数学归纳法+直接证明与间接证明

合集下载

直接证明与间接证明

直接证明与间接证明

第十五讲 直接证明与间接证明教学目标:1、了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.2、了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点.3、.了解数学归纳法的原理.能用数学归纳法证明一些简单的数学命题.一、知识回顾 课前热身知识点1、直接证明(1)综合法 ①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. ②框图表示:P ⇒Q 1―→Q 1⇒Q 2―→Q 2⇒Q 3―→…―→Q n ⇒Q (其中P 表示已知条件、已有的定义、公理、定理等,Q 表示所要证明的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q ⇐P 1―→P 1⇐P 2―→P 2⇐P 3―→…―→得到一个明显成立的条件.知识点2、间接证明反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.知识点3、数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.二、例题辨析 推陈出新例1、 设a 、b 、c >0,证明a 2b +b 2c +c 2a≥a +b +c . [解答] ∵a 、b 、c >0,根据基本不等式,有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c .三式相加:a 2b +b 2c +c 2a +a +b +c ≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c .保持本例条件不变 ,试证明a 3+b 3+c 3≥13(a 2+b 2+c 2)·(a +b +c ). 证明:∵a 、b 、c >0,∴a 2+b 2≥2ab ,∴(a 2+b 2)(a +b )≥2ab (a +b ),∴a 3+b 3+a 2b +ab 2≥2ab (a +b )=2a 2b +2ab 2,∴a 3+b 3≥a 2b +ab 2.同理,b 3+c 3≥b 2c +bc 2,a 3+c 3≥a 2c +ac 2,将三式相加得,2(a 3+b 3+c 3)≥a 2b +ab 2+b 2c +bc 2+a 2c +ac 2.∴3(a 3+b 3+c 3)≥(a 3+a 2b +a 2c )+(b 3+b 2a +b 2c )+(c 3+c 2a +c 2b )=(a 2+b 2+c 2)(a +b +c ).∴a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).变式练习1.已知x +y +z =1,求证:x 2+y 2+z 2≥13. 证明:∵x 2+y 2≥2xy ,x 2+z 2≥2xz ,y 2+z 2≥2yz ,∴2x 2+2y 2+2z 2≥2xy +2xz +2yz .∴3x 2+3y 2+3z 2≥x 2+y 2+z 2+2xy +2xz +2yz .∴3(x 2+y 2+z 2)≥(x +y +z )2=1.∴x 2+y 2+z 2≥13.例2、已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. [解答] 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22, 只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2). 由于x 1、x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π).故cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2,即证cos(x 1-x 2)<1.这由x 1、x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式是显然成立的.因此,12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.变式练习2.已知a >0,求证: a 2+1a 2-2≥a +1a -2. 证明:要证 a 2+1a 2-2≥a +1a-2,只要证 a 2+1a 2+2≥a +1a + 2.∵a >0,故只要证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a +22,即a 2+1a 2+4 a 2+1a 2+4≥a 2+2+1a2+22⎝⎛⎭⎫a +1a +2, 从而只要证2 a 2+1a2≥ 2⎝⎛⎭⎫a +1a ,只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2, 即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.例3、设{a n }是公比为q 的等比数列,S n 是它的前n 项和.(1)求证:数列{S n }不是等比数列;(2)数列{S n }是等差数列吗?为什么?[解答] (1)证明:若{S n }是等比数列,则S 22=S 1·S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2), ∵a 1≠0,∴(1+q )2=1+q +q 2,解得q =0,这与q ≠0相矛盾,故数列{S n }不是等比数列.(2)当q =1时,{S n }是等差数列.当q ≠1时,{S n }不是等差数列.假设q ≠1时,S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,2a 1(1+q )=a 1+a 1(1+q +q 2).由于a 1≠0,∴2(1+q )=2+q +q 2,即q =q 2,∵q ≠1,∴q =0,这与q ≠0相矛盾.综上可知,当q =1时,{S n }是等差数列;当q ≠1时,{S n }不是等差数列.变式练习3.求证:a ,b ,c 为正实数的充要条件是a +b +c >0,且ab +bc +ca >0和abc >0.证明:必要性(直接证法):∵a ,b ,c 为正实数,∴a +b +c >0,ab +bc +ca >0,abc >0,因此必要性成立. 充分性(反证法):假设a ,b ,c 是不全为正的实数,由于abc >0,则它们只能是两负一正,不妨设a <0,b <0,c >0.又∵ab +bc +ca >0,∴a (b +c )+bc >0,且bc <0, ∴a (b +c )>0.①又a <0,∴b +c <0.而a +b +c >0,∴a +(b +c )>0,∴a >0.这与a <0的假设相矛盾. 故假设不成立,原结论成立,即a ,b ,c 均为正实数.另外证明:如果从①处开始,进行如下推理:a +b +c >0,即a +(b +c )>0.又a <0,∴b +c >0.则a (b +c )<0,与①式矛盾,故假设不成立,原结论成立,即a ,b ,c 均为正实数.三、归纳总结 方法在握归纳1、用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从而由已知逐步推出结论.归纳2、分析法的思路是逆向思维,用分析法证题必须从结论出发,倒着分析,寻找结论成立的充分条件.应用分析法证明问题时要严格按分析法的语言表达,下一步是上一步的充分条件.归纳3、反证法的原理是“正难则反”,即如果正面证明有困难时,或者直接证明需要分多种情况而反面只有一种情况时,可以考虑用反证法.反证法证题的实质是证明它的逆否命题成立.反证法中常见词语的否定形式 原词否定形式 至多有n 个(即x ≤n ,n ∈N *)至少有n +1个(即x >n ⇔x ≥n +1,n ∈N *) 至少有n 个(即x ≥n ,n ∈N *)至多有n -1个(即x <n ⇔x ≤n -1,n ∈N *) n 个都是n 个不都是(即至少有1个不是) 特例至多有1个 至少有2个 至少有1个 至多有0个,即一个也没有四、拓展延伸 能力升华例1、已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小关系;(2)猜想f (n )与g (n )的大小关系,并给出证明.[解答] (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3). (2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3)时不等式成立,即1+123+133+143+…+1k 3<32-12k2. 那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3. 因为12(k +1)2-⎣⎡⎦⎤12k 2-1(k +1)3=k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0,所以f (k +1)<32-12(k +1)2=g (k +1). 