 7
1 3
=-13- 2 =-132 .
7
7
2021/12/10
第二十一页,共三十二页。
1.(2017黑龙江大庆一中月考,3,★☆☆)如果□×
=321,那么□内应填
|=4,则|a|<|b|,故结论丙正确; b = 4 =-2<0,故结论丁不正确.综上可知,选C.
a2
解法二:由题意知,b<-3<a<3,∴b-a<0,a+b<0,|a|<|b|, b <0.故选C.
a
2021/12/10
第二十五页,共三十二页。
二、填空题
2.(2017辽宁大连中考(zhōnɡ kǎo),9,★☆☆)计算:(-12)÷3
92×
= -3
8
.2
3
(3)原式=
32×
1×
2
1 2
×
1
=6
9
.2
3
(4)原式=(-16)×
34×
× 7
4
=-3
14
.9
2
2021/12/10
第十五页,共三十二页。
3.冷库的温度为+2 ℃,现存入一批食物进行冷冻,必须使冷库温度保持 在-22 ℃.若冷冻机可使室温(shì wēn)每小时下降5 ℃,那么经过多少小时,冷库温
.
答案(dáàn) -4
七年级上册数学,有理数的除法
七年级上册数学,有理数的除法一、有理数除法的定义。
1. 定义。
- 有理数的除法是已知两个有理数的积与其中一个因数,求另一个因数的运算。
例如,如果ab = c(a≠0),那么c÷ a=b。
2. 与乘法的关系。
- 有理数的除法是有理数乘法的逆运算。
就像在整数运算中一样,乘法和除法互为逆运算,在有理数范围内也是如此。
二、有理数除法的法则。
1. 法则一:除以一个不等于0的数,等于乘这个数的倒数。
- 用字母表示为a÷ b=a×(1)/(b)(b≠0)。
例如,2÷(1)/(3)=2×3 = 6。
- 这里要特别注意除数不能为0,因为0没有倒数。
2. 法则二:两数相除,同号得正,异号得负,并把绝对值相除。
- 例如,(+8)÷(+2)=+(8÷2)=4;( - 8)÷( - 2)=+(8÷2)=4;(+8)÷(-2)=-(8÷2)= - 4;(-8)÷(+2)=-(8÷2)= - 4。
- 对于0除以任何一个不等于0的数,结果都为0,即0÷ a = 0(a≠0)。
三、有理数除法的运算步骤。
1. 确定符号。
- 根据“两数相除,同号得正,异号得负”的法则,先确定商的符号。
例如,计算(-12)÷3,因为-12和3异号,所以商为负。
2. 计算绝对值。
- 确定符号后,再把被除数和除数的绝对值相除。
对于(-12)÷3,| - 12|÷|3| = 12÷3 = 4,结合前面确定的符号,结果为-4。
3. 对于多个有理数相除的情况。
- 可以按照从左到右的顺序依次进行计算,也可以先将除法转化为乘法,再利用乘法的运算律进行简便计算。
例如,计算(-2)÷(1)/(2)÷(-3)。
- 方法一:按照顺序计算,(-2)÷(1)/(2)=(-2)×2=-4,-4÷(-3)=(4)/(3)。
有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)
这两个法则分别在什么情况下使用?
如果两数相除,能够整除的就选择法则2,不能够整除的就选择用法则1.
总结归纳
思考:
到现在为止我们有了两个除法法则,那么两
个法则是不是都可以用于解决两数相除呢?
要点归纳:
1.两个法则都可以用来求两个有理数相除.
2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
(3)原式=1 8÷(-54)=- ;(4)原式=-[(-9)÷3 6 ]=-(- )= .
练一练
4.化简:
-
(1)
; 解:原式=-9;
-
(2)
;
-
56 7
原式=48=6;
-
(3)
; 原式=-30=-2;
45
3
-
(4) ;
.
原式=-30.
总结归纳
一般地,根据有理数的除法,形如 (p,q 是整数, q ≠0)的数都是
4/5
(-12/25)×(-5/3)=___
-8
-72×(1/9)=___
问题:上面各组数计算结果有什么关系?由此你能
得到有理数的除法法则吗?
