北科大材料考研试题

合集下载

北科大材料考研试题

北科大材料考研试题





(3)脱溶分解对性能的影响 脱溶分解对材料的力学性能有很大的影响,其 作用决定于脱溶相地形态、大小、数量和分布 等因素。 一般来说,均匀脱溶对性能有利,能起到明显 地强化作用,称为“时效强化”或“沉淀强 化”; 而局部脱溶,尤其是沿着晶界析出(包括不连 续脱溶导致的胞状析出),往往对性能有害, 使材料塑性下降,呈现脆化,强度也因此下降。
①成分不变协同型长大②成分不变非协同型长大 ③成分改变协同型长大 ④成分改变非协同型长大 成分不变的相变无需溶质原子扩散,晶核长大速 度仅与界面点阵重构过程有关。协同型长大原子 调整位置的过程通常可以在很短的时间内完成, 所以晶核长大速度很快;而成分不变的非协同型 长大速度则受控于界面原子调整位置的速度,即 受界面过程所控制。


(3)、屈氏体(T): 片间距约小于200nm,形成于 600 ~ 500℃温度范围内。在光学显微镜下已很难 分辨出铁素体和渗碳体片层状组织形态。电镜观 察。 注意:珠光体、索氏体、屈氏体之间无本质区别, 都是铁素体和渗碳体片层相间组织,其形成温度 也无严格界线,只是其片层厚薄和片间距不同。



(1)共格界面 如果界面上的原子同时属于两相,即两相晶格 在界面上彼此完全衔接,界面上的原子为两相 共有,便可形成共格界面。存在一定的弹性应 力场,其大小取决于相邻两相界面,原子间距 a a 的相对差值δ= a 。 δ越大,弹性应变能 越大。共格界面的界面能很低。 (2)半共格界面 δ 增大,为了维持界面上的原子为两相所共有, 须由一系列调配位错进行调节,形成半共格界 面。半共格界面的界面能和弹性应变能介于共 格界面和非共格界面之间。




(3)非共格界面 当δ很大时,界面处两相原子根本无法匹配,形 成非共格界面。这种界面由不规则的原子构成, 厚度约3-4个原子层,性质与大角度晶界相似, 界面能较高而弹性应变能很小。 2界面能 固-固两相界面能比液-固两相界面能高。 一部分是形成新相界面时,因化学键变化引起 的化学能,另一部分时由界面原子的不匹配产 生的点阵畸变能。 界面能:共格界面< 半共格界面< 非共格界面

北科大材料考研试题

北科大材料考研试题


表面能与晶体表面原子排列紧密程度有关,原 子密排的表面具有最小的表面能。
fcc的Au晶体的表面能极图
影响表面能的因素?
(1)外部介质的性质(外与内作用力 相差越大,表面能越大)。 (2)裸露晶面的原子密度(密排晶面 裸露表面能最小)。 (3)晶体表面的曲率(曲率越大,表 面能越大)。

一 外表面(晶体表面-plane of crystal)


表面是指固体材料与真空或气体、液体等 外部介质相接触的界面; 而内界面包括晶界(grain boundary)、孪晶 界(twin boundary)、亚晶界(subboundary)、相界(phase boundary)及层 错(stacking fault )等。
三、亚晶界

实际晶体中,每个晶粒 内的原子排列并不是十 分整齐的,往往能够观 察到这样的亚结构,由 直径为10~100um的晶 块组成,彼此之间存在 极小的位相差(通常< 2°).这些小晶块之间 的内界面称为亚晶粒间 界,简称亚晶界。
金属晶粒内部结构示意图
三、亚晶界
铸态:亚晶粒 边长10-2cm 变形或热处理: 10-6~10-4cm 亚晶界也可以 阻碍塑性变形, 故亚晶细化也 可提高金属的 屈服强度。
一 外表面(晶体表面-plane of crystal)
内部原子对界面原子的作用力显著大 于外部原子或分子的作用力。 导致表面原子就会偏离其正常平衡位 置,并因而牵连到邻近的几层原子, 造成表面层的晶格畸变。 由于晶格畸变,故表面层能量就要升 高。表面能!

什么是表面能?



晶体表面单位面积自由能的增加称为表面能 γ (J/m2)。表面能也可理解为产生单位面 积新表面所作的功: dW γ = dS 式中,dW为产生dS表面所作的功。 表面能也可以单位长度上的表面张力(N/m) 表示。 晶体的表面张力是各向异性的