由①②可知,对一切n ∈N *,都 有f (n )≤g (n )成立.变式练习3.设数列{a n }满足a n +1=a 2n -na n +1,n =1,2,3,….(1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式;(2)当a 1≥3时,证明对所有的n ≥1,有a n ≥n +2.解:(1)由a 1=2,得a 2=a 21-a 1+1=3,由a 2=3,得a 3=a 22-2a 2+1=4,由a 3=4,得a 4=a 23-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1).(2)证明:用数学归纳法证明:①当n =1时,a 1≥3=1+2,不等式成立.②假设当n =k 时不等式成立,即a k ≥k +2,那么,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3, 也就是说,当n =k +1时,a k +1≥(k +1)+2.根据①和②,对于所有n ≥1,都有a n ≥n +2.归纳—猜想—证明类问题的解题步骤(1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.五、课后作业 巩固提高1.已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 为正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:选A a +b 2≥ab ≥2ab a +b,又f (x )=⎝⎛⎭⎫12x 在R 上是单调减函数,故f ⎝⎛⎭⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎫2ab a +b . 2.(2013·成都模拟)设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若“a +b =1”,则4ab =4a (1-a )=-4⎝⎛⎭⎫a -122+1≤1;若“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;则“a +b =1”是“4ab ≤1”的充分不必要条件.3.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定解析:选C 假设P <Q ,要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a (a +7)<2a +7+2(a +3)(a +4),只要证a 2+7a <a 2+7a +12,只要证0<12,∵0<12成立,∴P <Q 成立.4.在应用数学归纳法证明凸n 边形的对角线为n (n -3)2条时,第一步检验n 等于( ) A .1 B .2 C .3 D .0解析:选C ∵n ≥3,∴第一步应检验n =3.5.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( ) A .k 2+1 B .(k +1)2C.(k +1)4+(k +1)22 D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2 解析:选D ∵当n =k 时,左侧=1+2+3+…+k 2,当n =k +1时,左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2,∴当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.6.(2013·银川模拟)设a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0;②a >b ,a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立,其中正确判断的个数为( )A .0B .1C .2D .3解析:选C ①②正确;③中,a ≠b ,b ≠c ,a ≠c 可以同时成立,如a =1,b =2,c =3,故正确的判断有2个.7.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:选B 由已知条件,可得⎩⎪⎨⎪⎧ a +c =2b , ①x 2=ab , ②y 2=bc . ③由②③得⎩⎨⎧ a =x 2b ,c =y 2b ,代入①,得x 2b +y 2b=2b ,即x 2+y 2=2b 2. 故x 2,b 2,y 2成等差数列. 8.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( ) A .-12 B .-32 C.12 D.32解析:选D 据已知定义可得不等式x 2-x -a 2+a +1≥0恒成立,故Δ=1-4(-a 2+a +1)≤0,解得-12≤a ≤32, 故a 的最大值为32. 9.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是________. 答案:“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|则|f (x 1)-f (x 2)|≥12” 10.(2013·株洲模拟)已知a ,b ,μ∈(0,+∞)且1a +9b=1,则使得a +b ≥μ恒成立的μ的取值范围是________. 解析:∵a ,b ∈(0,+∞)且1a +9b=1,∴a +b =(a +b )⎝⎛⎭⎫1a +9b =10+⎝⎛⎭⎫9a b +b a ≥10+29=16, ∴a +b 的最小值为16.∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16.答案:(0,16]11.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:法一:(补集法)令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 法二:(直接法)依题意有f (-1)>0或f (1)>0,即2p 2-p -1<0或2p 2+3p -9<0,得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝⎛⎭⎫-3,32. 答案:⎝⎛⎭⎫-3,32 12.若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 证明:要证lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c ,只需证lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ), 只需证a +b 2·b +c 2·c +a 2>abc .(中间结果)∵a ,b ,c 是不全相等的正数,∴由基本不等式得: a +b 2≥ab >0,b +c 2≥bc >0,c +a 2≥ac >0, 且上三式中由于a ,b ,c 不全相等,故等号不同时成立.∴a +b 2·b +c 2·c +a 2>a ·b ·c .(中间结果)∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 13.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. 解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S n n=n + 2. 假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2).∴(q 2-pr )+2(2q -p -r )=0. ∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0. ∴⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0. ∴p =r . 与p ≠r 矛盾. ∴数列{b n }中任意不同的三项都不可能成等比数列.14.用数学归纳法证明11×3+13×5+…+1(2n -1)(2n +1)=n 2n +1(n ∈N *). 证明:(1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边.所以n =1时等式成立. (2)假设n =k 时等式成立,即有11×3+13×5+…+1(2k -1)(2k +1)=k 2k +1. 则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3)=k 2k +1+1(2k +1)(2k +3)=2k2+3k+1(2k+1)(2k+3)=(k+1)(2k+1)(2k+1)(2k+3)=k+12k+3=k+12(k+1)+1.这就是说,n=k+1时等式也成立.由(1)(2)可知,等式对一切n∈N*都成立.。

