第二章精密切削加工

合集下载

2精密磨削加工

2精密磨削加工

精密磨削机理
②磨粒的等高性
微刃是由砂轮的精 细修整形成的,分布在 砂轮表层的同一深度上 的微刃数量多,等高性 好(即细而多的切削刃具 有平坦的表面) 。 由于加工表面的残 留高度极小,因而形成 了小的表面粗糙度值。
磨粒的等高性
1 粘结剂 2 磨料 3 砂轮表面
精密磨削机理
③微刃的滑擦、挤压、抛光作用
多用球磨机,而涂敷多用类似印刷机的涂敷机,可获得质量
良好的砂带。
静电植砂法:利用静电作用将砂粒吸附在已涂胶的基底上。
能使砂粒尖端朝上,因此切削性能强,等高性好、加工质量好。
2. 2
精密磨削加工机理
精密磨削是指加工精度为l--0.1μm、表面粗糙度值R a 达到0.2--0.025μm的磨削加工方法,又称低粗糙值磨削。 它是用微小的多刃刀具削除细微切屑的一种加工方法。一般 是通过氧化铝和碳化硅砂轮来实现的。 一般用于机床主轴、轴承、液压滑阀、滚动导轨、量规 等的精密加工。
补充概念
粒度指磨料颗料的大小。粒度分磨粒与微粉两组。磨粒用 筛选法分类,它的粒度号以筛网上一英寸长度内的孔眼数来表 示。例如 60#粒度的的磨粒,说明能通过每英寸长有 60 个孔 眼的筛网,而不能通过每英寸 70 个孔眼的筛网。 微粉用显微测量法分类,它的粒度号以磨料的实际尺寸来 表示( W )。如W20表示微粉的实际尺寸为20μm。 粒度号 适用范围 粗磨、荒磨、切断钢 坯、打磨毛刺 粗磨、半精磨、精磨 粒度号 适用范围 精磨、超精磨、螺纹 磨、珩磨 精磨、精细磨、超精 磨、镜面磨
涂覆磨具
涂覆磨具是将磨料用粘结 剂均匀的涂覆在纸、布或其它 复合材料基底上的磨具,又称 为涂敷磨具。 常用的涂敷磨具是有砂纸、 砂带、砂布、砂盘和砂布套等。

精密与特种加工

精密与特种加工

精密与超精密加工技术
表7-3 几种典型精密零件的加工精度
零件
激光光学零件 多面镜
加 工 精 度
形状误差 0.1μm 平面度误差 0.04μm
表面粗糙度
Ra 0.01~0.05μm Ra <0.02μm
磁头
磁盘 雷达导波管
平面度误差 0.04μm
波度 0.01 ~0.02μm 平面度垂直度误差 < 0.1μm
精密与超精密加工技术
金刚石晶体的面网距和解理现象 ◎金刚石晶体的(111)晶面面网密度最大,耐磨性最好。
◎(100)与(110)面网的面间距分布均匀;(111)面网 的面间距一宽一窄(图) ◎ 在 距 离 大 的 ( 111 ) 面之间,只需击破一个 共价键就可以劈开,而 在 距 离 小 的 ( 111 ) 面 之间,则需击破三个共 价键才能劈开。
精密与特种加工


一、精密与特种加工在制造业中 的地位与作用
• 精密加工 • 特种加工
二、课程性质和任务
第一章 精密切削加工
§1-1 概述
一、精密加工及其关键技术简介
• 精密加工及其重要性 • 精密加工关键技术 精密加工机床、金刚石刀具、 精密切削机理、稳定的加工环境、 误差补偿、精密测量技术
二、精密切削加工分类 三、精密加工与经济性
Ra <0.02μm
Ra <0.02μm Ra <0.02μm
卫星仪表轴承
天体望远镜
圆柱度误差 <0.01μm
形状误差 < 0.03μm
Ra <0.002μm
Ra <0.01μm
精密与超精密加工技术
102 加工误差(μm) 101 加工设备 车床,铣床 测量仪器 卡尺 百分尺 比较仪

