算法分析和设计 矩阵连乘问题41页PPT
矩阵的运算优秀课件
(A
E )n
An
Cn1 An1
C
2 n
An2
Cnn1 A
E
3. 求矩阵A的n次幂的方法. 措施一 数学归纳法
先计算A2, A3等, 发现Ak的规律,再用数学归纳法证明之.
例1
设
A
1 0
11 , 求 An
解
A2
1 0
12 1
10
11 10
11
1 0
2 1
同理,
A3
A2
A
1 0
13
猜测
An
,
求An
1
1
n
1
n n
n
解
将A分解成A
E
1 n
B,
其中B
111
1
1
1
111,容易得出B2 nB
于是 A2
(E
1 n
B)2
E2
2 n
EB
1 n2
B2
E
2 n
B
1 n2
nB
E 1 B A(幂等矩阵),故An A.
n
措施三 利用乘法结合律 若A T , 其中 , 都是n 1矩阵(列矩阵).利用乘法结合律,
三、矩阵旳幂乘
1、定义 设A是一种n阶矩阵,对于正整数k, Ak AA A
k个
称为A旳k次幂。 2、幂乘旳运算规律:任意正整数 k , l ,有
Ak Al Akl , Ak l Akl
但一般来说 ( AB)k Ak Bk ,
例题 设A, B为n阶方阵, E为n阶单位矩阵,以下式子哪些成立 ?
由矩阵相等旳定义,得
x1 x3
x2 x4
得
矩阵连乘问题(动态规划算法)
矩阵连乘问题(动态规划算法)动态规划算法思想简介:将⼀个问题分解为多个⼦问题,这点和分治法类似,但是每个⼦问题不是独⽴的⽽是相互联系的,所以我们在求解每个⼦问题的时候可能需要重复计算到其他的⼦问题,所以我们将计算过的⼦问题的解放进⼀个表中,这样就能避免了重复计算带来的耗费,这就是动态规划的基本思想;⼀般地,动态规划思想⼀般⽤来解最优化问题,主要分为以下四个步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值;(3)以⾃底向上的⽅式计算出最优值;(4)根据计算得到的最优值时得到的信息,构造最优解;同时,问题的最优⼦结构性质也是该问题可⽤动态规划算法求解的显著特征,这⾥的最优⼦结构性质即指:问题的最优解也即代表着它的⼦问题有了最优解;问题描述:分析过程如下:(1)分析最优⼦结构的性质:(2)分析递归关系,以及利⽤⾃底向上的⽅式进⾏计算:(3)获取最优值和最优解:代码如下:#ifndef MATRIX_CHAIN_H#define MATRIX_CHAIN_Hvoid matrix_chain(int *p, int n, int **m, int **s);void traceback(int i, int j, int **s);#endif#include <iostream>#include "matrix_chain.h"using namespace std;//利⽤动态规划算法获取最优值void matrix_chain(int *p, int n, int **m, int **s) //p:各个矩阵的列数,n:矩阵个数,m:m[i:j]矩阵i到j的相乘次数,s:对应的分开位置{for (int i = 0; i < n; i++){m[i][i] = 0;}for (int r = 2; r <= n; r++){for (int i = 0; i < n - r + 1; i++){int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++){int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]){m[i][j] = t;s[i][j] = k;}}}}}//利⽤s[i][j]获取最优解void traceback(int i, int j, int **s){if (i == j)return;traceback(i, s[i][j], s);traceback(s[i][j] + 1, j, s);cout << "Multiply A" << i << " , " << s[i][j];cout << "and A" << (s[i][j] + 1) << " , " << j << endl;}#include <iostream>#include "matrix_chain.h"using namespace std;int main(void){int matrix_num = 0; //矩阵个数cout << "请输⼊矩阵个数:" << endl;cin >> matrix_num;int **m = new int *[matrix_num];for (int i = 0; i < matrix_num; i++)m[i] = new int[matrix_num];int **s = new int *[matrix_num];for (int i = 0; i < matrix_num; i++)s[i] = new int[matrix_num];int *p = new int[matrix_num];cout << "请输⼊各矩阵的列数:" << endl;for (int i = 0; i < matrix_num; i++){cin >> p[i];}matrix_chain(p, matrix_num, m, s);traceback(0, matrix_num - 1, s);system("pause");return1;}可结合我的另⼀篇关于贪⼼算法的博客进⾏⽐较,了解这两者的区别;。
矩阵的运算优秀课件
且A2X=B,求X。
解:
X
=
1 2
(B
A)
=
1 2
2 0 0
2 1 5
5 1 2
2
4
5
1 1 = 0 1/ 2
5/2 1/ 2
1 2
。
0 5 / 2 1 5 / 2
练习
首页
上页
返回
下页
结束
铃
三、矩阵的乘法
定义2.5 设A是一个ms矩阵,B是一个sn矩阵:
a11 a12 a1s
0 3 6 9 0 12 8 16
92 156 214 60 7 9 17 6
= 64 02 1210 914 = 2 2 2 5 。
00 312 68 916 0 9 2 7
首页
上页
返回
下页
结束
铃
3572
1320
例4.已知 A= 2 0 4 3 , B = 2 1 5 7 ,
0 1 23
0 6 48
列式称为矩阵A的行列式,记为|A|,即
首页
上页
返回
下页
结束
铃
2. 数乘矩阵满足的运算律
设 A, B 为同型矩阵, λ , μ为常数,则
(1) (λμ) A=λ (μ A); (2) (λ + μ)A = λ A + μ A. (3) λ(A + B) = λ A + λ B.
结合律 分配律 分配律
矩阵加法与数乘矩阵统称为矩阵的线性运算。
首页
上页
返回
下页
结束
铃
四、方阵的幂
(1) 定义
如果 A 是 n 阶矩阵, 那么AA 有意义, 也有意义, 因此有下述定义:
矩阵乘法的ppt课件
分步矩阵乘法
总结词
将矩阵乘法拆分成多个步骤,逐步进行计算。
详细描述
分步矩阵乘法是一种将矩阵乘法拆分成多个步骤,逐步进行计算的方法。这种方法可以 降低计算复杂度,提高计算效率。同时,通过逐步计算,可以更好地理解矩阵乘法的运
算过程。
04
矩阵乘法的应用
在线性代数中的应用
线性方程组的求解
矩阵乘法可以用于求解线性方程 组,通过将系数矩阵与增广矩阵 相乘,得到方程的解。
线性最小二乘法
矩阵乘法可以用于求解线性最小二乘问题,通过将系数矩阵与观测 矩阵相乘,得到最小二乘解。
插值和拟合
矩阵乘法可以用于插值和拟合数据,通过将系数矩阵与观测矩阵相 乘,得到插值或拟合函数。
在计算机图形学中的应用
3D模型变换
01
矩阵乘法在计算机图形学中广泛应用于3D模型变换,包括平移、
旋转和缩放等操作。
矩阵乘法的PPT课件
目 录
• 矩阵乘法的基本概念 • 矩阵乘法的性质 • 矩阵乘法的计算方法 • 矩阵乘法的应用 • 矩阵乘法的注意事项
01矩阵乘Βιβλιοθήκη 的基本概念定义矩阵乘法
矩阵乘法是一种数学运算,通过将一个矩阵与另一个 矩阵相乘,得到一个新的矩阵。
矩阵的定义
矩阵是一个由数字组成的矩形阵列,行和列都有一定 的数量。
矩阵的元素
矩阵中的每个元素都有一个行索引和一个列索引,用 于标识其在矩阵中的位置。
矩阵乘法的规则
1 2
矩阵乘法的条件
两个矩阵A和B可以进行乘法运算,当且仅当A的 列数等于B的行数。
矩阵乘法的步骤
将A的列向量与B的行向量对应相乘,然后将得 到的结果相加,得到新的矩阵C的元素。
3
矩阵的乘法及求逆运算 最终版ppt课件
0 0
0
0
L L
1
1
0 1
(4)正交矩阵的求逆公式:A1 AT
(5)其他常用的求逆公式:
( AB)1 B1 A1
( AT )1 ( A1)T
( A*)1 ( A1)* A 1 A
A1, A2 , A3,L , AS可逆 ,则( A1A2 L AS )1 AS1L A21A11
19
(7)矩阵 A 可逆充分必要条件是 A 0
7
逆矩阵求解方法一——伴随矩阵法 A1 1 A* A
逆矩阵求解方法二——初等变换法
( A E) 行(E A1)
8
逆矩阵求解方法三——因式分解法
若Ak 0,即(I A)可逆,且有(I-A)1 I A A2 L AK 1 我们通过上式,求出 A1
则称 A 为可逆阵,B 为 A 的逆阵,记作 B A1 .