专题6.6 直接证明、间接证明、数学归纳法(原卷版)

专题6.6 直接证明、间接证明、数学归纳法(原卷版)

第六篇不等式、推理与证明专题6.6直接证明、间接证明、数学归纳法【考纲要求】1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点3.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题【命题趋势】1.直接证明与间接证明一般考查以不等式、数列、解析几何、立体几何、函数、三角函数为背景的证明问题.2.数学归纳法一般以数列、集合为背景,用“归纳—猜想—证明”的模式考查.【核心素养】本讲内容主要考查逻辑推理和数学运算的核心素养.【素养清单•基础知识】1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的__结论__出发,逐步寻求使它成立的充分条件,直至最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义一般地,假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题的成立,这样的证明方法叫作反证法.(2)用反证法证明的一般步骤①反设——假设原命题的结论不成立;②归谬——根据假设进行推理,直到推理中出现矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.用反证法证明命题“若p ,则q ”的过程可以用框图表示为 肯定条件p ,否定结论q ―→推出逻辑矛盾―→“若p ,则非q ”为假―→“若p ,则q ”为真【真题体验】1.用分析法证明:欲使①A >B ,只需②C <D ,这里①是②的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件2.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°3.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________.4.下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +a b ≥2成立的条件的个数是__________.5.(2019·湖北天门中学月考)设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +26.(2019·黑龙江大庆一模)设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k +1成立时,总可推出f (k +1)≥k +2成立”.那么,下列命题总成立的是( )A .若f (1)<2成立,则f (10)<11成立B .若f (3)≥4成立,则当k ≥1时,均有f (k )≥k +1C .若f (2)<3成立,则f (1)≥2成立D .若f (4)≥5成立,则当k ≥4时,均有f (k )≥k +1成立7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)时命题为真,进而需证n =__________时,命题亦真.【考法解码•题型拓展】考法一:分析法解题技巧:分析法证题的思路(1)先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【例1】 已知a >0,求证:a 2+1a 2-2≥a +1a -2.考法二:综合法归纳总结 :综合法证题的思路(1)分析条件选择方向:分析题目的已知条件及已知与结论之间的联系,选择相关的定理、公式等,确定恰当的解题方法.(2)转化条件组织过程:把已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.(3)适当调整回顾反思:回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.【例2】 (1)设a ,b ,c ,d 均为正数,且a +b =c +d ,若ab >cd ,证明:①a +b >c +d ;②|a -b |<|c -d |.(2)(2019·长沙调考)已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.考法三:反证法归纳总结(1)适用范围:①“结论”的反面比“结论”本身更简单、更具体、更明确的题目;②否定性命题、唯一性命题、存在性命题、“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明法比较困难,往往用反证法.(2)推理关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.考法四:数学归纳法证明等式归纳总结:数学归纳法证明等式的思路和注意点(1)思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.(2)注意点:由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确地写出证明过程,不利用归纳假设的证明,就不是数学归纳法.【例1】求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).考法五:数学归纳法证明不等式归纳总结(1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证明,则可考虑应用数学归纳法.(2)数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等方法证明.【例2】已知数列{a n},a n≥0,a1=0,a2n+1+a n+1-1=a2n,求证:当n∈N*时,a n<a n+1.考法六:归纳—猜想—证明归纳总结:“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决与正整数n有关的探索性问题、存在性问题中有着广泛的应用,其关键是归纳、猜想出公式.【例3】(2019·湖北孝感检测)数列{a n}满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,并猜想a n的通项公式;(2)用数学归纳法证明(1)中的猜想.【易错警示】易错点一:反证法中未用到反设的结论【典例】设{a n}是公比为q的等比数列.设q≠1,证明:数列{a n+1}不是等比数列.【错解】:假设{a n+1}是等比数列.则{a n+1}的前三项为a1+1,a2+1,a3+1,即a1+1,a1q+1,a1q2+1.(a1+1)(a1q2+1)-(a1q+1)2=a21q2+a1+a1q2+1-a21q2-2a1q-1=a1(q2-2q+1)=a1(q-1)2≠0,所以(a1+1)(a1q2+1)≠(a1q+1)2,所以数列{a n+1}不是等比数列.(推理中未用到结论的反设)【错因分析】:错解在解题的过程中并没有用到假设的结论,故不是反证法.利用反证法进行证明时,首先对所要证明的结论进行否定性假设,并以此为条件进行归谬,得到矛盾,则原命题成立.【正解】:假设{a n+1}是等比数列.则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k +2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,因为a1≠0,所以2q k=q k-1+q k+1.又q≠0,所以q2-2q+1=0,所以q=1,这与已知q≠1矛盾.所以假设不成立,故数列{a n+1}不是等比数列.【误区防范】利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.【跟踪训练】设a>0,b>0,且a2+b2=1a2+1b2.证明:a2+a<2与b2+b<2不可能同时成立.【答案】见解析【解析】证明 假设a 2+a <2与b 2+b <2同时成立,则有a 2+a +b 2+b <4.而由a 2+b 2=1a 2+1b 2得a 2b 2=1,因为a >0,b >0,所以ab =1.因为a 2+b 2≥2ab =2(当且仅当a =b =1时,等号成立),a +b ≥2ab =2(当且仅当a=b =1时,等号成立),所以a 2+a +b 2+b ≥2ab +2ab =4(当且仅当a =b =1时,等号成立),这与假设矛盾,故假设错误.所以a 2+a <2与b 2+b <2不可能同时成立.易错点二:证明过程未用到归纳假设【典例】用数学归纳法证明:12+122+123+…+12n -1+12n =1-12n (n ∈N *).【错解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k .那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12×⎣⎡⎦⎤1-⎝⎛⎭⎫12k +11-12=1-12k +1.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【错因分析】:错误的原因在第二步,它是直接利用了等比数列的求和公式求出了当n =k +1时,式子12+122+…+12k -1+12k +12k +1的和,而没有利用“归纳假设”,不符合数学归纳法证明的步骤. 【正解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k ,那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-12k +1=右边.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【误区防范】(1)用数学归纳法证明命题时常出现两种错误:一是n 0的值找错.二是证明命题n =k +1也成立时,没有用到n =k 时的归纳假设.(2)确定由n =k 变化到n =k +1的过程中项的变化情况时,要把握好项的变化规律以及首末项.【跟踪训练】 设a 1=1,a n +1=a 2n -2a n +2+1(n ∈N *),求a 2,a 3,a n ,并用数学归纳法证明你的结论.【答案】见解析【解析】a 2=2,a 3=2+1,可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1.下面用数学归纳法证明上式:当n =1时结论成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1+11 1.这就是说,当n =k +1时结论也成立.综上可知,a n =n -1+1(n ∈N *).【递进题组】1.欲证a 2+b 2-1-a 2b 2≤0,只需证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.a +b22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥02.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( )A .a 1b 1+a 2b 2B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.123.设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.4.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根.5.设f (n )=1+12+13+…+1n (n ∈N *),求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).6.用数学归纳法证明:1+n2≤1+12+13+…+12n≤12+n(n∈N*).7.(2019·湖北部分重点中学联考)已知数列{x n}满足x1=12,且x n+1=x n2-x n(n∈N*).(1)用数学归纳法证明:0<x n<1;(2)设a n=1x n,求数列{a n}的通项公式.8.(2019·武穴中学月考)试证:n 为正整数时,f (n )=32n +2-8n -9能被64整除.【考卷送检】一、选择题1.用反证法证明命题“若a +b +c 为偶数,则自然数a ,b ,c 恰有一个偶数”时,正确的反设为( ) A .自然数a ,b ,c 都是奇数B .自然数a ,b ,c 都是偶数C .自然数a ,b ,c 中至少有两个偶数D .自然数a ,b ,c 都是奇数或至少有两个偶数2.分析法又称执果索因法,若用分析法证明“设 a >b >c ,且a +b +c =0,求证b 2-ac <3a ”,索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<03.(2019·焦作一中月考)若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2D.a b <a +1b +1 4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零C .恒为正值D .无法确定正负5.已知a >b >0,且 ab =1,若 0<c <1,p =log c a 2+b 22,q =log c ⎝ ⎛⎭⎪⎫1a +b 2,则p ,q 的大小关系是( )A .p >qB .p <qC .p =qD .p ≥q6.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2二、填空题7.设a =3+22,b =2+7,则a ,b 的大小关系为________.8.用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d 中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是________________.9.(2019·郑州一模)某题字迹有污损,大致内容是“已知|x |≤1,,用分析法证明|x +y |≤|1+xy |”.估计污损部分的文字内容为________.三、解答题10.(2019·永州一中月考)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 欲要证2a 3-b 3≥2ab 2-a 2b 成立,只需证2a 3-b 3-2ab 2+a 2b ≥0,即证2a (a 2-b 2)+b (a 2-b 2)≥0,即证(a +b )(a -b )(2a +b )≥0.因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,所以2a 3-b 3≥2ab 2-a 2b .11.(2019·黄石二中期中)已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定点F 的位置;若不存在,请说明理由.12.已知数列{a n }满足a 1=12,且a n +1=a n 3a n +1(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <16.13.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2 +b 2>2;⑤ab >1.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).14.求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).15.用数学归纳法证明1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).16.(2019·衡水高中调研)首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *.证明:若a 1为奇数,则对一切n ≥2,a n 都是奇数.17.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n 与1的大小,并说明理由.。

数理逻辑 第三章 数学推理 数学归纳法

数理逻辑 第三章 数学推理 数学归纳法
例:用数学归纳法证明:前n个正奇数之 和是n2
这样就证明了从P(n)得出P(n+1) 在第二个等式中我们使用了归纳假设P(n) 因为P(1)为真,而且对所有正整数n来说
P(n)→P(n+1)为真,所以,由数学归纳法原 理就证明了对所有正整数n来说P(n)为真
四、数学归纳法的例子
例:用数学归纳法证明:对所有正整数n 来说不等式n<2n
来说P(k)为真,要完成归纳步骤就必须证明 在这个假定下P(n+1)为真
五、数学归纳法的第二原理
例:证明:若n是大于1的整数,则n可以 写成素数之积
解:分两种情况考虑:当n+1是素数时和当 n+1是合数时。若n+1是素数,则P(n+1)为 真;若n+1是合数,则可以将其表示成两个 整数a和b之积,其中a、b满足 2≤a≤b≤n+1
3.2 数学归纳法 Mathematical Induction
一、引言
前n个正奇数之和的公式是什么? 对n=1,2,3,4,5来说,前n个正奇数之和为:
1=1,1+3=4,1+3+5=9, 1+3+5+7=16,1+3+5+7+9=25
猜测前n个正奇数之和是n2 假如这个猜测是正确的,我们就需要一
三、数学归纳法
用数学归纳法证明定理时
首先证明P(1)为真,然后知道P(2)为真,因 为P(1)蕴含P(2)
P(3)为真,因为P(2)蕴含P(3) 以这样的方式继续下去,就可以看出对任
意正整数k来说P(k)为真
数学归纳法的形象解释
三、数学归纳法
为什么数学归纳法是有效的?

