多元统计分析期末复习
多元统计分析期末复习试题

第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X 均值向量:随机向量X 与Y 的协方差矩阵:当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。
随机向量X 与Y 的相关系数矩阵:2、均值向量协方差矩阵的性质(1).设X ,Y 为随机向量,A ,B 为常数矩阵E (AX )=AE (X );E (AXB )=AE (X )B;D(AX)=AD(X)A ’;Cov(AX,BY)=ACov(X,Y)B ’;(2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质(1).若 ,则E(X)= ,D(X)= . )',...,,(),,,(2121P p EX EX EX EX μμμ='= )')((),cov(EY Y EX X E Y X --=qp ij r Y X ⨯=)(),(ρ),(~∑μP N X μ∑p X X X ,,,21特别地,当 为对角阵时, 相互独立。
(2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量,AX+d ~ . 即正态分布的线性函数仍是正态分布.(3).多元正态分布的边缘分布是正态分布,反之不成立.(4).多元正态分布的不相关与独立等价.例3.见黑板.三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面.(2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R(3) ,V分别是 和 的最大似然估计;(4)估计的性质是 的无偏估计; ,V分别是 和 的有效和一致估计; ;S~ , 与S相互独立;第五章 聚类分析:一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
多元统计分析期末复习

多元统计分析期末复习1.多元统计分析的基本概念a.自变量和因变量的定义:自变量是研究者设定的对因变量可能产生影响的变量;因变量是研究者感兴趣的变量,其取值由自变量决定。
b.共变量和嵌套变量的定义:共变量是对因变量可能产生影响的其他变量,但研究者不感兴趣;嵌套变量是自变量之间可能存在的相互作用变量。
c.直接效应和间接效应:直接效应是自变量对因变量的直接作用效应;间接效应是自变量通过其他中介变量对因变量的间接作用效应。
2.回归分析a.简单线性回归:描述一个自变量对一个因变量的线性关系。
b.多元线性回归:描述多个自变量对一个因变量的线性关系。
包括常规多元线性回归和层次线性回归。
c.逻辑回归:描述二元分类因变量和多元分类因变量的概率关系。
d.变量选择方法:前向选择、后向选择和逐步回归等方法,用于确定最佳的自变量组合。
3.方差分析a.单因素方差分析:描述一个自变量对一个因变量的组间差异。
b.多因素方差分析:描述多个自变量对一个因变量的组间差异,包括两因素方差分析和多因素方差分析。
c.方差分析的假设检验:主要检验组间差异和组内差异的显著性。
d.配对样本方差分析:描述一个自变量对一个因变量的前后差异。
4.判别分析a.二元判别分析:描述一个自变量对二元分类因变量的影响。
b.多元判别分析:描述多个自变量对多元分类因变量的影响。
c.判别分析的假设检验:主要检验自变量对分类因变量的区分度。
5.聚类分析a.基于距离的聚类方法:将样本根据相似度进行分组。
b.基于密度的聚类方法:将样本根据密度进行分组,适用于发现复杂的聚类结构。
c.聚类分析的评估:包括SSE评估、轮廓系数等方法,用于评价聚类质量。
综上所述,多元统计分析涵盖了回归分析、方差分析、判别分析和聚类分析等多种方法,可用于描述多个自变量对一个或多个因变量的影响以及自变量之间的关系。
掌握这些概念和方法,能够帮助研究者进行更深入的数据分析和解释。
多元统计分析期末复习