北京科技大学《材料科学基础》考研真题强化教程

北京科技大学《材料科学基础》考研真题强化教程

北京科技大学《材料科学基础》考研真题强化教程考点1:金属键,离子键,共价键,氢键,范德瓦耳斯力的定义。

例1(名词解释):离子键。

例2:解释金属键。

例3:大多数实际材料键合的特点是()。

A.几种键合形式同时存在 B.以离子键的形式存在 C.以金属键的形式存在考点2:金属键,离子键,共价键的特征。

例4:化学键中既有方向性又有饱和性的为()。

A.共价键 B.金属键C.离子键例5:原子的结合键有哪几种?各有什么特点?考点3:依据结合键对于材料的分类。

例6:解释高分子材料与陶瓷材料。

例7:试从结合键的角度,分析工程材料的分类及其特点。

例8:何谓陶瓷?从组织结构的角度解释其主要性能特点。

考点1:以米勒指数描述晶向和晶面 1.1 晶面族例1:什么是晶面族?{111}晶面族包含哪些晶面?例2:请分别写出立方晶系中{110}和{100}晶面族包括的晶面。

1.2 晶面夹角和晶面间距例:面心立方结构金属的[100]和[111]晶向间的夹角是多少?{100}面间距是多少?1.3 晶带定理例1(名词解释):晶带定理。

例4:晶面(110)和(111)所在的晶带,其晶带轴的指数为()。

1.4 HCP的米勒指数例1:写出如图所示六方晶胞中EFGHIJE面的密勒-布拉菲晶面指数,以及EF、FG、GH、HI、IJ、JE各晶向的密勒-布拉菲晶向指数。

例2:写出如图所示六方晶胞中EFGHIJE晶面、EF晶向、FG晶向、CH晶向、JE晶向的密勒-布拉菲指数。

例3:六方晶系的[100]晶向指数,若改用四坐标轴的密勒指数标定,可表示为()。

1.5 画晶向和晶面,面密度的求法例2:bcc结构的金属铁,其(112)晶面的原子面密度为9.94×1014atoms/cm3。

(1)请计算(110)晶面的原子面密度;(2)分别计算(112)和(110)晶面的晶面间距;(3)确定通常在那个晶面上最可能产生晶面滑移?为什么?(bcc结构铁的晶格常数为a=0.2866nm)1.6 晶向指数的意义例:一组数[uvw],称为晶向指数,它是用来表示()。

北科大材料考研试题综述

北科大材料考研试题综述

说明
在固体材料中也存在扩散,并且它是固体中 物质传输的唯一方式。因为固体不能象气体 或液体那样通过流动来进行物质传输。即使 在纯金属中也同样发生扩散。扩散在材料的 生产和使用中的物理过程有密切关系,例如: 凝固、偏析、均匀化退火、冷变形后的回复 和再结晶、固态相变、化学热处理、烧结、 氧化、蠕变等等。
c 浓度梯度, ,kg/(m3· m) x
菲克第一定律的解释
“-”号表示扩散方向为浓度 梯度的反方向,即扩散由 高浓度向低浓度区进行。
4.1.2 菲克第二定律 (Fick’s Second Law) 在扩散过程中扩散物质的浓度随时间而变化。
c f (t , x)
C ≠0 t
非稳态扩散时,在一维情况下,菲克第二定律的表达 式为
2、菲克第一、第二定律的表达式及适用范围;
3、扩散机制;
D D0 e 4、菲克第二定律的误差函数解(※渗碳);
5、扩散系数与扩散激活能的关系式: Arrhenius 6、影响扩散的因素;
Q / RT
7、渗碳为什么选取在奥氏体状态下进行而不在铁素体 状态下进行? 作业: 课后习题 P/142 4-3、4-5、4-7。
x c( x, t ) cs (cs c0 )erf 2 Dt
上式称为误差函数解。
erf ( )
( x /(2 Dt ))
实际应用时,
cs c( x, t ) x erf cs c0 2 Dt

c( x, t ) c0 x 1 erf cs c0 2 Dt
H2
x 例1
c2
利用一薄膜从气流中分离氢气。在稳定状态时,薄 膜一侧的氢浓度为0.025mol/m3,另一侧的氢浓度为 0.0025mol/m3,并且薄膜的厚度为100μm。假设氢通过 薄膜的扩散通量为2.25×10-6mol/(m2s),求氢的扩散 系数。