数学的证明方法有哪些

数学的证明方法有哪些

数学的证明方法有哪些
数学的证明方法有以下几种:
1. 直接证明法:通过利用已知的前提条件和逻辑推理方法,从而得出结论。

2. 间接证明法:通过假设命题的否定形式为真,再推导出矛盾,从而得出结论。

3. 数学归纳法:通过证明当命题对于某个整数成立时,它对于下一个整数也成立,从而推导出结论。

4. 反证法:通过假设命题的否定形式为真,然后推导出矛盾的结论,从而得出结论。

5. 构造法:通过构造出满足条件的对象或函数,从而证明命题的成立。

6. 对偶法:通过将原命题的所有元素、运算和关系互换,从而得到一个等价的命题,从而证明原命题的成立。

7. 法则证明:通过运用一些特定的数学规则或定理,将要证明的命题与已知的规则和定理联系起来,从而得出结论。

以上是数学中常见的证明方法,每种方法都有其适用的范围和特点。

在具体证明
时,常常需要综合运用多种方法来完成证明过程。

高中数学中常见的证明方法

高中数学中常见的证明方法

高中数学中常见的证明方法一、直接证明法直接证明法是最基本也是最常见的证明方法之一。

它通过对所要证明的命题进行逻辑推理和分析,直接给出证明的过程和结论。

要使用直接证明法,一般需要明确以下几个步骤:1. 提出所要证明的命题:首先,明确所要证明的命题,即要证明的结论。

2. 建立前提条件:在进行证明前,需要明确前提条件,即已知条件或已知命题。

3. 逻辑推理:通过逻辑推理和分析,根据已知条件和逻辑关系,逐步推导出结论。

4. 结论:最后,根据已有的证明过程,给出结论。

二、间接证明法间接证明法又称反证法,它是通过假设所要证明的命题不成立,然后推导出与已知事实矛盾的结论,从而证明所要证明的命题是正确的。

间接证明法的一般步骤如下:1. 假设反命题:首先,假设所要证明的命题的反命题是正确的。

2. 推导过程:根据假设和已知条件,通过逻辑推理进行推导,尽可能多地得到信息。

3. 矛盾结论:最终推导出一个与已知事实矛盾的结论。

4. 否定假设:由于假设的反命题与已知事实矛盾,所以可以否定假设,即所要证明的命题是正确的。

间接证明法常用于证明一些数学定理、存在性证明和最大最小值的存在性等问题。

三、数学归纳法数学归纳法是一种常用的证明方法,特别适用于证明一类命题或定理,如整数性质、等差数列的性质等。

它基于两个基本步骤:基本情况的验证和归纳假设的使用。

数学归纳法的一般步骤如下:1. 基本情况的验证:首先,验证当命题成立的最小情况,通常是n=1或n=0的情况。

2. 归纳假设的使用:假设当n=k时命题成立,即假设命题对于某个特定的正整数k是成立的。

3. 归纳步骤的推理:在归纳假设的基础上进行推理和分析,证明当n=k+1时命题也成立。

4. 归纳法的结论:根据归纳步骤的推理和基本情况的验证,可以得出结论,即所要证明的命题对于所有正整数都成立。

数学归纳法在数学推理和定理证明中有着广泛的应用,尤其适用于证明具有递推性质的命题。

四、逆否命题证明法逆否命题证明法是通过对命题的逆否命题进行证明,从而间接地证明所要证明的命题。

高中数学推理证明题的常用证明方法及实例解析

高中数学推理证明题的常用证明方法及实例解析

高中数学推理证明题的常用证明方法及实例解析在高中数学中,推理证明题是一种常见的题型,要求学生运用已知的条件和基本的数学知识,通过逻辑推理和证明方法来得出结论。

这类题目不仅考察学生的数学思维能力,还培养了学生的逻辑思维和分析问题的能力。

本文将介绍一些常用的证明方法,并通过具体的题目解析,帮助读者更好地理解和应用这些方法。

一、直接证明法直接证明法是最常见的证明方法之一,它通过逻辑推理和运用已知条件来得出结论。

具体步骤如下:1. 首先,我们要明确问题的要求,即要证明的结论是什么。

2. 其次,我们要分析已知条件,找到与结论相关的条件和信息。

3. 然后,我们要根据已知条件和结论,通过逻辑推理和数学运算,一步一步地推导出结论。

4. 最后,我们要对证明过程进行总结,确保每一步的推理都是合理的,并且符合数学规律。

下面通过一个具体的例子来说明直接证明法的应用。

【例题】已知:直角三角形ABC中,∠B=90°,AB=BC。

证明:∠ABC=45°。

【解析】根据已知条件,我们可以得到∠B=90°和AB=BC。

接下来,我们通过直接证明法来证明∠ABC=45°。

由于∠B=90°,所以∠ABC+∠BCA=90°。

(三角形内角和定理)又因为AB=BC,所以∠BCA=∠ABC。

(等腰三角形的性质)将上述两个等式带入∠ABC+∠BCA=90°中,得到∠ABC+∠ABC=90°。

化简得到2∠ABC=90°,即∠ABC=45°。

因此,我们通过直接证明法证明了∠ABC=45°。

二、间接证明法间接证明法是一种通过反证法来证明结论的方法。

它假设结论不成立,然后通过逻辑推理推导出矛盾的结论,从而反驳了假设,证明了结论的正确性。

具体步骤如下:1. 首先,我们要明确问题的要求,即要证明的结论是什么。

2. 其次,我们要假设结论不成立,即假设反面命题成立。

数学证明方法和技巧

数学证明方法和技巧

数学证明方法和技巧数学是一门理性而抽象的学科,其中最重要的一部分就是证明。

数学证明是通过严密的逻辑推导来验证数学命题的正确性。

在数学中,有许多不同的证明方法和技巧,本文将针对这些方法和技巧进行详细的讨论。

一、直接证明法直接证明法是最常见和最基本的证明方法之一。

它的思路是通过一系列推理步骤,从已知的条件出发,逐步推导出所要证明的结论。

例如,对于求证一个数是偶数的命题,我们可以通过直接证明法来进行推导。

首先,我们将该数表示为2的倍数(即n=2k,其中k是任意整数),然后可以得出结论n为偶数。

二、间接证明法间接证明法,也称为反证法,是一种常用的证明方法。

它的思路是假设所要证明的结论是错误的,然后通过逻辑推理推导出矛盾的结论,从而证明原命题的正确性。

例如,可以通过反证法来证明平方根2是一个无理数。

我们假设根号2是一个有理数,即4可以整除2的平方根。

然而,通过推理可以发现这样的假设将导致矛盾,因此我们可以得出结论根号2是一个无理数。

三、数学归纳法数学归纳法是一种证明自然数性质的强有力的方法。

它的基本思想是通过证明当n=k时某个结论成立,然后证明当n=k+1时该结论也成立,从而推导出对所有自然数n均成立的结论。

首先我们验证当n=1时该结论成立,接着假设n=k时该结论成立,然后通过这个假设和逻辑推理证明n=k+1时该结论也成立。

因此我们可以得出结论对所有自然数n该结论成立。

数学归纳法在证明数列、不等式和等式等方面非常有用。

四、反证法反证法是一种基于逻辑推理的证明方法。

与间接证明法类似,反证法也是假设所要证明的结论是错误的。

但与间接证明法不同的是,反证法通过逻辑推理证明这样的假设将导致一种矛盾的结论。

这种矛盾说明了原来的假设是错误的,因此原命题是正确的。

反证法常用于证明存在性命题和唯一性命题。

五、等价命题证明等价命题证明是一种证明方法,它将所要证明的命题转化为与之等价的其他命题,然后通过证明这些等价命题来推导出原命题的正确性。

数学证明的常见题型与应用

数学证明的常见题型与应用

数学证明的常见题型与应用数学证明作为数学学科的核心内容之一,在学习数学时经常会碰到。

数学证明旨在通过逻辑推理和严密论证,将一个数学命题或结论从已知条件推导出来,使之成为数学中不可否认的真理。

本文将介绍数学证明的常见题型以及在实际应用中的意义和用途。

一、直接证明法1. 定理:如果一个多边形的内角和为180度,则该多边形是凸多边形。

证明:设多边形的边数为n,根据几何图形的性质可知,n个顶点的内角和为 (n-2) × 180 度。

因此,当 n>2 时,该多边形的内角和一定大于180度,故该多边形是凸多边形。

证毕。

二、间接证明法1. 定理:根号2是无理数。

证明:假设根号2是有理数,即可以表示为 p/q (p、q为正整数,且p/q为最简分数)。

则有 (p/q)^2 = 2,即 p^2/q^2 = 2。

将该等式两边平方可得 p^2 = 2q^2。

由此可知,p^2是偶数,那么p也必然是偶数(偶数的平方仍为偶数)。

设 p = 2k,则可得到 (2k)^2 = 2q^2,化简得2k^2 = q^2。

从而可知,q^2 是偶数,那么 q 也必然是偶数。

这与我们一开始的假设矛盾,因为在假设中,我们假设 p/q 是最简分数。

所以根号2必定是无理数。

证毕。

三、数学归纳法1. 定理:1 + 2 + 3 + ... + n = n(n+1)/2,对于所有正整数 n 成立。

证明:首先,当 n = 1 时,左边等式为 1,右边等式为 1 × (1+1) / 2= 1。

显然相等,此时等式成立。

假设当 n = k 时,等式成立,即 1 + 2 + 3 + ... + k = k(k+1)/2。

则考虑 n = k+1 的情况,有 1 + 2 + 3 + ... + k + (k+1) = (k(k+1)/2) +(k+1) = (k+1)(k+2)/2。