第一章、多元正态分布的参数估计二、判断题1.多元分布函数是单调不减函数,而且是右连续的。
(√ )()x F 2.设是维随机向量,则服从多元正态分布的充要条件是:它的任何组合X p X 都是一元正态分布。
(X )()p R X ∈'αα3.是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:μ(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B (√ )4.若P 个随机变量X1,…XP 的联合分布等于各自边缘分布的乘积,则称X1,…XP 是相互独立的。
(√ )5.一般情况下,对任何随机向量,协差阵是对称阵,也()'=p X X X ,,1 ∑是正定阵。
(X )6.多元正态向量的任意线性变换仍然服从多元正态分布。
()'=p X X X ,,1 (√)7.多元正态分布的任何边缘分布为正态分布,反之一样。
( X )8.多元样本中,不同样品之间的观测值一定是相互独立的。
(√)9.多元正态总体参数均值的估计量具有无偏性、有效性和一致性。
(√)μX 10.是的无偏估计。
( X )S n 1∑11.Wishart 分布是分布在维正态情况下的推广。
(√)2χp 12.若,,且相互独立,则样本离差阵()()∑,~μαp N X n ,,1 =α。
(√)()()()()()∑-'--=∑=,1~1n W X X X X S n p ααα13.若,为奇异矩阵,则。
( X )()∑,~n W X p C ()c c n W C CX p '∑',~第二章 多元正态分布均值向量和协差阵的检验二、判断题1.设,,,则称统计量的分布为()∑,~μp N X ()∑,~n W S p p n ≥X S X n T 12-'=非中心分布,记为。
( X )2HotellingT ()μ,,~22n p T T 2.在协差阵未知的情况下对均值向量进行检验,需要用样本协差阵去代∑S n1替。
多元统计分析期末考试考点

多元统计分析期末考试考点The following text is amended on 12 November 2020.二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。
它是由于随机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向量。
类似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。
多元统计分析期末复习

多元统计分析期末复习第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。
随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。
(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d?即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S?,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
《多元统计分析》期末复习题(201412)

(1) 试从 Σ 出发求 X 的第一主成分; (2) 试问当 取多大时才能使第一主成分的贡献率达 95%以上。
19. 设标准化变量 X 1 , X 2 , X 3 的协方差阵(即相关系数阵)为
1.00 0.63 0.45 R 0.63 1.00 0.35 0.45 0.35 1.00
c
i 1
n
i
1 令
n n Z ci Xi 。试证明: 1)Z 是 μ 的无偏估计量; 2) Z ~ N p μ, ci2 Σ i 1 i 1
16 -4 2 4. 设 X =(X 1 , X 2 , X 3 ) ~ N 3 (μ, Σ) , 其 中 μ = 1, 0, -2 ,Σ = -4 4 -1 , 试 判 断 2 -1 4 X X3 X1 2 X 2 与 2 是否相互独立。 X1
13. 设有两个正态总体 G1 和 G2 ,已知:
10 20 18 12 20 7 μ (1) , μ (2) , Σ1 , Σ2 15 25 12 32 7 5
试用距离判别法判断:样品: x
《多元统计分析》期末复习题
一、 简述题
1. 针对一个多元正态总体 N p (μ, Σ) 均值向量 μ 的检验 H 0 : μ μ 0 H1 : μ μ 0 而言,其 中 μ 0 是已知的向量。在协方差阵 Σ 已知和未知的两种情形下,如何分别构造的统计量? 2. 简述欧几里得距离与马氏距离的区别和联系。 3. 在进行系统聚类分析时,不同的类间距离计算方法有何区别?请举例说明。 4. 试述 K 均值法与系统聚类法的异同。 5. 试述有序聚类法的基本思想。 6. 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。 7. 简述费希尔判别法的基本思想。 8. 试述主成分分析的基本思想 9. 主成分分析的作用体现在何处? 10. 试述根据协差阵进行主成分分析和根据相关阵进行主成分分析的区别。
多元统计分析期末考试考点完整版

多元统计分析期末考试考点标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]多元统计分析题型一定义、名词解释题型二计算(协方差阵、模糊矩阵)题型三解答题一、定义二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。
它是由于随机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向量。
类似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
多元统计期末试题及答案