6
性质:
(1) ( A1)1 A
(2)(kA)1 1 A1 k
(3) A、B 均是同阶可逆阵,则 ( AB)1 B1A1
(4) ( AT )1 ( A1)T
(5) AA* A* A A I
(6)若方阵 A 可逆,则其逆矩阵唯一.
1
AX1
0
,
12
0
0
AX 2
1
,
0
0
AX 3
0
1
利用消元解法求
x1i
Xi
x2i
x3i
解得:
(i 1, 2,3)
1 3 2
A1
X
3
3
5
2
2
0 11 1
13
逆矩阵求解方法六——准对角矩阵
A11 0 L
算法设计与分析——矩阵连乘问题(动态规划)
算法设计与分析——矩阵连乘问题(动态规划)⼀、问题描述引出问题之前我们先来复习⼀下矩阵乘积的标准算法。
int ra,ca;//矩阵A的⾏数和列数int rb,cb;//矩阵B的⾏数和列数void matrixMultiply(){for(int i=0;i<ra;i++){for(int j=0;j<cb;j++){int sun=0;for(int k=0;k<=ca;k++){sum+=a[i][k]*b[k][j];}c[i][j]=sum;}}}给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
加括号的⽅式对计算量有很⼤的影响,于是⾃然地提出矩阵连乘的最优计算次序问题,即对于给定的相继n个矩阵,如何确定矩阵连乘的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
⼆、问题分析矩阵连乘也是Catalan数的⼀个常⽤的例⼦,关于时间复杂度的推算需要参考离散数学关于Catalan的内容。
下⾯考虑使⽤动态规划法解矩阵连乘积的最优计算次序问题。
1、分析最优解的结构问题的最优⼦结构性质是该问题可以⽤动态规划求解的显著特征!!!2、建⽴递归关系3、计算最优值public static void matrixChain(int n) {for (int i = 1; i <= n; i++) {m[i][i] = 0;}for (int r = 2; r <= n; r++) {//i与j的差值for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++) {int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]) {m[i][j] = t;s[i][j] = k;}}}}}4、构造最优解public static void traceback(int i, int j) {if (i == j) {System.out.printf("A%d", i); // 输出是第⼏个数据return;}System.out.printf("(");traceback(i, s[i][j]);// 递归下⼀个数据System.out.printf(" x ");traceback(s[i][j] + 1, j);System.out.printf(")");}三、总结。
矩阵连乘问题
.目录:矩阵连乘问题:描绘矩阵连乘问题剖析矩阵连乘问题以及对递归式的推导1)直接递归思路2)备忘录思路3)动向规划思路伪代码的方式描绘算法:1)直接递归算法2)备忘录算法3)动向规划算法把算法变换成程序实现的过程及结果1)直接递归算法程序2)备忘录算法程序(3)动向规划算法程序...描绘矩阵连乘问题:定n个矩{AAA},此中A A是可乘的,i=1,2,⋯,n-1。
观察n个矩的1,2,i和i1乘A1,A2,An。
因为矩乘法拥有合律,故算矩的乘能够有多不一样的算序次。
种算序次能够用加括号的方式来确立。
若一个矩乘的算序次完整确立,也就是乘已完整加括号,可依序次频频用2个矩相乘的准算法算出矩乘。
完整加括号的矩乘可地定:(1)个矩是完整加括号的;(2)矩乘A是完整加括号的,A可表示2个完整加括号的矩乘B和C的乘并加括号,即A=(BC)。
矩A和B可乘的条件是矩A的列数等于矩B的行数。
若A是一个p×q的矩,B是一个q×r的矩,那么C=A×B就是一个p×r矩。