根据归纳法原理,等式对于所有正整数 n 成立。

证毕。

四、反证法1. 定理:根号2是无理数。

数学中的证明方法与技巧

数学中的证明方法与技巧

数学中的证明方法与技巧在数学领域中,证明是一种重要的方法,用于验证数学命题的真实性。

通过证明,我们可以确保数学理论的正确性并展示出其内在的逻辑关系。

本文将探讨数学中常用的证明方法与技巧,帮助读者更好地理解和应用数学证明。

一、直接证明法直接证明法是最常见的证明方法之一。

它基于以下原则:如果某个命题已知,且我们可以逐步推导出最终结论,那么该命题就成立。

具体步骤包括:1. 假设命题为真;2. 列出已知条件;3. 使用基本数学原理和定理,逐步推导并展示出结论。

例如,我们要证明"若两个正整数的和是奇数,则这两个正整数中至少有一个是奇数"这个命题。

那么可以按照以下步骤进行证明:假设两个正整数分别为a和b,且a+b为奇数;根据奇数的性质,可以写出a+b=2k+1,其中k是一个整数;将等式转化为a=2k+1-b;根据整数的性质,2k+1是奇数,而b是整数,所以a也是奇数。

通过以上步骤,我们完成了对该命题的直接证明。

二、间接证明法间接证明法是一种常用于证明否定命题的方法。

它基于以下原则:如果我们能够证明假设命题为假的情况下产生矛盾,那么该假设就是不成立的。

具体步骤包括:1. 假设命题为假;2. 推导出与已知事实矛盾的结论;3. 得出结论,证明假设命题为真。

例如,我们要证明"根号2是一个无理数"这个命题。

我们可以采用反证法进行证明:假设根号2是有理数,可以表示为p/q,其中p和q为整数且互质;根据定义,可得(根号2)^2 = (p/q)^2,即2 = (p^2)/(q^2);变形可得2q^2 = p^2;根据整数平方的性质,p^2为偶数,那么可以推出p也为偶数,设p=2k;将上述信息代入等式,得到2q^2 = (2k)^2 = 4k^2;化简得q^2 = 2k^2,那么q^2也为偶数,可得q为偶数;由于p和q都为偶数,与我们最初的假设矛盾,因此该假设不成立。

通过反证法,我们证明了根号2是一个无理数。

数学证明方法

数学证明方法

数学证明方法数学证明是数学领域中最核心的内容之一,它是通过逻辑推理和严密的论证来验证数学命题的正确性。

在进行数学证明时,需要采用一定的方法和技巧,以确保证明的严密性和逻辑性。

本文将介绍几种常见的数学证明方法。

一、直接证明法直接证明法是最为常见的证明方法之一,它通过逐步分析问题,直接证明命题是否成立。

具体步骤如下:1.陈述:首先,明确要证明的命题,并简要陈述问题背景和前提条件。

2.假设:成功的直接证明通常涉及对一个或多个条件进行假设。

3.论证:根据问题的前提条件和假设,逐步推理,运用已知的定理、公理、推理规则等,逐步推导出结论。

4.总结:根据步骤3的论证过程,总结出结论,并明确证明的完整性。

二、间接证明法间接证明法是通过对问题的反证,即假设命题不成立,推导出矛盾的结论,证明命题必然成立。

具体步骤如下:1.陈述:明确要证明的命题,并简要陈述问题背景和前提条件。

2.假设:假设命题不成立,即给出一个假设。

3.推导:基于问题的前提条件和假设,进行推导,逐步推理,直至发现矛盾。

4.矛盾:通过步骤3的推导,发现假设和前提条件之间的矛盾。

5.否定:根据矛盾情况,推导出命题的否定。

6.结论:结论是命题的否定,即通过反证法证明命题成立。

三、数学归纳法数学归纳法是一种证明自然数性质的常用方法。

其基本思想是:证明当n满足某条件时,命题成立;再证明n+1满足该条件时,命题也成立。

具体步骤如下:1.基础情况:首先,证明命题对于某个最小的自然数(通常是1或0)成立。

2.归纳假设:假设当n=k时,命题成立,即假设命题在n=k情况下成立。

3.归纳证明:利用归纳假设,证明当n=k+1时,命题也成立。

4.结论:由于命题在基础情况和归纳证明中均成立,因此通过数学归纳法证明命题对所有自然数成立。

四、反证法反证法是一种常用的证明方法,它假设命题不成立,通过推理推导出矛盾的结论,从而证明命题一定成立。

具体步骤如下:1.陈述:明确要证明的命题,并简要陈述问题背景和前提条件。

直接证明与间接证明、数学归纳法

直接证明与间接证明、数学归纳法

直接证明与间接证明、数学归纳法[考纲传真]1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.3.了解数学归纳法的原理.4.能用数学归纳法证明一些简单的数学命题.【知识通关】1.直接证明(1)综合法定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.(2)分析法定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止的证明方法.2.间接证明——反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.3.数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)归纳奠基:证明当n取第一个值n0(n0∈N*)时命题成立;(2)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.[常用结论]利用归纳假设的技巧在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n=k与n=k+1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( )(2)综合法是直接证明,分析法是间接证明.( )(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(4)用反证法证明结论“a >b ”时,应假设“a <b ”.( )[答案](1)× (2)× (3)× (4)×2.利用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1,n ∈N *)”时,在验证n =1成立时,左边应该是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3C3.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了 ( )A .分析法B .综合法C .综合法、分析法结合使用D .间接证法B4.设a ,b ,c 都是正数,则a +1b ,b +1c ,c +1a 三个数( )A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2D5.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( ) A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] B分析法的应用1.若a ,b ∈(1,+∞),证明a +b <1+ab .[证明] 要证a +b <1+ab ,只需证(a +b )2<(1+ab )2,只需证a +b -1-ab <0,即证(a -1)(1-b )<0.因为a >1,b >1,所以a -1>0,1-b <0,即(a -1)(1-b )<0成立,所以原不等式成立.2.已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c. [证明] 要证1a +b +1b +c =3a +b +c , 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.于是原等式成立.[方法总结] (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利解决的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.综合法的应用【例1】 设数列{a n }的前n 项和为S n ,已知3a n -2S n =2.(1)证明{a n }是等比数列并求出通项公式a n ;(2)求证:S 2n +1-S n S n +2=4×3n .[证明] (1)因为3a n -2S n =2,所以3a n +1-2S n +1=2,所以3a n +1-3a n -2(S n +1-S n )=0.因为S n +1-S n =a n +1,所以a n +1a n=3,所以{a n }是等比数列. 当n =1时,3a 1-2S 1=2,又S 1=a 1,所以a 1=2.所以{a n }是以2为首项,以3为公比的等比数列,其通项公式为a n =2×3n -1.(2)由(1)可得S n =3n -1,S n +1=3n +1-1,S n +2=3n +2-1,故S 2n +1-S n S n +2=(3n +1-1)2-(3n -1)(3n +2-1)=4×3n , 即S 2n +1-S n S n +2=4×3n .[方法总结] (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性. (2)综合法的逻辑依据是三段论式的演绎推理.证明:(1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a ≥1.[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,得a 2+b 2+c 2≥ab +bc +ca ,由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a ,b ,c 均为正数,a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c ,所以a 2b +b 2c +c 2a ≥1.反证法的应用【例2】设a>0,b>0,且a+b=1a+1b.证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.[证明]由a+b=1a+1b=a+bab,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2ab=2,即a+b≥2.(2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0,得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.[方法总结]用反证法证明问题的步骤(1)反设:假定所要证的结论不成立,而设结论的反面成立(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾.(推导矛盾) (3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)n n(1)求证:数列{S n}不是等比数列;(2)数列{S n}是等差数列吗?为什么?[解](1)证明:假设数列{S n}是等比数列,则S22=S1S3,即a21(1+q)2=a1·a1·(1+q+q2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾,所以数列{S n}不是等比数列.(2)当q=1时,S n=na1,故{S n}是等差数列;当q≠1时,{S n}不是等差数列.假设{S n}是等差数列,则2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾.综上,当q=1时,数列{S n}是等差数列;当q≠1时,数列{S n}不是等差数列.数学归纳法的应用【例3】 已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小关系;(2)猜想f (n )与g (n )的大小关系,并给出证明.[解] (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216, 所以f (3)<g (3).(2)由(1)猜想,f (n )≤g (n ),用数学归纳法证明.①当n =1,2,3时,不等式显然成立.②假设当n =k (k >3,k ∈N *)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2, 则当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3. 因为12(k +1)2-⎣⎢⎡⎦⎥⎤12k 2-1(k +1)3 =k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1). 由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立. [方法总结] 1.应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法、构造函数法等证明方法.2.利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理论证结论的正确性.n n n n +1S 3=15.(1)求a 1,a 2,a 3的值;(2)求数列{a n }的通项公式.[解] (1)由S n =2na n +1-3n 2-4n ,得S 2=4a 3-20,S 3=S 2+a 3=5a 3-20.又S 3=15,∴a 3=7,S 2=4a 3-20=8.∵S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7,∴a 2=5,a 1=S 1=2a 2-7=3.综上知a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1(n ∈N *),以下用数学归纳法证明:①当n =1时,猜想显然成立;②假设当n =k (k ∈N *,且k ≥2)时,有a k =2k +1成立,则S k =3+5+7+…+(2k +1)=3+(2k +1)2·k =k (k +2). 又S k =2ka k +1-3k 2-4k ,∴k (k +2)=2ka k +1-3k 2-4k ,解得a k +1=2k +3=2(k +1)+1,即当n =k +1时,猜想成立.由①②知,数列{a n }的通项公式为a n =2n +1(n ∈N *).。