多元统计期末试题及答案一、选择题1. 在多元统计中,什么是协方差矩阵?A. 描述两个变量之间的线性关系的矩阵B. 描述两个变量之间的非线性关系的矩阵C. 描述多个变量之间的线性关系的矩阵D. 描述多个变量之间的非线性关系的矩阵答案:C2. 多元方差分析适用于以下哪种情况?A. 只有一个自变量和一个因变量B. 有一个自变量和多个因变量C. 有多个自变量和一个因变量D. 有多个自变量和多个因变量答案:C3. 多元线性回归分析中的残差是指什么?A. 因变量的观测值与估计值之间的差异B. 自变量的观测值与估计值之间的差异C. 因变量的观测值与真实值之间的差异D. 自变量的观测值与真实值之间的差异答案:A4. 主成分分析的目标是什么?A. 减少变量的数量B. 识别主要影响因素C. 降低模型复杂度D. 提高预测准确率答案:A5. 判别分析的目标是什么?A. 最小化类内方差B. 最大化类间方差C. 最小化类间方差D. 最大化类内方差答案:B二、填空题1. 多元正态分布的概率密度函数用符号____表示。
答案:f(x)2. 多元统计分析中的数据通常以矩阵的形式表示,其中每行代表____,每列代表____。
答案:样本,变量三、计算题假设有一组学生数据,包括他们的数学成绩(变量X1)、英语成绩(变量X2)和科学成绩(变量X3)。
1. 计算变量X1和X2之间的协方差。
答案:可使用协方差公式计算:Cov(X1,X2) = Σ[(X1-μ1)(X2-μ2)] / (n-1)其中,Σ表示求和符号,μ1和μ2分别为X1和X2的均值,n为样本数量。
2. 假设已经进行了主成分分析,计算数据的前两个主成分和对应的方差解释比例。
答案:主成分分析会得到一组主成分,可以通过对应的特征值来计算方差解释比例。
假设前两个特征值为λ1和λ2,总特征值和为Σλi。
则前两个主成分的方差解释比例为:(λ1 + λ2) / Σλi四、简答题1. 解释多元统计分析中的共线性问题。
(完整)多元统计分析期末试题及答案,推荐文档.docx

1 、设 X ~ N2 ( ,), 其中 X( x1 , x 2 ),( 1 ,212 ),,1则 Cov( x1x 2 , x1x 2 )=____.102、设X i ~N 3 (,), i 1, L,10,则 W =( X i)( X i)i 1服从_________。
4433、设随机向量X x1x2x3, 且协方差矩阵 4 9 2 ,3 2 16则它的相关矩阵R___________________4、设 X= x1x2x3,的相关系数矩阵通过因子分析分解为112330.93400.1280.4171R100.4170.9340.83530.8940.8940.027 0.83500.4472010.4470.10332__________,__________,X1的共性方差 h1X1的方差11公因子 f 1对 X的贡献 g12________________。
5、设 X i , i 1,L ,16 是来自多元正态总体N p (, ), X 和 A分别为正态总体N p ( ,)的样本均值和样本离差矩阵 , 则T 215[4( X)] A 1[4( X)] ~ ___________。
1642、设( x1 , x2 , x3) ~ N3(, ),其中(1,0, 2) ,44 1 ,1X214试判断 x12 x3与x2x3是否独立?x12、对某地区农村的 6 名 2 周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下 , 根据以往资料 , 该地区城市 2周岁男婴的这三个指标的均值0(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
82.0 4.310714.62108.9464其中 X60.2 ,(5 S ) 1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 (0.01,F 0.01 (3, 2)99.2, F 0.01 (3,3)29.5,F0.01 (3, 4)16.7)、设已知有两正态总体G与 G,且12,24,1211,3126219而其先验概率分别为q1q20.5,误判的代价C (2 1)4;e ,C(1 2)e试用判别法确定样本X 3属于哪一个总体?Bayes514、设X( X1 , X2 , X3 , X4 )T,协方差阵1~ N (0, ),0111(1)试从Σ出发求 X 的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上。
多元统计复习题答案