机加工工艺--机加工加工方法

机加工工艺--机加工加工方法

4. 钻削的应用
钻孔主要用于粗加工。如螺钉孔、油孔、内螺纹底孔等。 单件、小批生产中、小型工件上的小孔(D<13mm),
常用台式钻床加工。 中、小型工件上较大的孔(D<50mm),常用立式钻床加工。
大型工件上的孔,则采用摇臂钻床加工。
回转体工件上的孔,多在车床上加工。
二、扩孔和铰孔
1. 扩孔 用扩孔钻对工件上已有的孔进行扩大加工。
ae
ae
端铣法可以通过 调整铣刀和工件 的相对位置,调 节刀齿切入和切 出时的切削厚度, 从而达到改善铣 削过程的目的。
铣削工艺特点及应用
1. 铣削特点
1)生产率高(多齿刀具、速度高); 2)散热条件好; 3)容易产生振动。
2. 铣削的应用
主要加工平面。同时可加工沟槽、成形面、切断等。
§5
磨削加工
第二章 切削加工方法
§1 车削加工
车削 — 用车刀在车床上加工工件的工艺过程。 加工精度:IT8~IT7,表面粗糙度:Ra=1.6~6.3um 主运动 — 工件的旋转运动。 进给运动 — 刀具的直线运动。
所以:车削加工适宜各种回转体表面的加工。
普通车床 — 适于各种中、小 型轴、盘、套类零件的单件、 小批量生产。 转塔式六角车床 — 适于加工 零件尺寸较小、形状较复杂的 中、小型轴、盘、套类零件。 立式车床 — 适于直径较大、 长度较短的重型零件。 (L/D=0.3~0.8) 数控车床 — 适于多品种、 小批量生产复杂形状的零件。
内圆磨与铰孔和拉孔相比较:
① 可以加工淬硬工件的孔; ② 不仅能保证孔本身的尺寸精度和表面质量,还可以提 高孔的位置精度和形状精度。 ③ 生产率低比铰孔低,比拉孔更低。
磨孔一般仅用于淬硬工件孔的精加工。

第二章 金刚石刀具精密切削加工

第二章 金刚石刀具精密切削加工

复习晶体结构
晶格模型
面心结构
晶体结构指晶体内部原子规则排列的方式.晶体结构不同, 其性能往往相差很大。为了便于分析研究各种晶体中原子 或分子的排列情况,通常把原子抽象为几何点,并用许多 假想的直线连接起来,这样得到的三维空间几何格架称为 晶格。
晶胞
Z
晶胞
c
b Y
a
X
晶格常数 a , b, c
人造单晶金刚石刀具 金刚石刀具 PCD刀具
多晶金刚石刀具
CVD金刚石薄膜涂层刀具
CVD金刚石刀具 金刚石厚度膜焊接刀具
金刚石刀具的性能特点
极高的硬度和耐磨性:硬度达HV10000,是自然界最硬的物质, 具有极高的耐磨性,天然金刚石耐磨性为硬质合金80-120倍,人 造金刚石耐磨性为硬质合金60-80倍。 各向异性能:单晶金刚石晶体不同晶面及晶向的硬度、耐磨性能 、微观强度、研磨加工的难易程度以及与工件材料之间的摩擦系 数等相差很大,因此,设计和制造单晶金刚石刀具时,必须进行 晶体定向。
二、典型机床简介
Pneumo 公司的MSG-325超精密车床
采用T形布局,机床空气主轴的径向圆跳动和轴向 跳动均小于等于0.05μm。床身溜板用花岗岩制造,导 轨为气浮导轨;机床用滚珠丝杠和分辨率为0.01μm的 双坐标精密数控系统驱动,用HP5501A双频激光干涉仪 精密检测位移。
DTM-3大型超精密车床
分为:液体静压和空气静压
供油压力恒定的液体静压轴承
主轴始终悬浮 在高压油膜上
液体静压轴承与气压轴承
1、液体静压轴承主轴
优点
回转稳定性好 刚度高 无振动
缺点
回转运动有温升 回油时有空气进入油源 注:空气静压轴承原理与静

《精密和超精密加工技术(第3版)》第2章超精密切削与金刚石刀具

《精密和超精密加工技术(第3版)》第2章超精密切削与金刚石刀具
3)积屑瘤呈鼻形并自切削刃前伸出,这导致实际切削 厚度超过名义值。超精密切削的切削厚度原来就很小 ,增加切削厚度将使切削力明显增加。
三、使用切削液减小积屑瘤,减小加工表面粗糙 度值
图2-11 超精密切削时切削速度对加工表面粗糙 度的影响 f=0.0075mm/r ap=0.02mm
加工硬铝时,如将航空汽油作为切削液,可明显减小 加工表面粗糙度值,并且在低速时表面粗糙度值也很 小。这说明使用切削液后,已消除了积屑瘤对加工表 面粗糙度的影响,从污染环境看,应在保证加工表面 质量的条件下,尽量少用切削液。加工黄铜时,切削 液无明显效果,低速时加工表面粗糙度值不大,故加 工黄铜时可不使用切削液。
加的原因如下:
1)鼻形积屑瘤前端的圆弧半径R为2~3μm,较原来金刚 石车刀的切削刃钝圆半径rn(0.2~0.3μm)大得多。
2)积屑瘤存在时,它代替金刚石切削刃进行切削,积屑 瘤和切屑间的摩擦及积屑瘤和已加工表面之间的摩擦 都很严重,摩擦力很大,大大超过金刚石和这些材料之 间的摩擦力,这导致切削力的增加。
超精密切削刀具磨损和寿命
图2-2 磨损的金刚石切削刃
正常刀具磨损情况,一般磨 损主要在后刀面上。
图2-3 剧烈磨损的金刚石切削刃
剧烈磨损情况,从图中可看 到磨损区呈层状,即刀具磨 损为层状微小剥落,这大概 是由金刚石沿(111)晶面有 解理现象产生而造成这样的 磨损形式。
超精密切削刀具磨损和寿命
一、超精密切削时切削参数对积屑瘤生成的影响
图2-8 背吃刀量㊀ap对积屑瘤高度的影响
硬铝v=314m/min f=0.0075mm/r
在实验的切削参数范围内都有积屑瘤产生。
背吃刀量ap<25μm时,积屑瘤的高度h0变化 不大,但ap大于25μm后,积屑瘤高度h0将随 ap值的增加而增加,这种变化的原因大概是