直接证明、间接证明与数学归纳法

直接证明、间接证明与数学归纳法

2
2
2
由于三个不等式中的等号不能同时成立,故 a 1 + b 1 + c 1
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
<4.
ab
a2 b2
(法二)由( 2 )2≤ 2
⇒a+b≤
2(a2 b2 )
,
于是 a 1 + b 1≤ 2(a 1 b 1) ,同理: c 1 +1≤ 2(c 11) ,
a1 b1 a2 b2
an bn 12
【分析】(1)利用等差中项与等比中项得出an与bn的关系式,
求出a2,a3,a4及b2,b3,b4的值归纳出其通项公式,然后利用数学
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
归纳法给予证明;(2)利用裂项法证明.
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
§12.2 直接证明、间接证明与数学归纳法
知识诠释 思维发散
一、直接证明与间接证明 1.两类基本的证明方法:直接证明与间接证明.综合法和分析 法是直接证明中最基本的两种证明方法,也是解决数学问题 时常用的思维方式.
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
这与f(1)+f(3)-2f(2)=2矛盾.
故假设不成立,原命题成立.
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
题型3 分析法的运用
例3
已知a>0,求证:
a2

1 a2
-
2

数学中的证明方法及技巧

数学中的证明方法及技巧

数学中的证明方法及技巧在数学领域中,证明是一种非常重要的方法,用于验证定理和推断结论的正确性。

证明不仅要求准确无误,还需要展示出逻辑性和严密性。

本文将介绍数学中常用的证明方法及一些技巧,帮助读者更好地理解和运用数学知识。

一、直接证明法直接证明法是一种最为直观的证明方法,通常是通过列举事实、运用已知定理和逻辑推理来证明一个命题的正确性。

例如,我们要证明一个数学命题:“所有偶数的平方都是4的倍数”。

我们可以用直接证明法来解决这个问题。

假设偶数为2n(n为整数),根据定义,平方为(2n)^2=4n^2。

显然,4n^2是4的倍数,因此我们可以得出结论:所有偶数的平方都是4的倍数。

二、间接证明法间接证明法又称反证法,是一种常用的证明方法。

它假设所要证明的命题不成立,然后通过逻辑推演推导出矛盾,从而说明假设错误,命题成立。

例如,要证明“根号2是一个无理数”,可以运用反证法来证明。

假设根号2是一个有理数,即可以表示为p/q(p、q互质)的形式。

将p/q代入根号2的定义中,有(p/q)^2=2,得到p^2=2q^2。

这意味着p^2是偶数,因此p也是偶数。

将p表示为2k(k为整数),代入原等式中,则有(2k)^2=2q^2,化简得到4k^2=2q^2,即2k^2=q^2。

这说明q^2也是偶数,进而推断q也是偶数。

综上所述,假设了p和q都是偶数,与p和q互质的前提相矛盾。

因此,根号2不可能用有理数表示,即根号2是一个无理数。

三、数学归纳法数学归纳法是一种用于证明某种性质在每个自然数上成立的方法。

它包括两个步骤:证明当n为特殊值时命题成立,以及假设当n=k时命题成立,利用这一假设证明当n=k+1时命题也成立。

例如,我们要证明一个命题:“对于任意正整数n,1+2+3+...+n=n(n+1)/2”。

首先,当n=1时,左边等于1,右边等于1(1+1)/2,两边相等。

因此,当n=1时命题成立。

接下来,我们假设当n=k时命题成立,即1+2+3+...+k=k(k+1)/2。

数学演绎推理的方法与技巧

数学演绎推理的方法与技巧

数学演绎推理的方法与技巧数学演绎推理是数学中常用的一种思维方法,通过一系列的逻辑推理和推断,利用已知事实得出新的结论。

在解决数学问题和证明数学定理时,数学演绎推理发挥着重要的作用。

本文将介绍数学演绎推理的一些常用方法与技巧,帮助读者更好地理解和运用这一思维工具。

一、直接证明法直接证明法是数学中最常见的推理方法之一。

它基于已知事实和已知定义,通过一系列逻辑推理,得出所要证明的结论。

直接证明法通常包括以下几个步骤:1、列出已知条件和定义。

2、根据已知条件和定义,运用数学定理和性质进行逻辑推理。

3、得出所要证明的结论。

例如,证明“所有的正偶数都能被2整除”。

已知条件:正偶数的定义是能够被2整除的数。

结论:所有的正偶数都能被2整除。

证明:根据正偶数的定义,正偶数一定可以被2整除。

因此,结论得证。

二、间接证明法间接证明法又称反证法,它通过假设所要证明的结论为假,推导出与已知事实矛盾的结论,从而推翻了原始假设。

间接证明法通常包括以下几个步骤:1、假设所要证明的结论为假。

2、根据已知条件和定义,进行逻辑推理。

3、得出与已知事实矛盾的结论。

4、推翻原始假设,得出所要证明的结论。

例如,证明“根号2是一个无理数”。

假设根号2是有理数。

有理数的定义是可以表示为两个整数的比值。

即根号2可以表示为两个整数a和b的比值(a/b)。

那么根号2的平方可以表示为(a/b)的平方,即2=(a/b)^2。

整理得到2b^2 = a^2,说明a^2是偶数,由偶数的性质可知,a也是偶数。

设a=2c,其中c为整数。

代入得到2b^2 = (2c)^2,化简得到b^2 = 2c^2,说明b^2也是偶数,由偶数的性质可知,b也是偶数。

由于a和b都是偶数,可以写作a=2k和b=2l,其中k和l都是整数。

代入得到2b^2 = (2k)^2和b^2 = 2(c^2),化简得到b^2 = 4k^2和b^2 = 2c^2,抵触到假设条件。

所以假设错误,根号2是一个无理数。

数学证明方法

数学证明方法

数学证明方法1 直接证明法从正面证明命题真实性的证明方法叫做直接证法.凡是用演绎法证明命题真实性的都是直接证法.它是中学数学中常用的证明方法.综合法、分析法、分析综合法、比较法。

(1)综合法:从已知条件入手,运用已经学过的公理、定义、定理等进行一步步的推理,一直推到结论为止.这种思维方法叫综合法.这种方法是“由因导果”,即从已知到可知,从可知到未知的思维过程.(2)分析法:从问题的结论入手,运用已经学过的公理、定义、定理,一步步寻觅使结论成立的条件,一直“追”到这个结论成立的条件就是已知条件为止.可见分析法是“执果求因”的思维过程,它与综合法的思维过程相反.分析法属于逻辑方法范畴,它的严谨体现在分析过程步步可逆。