北科大材料考研试题

北科大材料考研试题

2 特点: ① 加热温度较高:T>T再 T再≈0.4T熔;实际: +100~200℃ ② 显微组织显著变化 : 转变为等轴无畸变新晶粒 ③ 亚结构:位错密度大大降低; ④ 性能显著变化: HB、ζ↓↓;δ、ψ↑↑ ⑤ 内应力完全消除。
3 再结晶形核机制
(1) 亚晶合并相邻 亚晶界中位错通过 攀移和滑移消失
(3)对低碳钢,ε=8%接近临界变形量,因 此在700℃(高于再结晶温度)退火后晶粒粗 大,强度较低; (4)900℃保温时发生重结晶,冷却后晶粒 细小,因此强化提高。
§7-1 形变金属与合金在退火过程中的变化
一 退火概念 1 定义: 将金属加热到某温度保温一定时间,而 后缓慢冷至室温,通过组织结构的变化使材 料热力学稳定性得以提高的热处理工艺。 根据退火温度不同(>或<Ac1)可分为: 高温退火和低温退火 形变金属的退火——低温退火
2 金属加热中组织转变的原因 ——驱动力问题 退火T> Ac1 时: 驱动力为相变中两相的体积自由能之差 退火T< Ac1时: 对形变金属而言驱动力为形变储存能(其 中晶格畸变能占80~90%) ┗ 不稳定组织
§7-4 金属的热加工
主要内容: (1)热加工与冷加工区别 (2)热加工对组织与性能影响 一 金属热加工与冷加工的概念 热加工:T > T再; 冷加工: T < T再;
实质:
有否再结晶软化过程
衡量依据:T再
例:W 在1000℃非热加工;
Sn、Pb 在室温为热加工;
二 热加工对组织、性能的影响 热加工:钢材的热锻与热轧 1 消除铸态组织缺陷: (1)气孔、疏松、微裂纹的焊合; ——宏观组织致密化;
σb
HB
δ
4 金属Ag经大变形量(70%)冷加工后,试

新版北京科技大学材料与化工考研经验考研参考书考研真题

新版北京科技大学材料与化工考研经验考研参考书考研真题

年前的今天自己在宿舍为了是否要考研而辗转反侧,直到现在当初试结果跟复试结果都出来之后,自己才意识到自己真的考上了。

其实在初试考完就想写一篇关于考研的经验,毕竟这也是对自己一年来努力做一个好的总结,也希望我的经验,可以帮助奋斗在考研路上的你们。

首先当你决定考研的时候,请先想想自己是为了什么才决定要考研,并且要先想一下为什么非要选这个专业,作为你今后职业的发展方向,学习的动机决定了之后备考路上努力的成功还有克服一切困难的决心。

考研是一个很重要的决定,所以大家一定要慎重,千万不要随波逐流盲目跟风。

我选择这所学校的原因,一是因为这里是我的本校,二是因为这里离家也比较近。

所一大家一定更要个根据自己的实际情况来做出选择。

好啦,接下来跟大家好好介绍一下我的复习经验吧,希望对你们有所帮助。

另外还要说一句,这篇经验贴分为三个部分,先说英语政治,再说专业课,并且文章结尾分享了资料和真题,大家可以放心阅读。

北京科技大学材料与化工初试科目:(101)思想政治理论(204)英语二(302)数学二(809)冶金物理化学(809)冶金物理化学参考书:郭汉杰《冶金物理化学教程》张家芸《冶金物理化学》先聊聊英语单词部分:我个人认为不背的单词再怎么看视频也没用,背单词没捷径。

你想又懒又快捷的提升单词量,没门。

(仅供个人选择)我建议用木糖英语单词闪电版,一天200个,用艾宾浩斯曲线一个月能记完,每天记单词需要1小时(还是蛮痛苦的,但总比看真题时啥也看不懂要舒服多)。

好处在于是剔除了初高中的简单词,只剩下考研的必考词,能迅速让你上手真题。

背单词要一直从3-4月份持续到考研前几天,第一遍记完必须要在暑假前。

阅读完形部分:木糖英语真题手译就挺好用的,不需要做真题以外的任何阅读题。

因为真题就是最贴近实战的练习题了,还记得近十年的真题我是刷了大概有四五遍。

不过,我建议从05年的开始抠真题,需要一个单词都不放过,因为考研英语的试卷有80%的单词,去年的卷子重复过。

北京科技大学1995-2012材料科学基础考研试题及部分答案

北京科技大学1995-2012材料科学基础考研试题及部分答案

北京科技大学1995-2012材料科学基础考研试题及部分答案北科1995-2011材料考研,初试考卷及答案1995年攻读硕士学位研究生入学考试试题考试科目: 金属学适用专业: 金属塑性加工说明:统考生做1,10题,单考生做1,7题和在8,13题中任选3题。

每题10分。

1、什么是固溶体,固溶体可以分为几种,并说明其各自的结晶特点。

2、计算含0.45%C的亚共析钢在共析温度时铁素体和奥氏体两相的相对数量,在这一温度下铁素体和珠光体的相对数量又是多少,3、用扩散理论来说明高温条件下钢的氧化过程。

4、画出铁碳平衡相图中的包晶反应部分的相图,并给出包晶反应表达式。

5、说明钢中非金属夹杂物的来源及其种类。

6、说明钢的完全退火、不完全退火、等温退火、球化退火、和低温退火的工艺特点及它们的作用。

7、说明轴承钢的碳化物类型及形成原因。

8、画图说明钢的高温和低温形变热处理的工艺特点。

9、从下列元素中指出哪些元素是扩大奥氏体区域的,哪些元素是缩小奥氏体区域的,C Si Ti Cr Mo Ni Cu N10、冷变形金属加热发生低温、中温和高温回复时晶体内部发生什么变化,11、绘出立方系中,110,晶面族所包括的晶面,以及(112)、(123)、(120)晶面。