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)(+6)÷(+2)= +3
6
1
=
2
+3
互为倒数
“÷”变“×”
(2)(+6)÷(-2)= -3
分层练习-巩固
11. 下列四名同学的说法中,正确的是(
A
)
A. 墨墨:0除以任何一个不等于0的数都得0
人教版数学七年级上册1.2《有理数的除法》教案
人教版数学七年级上册1.2《有理数的除法》教案一. 教材分析《有理数的除法》是初中数学的重要内容,人教版七年级上册第1.2节主要介绍有理数的除法法则。
学生在学习了有理数的加减乘法之后,进一步学习有理数的除法,有助于加深对有理数运算规律的理解。
本节内容通过具体的例子,引导学生掌握有理数除法的基本法则,为学生以后学习更复杂的数学运算打下基础。
二. 学情分析学生在进入七年级之前,已经掌握了整数的除法运算,但对负数的除法了解不多。
因此,在教学过程中,教师需要利用学生已有的知识,通过具体的实例,引导学生理解负数除法的规律。
同时,学生需要在学习过程中,培养运算的准确性,以及解决问题的能力。
三. 教学目标1.了解有理数除法的基本概念,掌握有理数除法的法则。
2.能够正确进行有理数的除法运算。
3.培养学生的运算能力,提高学生解决问题的能力。
四. 教学重难点1.教学重点:有理数除法的基本法则,有理数除法的运算过程。
2.教学难点:负数除法运算的理解,以及运算过程的准确性。
五. 教学方法采用问题驱动法,通过实例引导学生自主探究有理数除法的规律,以小组合作交流的方式,共同解决问题。
同时,结合讲授法,对学生的疑问进行解答,帮助学生深入理解有理数除法。
六. 教学准备1.教学PPT,包括有理数除法的定义,除法法则,以及相关的实例。
2.练习题,包括不同类型的有理数除法题目。
3.教学黑板,用于板书关键知识点和运算过程。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生回顾整数的除法运算,激发学生的学习兴趣。
例如:5除以3等于多少?引导学生思考,引出有理数除法的学习。
2.呈现(10分钟)教师通过PPT展示有理数除法的定义,除法法则,以及相关的实例。
让学生初步了解有理数除法的基本概念。
3.操练(10分钟)教师提出练习题目,让学生独立完成。
例如:计算以下有理数除法题目:(1)8除以3;(2)-6除以4;(3)7除以-2。
教师在这个过程中,对学生的疑问进行解答,帮助学生掌握有理数除法的运算过程。
人教版七年级上册数学 有理数的除法
探究探讨究论 讨论
8 (- 4) 8(- 1) 4
分析:等式左边是除法,等式右边是乘法, 也就是说除法转化成了乘法。那怎样转化的 呢?
除以 - 4 等于乘以 -4
的倒数
-
1 4
除以一个不为0的数,等于乘这个数的倒数.
有理数除法法则:
除以一个不等于0的数等于乘这个数的倒数.
0除以任何一个不等于0的数,都得0.
布置作业
小练习册 有理数除法第1课时
谢谢!
0除以任何一个不等于0的数,都得__0___.
0不能作为除数
(1) (-8)÷(-4)
(2) (-3.2)÷0.8
解:(1)原式= +(8÷4) (2)原式= -(3.2÷0.8)
=2
=-4
(同号得正,绝对值相除) (异号得负,绝对值相除)
小结:两数相除的步骤:
1 确定商的符号 2 绝对值相除
巩固练习 1.两数相除,_同_号__得正,_异_号__得负,并 把绝对值相除;0除以任何一个不等于0 的数,都得 ____ 。
0
2 除以一个不等于0的数,等于乘以这个数的倒数
这一法则可表示为( ) A
A
B
m n m 1 (n 0)
n
m n m 1 (m 0) n
能力提升
1.如果a+b﹤0 , b ﹥0,那么下列结论正确的
是( B )
a
A a >这0 , b节> 我0 们学了B a什< 0么, b ?< 0
Ca>0,b<0
Da<0,b>0
2.如果 b =0,那么( C ) A a=0a, b=0 B a=0 , b≠0
有理数的除法(第2课时 有理数加减乘除混合运算)课件七年级数学上册(人教版2024)
2.2.2 有理数的除法
第二课时 有理数加减乘除混合运算
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.