先进制造技术 第2章 高速切削技术2-1

先进制造技术 第2章 高速切削技术2-1



萨洛蒙在l924一1931年间,进行了一系列的高速切削实验: 在非黑色金属材料,如铝、铜和青铜上,用特大直径的刀 盘进行锯切,最高实验的切削速度曾达到14000m/min, 在各种进给速度下,使用了多达20齿的螺旋铣刀。l931年 申请了“超极限速度”专利,随后卖给了“Krupp钢与工 具制造厂”。 萨洛蒙和他的研究室实际上完成了大部分有色金属的切削 试验研究,并且推断出铸铁材料和钢材的相关曲线。 萨洛蒙理论提出了一个描述切削条件的区域或者是范围, 在这个区域内是不能进行切削的。萨洛蒙没有提出可靠的 理论解释,而且他的许多实验细节也没有人知道。
刀具磨损曲线
三、高速切削切屑形成

高速切削试验表明,工件材料及 性能对切屑形态 有决定性影响。
低硬度和高热物理性能的工件材料(铝合金、低碳钢、未 淬硬钢等)易形成连续带状切屑。 高硬度和低热物理性能的工件材料(钛合金钢、未淬硬钢 等)易形成锯齿状切屑。

切削速度对切屑形态有重要影响。对钛合金,在 (1.5~4800)m/min的切削速度范围内形成锯齿状 切屑,随切削速度的增加,锯齿程度(锯齿的齿 距)在增加,直至成为分离的单元切屑。
不同切削速度下车削45钢件的切削形态。

一方面,切削速度增加,应变速度加大,导致脆 性增加,易于形成锯齿状切屑;另一方面,切削 速度增加,切屑温度增加,导致脆性降低,不易 形成锯齿状切屑;
绝热剪切理论(Adiabatic Shear Theory) 周期脆性断裂理论(Periodic brittle fracture theoty)

萨洛蒙(Salomon)曲线
1600
切削温度/℃

1200
青铜
铸铁 硬质合金980℃ Stelite合金850℃ 高速钢650℃ 碳素工具钢450℃

仪器制造工艺学2——精密机械加工(2)

仪器制造工艺学2——精密机械加工(2)

金刚石车床 加工4.5mm陶瓷球
图 金刚石车床及其加工照片
金刚石车床主要性能指标
表1 金刚石车床主要性能指标
最大车削直径和长度 /mm 最高转速 r/min 最大进给速度mm /min 数控系统分辩率 /μm 重复精度(±2σ) / μ m 主轴径向圆跳动 / μ m 主轴轴向圆跳动 / μ m 滑台运动的直线度 / μ m 横滑台对主轴的垂直度 / μ m 主轴前静压轴承(φ100mm)的刚 径向 度 /(N/μm) 轴向 主轴后静压轴承(φ80mm)的刚度 /(N/μm) 纵横滑台的静压支承刚度 /(N/μm)
超精密切削加工发展:20世纪60年代发展 起来的新技术,在国防和尖端技术领域具有重 要地位。 服从金属切削的普遍规律,但由于切削层 极薄,所以又具有一定的特殊性。 发展方向: 1、基本理论和工艺; 2、设备的精度、动态性及热稳定性; 3、精度检测和误差补偿; 4、环境控制技术; 5、加工材料。
精密磨削加工
刀具磨损、破损及耐用度
金刚石刀具可分为:机械磨损、破损和碳化磨损。(前 两种比较常见) 金刚石刀具破损的原因有:裂纹(结构缺陷)、破碎 (金刚石较脆)、解理(破坏晶面结构)。 刀具磨损分为:初期磨损阶段、正常磨损阶段、急剧 磨损阶段。 天然单晶金刚石是目前已知最硬的材料,是精密切削 中最重要的刀具。其磨损或破损到不能使用的标志是 加工表面的粗糙度超过规定值。耐用度以其切削路程 的长度表示。
切削热的来源:
1、弹塑性变形消耗功——热; 2、摩擦消耗功——热。 切削热通过改变切削温度影响切削过程。 切削温度是指:切屑、工件和刀具接触表面上的平均 温度。
刀具刀尖的温度最高,对切削过程的影的比例随刀具材料、切削用量及刀具几何 角度、加工情况等的变化有所不同。其中切削传 出的热量最多。采用微量切削方法进行精密切削 时,需要采用耐热性高、耐磨性强,有较好的高 温硬度和高温强度的刀具材料。