12、说明共析钢加热时奥氏体形成的过程,并画图表示。

13、合金钢中主要的合金相有几种类型,2 / 59北京科技大学1999年硕士学位研究生入学考试试题科目:金属学1、名词解释:(10分)(1)点阵畸变(2)组成过冷(3)再结晶温度(4)滑移和孪生(5)惯习现象2、说明面心立方、体心立方、密排六方(c/a?1.633)三种晶体结构形成的最密排面,最密排方向和致密度。

(10分)3、在形变过程中,位错增殖的机理是什么,(10分)4、简述低碳钢热加工后形成带状组织的原因,以及相变时增大冷却度速度可避免带状组织产生的原因。

(10分)5、简要描述含碳量0.25%的钢从液态缓慢冷却至室温的相变过程(包括相变转换和成分转换)。

北科大材料考研试题

北科大材料考研试题

四、再结晶温度及晶粒大小 1、再结晶温度
冷变形金属开始进行再结晶的最低温度称为开始 再结晶温度。 一般工程当中所说的再结晶温度是指完成再结晶 的温度,即在1h内再结晶完成95%所对应的温度 测定方法:金相法,硬度法,公式法(9-32) 经验公式:Tk=(0.35~0.45)Tm 常用金属的再结晶温度:表9-6 凡影响形核率和长大速率的因素均影响再结晶温 度。
2 晶粒的异常长大
异常晶粒长大又称不连续晶粒长大或二次再结 晶,是一种特殊的晶粒长大现象。 发生异常长大的条件是,正常晶粒长大过程被分 散相粒子,织构或表面热蚀沟等强烈阻碍,能够长 大的晶粒数目较少,致使晶粒大小相差悬殊。晶粒 尺寸差别越大,大晶粒吞食小晶粒的条件越有利, 大晶粒的长大速度也会越来越快,最后形成晶粒大 小极不均匀的组织,如图7-21(c)。
对工业纯金属,经强烈冷变形后的最低再结晶温 度约为 0.35~04Tm 。另外,发生再结晶需要一个 最小变形量,称临界变形量。低于此变形量不能 发生再结晶。
(2)金属纯度 杂质对N和G的影响有着截然不同的两重性 一方面杂质阻碍变形使储存能增加,N和G 增大; 另一方面,杂质又钉扎晶界,降低界面迁 移率,使形核率减小、生长速率减慢。 一般均起细化晶粒的作用。
第七节 冷变形金属的内应力和储存能
这部分能量提高了变形晶体的能量,使之 处于热力学不稳定状态,故它有一种使变 形金属重新恢复到自由焓最低的稳定结构 状态的自发趋势,并导致塑性变形金属在 加热时的回复及再结晶过程。
第七节 存能随形变量的增加而增大,但增速逐 渐变缓,最后趋于饱和。 ( 2 )加工温度越低,形变速度越大,材料的加 工硬化率越大,经受相同变形后的储存能也就越 高。 ( 3 )加工方式的应力状态越复杂,加工时的摩 擦力越大,应力、应变的分布越不均匀,消耗的 总能量越高,储存能也就越大。

北科大材料考研试题

北科大材料考研试题
图2-12 螺位错形成示意图
(二)、螺位错
分类:有左、右旋之分,根 据螺旋面旋转方向,符合 右手法则(即以右手拇指 代表螺旋面前进方向,其 他四指代表螺旋面的旋转 方向)的称右旋螺型位错。
图2-12 螺位错形成示意图
(三)、混合位错
在外力作用下,两 部分之间发生相对滑移, 在晶体内部已滑移和未 滑移部分的交线既不垂 直也不平行滑移方向 (伯氏矢量b),这样 的位错称为混合位错。 如右图所示。

五、其他晶体的点缺陷
离子晶体中整体和局部都要求电中性,因此离子晶体 中的点缺陷稍微复杂。 离子晶体中的肖脱基点缺陷只能与等量的正离子空位 和负离子空位同时存在。 另外,由于离子晶体中负离子半径往往比正离子半径 大得多,负离子不易形成间隙原子,所以弗兰克尔 点缺陷只能是等量的正离子空位和正离子间隙原子。
补充几个需要理解的概念
多晶体:
实际应用的工程材料 中,哪怕是一块尺寸很小 材料,绝大多数包含着许 许多多的小晶体,每个小 晶体由大量的位向相同的 晶胞组成,而各个小晶体 之间,彼此的位向却不相 同。称这种由多个小晶体 组成的晶体结构称之为 “多晶体”。
补充ቤተ መጻሕፍቲ ባይዱ个需要理解的概念
晶粒:多晶体材料中每个 小晶体的外形多为不规则 的颗粒状,通常把它们叫 做“晶粒”。 晶界:晶粒与晶粒之间的 分界面叫“晶粒间界”, 或简称“晶界”。为了适 应两晶粒间不同晶格位向 的过渡,在晶界处的原子 排列总是不规则的。
第三章
晶体结构缺陷
晶体结构缺陷的类型
点缺陷
缺陷的 类型
其特点是在三维 方向上的尺寸都 很小,缺陷的尺 寸处在一、两个 原子大小的级别, 又称零维缺陷, 例如空位,间隙 原子和杂质原子 等。
线缺陷