通过类比小学学过的运算顺序,能得出有理数的运算顺
序,按照有理数的运算顺序,正确熟练地进行有理数的加、
减、乘、除混合运算,提高学生的运算能力(重点).
-22 .
11.
【新视角·规律探究题】 a 是不为1的有理数,我们把
−
称为 a 的差倒数.如:2的差倒数是
=-1,-1的差倒
−
数是
= .已知 a1=- , a2是 a1的差倒数, a3是
−(−)
a2的差倒数, a4是 a3的差倒数,……,以此类推,则
a2 024=
.
只能用一次),使得运算结果为24或-24,其中红色扑克牌代表负数,黑色扑克牌
代表正数,A,J,Q,K分别代表1,11,12,13.
(1)如果抽到的四张牌是“黑桃3,4,10和红桃6”,请你运用上述规则写出三个
不同的算式,使其结果等于24或-24;
解: 答案不唯一.(1)(10-4)-3×(-6)=24;3×(-6)-(10-4)=-24;
2.有理数的加减乘除混合运算
问题:下列式子含有哪几种运算?先算什么,后算什么?
第二级运算
乘除运算
1
3 50 2 1 ?
5
第一级运算
加减运算
典例剖析
例7
计算:
(1) −8+4÷(−2);
七年级数学教案:有理数的除法
七年级数学教案:有理数的除法七年级数学教案:有理数的除法(精选12篇)作为一位兢兢业业的人民教师,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。
那么教案应该怎么写才合适呢?下面是小编为大家整理的七年级数学教案:有理数的除法,希望能够帮助到大家。
七年级数学教案:有理数的除法1学习目标:1、学会用计算器进行有理数的除法运算.2、掌握有理数的混合运算顺序.3、通过探究、练习,养成良好的学习习惯学习重点:有理数的混合运算学习难点:运算顺序的确定与性质符号的处理教学方法:观察、类比、对比、归纳教学过程一、学前准备1、计算1)(—0.0318)÷(—1.4)2)2+(—8)÷2二、探究新知1、由上面的问题1,计算方便吗?想过别的方法吗?2、由上面的问题2,你的计算方法是先算法,再算法。
3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)4、结合问题2,你先猜想,有理数的混合运算顺序应该是?5、阅读P36,并动手做做三、新知应用1、计算1)、18—6÷(—2)×2)11+(—22)—3×(—11)3)(—0.1)÷×(—100)2、师生小结四、回顾与反思请你回顾本节课所学习的主要内容3页五、自我检测1、选择题1)若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数2)下列说法正确的是()A.负数没有倒数B.正数的'倒数比自身小C.任何有理数都有倒数D.-1的倒数是-13)关于0,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数4)下列运算结果不一定为负数的是()A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积5)下列运算有错误的是()A.÷(-3)=3×(-3)B.C.8-(-2)=8+2D.2-7=(+2)+(-7)6)下列运算正确的是()A.;B.0-2=-2;C.;D.(-2)÷(-4)=22、计算1)6—(—12)÷(—3)2)3×(—4)+(—28)÷73)(—48)÷8—(—25)×(—6)4)六、作业1、P39第7题(4、5、7、8)、第8题2、选做题:P39第10、11、12、1314、15题七年级数学教案:有理数的除法2一、素质教育目标(一)知识教学点1.了解有理数除法的定义。
人教新版(2024)七年级数学上册-2.2.2 有理数的除法(教案)