多元统计复习题答案一、单项选择题1. 多元统计分析中,用于描述多个变量之间关系的统计方法是()。
A. 相关分析B. 聚类分析C. 因子分析D. 主成分分析答案:C2. 以下哪个不是多元统计分析中常用的降维方法?()A. 主成分分析B. 因子分析C. 聚类分析D. 典型相关分析答案:C3. 在多元统计分析中,用于识别数据集中的异常值或离群点的统计方法是()。
A. 马氏距离B. 箱线图C. 相关系数D. 卡方检验答案:B二、多项选择题1. 多元统计分析中,以下哪些方法可以用来进行变量选择?()A. 逐步回归B. 岭回归C. 偏最小二乘回归D. 主成分分析答案:A|B|C2. 多元统计分析中,以下哪些方法可以用来进行数据的分类?()A. 判别分析B. 聚类分析C. 因子分析D. 典型相关分析答案:A|B三、判断题1. 多元统计分析中的因子分析可以用于变量的降维。
(对)2. 多元统计分析中的主成分分析和因子分析是完全相同的方法。
(错)3. 多元统计分析中的聚类分析可以用于识别数据集中的异常值。
(错)四、简答题1. 简述多元统计分析中主成分分析(PCA)的主要步骤。
答:主成分分析的主要步骤包括:数据标准化、计算协方差矩阵、求解特征值和特征向量、选择主成分、构造主成分得分。
2. 描述多元统计分析中判别分析的应用场景。
答:判别分析在多元统计分析中主要应用于根据已有的分类变量来预测新样本的分类,例如在医学诊断、市场细分、信用评分等领域。
五、计算题1. 给定一组数据,计算其主成分得分。
答:首先需要对数据进行标准化处理,然后计算协方差矩阵,接着求解特征值和特征向量,最后根据特征值的大小选择前几个主成分,并计算对应的得分。
2. 利用判别分析对一组数据进行分类,并给出分类结果。
答:首先需要确定分类的依据,然后计算各类别的判别函数,接着对新样本进行判别分析,最后根据判别得分将样本分类到相应的类别中。
多元统计分析期末复习

第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。
随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。
(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d〜即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S〜,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
应用多元分析期末复习练习题讲解