第二章 精密切削加工

第二章 精密切削加工
2020/1/30
一、切削速度、进给量、修光刃和背吃刀量的影响 4、背吃刀量的影响
在刀具刃口半径足够小时,超精密切削范围内,背吃 刀量变化对加工表面粗糙度影响很小。
背吃刀量减少,表面残留应力也减少,但超过某临界 值时,背吃刀量减少反而使加工表面残留应力增加。
2020/1/30
一、刃口锋锐度对加工表面粗糙度的影响
2020/1/30
1、金刚石刀具切削部分的几何形状
金刚石车刀举例
4
3
3
1:主偏角45度
1
1
2
2:前角0度
3:后角5度
4:修光刃0.15mm
2020/1/30
2、金刚石刀具前、后刀面晶面选择
应考虑因素:刀具耐磨性好;刀刃微观强度高,不易产生微 观崩刃;刀具和被加工材料间摩擦系数低,使切削变形小, 加工表面质量高;制造研磨容易。(111)不适合作前后面。
刃口半径为0.6μm、0.3μm
刃口锋锐度对加工表面有一 定的影响,相同条件下(背 吃刀量、进给量),更锋锐 的刀具切出的表面粗糙度更 小;速度的影响不是很大。
2020/1/30
二、刀刃锋锐度对切削变形和切削力的影响
2020/1/30
锋锐车刀切削变形系数明显低于 较钝的车刀。 刀刃锋锐度不同,切削力明显不 同。刃口半径增大,切削力增大, 即切削变形大。背吃刀量很小时, 切削力显著增大。因为背吃刀量很 小时,刃口半径造成的附加切削变 形已占总切削变形的很大比例,刃 口的微小变化将使切削变形产生很 大的变化。所以在背吃刀量很小的 精切时,应采用刃口半径很小的锋 锐金刚石车刀。
2020/1/30
二、金刚石刀具的研磨加工 3、精研
提高研磨质量,使切削刃研制更为锋锐 磨料粒度越小,研磨表面粗糙度越小 研磨盘质量越好,研磨效果越好 研磨方向:逆磨,即沿切削刃口指向刀体内的方向研磨 精抛:研磨时让金刚石作垂直于研磨方向的法向运动,除

精密与超精密加工技术.ppt

精密与超精密加工技术.ppt

2.2精密与超精密加工的主要方法
1、 ELID(Electrolytic In-Process Dressing)
金刚石砂轮
(铁纤维结合剂)
电源
电刷
冷却液
+-
进给
冷却液
图2-8 ELID磨削原理
使用ELID磨削,冷却液为一种特殊电解液。通电后,砂 轮结合剂发生氧化,氧化层阻止电解进一步进行。在切削 力作用下,氧化层脱落,露出了新的锋利磨粒。由于电解 修锐连续进行,砂轮在整个磨削过程保持同一锋利状态。
Ra <0.02μm
雷达导波管 平面度垂直度误差 < 0.1μm Ra <0.02μm
卫星仪表轴承 圆柱度误差 <0.01μm
Ra <0.002μm
天体望远镜 形状误差 < 0.03μm
Ra <0.01μm
精密加工与超精密加工的发展(图2-1)
2.1 概 述
加工误差(μm)
102 101 100 10-1 10-2 10-3
1140 1020 640 720
2.2精密与超精密加工的主要方法
金刚石刀具
超精切削刀具材料:天然金刚石,人造单晶金刚石
金刚石的晶体结构:规整的单晶金刚石晶体有八面体、
十二面体和六面体,有三根4次对称轴,四根3次对称轴和
六根2次对称轴(图2-4)。
L4 (100)
L2
L3
(111)
(110)
与高新技术产品紧密结合 精密与超精密加工设备造价高,难成系列。常常针对某一 特定产品设计(如加工直径3m射电天文望远镜的超精密车 床,加工尺寸小于1mm微型零件的激光加工设备)。 与自动化技术联系紧密 广泛采用计算机控制、适应控制、再线检测与误差补偿技 术,以减小人的因素影响,保证加工质量。