2.2.2有理数的除法第1课时【教学目标】1.理解有理数除法法则,会进行有理数的除法运算.2.能够熟练地进行有理数乘法与有理数除法的相互转化,会进行分数的化简.3.根据有理数的除法,进一步理解有理数的定义.4.让学生经历有理数除法法则的探究过程,培养学生的观察、归纳、概括、运算及逆向思维能力.【教学重点难点】重点:探究有理数除法法则的形成过程,熟记两则有理数除法法则,能有根据地、有步骤地进行有理数除法运算.难点:有理数除法法则的灵活运用.【教学过程】一、创设情境课件出示:李明从家里到学校,每分钟走50米,共走了20分钟,问李明家离学校有多远?放学后,李明仍然以每分钟50米的速度回家,应该走多少分钟?1.师:从上面的例子你可以发现,有理数除法与乘法之间满足怎样的关系?生:除法与乘法之间有互逆关系.2.学生回答完问题后,教师提出课题——有理数的除法.3.你能很快地说出下列各数的倒数吗?原数-5 -98 7 0 -1 -123 倒数【让学生回顾之前学过的倒数知识,为学习有理数除法做好准备.】二、探究归纳探究点1:有理数的除法及分数化简问题1:根据“除法是乘法的逆运算”填空:(-4)×(-2)=8 8÷(-4)=6×(-6)=-36 -36÷6=-1225÷(-35)= (-1225)×(-53)= -72÷9= -72×(19)= 问题2:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗? 要点归纳:有理数除法法则(一):除以一个不等于0的数,等于乘这个数的 .用字母表示为a ÷b =a ×1b (b ≠0). 问题3:利用上面的除法法则计算下列各题:(1)-54÷(-9);(2)-27÷3;(3)0÷(-7);(4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?你能类比有理数乘法法则,给出除法法则的另一种说法吗?要点归纳:有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 .0除以任何一个不等于0的数,都得 .两个有理数相除(除数不为0),商是一个有理数.【典例剖析】例1:(1)(-18)÷6.(2)(-15)÷(-25). (3)625÷(-45). 解:(1)原式=(-18)÷6=-(18÷6)=-3;(2)原式=(-15)÷(-25)=(-15)×(-52)=12; (3)原式=625÷(-45)=625×(-54)=-310. 【针对性训练】教材P45练习T1【典例剖析】例2:教材P44【例5】【点拨】带分数线的数可以理解为分子除以分母.【针对性训练】教材P45练习T2探究点2:有理数的定义的再认识结合例5及训练的计算,思考以下问题:问题1:计算中,我们得到-23=-23,这表明-23是什么数?反之-23=-23,又表明-23可以写成什么形式?问题2:整数可以看成什么样的分数?归纳总结:有理数是形如p q (p ,q 是整数,q ≠0)的数. 探究点3:有理数的乘除混合运算例3:教材P45【例6】方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算性质简化运算.(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(3)有理数乘除混合运算按从左到右的顺序进行计算.【针对性训练】教材P47练习T1三、检测反馈1.填空:(1)(-27)÷9= .(2)(-925)÷(-310)= . (3)1÷(-9)= .(4)0÷(-7)= .(5)43÷(-1)= . (6)-0.25÷34= . 2.化简下列分数:(1)-162. (2)12-48. (3)-54-6. (4)-9-0.3.3.计算:(1)(-12311)÷4.(2)(-24)÷(-2)÷(-115). 4.计算:(1)(-0.75)÷54÷(-0.3). (2)(-0.33)÷(-13)÷(-11). 5.计算:(1)-2.5÷58×(-14). (2)-27÷214×49÷(-24). (3)(-35)×(-312)÷(-114)÷3. (4)-4×12÷(-12)×2. 四、本课小结一、有理数除法法则:1.a ÷b =a ×1b (b ≠0).2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.二、有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.三、乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).五、布置作业P48T6、8、9六、板书设计七、教学反思1.注重知识迁移,做到以旧带新.“数学教学是数学活动的教学”.我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程.