北科大材料考研试题

北科大材料考研试题

五、形核与长大
晶体的凝固是通过形核与长大两个过程进行的, 即固相核心的形成与晶核生长至液相耗尽为止。 形核方式可以分为两大类: (1)均匀形核 新相晶核是在母相中均匀地生成,即晶核由液相 中的一些原子团直接形成,不受杂质或外表面的 影响。 (2)非均匀形核 新相优先在母相中存在的异质处形核,即依附于 液相中的杂质或外来表面形核。
1 形核
(1)均匀形核
5)形核率与过冷度的关系
N=N1.N2 由于N受N1.N2两个因素控制 ,形核率与过冷度之间是呈抛 物线的关系。
N1 N2
金属结晶:均匀形核时有 效过冷度(见图6-8) △T≈0.2Tm 非均匀形核时有效过冷度 △T≈0.02Tm
金属材料形核率与温度的关系如图所示 形核率突然增大的温度称为有效形核温度,此时 对应的过冷变称临界过冷度约等于0.2Tm。
结构:长程无序,短程有序(更接近于固态金属)。 特点(与固态相比):原子间距较大、原子配位数较 小、原子排列较混乱。
三、液态金属的结构
结构更接近于固态金属?
1金属的相变热 Lm « Lb≈Lc S L 近邻原子间破坏不大。 2金属熔化时的体积变化 3%~ 5% 原子间距 原子间结合力接近。 3固态与液态金属热容量差 10%以下,表明固、液态内部原子热运动状 态也相近。
2 晶体长大
2 晶体长大
2 晶体长大
(2 )液体中温度梯度与晶体的长大形态 1)正温度梯度(液体中距液固界面越远,温度越高) 粗糙界面:平面状。 光滑界面:台阶状。 2)负温度梯度(液体中距液固界面越远,温度越低) 粗糙界面:树枝状。 光滑界面:树枝状。
2 晶体长大
晶体的长大过程是液体中原子迁移到固体表面,使 液—固界面向液体中推移的过程。

北京科技大学材料加工复试真题

北京科技大学材料加工复试真题

07年试题一,简答题主应力简单加载瞬时屈服应力主切平面应力状态派平面2 如何描述一点任意坐标下的应变状态?3 细化晶粒对金属材料的力学性能有何影响?有哪些途径可以细化晶粒?4 解释什么是屈服效应现象?这种效应在变形金属表层上会产生什么缺陷?原因是什么?如何消除?5 塑性变形时的应力-应变关系有何特点?6 金属塑性变形时常用塑性指标有哪些?改善金属材料的工艺塑性有哪些可用的措施?7 应力偏张量,应力球张量的物理意义?8 低温下体心立方金属为什么有强烈的屈服效应现象?表现为脆性?9 请分析高碳钢在热变形时,网状碳化物形成的原因,网状组织对材料性能有什么影响?如何控制其形成?以下是复习提纲,参考书是《材料成型理论基础》,刘雅政主编7.金属塑性变形的物理本质1.塑性变形包括晶内变形和晶间变形。

通过各种位错运动而实现的晶内一部分相对于另一部分的剪切运动就是晶内变形,常温下有滑移和孪生,当T>0.5T R时,可能出现晶间变形,高温时扩散机理起重要作用。

2.派一纳模型。

假设:经典的弹性介质假设和滑移面上原子的相互作用为原子相对位移的正弦函数假设。

意义:ⅰ位错运动所需派一纳力比晶体产生整体、刚性滑移所需要的理论切屈服应力T m=G/2π小许多倍。

ⅱb越小,a越大,则临界切应力越小ⅲ其他条件相同时,刃位错的活动性比螺位错的活动性大。

公式:3.滑移系统。

4.孪生。

孪生后结构没有变化,取向发生了变化,滑移取向不变,一般孪生比滑移困难,所以形变时首先发生滑移,当切变应力升高到一定数值时才发生孪生,密排六方金属由于滑移系统少,可能开始就形成孪晶。