精密加工简答

精密加工简答

第一章概论1.精密与特种加工技术是在什么前提条件下产生和发展起来的?在机械制造领域的作用和地位如何?(思1、P1~2)答:现代科学技术的迅猛发展,各种新结构、新材料和复杂形状的精密零件大量出现,其结构和形状越来越复杂,材料的性能越来越高,对加工表面粗糙度和完整性要求越来越严格,要解决各种难切削材料、特殊复杂型面、超精密光整零件特殊零件的加工问题,仅仅依靠传统的切削加工方法很难实现。

精密与特种加工技术就是在这种环境和条件下产生和发展起来的。

产品的实际制造必然要依靠精密与特种加工技术。

在难切削材料、复杂型面、精细零件、低钢度零件、模具加工、大规模集成电路等领域,精密与特种加工技术发挥越来越重要的作用。

2.何谓非传统加工?与传统加工方法相比有何不同?特种加工与传统切削加工方法在原理上的主要区别是什么?(P2)答: 特种加工是指那些不属于传统加工工艺范畴的加工方法,它不同于使用刀具、磨具等直接利用机械能切除多余材料的传统加工方法。

是直接利用电能、热能、声能、光能、化学能和电化学能等,有时也结合机械能对工件进行的加工。

主要区别:①用机械能以外的其他能量去除工件上多余的材料;②打破传统的硬刀具加工软材料的规律,刀具硬度可低于被加工材料的硬度;③工具与工件不受切削力的作用。

3.试述特种加工的特点及所能解决的主要加工问题,特种加工工艺与常规加工工艺之间有何关系?应该如何正确处理传统加工和特种加工工艺之间的关系?(思3、P2~3)答:特点主要有:①不是主要依靠机械能;②工具硬度可低于工件;③不存在显著切削力。

可解决:①高硬度、高强度、高韧性、高脆性等各种难加工材料加工问题;②精密、微细、形状复杂零件加工问题;③薄壁、弹性等低刚度零件加工问题。

传统加工是指切削加工和磨料加工,是行之有效的实用加工方法,是主要加工手段,今后仍将占主导地位,应重视进一步发展。

但随着难加工的新材料、复杂表面和有特殊要求的零件越来越多,传统加工工艺必然难以适应。

精密切削加工讲解

精密切削加工讲解
第2章 精密切削加工
2.1概述 2.2精密切削加工的工艺规律和机理 2.3精密切削加工的机床及应用 2.4功率超声车削
2019/1/6
2.1概述



精密切削是使用精密的单晶天然金刚石刀具加工有色金属 和非金属,可以直接加工出超光滑的加工表面(粗糙度 Ra0.02~0.005µm,加工精度<0.01µm)。 用于加工:陀螺仪、激光反射镜、天文望远镜的反射镜、 红外反射镜和红外透镜、雷达的波导管内腔、计算机磁盘、 激光打印机的多面棱镜、录像机的磁头、复印机的硒鼓、 菲尼尔透镜等。 精密切削也是金属切削的一种,当然也服从金属切削的普 遍规律。 金刚石刀具的精密加工技术主要应用于单件大型超精密零 件的切削加工和大量生产中的中小型超精密零件加工。
一、切削速度、进给量、修光刃和背吃刀量的影响
2、进给量的影响
在进给量f<5μm/r
时,均达到
Rmax<0.05μm的加工 表面粗糙度。
2019/1/6
一、切削速度、进给量、修光刃和背吃刀量的影响
3、修光刃的影响
修光刃长度常取0.05~ 0.20mm。 修光刃的长度过长,对 加工表面粗糙度影响不 大。 修光刃有直线和圆弧两 种,加工时要精确对 刀,使修光刃和进给方 向一致。圆弧刃半径一般 取2~5mm。
2019/1/6
精密加工的关键技术

1.精密加工机床:主轴回转精度、工作台直线运动精度以 及刀具微量进给精度 2.金刚石刀具:金刚石晶面选择、刀具刃口锋利性(刀具 刃口圆弧半径) 3.精密切削机理:微量切削过程的特殊性 4.稳定的加工环境:恒温、防振和空气净化 5.误差补偿:根据规律设定补偿,反馈控制系统 6.精密测量技术
2019/1/6