也只有在数学活动的教学中,学生学习的主动性,才能得以发挥.2.注重自主探索,体验知识的产生过程.这一节课,从有理数除法问题的产生,到有理数除法法则的形成,以及归纳有理数除法的解题步骤等,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的.第2课时【教学目标】1.能按照有理数加减乘除的运算顺序正确熟练地进行运算.2.能运用有理数加减乘除运算解决简单的实际问题.3.会用计算器进行比较复杂的有理数加减乘除法计算.4.经历观察、比较、计算、概括、交流等过程,提高学生的运算能力,培养数感.【教学重点难点】重点:熟练掌握有理数的加减乘除混合运算.难点:按照有理数的运算顺序,正确而合理地进行计算,并能利用混合运算解决实际问题.【教学过程】一、创设情境复习导入:同学们,我们在前几节课中已经学习了有理数的加法、减法、乘法、除法,并且已经学习了加减混合运算、乘除混合运算,你知道这两种混合运算的运算顺序吗?【学生回答】我们今天要学习的是有理数的加减乘除四则混合运算,根据在小学时我们学习过的非负数的四则混合运算顺序,你能说一说有理数四则运算的运算顺序吗?【师】实际上,这个顺序在有理数范围内同样适用.二、探究归纳探究点1:有理数的加减乘除混合运算问题1:小学的四则混合运算的顺序是怎样的?先乘除,后加减,同级运算从左至右,有括号先算括号内,再算括号外.括号计算顺序:先小括号,再中括号,最后大括号.问题2:我们目前都学习了哪些运算?加法、减法、乘法、除法.师生活动:先由学生尝试说明,再由教师补充、归纳,最后得出:一个运算式中,含有有理数的加、减、乘、除等多种运算,则其称为有理数的混合运算.问题3:下列式子含有哪几种运算?先算什么,后算什么?3+50÷2×(-15)-1=? 师生活动:先由学生叙述,教师帮助完善.【归纳总结】有理数混合运算的顺序:先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的.应用:【典例剖析】例1:教材P46【例7】(补充(3) [1124-(38+16-34)×24]÷5. ) 教师引导学生分析:本例3个小题都是有理数加减乘除法混合运算.1.第(1)(2)小题没有要先运算的括号,则运算应该是:先乘除、后加减.2.第(3)小题有小括号、中括号,则应先小括号、后中括号.在同一个括号内,应先乘除、后加减.3.能利用加法与乘法运算律的,应利用运算律.师生活动:先由学生独立思考,再由学生口述解题过程,教师先板书示范第(1)小题,然后学生口述,教师板书共同完成第(2)(3)小题.在这个过程中教师注意联系讲解法则的运用,追问每一步的依据是什么.【针对性训练】1.教材P47练习T22.下面两题的计算过程是否正确?若不正确,错误出现在哪一步? 解:(1)16÷(13-12) =16÷13-16÷12=16×3-16×2=12-13=16.(2)-3÷6×(-16) =-3÷(-1)=3.探究点2:有理数混合运算的应用【典例剖析】例2:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利32万元,7~10月平均每月盈利21.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?【思路点拨】师:有的月份亏损,有的月份盈利,我们如何表示? 生:用正数表示盈利,用负数表示亏损师:求全年的盈亏情况,就应该把12个月的全加起来,那有没有简单的方法呢?生:【自主解答】解:记盈利额为正数,亏损额为负数,公司去年全年盈亏额为:(-1.5)×3+32×3+21.7×4+(-2.3)×2=-4.5+96+86.8-4.6=173.7.答:这个公司去年全年盈利173.7万元.【教师引导学生应用有理数解决实际问题,体验有理数的加减乘除混合运算在实际生活中的应用】新知应用(1)计算器是一种方便实用的计算工具,用计算器进行比较复杂的计算比笔算要快捷得多.(2)提倡在明确算理的情况下,恰当地使用计算器进行一些比较复杂的有理数加减乘除法的混合运算.【针对训练】用两种方法计算(笔算与计算器)教材P47练习T3(1)(2)比较上面两种计算方法,你有什么体会?三、检测反馈).1.(1)18-6÷(-2)×(-13(2)11+(-22)-3×(-11).×(-100).(3)(-0.1)÷12(4)215×(13-12)×311÷(-114). 