它的算是三重循的,算量是pqr。
假如加括号后矩的量是不一样的,所以我的就是要怎样乘的矩加括号才能使矩的算量最少。
搜寻法:于n个矩的乘,有不一样的算序次P(n)。
因为能够先在第k个和第k+1个矩之将原矩序列分两个矩子序列,k=1,2,...,n-1;而后分两个矩子序列完整加括号;最后所得的果加括号,获得原矩序列的一种完整加括号方式。
由此可得P(n)的式以下:1 n=1P(n)=n1P(k)P(n k) n>1k1解此方程可得,P(n)=C(n-1),而C(n)是一个指数增的函数。
所以搜寻法不是一个有效的算法。
以下将用三种方法来解决矩乘的最加括号方式以及最解。
剖析矩阵连乘问题以及对递归式的推导将矩乘Ai,Ai1,AjA[i:j]。
观察算A[1:n]的最算序次。
个的一个关特点是:算A[1:n]的最序次包括的算矩子A[1:k]和A[k+1:n]的序次也是最的。
矩阵乘法的ppt课件
23
第 8页
例
例
题
4 1 B 2 1 1 1 0 3 0 3 1 4
ij ij ij
第15页
作业布置
训练题
思考题 你能找到乘积等于零矩阵的两个非零矩阵吗? 根据你的结果判断矩阵的乘法满足消去律吗? 自主学习与实践 请你在网络资源、图书馆、专业课学习或实际 生活中查找矩阵乘法的经济应用案例。
P177: 4
第16页
C的行数,右矩阵B的列数为乘积C的列数.
第 6页
矩阵乘法的定义
AB乘积一般不可以交换,
1)A21 , B13 , AB 为2 3 矩阵,但 BA 无意义;
A23 , B32 , AB 和 BA 均有意义,但 AB 为 2)
BA 为3阶矩阵,不相等; 2阶矩阵,
3) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 2 0 1 1 1 0
第 2页
案例1
这四种产品的售价(单位:百元)及重量(单位: 千克)如下 空调 冰箱 29``彩电 25``彩电 售价 30 16 22 18 重量 40 30 30 20
30 16 B 22 18
40 30 30 20
问:该公司向每个商店出售产品的总售价及总重量 分别是多少?
若AB BA,ห้องสมุดไป่ตู้则称矩阵 A、B 乘积可交换.
第 7页
例
例
题
4 1 B 2 1 1 1 0 3 0 3 1 4
矩阵乘法并行算法分析课件
增加并行度对加速比的贡献会逐渐减小。
实际应用中的性能表现
矩阵规模
在实际应用中,矩阵的规模对并行算法的性能表现有显著影响。
数据分布
数据在矩阵中的分布情况也会影响并行算法的性能,如均匀分布 、稀疏矩阵等。
系统环境
并行算法在实际应用中的性能表现还受到系统环境的影响,如硬 件资源、操作系统等。
PART 05
在数据密集型应用中,如机器学习、图像处理等领域,并行计算 能够显著提高数据处理速度和效率。
云计算平台
随着云计算技术的发展,并行计算在云计算平台上的应用将更加广 泛,为大数据处理提供更高效、灵活的计算服务。
人工智能与机器学习
并行计算在人工智能和机器学习领域的应用前景广阔,能够加速模 型训练和推理过程,提高人工智能应用的性能和效率。
3
数据处理
在数据处理中,矩阵乘法可以用于数据分析和挖 掘等领域,如图像处理和自然语言处理等。
PART 02
矩阵乘法并行算法的实现 方式
基于线程的并行算法
总结词
通过多线程并行执行,充分利用多核处理器资源。
详细描述
基于线程的并行算法利用操作系统的线程库,将矩阵乘法任务划分为多个子任务,每个子任务由一个线程执行。 线程间通过共享内存或消息传递进行通信,以完成整个矩阵乘法操作。
基准测试
通过对比不同并行算法在相同规模矩阵乘法任务上的 执行时间,评估算法的性能。
性能指标
包括吞吐量、加速比、并行度等,用于量化算法的效 率。
并行度与加速比的关系
并行度
01
指并行算法中同时处理的任务数量,与硬件资源有关。
加速比
02
指并行算法相对于串行算法的性能提升比例。
关系
矩阵及其运算PPT课件
设
1 A 1
1 1
1 1 2 3 1, B 1 2 4
1 1 1 0 5 1
求3AB 2A及 AT B
2 13 22
0 5 8
答案:3AB 2A 2 17 20 , AT B 0 5 6.