多元复习1、多元统计分析是运用数理统计方法来解决多指标问题的理论和方法。
2、多元分析研究的是多个随机变量及相关关系的统计总体。
3、如果A与B是两个P×P维的方阵,则AB与BA有完全相同的特征值。
4、随机向量X的协方差矩阵一定是非负定矩阵。
5、若A为P阶对称矩阵,则存在正交矩阵T与对角矩阵∧,则三者的关系有A=T∧T’。
6、设x是多元向量,服从正太分布即X~,a为P维常熟向量,则其线性型a’x服从一元正态分布,即a’x~。
7、方差相同的两个随机变量的差与和是不相关关系。
8、协方差和相关系数是变量间离散程度的一种变量,并不能刻画变量间可能存在的关联程度的关系。
9、变量的类型按尺度划分为间隔变量、有序变量、名义变量类型。
10、公共因子方差与特殊因子方差之和为1。
11、聚类分析是建立一种分析方法,它将一批样品或变量按照它们在性质上的亲疏关系进行科学的分类。
12、聚类分析是分析如何对样品或变量进行量化分析,通常分为Q型聚类和R型聚类。
13、聚类分析中Q型聚类是对样品进行聚类,R型聚类是对变量进行聚类。
14、进行判别分析时,通常指定一种判别规则用来判定新样品的归属,常见的判别准则有:费希尔判别准则、贝叶斯判别准则。
15、费希尔判别法就是要找P个变量组成的线性判别函数使得各组内点的离差尽可能接近,而不同组间的点尽可能疏远。
16、当X~,则-)服从卡方分布,即-) ~。
17、威尔克斯统计量表达式:∧=。
18、霍特林统计量表达式:。
19、两个变量间的平方马氏距离:;总体的马氏距离:。
20、方差相等的两个随机变量的关系:。
21、几个变量间服从正态分布,各自独立,样品的均值向量服从正态分布。
22、从代数观点看主成分是P个原始相关变量的线性组合。
23、变量共同度是指因子载荷矩阵中的第i行元素的平方和。
24、因子分析是指把每个原始变量分为两部分因素,一部分是公共因子,另一部分是特殊因子。
1、判别分析的目标。
答:判别分析的目标有两个:一是根据已知所属组的样本给出判别函数,并制定判别规则,再依此判断(或预测)每一新样品应归属的组别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X 均值向量:随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。
随机向量X 与Y 的相关系数矩阵:2、均值向量协方差矩阵的性质(1).设X ,Y 为随机向量,A ,B 为常数矩阵E (AX )=AE (X );E (AXB )=AE (X )B;D(AX)=AD(X)A ’;Cov(AX,BY)=ACov(X,Y)B ’;)',...,,(),,,(2121P p EX EX EX EX μμμ='= )')((),cov(EY Y EX X E Y X --=q p ij r Y X ⨯=)(),(ρ(2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立.(3).X 的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质(1).若 ,则E(X)= ,D(X)= .特别地,当 为对角阵时, 相互独立。
(2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量,AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立.(4).多元正态分布的不相关与独立等价.例3.见黑板.三、多元正态分布的参数估计(1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量样本均值向量 =样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析:一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。
聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)......Q-型聚类分析(样品)R-型聚类分析(变量)变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。
二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点)1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。
不改变样本间的相互位置,也不改变变量间的相关性。
2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。
经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。
3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。
经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的变量之间的比较。
4、对数变换:对数变换是将各个原始数据取对数,将原始数据的对数值作为变换后的新值。
它将具有指数特征的数据结构变换为线性数据结构。
三、样品间相近性的度量研究样品或变量的亲疏程度的数量指标有两种:距离,它是将每一个样品看作p 维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属),(~∑μP N X μ∑μp X X X ,,,21 ),(~∑μP N X ),('A A d A N s ∑+μ)()1(,,n X X X )',,,(21p X X X)')(()()(1X X X X i i n i --∑=n 1Xμ∑μX )1,(~∑n N X P μ),1(∑-n W p X X于不同的类;相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l ,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类。