2.中国民航规定:乘坐飞机经济舱的旅客,一人最多可免费携带20千克行李,超过部分每千克按飞机票的1.5%购买行李票.一位乘坐经济舱的旅客付了120元的行李票,他所乘航班的机票为800元,这个旅客携带了多少千克的行李?四、本课小结1.有理数的加减乘除混合运算顺序先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的.2.利用运算律进行简便计算.五、布置作业P48T10、P49T13六、板书设计七、教学反思有理数的运算是数学中很多其他运算的基础,培养学生正确迅速的运算能力,是数学教学中的一项重要目标,在加减乘除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题,教师应告诉学生这几种运算可以分成三级:其中加减是第一级运算;乘除是第二级运算;有括号的先算括号内的.组织学生讨论有理数混合运算顺序,在教学时,要注意结合学生平时练习中出现的问题,及时纠正学生在运算上出现的问题,特别是加入乘方以后,学生对乘方运算不熟悉,容易算成加法或底数与指数相乘.学生在运算符号多的时候容易出错,需要进行针对性讲解.对于有理数混合运算,关键要把握好两点,运算顺序和符号,不必让学生训练太繁琐、太复杂的计算.反思本节课,存在以下问题:教学方式单一,由于教师总是担心学生忽略计算基本要点,又担心学生做题很慢,影响教学进度,因此给学生单独练习的时间很少,基本上都是老师带着学生一起算,这样并不能看出学生在计算中存在的问题,也就没能及时给予纠正.站在更高的角度去认识教材,站在平等的角度去对待学生.认真钻研教材,增加自己的知识储备量,把教材钻深、吃透真正理解教材的本意,然后去发展、延伸,只有这样才能达到事半功倍的效果,教师不能只停留在教材的表面,知其义而不知其理,这样只能是依样画瓢.再就是我觉得不能以教师的眼光去看学生,要和他们站在同一高度上去看待问题,发现学生出错的真正原因,共同去解决出现的问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]对躯体疾病所致谵妄状态的处理,不正确的方法是()。A.积极治疗原发疾病B.精神症状对症处理C.加强护理与支持治疗D.环境干预,越安静越好E.告知家属相关知识,消除紧张情绪 [单选]仪表系数为单位体积流体流过流量计时,流量计发出的信号脉冲数,其表示符号为()。A、KB、LC、WD、R [单选]Cotard综合征常见于()。A.精神分裂症B.老年性痴呆C.老年抑郁症D.顶叶病变E.麻痹性痴呆 [单选]美国心理学家吉尔福特认为,智力结构应从内容、操作和产品三个维度去考虑,他设想,每一个内容都可以运用不同的操作而产生不同的产品,因此可得到()种单独的智力因素。A.100B.90C.60D.120 [单选]焊接时要采用直流正接,不能选用()弧焊电源。A、AX-320B、ZXG-300C、BX1-330D、AX7-400 [单选]指出不是右肺中叶不张的X线表现()。A.右心缘第二弓消失B.水平叶间裂下移C.底向前下方呈三角形D.位于心后与脊柱重叠E.三角形影尖端指向肺门 [单选]灰色鱼腥味白带多见于()A.细菌性阴道病B.滴虫阴道炎C.外阴阴道假丝酵母菌病D.输卵管癌E.外阴炎 [多选,案例分析题]上海市嘉定区某乡办化工厂生产"油溶黑"染料,主要原料为硝基苯、苯胺。××××年8月17日下午1时,工人张某在常规操作加入苯胺时,由于管道陈旧,导致管道爆裂,苯胺沾染衣服和皮肤,经简单清洗换衣后继续工作,下班后感到头晕、恶心、呼吸困难,继而出现口唇、 [单选]16、17号车钩弹性支承装置每组有()支承弹簧。A、3个B、2个C、1个D、4个 [单选]铁路平面无线调车A型号调车长台,调车长连续按压三次黄键,信令显示黄灯长亮,其显示意义是()。A.减速B.提醒作业人员注意C.十车D.召集作业人员出场 [单选]工业上使用()来吸收三氧化硫制备硫酸。A、水;B、稀硫酸;C、98%左右的硫酸;D、90%的硫酸。 [单选]花岗岩一般用途的弯曲强度为()MPa。A.6B.7C.8D.9 [多选]根据我国《民法通则》以及相关的法律规范的规定,能够引起债的发生的法律事实,即债的发生根据,主要有()。A.不当得利B.无因管理C.合同D.侵权行为E.不可抗力 [单选]驾驶员常会出现腰酸、腰痛,主要是由于坐姿不正确引起的()反应。