分析法的步骤为未知→需知→已知。

在操作中“要证”、“只要证”、“即要证”这些词语也是不可缺少的。

分析法的书写形式一般为“因为......,为了证明......,只需证明......,即......,因此,只需证明......,因为......成立,所以‘......(结论)’成立”。

(3)分析综合法:把分析法和综合法“联合”起来,从问题的两头向中间“靠拢”,从而发现问题的突破口.这种思维方法叫做分析综合法.对于比较复杂的题目,往往采用这种思维方法.在证明的过程中,往往分析法、综合法常常是不能分离的。

分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系。

分析的终点是综合的起点,综合的终点又成为进一步分析的起点。

(4)比较法2 间接证明法不是直接证明论题的真实性,而是通过证明论题的否定论题的不真实,或者证明它的等效命题成立,从而肯定论题真实性的证明方法,叫做间接证明法.反证法、同一法、归纳法(不完全归纳法、完全归纳法、数学归纳法)、类比法、换元法、放缩法、判别式法、函数法(1)反证法:反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。

初中数学证明方法总结

初中数学证明方法总结

初中数学证明方法总结数学是一门理科学科,它涉及到数量、结构、空间以及变化等方面的研究。

在数学中,证明方法是非常重要的,可以帮助我们理解和解决各种数学问题。

初中阶段是学生初步接触数学证明的阶段,下面我将对初中数学证明方法进行总结。

1. 直接证明法直接证明法是通过逻辑推理来证明一个命题的真实性。

这个方法的基本思路是根据问题的条件和目标,直接列出命题中的已知条件,然后应用逻辑推理规律和数学原理逐步推导出结论。

通常在证明过程中会运用一些基本的数学性质和等式,以及运用逻辑的蕴涵关系。

直接证明法在初中数学中经常用于证明三角形的性质、平行线的性质等。

2. 反证法反证法是一种常用的证明方法,它通常用于证明命题的否定。

反证法的思路是假设要证明的命题不成立,然后通过逻辑推理推导出与已知条件或已证明的定理矛盾的结论,从而得出要证明的命题是成立的结论。

反证法在证明数学问题的独特性质和数列问题中有广泛的应用。

3. 数学归纳法数学归纳法也是一种常用的证明方法,它用于证明具有递推性质的命题。

数学归纳法的基本思路是先证明当 n=1 时命题成立,然后假设当 n=k 时命题成立,再证明当 n=k+1 时命题也成立。

通过对这两个步骤的证明可以得出命题对于所有正整数都成立。

数学归纳法常用于证明等差数列、等比数列的性质以及不等式问题。

4. 间接证明法间接证明法是通过对证明目标的否定进行推导,与反证法类似。

区别在于反证法是通过假设目标命题的否定推导出矛盾,而间接证明法是通过假设目标命题的否定推导出其他已知的定理或结论,以达到间接证明目标命题的目的。

间接证明法常用于证明数学问题中的逻辑推理、三角函数的性质等。

5. 构造法构造法是通过构造一个满足条件的特殊例子,从而推导出一般性的结论。

这种方法常用于证明几何图形的性质、求最大最小值、等式的恒等关系等。

通过适当的构造,我们可以找到具体的数据,使得问题中的条件和结论都得以满足。

6. 方法互化在实际的证明过程中,不同的证明方法并不是孤立的,有时候我们可以将一个证明方法转化成另一个证明方法来解决问题。

高中数学中的证明方法与技巧

高中数学中的证明方法与技巧

高中数学中的证明方法与技巧数学作为一门严谨的学科,证明是其核心内容之一。

在高中阶段,学生需要掌握一些基本的证明方法与技巧,以提高数学推理与解决问题的能力。

本文将介绍几种常见的证明方法与技巧,帮助高中生在数学学习中更好地理解和应用。

一、直接证明法直接证明法是最常见也是最常用的证明方法之一。

它的基本思路是通过已知条件与推理推导出结论。

具体步骤如下:1. 根据已知条件,列出一系列命题。

2. 基于已知条件和数学知识,通过推理得出需要证明的结论。

3. 将推导步骤逐一展示,并注明每一步所依赖的原命题。

4. 最后总结所得结论,完成证明。

例如,我们可以用直接证明法证明横线两侧角相等的定理:定理:垂直角相等证明:已知直线AB与CD互相垂直,证明∠ABC与∠CDE相等。

解:根据已知条件,我们可得如下命题:1. 直线AB与CD互相垂直。

2. ∠ABC为直角。

根据命题1,我们知道∠ABC与∠ABD是一对补角,而∠ABD是直角,所以∠ABC也是直角。

即∠ABC=90°。

根据命题2,我们知道∠CDE为直角。

因此,根据定义1. 直角不相等,我们可以得出结论:∠ABC与∠CDE相等。

二、反证法反证法是一种通过假设反命题来证明的方法。

当我们无法直接证明一个命题时,可以采用反证法。

具体步骤如下:1. 假设所要证明的命题不成立。

2. 推导出与给定条件矛盾的结论。

3. 推理过程中注明每一步所依赖的原命题。

4. 根据矛盾结论,否定假设,证明原命题成立。

例如,我们可以用反证法证明无理数的存在性:定理:根号2为无理数。

证明:假设根号2为有理数。

由有理数的定义,我们可知根号2可以表示为两个互质整数的比值,即根号2=a/b(a、b∈N,且a、b互质)。

通过变换等式,我们得到2=a²/b²,即2b²=a²。

根据定义,我们知道a、b都是整数,所以a²为偶数。

而偶数的平方一定是4的倍数,所以a²必为4的倍数。

直接、间接证明与数学归纳法

直接、间接证明与数学归纳法

姓名学生姓名填写时间学科数学年级教材版本人教版阶段第( )周观察期:□维护期:□课题名称直接、间接证明与数学归纳法课时计划第( )课时共()课时上课时间教学目标分析法和综合法在证明方法中都占有重要地位,是解决数学问题的重要思想方法。

当所证命题的结论与所给条件间联系不明确,常常采用分析法证明;当所证的命题与相应定义、定理、公理有直接联系时,常常采用综合法证明.在解决问题时,常常把分析法和综合法结合起来使用。