5.扩散对变形的作用:一方面它对剪切塑性变形机理可以有很大影响,另一方面扩散可以独立产生塑性流动。

6.扩散变形机理包括:扩散-位错机理;溶质原子定向溶解机理;定向空位流机理。

7.扩散-位错机理:扩散对刃位错的攀移和螺位错的割阶运动产生影响;扩散对溶质气团对位错运动的限制作用随温度的变化而不同。

北科大材料考研试题

北科大材料考研试题

τ ≈Gb/2R
推倒思路:1、作 用在位错上的力 F=T分量 2、ds/dθ=R 3、dθ很小时
第五节、位错与晶体缺陷间的交互作用
两平行螺型位错交互作用的特点是同号相斥,
异号相吸; 当两个刃型位错的柏氏矢量方向相同时,为 斥力,反之,为引力;情况相对螺型位错复 杂; 位错与点缺陷的交互作用: 柯垂尔气团 固溶强化 史氏气团

晶体中位错柏氏矢量可否是任意的,为何常用柏氏矢 量只有少数几个?(补充资料)
实际晶体中,位错的柏氏矢量不是任意的,
它应符合相应的结构条件和能量条件。 晶体结构条件是指柏氏矢量必须连接晶体中 一个原子平衡位置到另一个平衡位置;能量 条件是指柏氏矢量所表征的位错应尽量处于 最低能量。 因此,实际晶体中存在的位错及其柏氏矢量 只有少数几个。
a 6
a[001]
a 6

[110]
[121]+
[211]

课堂练习:书上4道例题!
位错环运动习题(补充资料)
参考答案
三 扩展位错( extended dislocation ) 1 面心立方晶体中能量最低的全位错 2 〈110〉可以分 解为两个肖克莱不全位错: 1 a[101] 1/6a[211]+1/6a[112] 2 分解后将使位错能量减少1/6。这种由两个肖克莱不 全位错之间还夹着一片层错的位错称为扩展位错。
不全位错:
肖克莱(Shockley)不全位错和 弗兰克(Frank)不全位错; 在面心立方晶体中,由不均匀滑移造成的不 1 全位错,其柏氏矢量为 6 a〈211〉,称这种不 全位错为肖克莱不全位错; 肖克莱不全位错可以是刃型、螺型或混合型 位错,因其柏氏矢量在滑移面上,故肖克莱 不全位错可以滑移。.

北科大材料考研试题

北科大材料考研试题

二次电子收集系统由栅网、聚焦环和闪烁体组成。
栅网上加+250V电压,用来吸引二次电子。通过 调整聚焦环位置可改变闪烁体前加速电场分布, 使二次电子比较集中打到加有+12kV高压的闪烁 体上。
二次电子探测器示意图
二次电子大部分信号穿过栅网,打到闪烁体上,转
换成光信号,经光电倍增管输出的电流信号接到视 频放大器,再稍放大后即可用来调制显像管亮度, 从而获得图像。
1.1概述
扫描电子显微镜是探索微观世界奥秘的 最有效的大型精密仪器之一自1965年做出第 一台商品扫描电镜,自其问世以来,得到了 迅速的发展,种类不断增多,性能日益提高, 由于其具备分辨率高、放大倍数变化范围宽、 景深大、立体感强、样品制备简单等特点, 因此广泛地应用于材料科学、地质学、生物 学、医学、物理学、化学等众多的科学研究 领域。
电子显微镜(electron microscope):用
一束电子照射到样品上并将其组织结构细节 放大成像的显微镜。
电子显微镜的类型
扫描电子显微镜(scanning electron
microscope, SEM) 透射电子显微镜(transmission electron microscope,TEM) 扫描透射电子显微镜(scanning transmission electron microscope, STEM)
背反射电子像

背反射电子是被样品 原子反射回来的人射电 子。实验指出,当入射 电子能量在 10~40 keV范围时,样品背散 射系数随元素原子序 数Z的增大而增加,如 下图所。
这主要是因为大角度弹性散射随原子序数增大而
增加。例如碳原子序数Z= 6,背散射系数<10 %,铀原子序数Z=92,背散射系数 >50%。 对于 Z<40的元素,背散射系数随原子序数的变 化较为明显;例如在Z=20附近,原子序数每变 化1,引起背散射系数变化约为5%。由于背散射 电子信号强度人与成正比,背散射电子信号强 度随原子序数Z增大而增大,样品表面上平均原 子序数较高的区域,产生较强的信号,在背散射 电子像上显示较亮的衬度。因此可以根据背散射 电子像(成分像)亮暗村度来判断相应区域原子 序数的相对高低,对金属及其合金进行显微组织 的分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习
位错的运动有两种基本形式:滑移和攀移 刃型位错可攀可滑,螺型位错只可滑移 位错的线张力T=aGb2 柯垂尔气团 固溶强化效应 位错的增殖机制 1 弗兰克不全位错: a﹤111﹥ 3 位错反应:几何条件(∑b前=∑b后)和能量条件 (∑b2前﹥∑b2后) 扩展位错:两个肖克莱不全位错中间夹一片层错
间隙机制
2 填隙机制(间接间隙机制)
在填隙机制中,有两 个原子同时易位运动, 其中一个是间隙原子, 另一个是处于阵点上的 原子。间隙原子将阵点 上的原子挤到间隙位置, 自己进入阵点位置。填 隙机制经常在离子材料 中出现。
3 空位扩散机制
在置换固溶体中,一个处于阵点上的原子 通过与空位交换位置而迁移。这个过程相当于 空位向相反方向移动,故亦称为空位扩散。
D D0 eQ / RT
1. 温度 温度越高,扩散系数越 大,扩散速率越快。 碳在γ -Fe中于 1200℃及1300℃时 的扩系数比为: D1200/D1300=1/3
2. 固溶体类型 间隙固溶体间隙原子的扩散激活能要比置换固溶体中置 换原子的扩散激活能小得多,扩散速度也快得多。
例如:C,N等溶质原子在铁中的间隙扩散激活能比Cr,Al 等溶质原子在铁中的置换扩散激活能要小得多,因此, 钢件表面热处理在获得同样渗层浓度时,渗 C , N 比渗 Cr,Al等金属的周期短。
扩散(diffusion): 在一个相内因分子或原子的 热激活运动导致成分混合或均匀化的分子动力 学过程