第22页/共24页
六、方阵的行列式
2010年期末考题(I)
二、选择(每题4分,共16分)
1、设A与B均为n阶方阵,则下列结论中成立的是( B )
A. |AB|=0,则A=0或B=0; B. |AB|=0,则|A|=0或|B|=0; C. AB=0,则A=0或B=0; D. AB≠0,则|A|≠0或|B|≠0;
T ,
则An ____1___12.
1 3
23
3
n
1
2
1
2 3
矩阵拆分相乘
3
3
1
2
第13页/共24页
2012年期末考试题
二项式法
1
4、设A
0
0 0
2012年期末考试题
0
1
,
则A
n
n nn1
_0____n .
0
0
n(n 1) n2
2
nn1
n
五.(10分)(线性代数I,36学时专业学时做 )设
转置矩阵的运算性质 (1) (AT)T = A; (2) (A+B)T = AT + BT;
(3) (A)T = AT;
(4) (AB)T = BTAT;
第2页/共24页
由n 阶方阵A 的元素所构成的行列式叫做方阵A 的行列式, 记作 | A | 或 detA .
矩阵运算法则PPT课件
是 A 的逆矩阵,
利用待定系数法
则
AB 2 1 a b 1 0
1 0 c d 0 1
2a c 2b d 1 0 a b 0 1
第33页/共78页
2a c 1,
2b
d a
0, 0,
b 1,
又因为 AB
a 0,
b 1,
c
1,
d 2.
内容提要
• 矩阵的下列运算的性质与应用 • 乘法 • 转置 • 初等变换 •逆
第1页/共78页
乘法
定义
设矩阵
A
aij
,B
mn
bij
,那么
sn
矩阵A与矩阵B的乘积是一个m n矩阵 C s
cij mn ,其中cij ai1b1 j ai2b2 j aisbsj= aikbkj k1
1设
A=
aaa123,,,
1 1 1
a1, 2 a2, 2 a3, 2
a1, a2, a3,
333
计算并总结规律。
(1)
1 0 0
0 1 0
001 A
(2)
A
1 0 0
0 1 0
001
第13页/共78页
(3)
1 0 0
0 0 1
010
A
(4)
A
1 0 0
0 0 1
010
(5)
1 0 0
0 k 0
a1, a2, a3,
222
第18页/共78页
初等矩阵的概念
定义 由单位 E矩阵经过一次初等变换得到 的方阵称为初等矩阵.
三种初等变换对应着三种初等方阵. 1. 对调两行或两列; 2.以数 k 0 乘某行或某列; 3.以数 k 乘某行(列)加到另一行(列)上去.