样品之间的聚类即Q 型聚类分析,则常用距离(统计量)来测度样品之间的亲疏程度;而变量之间的聚类即R 型聚类分析,常用相似系数(统计量)来测度变量之间的亲疏程度。
1、距离的算法:明氏距离 兰氏距离 斜交空间距离 马氏距离2、相似系数的算法:夹角余弦 相似系数3、样品分类和指标分类:对样品分类常用距离,对指标分类常用相似系数4、明氏(Minkowski )距离的两个缺点:①明氏距离的值与各指标的量纲有关,而各指标计量单位的选择有一定的人为性和随意性,各变量计量单位的不同不仅使此距离的实际意义难以说清,而且,任何一个变量计量单位的改变都会使此距离的数值改变从而使该距离的数值依赖于各变量计量单位的选择。
②明氏距离的定义没有考虑各个变量之间的相关性和重要性。
实际上,明考夫斯基距离是把各个变量都同等看待,将两个样品在各个变量上的离差简单地进行了综合.5、相似系数:通常所说相关系数,一般指变量间的相关系数,作为刻划样品间的相似关系也可类似给出定义,即第i 个样品与第j 个样品之间的相似系数定义为:实际上,就是两个向量中心化后的夹角余弦6、距离和相似系数选择的原则:(1)所选择的亲疏测度指标在实际应用中应有明确的意义。
(2)亲疏测度指标的选择要综合考虑已对样本观测数据实施了的变换方法和将要采用的聚类分析方法。
(3)适当地考虑计算工作量的大小。
练习:1.聚类分析是建立一种分类方法,它将一批样品或变量按照它们在性质上的___进行科学的分类.2.Q 型聚类法是按___进行聚类,R 型聚类法是按 ___进行聚类。
3.Q 型聚类统计量是___,而R 型聚类统计量通常 采用___。
4.在聚类分析中需要对原始数据进行无量纲化处理,以消除不同量纲或数量级的影响,达到数据间可同度量的目的。
常用的无量纲化方法有以下几种:___、____、___。
5.Q 型聚类方法有___、___、___、___等。
第六章 判别分析:1.四种判别方法:距离判别法、费歇判别法、贝叶斯判别法、逐步判别法。
2.贝叶斯Bayes 判别法:距离判别方法简单实用,但没有考虑到每个总体出现的机会大小,即先验概率,没有考虑到错判的损失;Fisher 判别法随着总体个数的增加,建立的判别式也增加,计算量加大,如果考虑各总体的重要性,问题会突出而简单许多。
既要考虑到各个总体出现的先验概率,又要考虑到错判造成的损失,Bayes 判别就具有这些优点,其判别效果更加理想,应用也更广泛。
基本思想:总是假定对所研究的对象已有一定的认识,常用先验分布来认识它,然后,基于抽取的样本对先验概率作修正,得到后验概率,最后采用相应的判别准则(如误判率最小准则,后验概率最大准则等)进行判别。
Bayes 判别法,对各类(总体)的分布有特定的要求,即已知先验概率和分布密度函数。
3.4.各判别法之间的联系:在正态等协方差阵及先验概率相等的条件下贝叶斯判别与距离判别等价;不加权的Fisher判别法等价于距离判别法∑∑∑===----=p k p k j jk i ik pk j jk i ik ij x x x x x x x x 11221])(][)([))((γ练习:1.判别分析是要解决在研究对象已________的情况下,确定新的观测数据属于已知类别中哪一类的多元统计方法。
2.用判别分析方法处理问题时,通常以_______作为衡量新样本点与各已知组别接近程度的指标。
3.进行判别分析时,通常指定一种判别规则,用来判定新样本的归属,常见的判别准则有_______、_________。
4.在p 维空间Rp 中,点与点之间的接近和疏远尺度用_______来衡量,最简单的就是________或__________。
5.类内样本点接近,类间样本点疏远的性质,可以通过_________与______的大小差异表现出来,而两者的比值能把不同的类区别开来。
这个比值越大,说明类与类间的差异越___,分类效果越___。
6.Fisher 判别法是找一个由p 个变量组成的______,使得各自组内点的____尽可能接近,而不同组间点的尽可能疏远。
简答题:1.判别分析的分类:距离判别法、费歇判别法、贝叶斯判别法、逐步判别法。
2.判别的基本思想:是根据已掌握的、历史上若干样本的p 个指标数据及所属类别的信息,总结出该事物分类的规律性,建立判别公式和判别准则。
根据总结出来的判别公式和判别准则,判别未知类别的样本点所属的类别。
3.简述两个总体的判别及判别准则:基本思路:(1)统计模型:设G1,G2是两个不同的P 维已知总体,x=(x1,…,xp )T 是一个待判样品;(2)距离判别准则: (3)判别函数: 4.简述Fisher 判别法及具体判别步骤:Fisher 判别的思想是投影,将k 组p 维数投影到某一个方向,使得他们的投影组与组之间尽可能的分开。
5.简述逐步判别基本原理: 逐步引入变量,每次把一个判别能力最强的变量引入,每引入一个新的变量,对老变量又逐个进行检验,如其判别能力因新变量的引入而变得不显著,应把它从判别式中剔除,最终建立的判别函数中仅保留判别能力显著的变量。
6.简述BAYES 判别分析与其它判别方法的优劣:(1)与距离判别的优劣比较:距离判别优于两个总体情况下的判别,对两个总体几乎没有任何要求,简捷,实用,易懂;距离判别法在多个总体时,没有考虑各总体出现的概率,对各个变量的重要性一视同仁,难免产生误判。
Bayes 判别法对的理论与方法严密而完善,对研究对象的信息利用充分,误判率大大降低,但计算较复杂。
(2)与Bayes判别法的比较:Bayes判别与Fisher判别的比较:对总体的分布要求不同;多个总体下,Fisher判别的计算量大,但均值向量共线性程度较好时,可以考虑用Fisher判别;各总体出现的重要性不同时应使用是Bayes判别。
第七章、主成分分析1.主成分分析就是设法将原来变量重新组合成一组新的相互无关的综合变量来代替原来的变量,并尽可能多地反映原来变量的信息。
数学表现为:Var (Yj )最大;cov(Yi ,Yj)=0;2.主成分就是以协方差阵的特征向量为系数的线性组合,它们互不相关,其方差的特征根。