2 精密切削1

2 精密切削1
§2 精密切削加工
§2.1 概述
一、精密与超精密加工的概念
精密加工包含了所有能使零件的形 状、位置和尺寸精度达到微米和亚微米 范围的各种加工方法。精密和超精密只 是相对而言的,其间没有严格的界限, 且随着时间的推移这种界限在不断的变 化。
1 加工方法、精度及其发展势态:
2 加工范畴的划分:
普通加工 指加工精度低于1μm,表面粗糙度 值大于Ra0.1μm的加工方法。
论,最大剪切应力发生在与切削合力Pi成45°角
的方向上,即Pyi=Pzi 。 因此,当Pzi>Pyi时,材料质点被推向切削运 动方向,形成切屑;当Pzi<Pyi时,材料质点被 压向零件本体,被加工材料表面形成挤压过程, 无切屑产生;Pzi=Pyi时所对应的切入深度便 是最小切入深度。
△=ρ一h=ρ(1一COSψ)
少刀具与工件材料之间摩擦的效果,从而减小切削
力,减少刀具磨损。另外,抑制积屑瘤的生成,降 低加工区域温度。
大,积屑瘤小时切削力也小,这和普通切削时规
律正好相反。原因是积屑瘤的存在,使刀具的刃 口半径增大;积屑瘤呈鼻形并自刀刃前伸出,这 导致实际切削厚度超过名义值许多;积屑瘤代替 刀具进行切削,积屑瘤、切屑和已加工表面之间
的摩擦比刀具和它们之间的摩擦要严重许多。
(2) 进给量
进给量和切削深度决定着切削面积的大小,因而
精密加工 指加工精度在0.1~1μm之间,粗
糙度值在Ra0.02~0.1μm之间的加工方法 。 超精密加工 指加工精度高于0.1μm,表面粗 糙度值小于Ra0.02μm的加工方法 。 纳米加工 当加工精度高于0.01μm时,被认 为是纳米级的加工 。
二、影响精密与超精密加工的主要
因素

机械制造技术第二章金属切削基本原理课件

机械制造技术第二章金属切削基本原理课件

切削振动对表面质量的影响与控制
切削振动对表面质量的影响
切削过程中,由于刀具与工件的相互作用,可能会产生振动。振动会导致切削刃振动和工件振动,从而影响已加 工表面的粗糙度和波纹度,降低加工质量。
控制切削振动的方法
通过合理选择刀具材料和几何参数,优化切削用量和切削液的使用,以及采用减振装置和动态优化技术等措施, 可以有效减小切削振动,提高加工表面的质量。
THANKS FOR WATCHING
感谢您的观看
加工硬化与残余应力的影响
加工硬化
金属切削过程中,由于切削力的作用, 已加工表面层会发生冷作硬化,使表 面层金属的硬度和强度提高,塑性和 韧性降低。
残余应力
切削过程中,由于切削力和切削热的 共同作用,已加工表面层会产生残余 应力。残余应力分为压应力和拉应力, 过大的残余应力可能导致工件变形或 开裂。
边界磨损
切削过程中,切屑在刀尖处与刀具摩 擦造成磨损,影响切削效果和刀具寿 命。
破裂
切削过程中,切削力超过刀具材料的 强度极限,导致刀具破裂。
04 金属切削的工艺参数选择
切削速度的选择
01
02
03
04
切削速度对刀具寿命和 加工质量有显著影响。
切削速度越高,刀具寿 命越短,但工件加工时 间减少,生产效率提高。
选择切削速度时应综合 考虑刀具寿命、加工质 量和生产效率。
根据工件材料、刀具材 料和加工条件,选择合 适的切削速度范围。
进给量的选择
01
02
03
04
进给量是影响切削力和切削温 度的重要因素。
进给量过小,切削力增大,刀 具磨损加剧;进给量过大,切 削力减小,但工件表面粗糙度
增加。
选择进给量时应根据工件材料 、刀具材料和加工条件,以及 表面粗糙度要求进行合理调整