A、精神疲劳B、肌体疲劳C、脊椎疲劳 [单选]婴儿期保健下列哪项是正确的()A.定期进行体格检查B.坚持户外活动C.完成基础免疫D.促进感知发育E.以上均正确 [问答题,简答题]离心泵启动时,为何先不开出口阀? [单选,A2型题,A1/A2型题]月经过多是指月经量大于()A.40mlB.50mlC.60mlD.70mlE.80ml [单选]石油化工企业下列()浮盘为易熔材料的内浮顶储罐应设置固定式泡沫灭火系统。A.单罐容量2000m3的柴油罐B.单罐容量2000m3的乙醇罐C.单罐容量2000m3的汽油罐D.单罐容量2000m3的煤油罐 [单选]雾中航行,采用逐点航法的优点是()。A.容易发现物标B.能确保航行安全C.能缩小推算误差D.容易确定航向 [问答题]用于测定绝对地质年代的放射性同位素必须具备哪些条件? [单选,A1型题]有关标准预防下列哪项是错误的()A.要防止血源性疾病的传播也要防止非血源性疾病的传播B.强调双向防护C.所有的患者均被视为具有潜在感染者D.要根据疾病的主要传播途径,采取相应的隔离措施E.脱去手套后可以 [单选]根据《信访条例》规定,()级以上人民政府应当设立信访工作机构。A.市B.县C.乡D.省 [单选,A1型题]下列各类疾病中,主要应采取第一级预防的是()A.职业病B.冠心病C.糖尿病D.高血压E.病因不明,难以觉察预料的疾病 [单选]根据《建设工程质量管理条例》的规定,设计单位应当参与建设工程()分析,并提出相应的棱柱处理方案。A.工期延误B.投资失控C.质量事故D.施工组织 [名词解释]极振打装置 [单选]中国国际经济贸易仲裁委员会按照简易程序受理甲、乙两公司的货款争议,在本案仲裁程序中,下列哪种做法是正确的?()A.可由3名仲裁员组成仲裁庭,也可以由1名独任仲裁员组成仲裁庭审理B.仲裁庭按照其认为适当的方式审理案件,可以决定开庭审理,也可以决定书面审理C.仲裁庭 [单选,A1型题]正虚不甚,邪势方张,正气尚能耐攻者,最适用哪种治法()A.扶正兼祛邪B.扶正C.祛邪D.先祛邪后扶正E.先扶正后祛邪 [单选,A2型题,A1/A2型题]下列杀灭细菌芽胞最有效的方法是()。A.煮沸法B.流通蒸汽消毒法C.间歇灭菌法D.高压蒸汽灭菌法E.紫外线照射法 [单选,A1型题]关于黄芩对免疫功能影响叙述错误的是()A.黄芩具有稳定肥大细胞膜,减少炎症性介质释放的作用B.黄芩具有抗免疫反应作用,尤其对Ⅰ型变态反应作用显著C.黄芩苷抑制免疫缺陷病毒及其逆转录酶的作用强于黄芩苷元D.黄芩具有影响花生四烯酸代谢的作用E.黄芩具有提高机体 [填空题]浮选操作制度包括()和()。 [单选,A2型题,A1/A2型题]糖尿病酮症酸中毒时,不符合的选项是()A.血酮体>4.8mmol/LB.血pH下降C.血HCO下降D.血PCO2降低E.血糖常>33.3mmol/L [单选,A1型题]有关隔离的描述,错误的是()A.是控制传染病流行的重要措施B.便于管理传染源C.可防止病原体向外扩散给他人D.根据传染病的平均传染期来确定隔离期限E.某些传染病患者解除隔离后尚应进行追踪观察 [单选]在护患非技术关系中最重要的内容是()。A.道德关系B.利益关系C.法律关系D.价值关系E.信任关系 [单选]类风湿因子(RF)是一种()A.感染性抗原B.抗原抗体复合物C.自身抗体IgMD.抗核抗体E.可激活补体 [单选,A2型题,A1/A2型题]急性淋巴细胞白血病与急性非淋巴细胞白血病分类根据是()A.白血病细胞的分化程度B.白血病细胞的类型C.白血病细胞的数量D.血红蛋白和血小板的数量E.血细胞的多少 [单选]根据供给的价格弹性的大小,可将其划分为几种基本类别,其中,富有弹性的供给是指():A.当供给价格弹性小于1,即供给量变动百分比小于价格变动百分比时;B.当供给价格弹性大于1,即供给量变动百分比大于价格变动百分比时;C.当供给价格弹性等于1,即供给量变动百分比与价格变 [问答题,简答题]重车重心高度超过规定高度时有何规定? [判断题]单向离合器损坏失效后,液力变矩器就没有了转矩放大的功用。()A.正确B.错误 [单选]初孕妇,妊娠40周,既往产检无异常,今日B超提示羊水指数5cm,与1周前相比明显减少,此时的处理方法应选用()A.OCTB.NSTC.尿雌三醇测定D.立即终止妊娠E.B超行生物物理评分 [多选]保险待遇的计算依据为()A.职工原工资B.职工工龄C.