教学重点反证法解题的实质是否定结论导出矛盾,从而说明原结论正确。

在否定结论时,其反面要找对、找全.教学难点它适合证明“存在性问题、唯一性问题”,带有“至少有一个”或“至多有一个”等字样的数学问题.教学过程直接证明与间接证明ﻫ知识要点梳理直接证明1、综合法ﻫ(1)定义:ﻫ一般地,从命题的已知条件出发,利用公理、已知的定义及定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的的基本思路:执因索果ﻫ综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.ﻫ(3)综合法的思维框图:ﻫ用表示已知条件,为定义、定理、公理等,表示所要证明的结论,则综合法可用框图表示为:ﻫ(已知)(逐步推导结论成立的必要条件)(结论)ﻫ2、分析法(1)定义:一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.ﻫ(2)分析法的基本思路:执果索因ﻫ分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.ﻫ(3)分析法的思维框图:ﻫ用表示已知条件和已有的定义、公理、公式、定理等,所要证明的结论,则用分析法证明可用框图表示为:ﻫ(结论)(逐步寻找使结论成立的充分条件) (已知)ﻫ(4)分析法的格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学归纳法+直接证明与间接证明题型一:数学归纳法基础1、已知n 为正偶数,用数学归纳法证明111111112()2341242n n n n-+-++=+++-++ 时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 () A .1+=k n 时等式成立B .2+=k n 时等式成立C .22+=k n时等式成立 D .)2(2+=k n 时等式成立2、已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命题为真,,则还需证明( )A.n=k+1时命题成立B. n=k+2时命题成立C. n=2k+2时命题成立D. n=2(k+2)时命题成立3、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得()A .当n=6时该命题不成立B .当n=6时该命题成立C .当n=8时该命题不成立D .当n=8时该命题成立 4、利用数学归纳法证明“*),12(312)()2)(1(N n n n n n n n ∈-⨯⋅⋅⋅⨯⨯⨯=+⋅⋅⋅++ ”时,从“kn =”变到“1+=k n ”时,左边应增乘的因式是 ( ) A 12+kB112++k k C1)22)(12(+++k k k D132++k k5、用数学归纳法证明),1(11122*+∈≠--=++++N n a aaa aa n n,在验证n=1时,左边计算所得的式子是( )A. 1B.a +1C.21a a ++D. 421a a a +++典例分析6、用数学归纳法证明n n n n n 2)()2)(1(=+++ ))(12(31*∈+⋅⋅⋅⋅N n n ,从“k到k+1”左端需乘的代数式是( )A.2k+1B.)12(2+kC.112++k k D.132++k k7、用数学归纳法证明:1+21+31+)1,(,121>∈<-+*n N n n n时,在第二步证明从n=k 到n=k+1成立时,左边增加的项数是( ) A.k 2 B.12-kC.12-kD.12+k8、设)1()2()1()(-++++=n f f f n n f ,用数学归纳法证明“)()1()2()1(n nf n f f f n =-++++”时,第一步要证的等式是9、用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n ”(+∈N n )时,从 “n k =到1n k =+”时,左边应增添的式子是 10、用数学归纳法证明不等式241312111>++++++nn n n 的过程中,由k 推导到k+1时,不等式左边增加的式子是 11、是否存在常数c b a ,,是等式22222421(1)2(2)()n n n n n an bn c⋅-+⋅-+⋅⋅⋅+⋅-=++对一切)*N n ∈成立?证明你的结论。

题型二:证明整除问题1、若存在正整数m ,使得)(93)72()(*∈+-=N n n n f n 能被m 整除,则m =2、证明:)(,)3(1*∈+-N n x n 能被2+x 整除3、已知数列{}na 满足1201aa ==,,当*n ∈N 时,21n n naa a ++=+.求证:数列{}na 的第41(*)m m +∈N 项能被3整除.4、用数学归纳法证明:731(*)nn n +-∈N 能被9整除.题型三:证明恒等式与不等式 1、证明不等式111123212nn ++++>-……(n N *∈)2、是否存在常数a 、b 、c ,使等式)(12)1()1(32212222c bn an n n n n +++=+++⋅+⋅ 对一切正整数n 都成立?证明你的结论题型四:数列中的数学归纳法 1、已知数列{}n a 中,11,02n nn na S a a =+->,求数列{}n a 的通项公式.2、由正实数组成的数列{}na 满足:2112nn n aa a n +-=≤,,,.证明:对任意*n ∈N ,都有1na n<.3、在数列{}na 中,若它的前n 项和1(*)nn Sna n =-∈N .⑴计算1234aa a a ,,,的值;⑵猜想na 的表达式,并用数学归纳法证明你的结论.题型五:其他类型题1、已知函数))((*N n n f ∈,满足条件:①2)2(=f ;② )()()(y f x f y x f ⋅=⋅;③ *)(N n f ∈;④当y x >时,有)()(y f x f >.(1) 求)1(f ,)3(f 的值;(2) 由)1(f ,)2(f ,)3(f 的值,猜想)(n f 的解析式;(3) 证明你猜想的)(n f 的解析式的正确性.2、数列{}n a ,2111,23()n n aa a n n n N *+==-+∈(Ⅰ)是否存在常数λ,μ使得数列{}2na n n λμ++是等比数列,若存在求μλ、的值,若不存在,说明理由。

(Ⅱ)设 112nn n b a n -=+-,123nnSb b b b =++++ 求证:2n ≥时,65(1)(21)3n n S n n <<++直接证明与间接证明 题型一:综合法 1、若110a b<<,则下列结论不正确的是 ( )A.22a b < B.2ab b < C.2b a a b +> D.ab a b-=-2、如果数列{}na 是等差数列,则( )。

(A )1845a a a a +<+ (B ) 1845aa a a +=+(C )1845aa a a +>+ (D )1845a aa a =3、在△ABC 中若2sin b a B =,则A 等于( ) (A)03060或 (B)04560或 (C)060120或 (D)030150或4、下列四个命题:①若102a <<,则()()cos 1cos 1a a +<-;②若01a <<,则11a-1a >+>2a;③若x 、y ∈R ,满足2y x =,则()2log 22xy+的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。

其中正确的是( )。

(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④ 5、下面的四个不等式:①cabc ab c b a ++≥++222;②()411≤-a a ;③2≥+ab ba ;④()()()22222bd ac dcba+≥+∙+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个 6、已知,a b R ∈且,0a b ≠,则在①abb a ≥+222;②2≥+ba ab ;③2)2(b a ab+≤;④2)2(222b a b a +≤+这四个式子中,恒成立的个数是 ( )A 1个B 2个C 3个D 4个 7、已知c b a ,,均大于1,且4lo g l o g =⋅c bc a,则下列各式中,一定正确的是 ( ) A bac ≥ B cab≥ C abc≥ D cab≤题型二:分析法 1、设m n ≠,43x mm n=-,34y nm n=-,则x 与y 的大小关系为( )。

(A )x y >; (B )x y =; (C )x y <; (D )x y ≠ 2、已知1,1,1c a c c b c c >=+-=--,则正确的结论是( )。

(A) a b > (B)a b < (C)a b = (D)a 、b 大小不定 3、设a 、b 、m 都是正整数,且a <b ,则下列不等式中恒不成立的是( )。

(A)1a a m bb m+<<+ (B)a a mb b m +≥+ (D) 1aa mb b m +≤≤+ (D) 1b m ba m a+<<+4、已知()()()f x y f x f y +=+,且()12f =,则()()()12f f f n ++⋅⋅⋅+不能等于( )。

(A)f (1)+2f (1)+…+nf (1) (B)(1)2n n f+⎡⎤⎢⎥⎣⎦(C)n (n +1) (D)n (n +1)f (1) 5、75226--与的大小关系是__________.6在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 。

7、设26,37,2-=-==R Q P,那么P, Q, R 的大小顺序是 。

8、有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖。

”乙说:“甲、丙都未获奖。

”丙说:“我获奖了。

”丁说:“是乙获奖。

”四位歌手的话只有两句是对的,则获奖的歌手是9、若a b c ,,是△ABC 的三边长,求证:4442222222()a b c a b b c c a ++<++10、△ABC 的三个内角A 、B 、C 成等差数列, 求证:cb a cb b a ++=+++311。

11、用分析法证明:若a>0,则212122-+≥-+aa aa 。

题型三:反证法1、下列表中的对数值有且仅有一个是错误的:x3 5 8915x lg b a -2 c a +ca 333--ba 24-13++-c b a请将错误的一个改正为lg =2、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )A 假设三内角都不大于60°B 假设三内角都大于60°;C 假设三内角至多有一个大于60°D 假设三内角至多有两个大于60°。

3、已知33q p +=2,关于p +q 的取值范围的说法正确的是 ( ) (A )一定不大于2 (B )一定不大于22(C )一定不小于22 (D )一定不小于24、否定结论“至多有两个解”的说法中,正确的是 ( )A 有一个解B 有两个解C 至少有三个解D 至少有两个解 5、设,,a b c 大于0,则3个数:1a b+,1b c+,1c a+的值 ( )A 都大于2B 至少有一个不大于2C 都小于2D 至少有一个不小于26、已知α∩β=l ,a ⊂α、b ⊂β,若a 、b 为异面直线,则 ( ) A a 、b 都与l 相交 B a 、b 中至少一条与l 相交 C a 、b 中至多有一条与l 相交 D a 、b 都与l 相交7、用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A 、假设三内角都不大于60度;B 假设三内角都大于60度;C 、假设三内角至多有一个大于60度D 、假设三内角至多有两个大于60度。

相关文档
最新文档