加入染料 部分混合 完全混合
时间
碳的扩散方向
Fe-C合金
高碳含量区域
低碳含量区域
基 扩散:由于热运动而导致原子(或分子)在介质中 本 迁移的现象。 概 本质:原子无序跃迁的统计结果。 念
4. 晶体缺陷 晶界、表面和位错等对扩散 起着快速通道的作用,加速 了原子的扩散。
5. 第三组元的影响
在二元合金中加入第三元 素时,扩散系数也会发生变 化。有的促进扩散,有的阻 碍扩散。
图4-20 某些元素对碳(摩尔 分数1%)在γ -Fe中扩散 系数的影响
复习要点
1、基本概念:上坡扩散、反应扩散、自扩散、互扩散 等;
2、菲克第一、第二定律的表达式及适用范围;
3、扩散机制;
D D0 e 4、菲克第二定律的误差函数解(※渗碳);
5、扩散系数与扩散激活能的关系式: Arrhenius 6、影响扩散的因素;
Q / RT
7、渗碳为什么选取在奥氏体状态下进行而不在铁素体 状态下进行? 作业: 课后习题 P/142 4-3、4-5、4-7。
扩散的分类 (3)根据是否出现新相 原子扩散:扩散过程中不出现新相。 反应扩散:由之导致形成一种新相的扩散。 固态扩散的条件 (1)温度足够高; (2)时间足够长; (3)扩散原子能固溶; (4)具有驱动力:化学位梯度。

4.1 扩散定律
稳态扩散与非稳态扩散
C f (t , x)
在稳态扩散中,单位时间内通过垂直于给定方向的单 位面积的净原子数(称为通量)不随时间变化,即任一点 的浓度不随时间变化。
H2
x 例1
c2
利用一薄膜从气流中分离氢气。在稳定状态时,薄 膜一侧的氢浓度为0.025mol/m3,另一侧的氢浓度为 0.0025mol/m3,并且薄膜的厚度为100μm。假设氢通过 薄膜的扩散通量为2.25×10-6mol/(m2s),求氢的扩散 系数。
2. 扩散第二方程 解析解通常有高斯解、误差函数解和正弦解等 在t时间内,试样表面扩散组元i的浓度Cs被维持为 常数,试样中 i 组元的原始浓度为 C0,试样的厚度认 为是“无限”厚,则此问题称为半无限长物体的扩散 问题。 此时,扩散方程的初始条件和边界条件应为 t = 0,x > 0 C = C0 t≥0, x = 0 C = Cs x =∞ C = C0
x c( x, t ) cs (cs c0 )erf 2 Dt
上式称为误差函数解。
erf ( )
( x /(2 Dt ))
实际应用时,
cs c( x, t ) x erf cs c0 2 Dt

c( x, t ) c0 x 1 erf cs c0 2 Dt
6
106 x 2.54 t

18 t 0.86,解得x= 2.10 (2分) 2.18 t 10 3600 (2)x10= 10 = 2.18 10 = 4.14×10-4m(2分) 2.18 20 3600 -4m(2分) 2 . 18 t x20= = =5.85 × 10 10
C =0 t
在非稳态扩散中,通量随时间而变化。
C ≠0 t
4.1.1 菲克第一定律 (Fick’s First Law) 1855年 在稳态扩散的条件下,单位时间内通过垂直于扩散方向的单 位面积的扩散物质量(通称扩散通量)与该截面处的浓度梯 度成正比。
扩散通量
C J=-D x
浓度梯度
扩散系数 单位:x为沿扩散方向的距离 c是溶质的体积浓度,即单位体积中溶质的质量kg/m3 扩散通量,J,kg/(m2· s) 扩散系数,D,m2/s;