第二章切削原理

第二章切削原理

第二章切削原理、第三章刀具练习题一、填空题1、铣刀旋转方向与工件进给方向相同,称顺铣方式。

2、切削层面积平面与切削用量的关系是:切削层面积平面仅与背吃刀量a p和进给量f有关,f增加,切削厚度增加。

a p增加,切削层宽度增加。

3、刀具前角越_大_,切削刃越锋利,使剪切角增大,变形系数减小,因此,切削变形减小。

7、在刀具材料中,_硬质合金用于切削速度很高、难加工材料的场合,制造形状较简单的刀具。

12、切削用量的顺序是先选背吃刀量,后选进给量,最后选切削速度。

13、切削用量的三要素是切削速度v、进给量f、切削深度a p。

19、刀具材料分为工具钢、硬质合金、陶瓷刀具、超硬刀具四大类。

21、粗加工时选择较小前角,精加工时选择较大前角。

28、铣削过程中所选用的切削用量称为铣削用量,铣削用量包括铣削宽度、铣削深度、铣削速度、进给量。

33、在切削过程中,工件上形成三个表面:①已加工表面;②待加工表面;③加工表面。

36、一个机械加工工艺系统由机床、夹具、刀具和工件构成。

37、切削运动由主运动、进给运动及辅助运动组成。

39、切削合力可分解为_主切削力、_进给力和_背向力三个分力。

二、解释下列术语1.积屑瘤:以中速或较低的切削速度切削塑性金属时,常在刀具前面粘结一些工件材料,形成一个硬度很高的楔块,称为积屑瘤。

2.顺铣法:铣刀的旋转切入方向与工件的进给方向相同的铣削方式称顺铣法。

3.加工硬化:已加工表面经过严重塑性变形而使表面硬度增大,这种现象称为加工硬化。

4、刀具耐用度:刀具刃磨后开始切削至磨损量达到磨钝标准的总切削时间。

5、机夹车刀:采用普通刀片,用机械夹固的方法将刀片夹持在刀杆上使用的车刀。

6、逆铣法:铣刀的旋转切入方向与工件的进给方向相反的铣削方式称逆铣法。

三、判断题1.(×)高速钢是一种含合金元素较多的工具钢,由硬度和熔点很高的碳化物和金属粘结剂组成。

2.(√)刀具切削部位材料的硬度必须大于工件材料的硬度。

精密加工技术第二讲ppt课件

精密加工技术第二讲ppt课件

:
2.3 切削时积屑瘤的生成规律
三、积屑瘤影响精密加工质量的原因 积屑瘤时现时失、时大时小,使工件表面呈 高低不平,使粗糙度增大、工件尺寸精度降 低。 积屑瘤生长与消失,改变着刀具前角,影响 着刀具在切削过程中的挤压、摩擦和切削能 力,造成工件表面硬度不均匀。 还会引起切削过程振动,加快刀具磨损。
:
降低振动技术
高速精密电 主轴中的陶
瓷轴承
高速精密空 气轴承的电
主轴
:
2.3 切削时积屑瘤的生成规律
一、积屑瘤的生成现象
切削过程中,会出现一 小块金属牢固地粘附住 所用刀具的前刀面上, 这一小块金属就是积屑 瘤。
积屑瘤是在很大的压力、 强烈摩擦和剧烈的金属 变形的条件下产生的
:
2.3 切削时积屑瘤的生成规律
若用130°的金刚石四棱锥作压入头:
HV
18.8P d2
HV-显微硬度(MPa) P-负荷重量(kg)
:
d-凹坑对角线长度(mm)
第2章 金刚石刀具的切削机理 2.2 刀具磨损及其耐用度
美国加州的劳伦斯利弗莫尔国家实验室(Lawrence Livermore National L:aboratory)
:
课堂练习
1. 分析金刚石刀具的超精密切削过程中, 积屑瘤对切削力是如何产生影响的?以 此进一步分析对加工的质量如何产生影 响? 2何为解理现象?请应用解理现象,解释 说明选择(100)晶面作为金刚石刀具前后 刀面的原因。
:
二、切削参数对积屑瘤生成的影响
1、切削速度的影响
12m/min
62m/min
120m/min
815m/min
:
2.3 切削时积屑瘤的生成规律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 超精密切削实际速度的选择根据所使用的超精密机 床的动特性和切削系统的动特性选取,即选择振动 最小的转速。
2020/8/13
总结:天然单晶金刚石刀具只能用在机床主轴转 动非常平稳的高精度车床上,否则由于振动金刚 石刀具将会很快产生刀刃微观崩刃。
2020/8/13
2020/8/13
图2-3:图a是刀刃磨损的正 常情况,图b是剧烈磨损情 况,可以看到磨损后成层状, 即刀具磨损为层状微小剥落。 图2-4:图中所示沿切削速 度方向出现磨损沟槽,由于 金刚石和铁、镍的化学和物 理亲和性而产生的腐蚀沟槽。 图2-5:金刚石切削时,若 有微小振动,就会产生刀刃 微小崩刃。
一、切削速度、进给量、修光刃和背吃刀量的影响 2、进给量的影响
在进给量f<5μm/r 时,均达到
Rmax<0.05μm的加工 表面粗糙度。
2020/8/13
一、切削速度、进给量、修光刃和背吃刀量的影响
3、修光刃的影响
修光刃长度常取0.05~ 0.20mm。 修光刃的长度过长,对 加工表面粗糙度影响不 大。 修光刃有直线和圆弧两 种,加工时要精确对 刀,使修光刃和进给方 向一致。圆弧刃半径一般 取2~5mm。