算法分析讲课大纲动态规划之求矩阵连乘积问题
第一小节 动态规划问题——最短路径问题一 在正式提出动态规划法前我们先看一个数学例子:例1:在 x 1+x 2+x 3+…+x n =a 是约束条件下,求n x x x z +++= 21的极大值. 令 a x a f ==max )(1 ( 0a x ≤≤ ) )max())(max()(12x a x x a f x a f -+=-+= 令 x a x y -+=且0)(22121=---=--=x a x x x a xa xdxdy可得a x=x, 所以 x=a/2故 a a a a f 222)(2=+=同理 ))(2max()(max()(23x a x x a f x a f -+=-+=令 )(2x a x y -+=0)(222221=---=--=x a x x x a x a x dx dy 所以 a x=2x , x=a/3所以 f 3(a)=a a a a a f 331331231)(3==+=用数学归纳法可以证明:f n (a) =na , x 1=x 2=x 3=…=x n =na证明:1:n=1 …2:设f n (a) =na , x 1=x 2=x 3=…=x n =na成立,则 f n+1(a)=max(x +f n (a-x))=max()(x a n x -+)令 y=)(x a n x -+y ’=x 21xa n -2=0)(2=---x a x nx x a所以 nx=a-x ,(n+1)x=a x=1+n a f n+1(a)=1+n a +n 1+n a =a n )1(+ 我们刚才的解题策略是:“摸着石头过河”,f2 利用f1的结果,f3又利用f2的结果。
类似于游戏中的一个勇士打败了一些敌人后得到一件武器,然后去打败另一个强大一些的对手,得到一件更好的武器,接着打败更强大的敌人。
最后取得胜利。
在实际生活中,有这么一类问题,它们的活动过程可分为若干个阶段,而且在任一阶段 后的行为仅依赖于第I 阶段的过程状态,而与I 阶段之前的过程如何达到这种过程如何达到这种状态的方式无关,这样的过程就构成了一个多阶段决策过程。
动态规划课程设计(矩阵链乘问题)
动态规划程序设计实验目的:掌握并实现动态规划算法。
实验内容:对维数为序列(5,10,3,12,5,50,6)的各矩阵。
找出其矩阵链乘的一个最优加全括号。
实验要求:利用动态规划思想写出算法的伪代码和C程序代码(一)算法思想穷举所有的计算次序,且对每一计算次序确定其乘法次数。
由此可找出n个矩阵进行连乘积A1A2…An的最小乘法次数。
将矩阵链乘积简记为A[i:j] ,这里i≤j考察计算A[i:j]的最优计算次序。
设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开,i≤k<j,则其相应完全加括号方式为计算量:A[i:k]的计算量加上A[k+1:j]的计算量,再加上A[i:k]和A[k+1:j]相乘的计算量设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]当i=j时,A[i:j]=Ai,因此,m[i,i]=0,i=1,2,…,n当i<j时,可以递归地定义m[i,j]为:k位置只有j-i种可能(二)程序代码//动态规划import java.io.*;public class Testsuanfa {public final int len = this.GetN()+1;public int[] A = new int[len];public double[][] M = new double[len][len];public double[][] S = new double[len][len];//取得用户需要规划的矩阵连乘的个数。
public int GetN(){int dvalue = 0;String value;System.out.println("请输入连乘矩阵个数:");BufferedReader bfr = new BufferedReader(new InputStreamReader(System.in));try {value = bfr.readLine();dvalue =Integer.parseInt(value);//捕捉输入异常} catch (IOException e) {System.out.println("输入出错了,请重新输入:");System.exit(0);}catch (NumberFormatException e2) {System.out.println("请输入正确的数字!!");System.exit(0);}return dvalue;}//输入矩阵的序列public int GetA(){int dvalue = 0;String value;System.out.println("请输入分别矩阵维数序列:");BufferedReader bfr = new BufferedReader(new InputStreamReader(System.in));try {value = bfr.readLine();dvalue =Integer.parseInt(value);//捕捉输入异常} catch (IOException e) {System.out.println("输入出错了,请重新输入:");System.exit(0);}catch (NumberFormatException e2) {System.out.println("请输入正确的数字!!");System.exit(0);}return dvalue;}public void f(){//调用GetA方法,拿到每个序列值for(int i=0;i<len;i++){A[i] = this.GetA();}for(int i=0;i<len;i++){M[i][i] = 0;}//依次从长度为2到len,求解每一个长度的最有加全括号。