例三 已知930℃碳在γ铁中的扩散系数
D=1.61
×10-12m2/s,在这一温度下对含碳 0.1%C的碳钢渗碳,若表面碳浓度为1.0%C, 规定含碳0.3%处的深度为渗层深度,(1)求 渗层深度X与渗碳时间的关系式;(2)计算 930 ℃渗10h、20h后的渗层深度X10,X20
解:(1)根据题意知:Cs=1.0%,Cx=0.3%,
6
6
6
10
6
4.1.4扩散的驱动力及上坡扩散 上坡扩散与相变扩散: 事实上很多情况,扩散是由低浓度处向高浓度处进行的, 如固溶体中某些偏聚或调幅分解,这种扩散被称为“上坡 扩散”。 上坡扩散说明从本质上来说浓度梯度并非扩散的驱动力, 伴随有相变过程的扩散称为反应扩散或相变扩散。
由热力学可知,系统中的任何过程都是沿着自由能G降 低的方向进行的。
例二:上例中处理条件不变,把碳含量达到0.4%C处 到表面的距离作为渗层深度则需多少时间? 解:因为处理条件不变
在温度相同时,扩散系数也相同,因此渗层深度与
处理时间之间的关系:
因为x2/x1= 2,所以t2/t1= 4,这时的时间为
34268s = 9.52hr
C0=0.1% x C C 由式 C C =erf( 2 Dt ) (2分)
S X 0 S
x 1.0% 0.3% 可知: 1.0 0.1% =erf( 2 1.61 1012 t 7 106 x =erf( )(2分) 9 2.54 t
)
由已知erf(z)=0.78时,z=0.86,即
4
其他机制
只能在一些非晶态合金中出现
也不容易出现
4.3 扩散系数与扩散激活能 克服势垒所需的额外能量统称为扩散激活能, 一般以Q表示
D D0 eQ / RT
称为Arrhenius 公式。
lnD lnD0
Q ln D ln D0 RT
k=-Q/R
1/T
扩散系数与温度的关系
4.3.3 影响扩散的因素
用空位机制解释柯肯达尔效应
/pubs/journals/JOM/9706/Nakajima-9706.html
柯肯达尔效应 (Kirkendall effect)
Ernest Kirkendall
Cu
Ni
扩散前
Cu
Ni
扩散后
在含有浓度梯度的置换固溶体中,埋入一个 惰性标记,由于两组元扩散能力不相等,经 过扩散后会引起标记的移动。这个现象以后 就称为柯肯达尔(Kirkendall)效应。
G 0
设ni为组元I的原子数,则化学位就是I的自由能。原子 受到的驱动力为
ui F x
式中:“-”号表示驱动力与化学位下降的方向一致,也就是 扩散总是向化学位减少的方向进行的。
4.2 扩散的微观机制
1 间隙机制(直接间隙机制) 在间隙固溶体中溶质原子的扩散是从一个间 隙位置跳到近邻的另一间隙位置,发生间隙扩 散。H、N、O、C等原子都是以间隙机制在金 属中扩散。
c 浓度梯度, ,kg/(m3· m) x
菲克第一定律的解释
“-”号表示扩散方向为浓度 梯度的反方向,即扩散由 高浓度向低浓度区进行。
4.1.2 菲克第二定律 (Fick’s Second Law) 在扩散过程中扩散物质的浓度随时间而变化。
c f (t , x)
C ≠0 t
非稳态扩散时,在一维情况下,菲克第二定律的表达 式为
说明
在固体材料中也存在扩散,并且它是固体中 物质传输的唯一方式。因为固体不能象气体 或液体那样通过流动来进行物质传输。即使 在纯金属中也同样发生扩散。扩散在材料的 生产和使用中的物理过程有密切关系,例如: 凝固、偏析、均匀化退火、冷变形后的回复 和再结晶、固态相变、化学热处理、烧结、 氧化、蠕变等等。

第四章 晶态固体中的扩散
重点内容:
1、菲克第一定律、第二定律的误差函数解;
2、扩散驱动力及扩散机制:间隙扩散、置换 扩散、空位扩散;
3、扩散系数、扩散激活能、影响扩散的因素。 4、基本概念的理解
概述
扩散现象:大家已经在气体和液体 中知道,例如在房间的某处打开一瓶香 水,慢慢在其他地方可以闻到香味,在 清水中滴入一滴墨水,在静止的状态下 可以看到它慢慢的扩散。 扩散:由构成物质的微粒(离子、原 子、分子 ) 的热运动而产生的物质迁移 现象称为扩散。扩散的宏观表现是物质 的定向输送。
3. 晶体结构 无论是空位扩散还是间隙扩散,在致密度较小的晶体结 构中扩散激活能较小,扩散易于进行。
例如:912℃时,铁的自扩散系数Da(Fe)/Dγ(Fe) ≈280 碳在铁中的扩散系数Da(C)/Dγ(C) ≈100
相关文档
最新文档