2020/8/13
一、切削速度、进给量、修光刃和背吃刀量的影响 4、背吃刀量的影响
在刀具刃口半径足够小时,超精密切削范围内,背吃 刀量变化对加工表面粗糙度影响很小。
背吃刀量减少,表面残留应力也减少,但超过某临界 值时,背吃刀量减少反而使加工表面残留应力增加。
2020/8/13
一、刃口锋锐度对加工表面粗糙度的影响
一、切削参数对积屑瘤生成的影响 1、切削速度的影响
2020/8/13
不管在多大的切削速度下都有积屑瘤生 成,切削速度不同,积屑瘤的高度也不 同。当切削速度较低时,积屑瘤高度较 高,当切削速度达到一定值时,积屑瘤 趋于稳定,高度变化不大。
2、进给量f和背吃刀量 p的影响
➢ 由图2-8可以看出在进给量很小时,积屑瘤的高度很大, 在f=5μm/r时,h0值最小,f值再增大时,h0值稍有增 加。
2020/8/13
2.2精密切削加工机理
➢ 切削速度向来是影响刀具耐用度最主要的因素,但 是切削速度的高低对金刚石刀具的磨损大小影响甚 微,刀具的耐用度极高。原因是:金刚石的硬度极 高,耐磨性好,热传导系数高,和有色金属间的摩 擦系数低,因此切削温度低,在加工有色金属时刀 具耐磨度甚高,可用很高的切削速度1000~ 2000m/min,而刀具的磨损甚小。
2020/8/13
精密加工的加工范畴
按加工精度划分,可将机械加工分为一般加工、精密加工、超 精密加工三个阶段。 精密加工:加工精度在0.1~1µm,加工表面粗糙度在Ra0.02~ 0.1µm之间的加工方法称为精密加工; 超精密加工:加工精度高于0.1µm,加工表面粗糙度小于 Ra0.01µm之间的加工方法称为超精密加工(微细加工、超微细 加工、光整加工、精整加工等 )。
2020/8/13
精密加工的关键技术
➢ 1.精密加工机床:主轴回转精度、工作台直线运动精度以 及刀具微量进给精度
➢ 2.金刚石刀具:金刚石晶面选择、刀具刃口锋利性(刀具 刃口圆弧半径)
➢ 3.精密切削机理:微量切削过程的特殊性 ➢ 4.稳定的加工环境:恒温、防振和空气净化 ➢ 5.误差补偿:根据规律设定补偿,反馈控制系统 ➢ 6.精密测量技术
第2章 精密切削加工
2.1概述 2.2精密切削加工的工艺规律和机理 2.3精密切削加工的机床及应用 2.4功率超声车削
2020/8/13
2.1概述
➢ 精密切削是使用精密的单晶天然金刚石刀具加工有色金属 和非金属,可以直接加工出超光滑的加工表面(粗糙度 Ra0.02~0.005µm,加工精度<0.01µm)。
刃口半径为0.6μm、0.3μm
刃口锋锐度对加工表面有一 定的影响,相同条件下(背 吃刀量、进给量),更锋锐 的刀具切出的表面粗糙度更 小;速度的影响不是很大。
2020/8/13
二、刀刃锋锐度对切削变形和切削力的影响
2020/8/13
锋锐车刀切削变形系数明显低于 较钝的车刀。 刀刃锋锐度不同,切削力明显不 同。刃口半径增大,切削力增大, 即切削变形大。背吃刀量很小时, 切削力显著增大。因为背吃刀量很 小时,刃口半径造成的附加切削变 形已占总切削变形的很大比例,刃 口的微小变化将使切削变形产生很 大的变化。所以在背吃刀量很小的 精切时,应采用刃口半径很小的锋
2020/8/13
1)积屑瘤前端R大约 2~3μm,实际切削 力由刃口半径R起 作用,切削力明显 增加 。
2)积屑瘤与切削层和 已加工表面间的摩 擦力增大,切削力 增大。
3)实际切削厚度超过 名义值,切削厚度 增力加 增加hD。-hDu,切削
二、积屑瘤对切削力和加工表面粗糙度的影响 2、对加工表面粗糙度的影响
积屑瘤高度大,表面粗糙度大,积屑瘤小表面粗糙度小。并 且可以看出,切削液减小积屑瘤,减小加工表面粗糙度。
2020/8/13
一、切削速度、进给量、修光刃和背吃刀量的影响 1、切削速度的影响
由图2-12知,在有切削液的条件下,切削速度对加工表面粗 糙度的影响很小。 图2-13说明,不同切削速度下均得到表面粗糙度极小的加工 表202面0/8—/13 镜面。
➢ 由图2-9所示,在背吃刀量<25μm时,积屑瘤的高度变 化不大,但在背吃刀量> 25μm后, h0值将随着背吃 刀量的增加而增加。
2020/8/13
二、积屑瘤对切削力和加工表面粗糙度的影响 1、对切削力的影响
积屑瘤高时切削力也大,积屑瘤小时切削力也小。 与普通切削规律正好相反。
2020/8/13
➢ 用于加工:陀螺仪、激光反射镜、天文望远镜的反射镜、 红外反射镜和红外透镜、雷达的波导管内腔、计算机磁盘、 激光打印机的多面棱镜、录像机的磁头、复印机的硒鼓、 菲尼尔透镜等。
➢ 精密切削也是金属切削的一种,当然也服从金属切削的普 遍规律。
➢ 金刚石刀具的精密加工技术主要应用于单件大型超精密零 件的切削加工和大量生产中的中小型超精密零件加工。
相关文档
最新文档