流化床干燥实验报告

合集下载

实验十五流化床干燥实验

实验十五流化床干燥实验

通过加水器向物料注入适当量的水;
通电预热空气,使其温度稳定在100~110℃之间的某个数值上,待空气状况稳定后,每隔一定的时间(约5分钟)测取一次床层温度,并采集一次样品,直至实验结束;
实验结束后,先关闭加热器电源,再停风机。
实验步骤
01.
对实验结果进行数据处理,绘出干燥曲线即x~τ关系曲线。
02.
若将非常湿的物料置于一定的干燥条件下,例如在有一定湿度、温度和风速的大量热空气中,测定被干燥物料的质量与温度随时间的变化,可得如上图中所示的关系。由上图可以看出,干燥过程可分为如下三个阶段:(1)物料预热阶段(2)恒速干燥阶段(3)降速干燥阶段。非常潮湿的物料因其表面有液态水存在,当它置于恒定干燥条件下,则其温度近似等于热风的湿球温度tw,到达此温度前的阶段称为(1)阶段。在随后的第二阶段中,由于表面存有液态水,物料温度约等于空气的湿球温度tw,传入的热
01
02
基本原理
基本原理
量只用来蒸发物料表面水分,在第(2)阶段中含水率X随时间成比例减少,因此其干燥速率不变,亦即为恒速干燥阶段。在第(3)阶段中,物料表面已无液态水存在,亦即若水分由物料内部的扩散慢于物料表面的蒸发,则物料表面将变干,其温度开始上升,传入的热量因此而减少,且传入的热量部分消耗于加热物料,因此干燥速率很快降低,最后达到平衡含水率而终止。(2)和(3)交点处的含水率称为临界含水率用X0表示。对于第(2)(3)阶段很长的物料,第(1)阶段可忽略,温度低时,或根据物料特性亦可无第二阶段。
以干基含水率X为横坐标,干燥速度u’为纵坐标,绘制干燥速度曲线。
实验报告要求
线必须在恒定干燥条件下测定,实验中哪些条件要恒定?
01
02
03

流化床干燥实验报告

流化床干燥实验报告

一、实验目的1. 熟悉流化床干燥器的基本流程及操作方法。

2. 掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

3. 测定物料含水量及床层温度随时间变化的关系曲线。

4. 掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量、恒速阶段的传质系数及降速阶段的比例系数。

二、实验原理流化床干燥是利用气流将固体颗粒悬浮在床层中,使固体颗粒与干燥介质(如空气)进行充分接触,从而实现干燥的过程。

在实验中,通过测量不同气速下的床层压降,可以得到流化床床层压降与气速的关系曲线,即流化曲线。

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1。

当气速逐渐增加(进入BC 段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。

当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。

物料干燥速率曲线反映了物料在不同干燥阶段的干燥速率。

在恒速阶段,物料干燥速率基本保持不变;在降速阶段,物料干燥速率逐渐减小。

临界含水量是指物料由恒速阶段过渡到降速阶段的含水量。

三、实验仪器与材料1. 实验仪器:- 流化床干燥器- 空气源(罗茨鼓风机)- 转子流量计- 空气电加热器- 固态继电器控温仪表系统- 水银玻璃温度计- 电热烘箱- 电子天平(精度0.0001g)2. 实验材料:- 湿小麦- 干燥介质(空气)四、实验步骤1. 准备实验仪器,检查各部分是否正常。

2. 将湿小麦放入流化床干燥器中,调整干燥器温度和气速。

3. 测量不同气速下的床层压降,绘制流化曲线。

4. 在恒速阶段,每隔一定时间测定物料含水量和床层温度,绘制物料干燥速率曲线。

5. 在降速阶段,继续测定物料含水量和床层温度,直至物料干燥完成。

6. 根据实验数据,确定临界含水量、恒速阶段的传质系数及降速阶段的比例系数。

流化床干燥器的操作及其干燥速率曲线的测定实验报告

流化床干燥器的操作及其干燥速率曲线的测定实验报告

流化床干燥器的操作及其干燥速率曲线的测定实验报告实验目的:1、了解流化床干燥器的工作原理;2、掌握流化床干燥器的操作技术;3、通过测定干燥速率曲线,掌握流化床干燥器的性能参数。

实验原理:流化床干燥器是一种通过将干燥气体(通常是热空气)通过床层中的颗粒物,使颗粒物保持流化状态,从而将水分从颗粒物表面释放出来,实现物料的干燥。

流化床干燥器不仅具有较高的热传导和质量传输速度,而且可以控制干燥气体的湿度、温度、流量等参数,可以满足不同物料对干燥条件的要求。

流化床干燥器的工作流程如下:1、通过热风把热量传递到干燥器中;2、物料在流化床中不断翻动和流动,以保证干燥空气可以与物料均匀接触;3、干燥空气带走物料中的水分,从干燥器中排出,以保证物料的干燥效果。

实验步骤:1、将物料放入干燥器中,调整干燥气体的温度、湿度、流量等参数;2、开启干燥气体流动,通过观察物料的变化情况,掌握干燥效果;3、根据不同的干燥时间,取出物料样品,并测量表观密度、水分含量等参数;4、利用所得数据绘制干燥速度曲线,分析干燥速率随时间的变化规律。

实验数据:物料名称:玉米淀粉物料初始含水量:45.2%物料初始表观密度:500kg/m3干燥气体:热空气干燥气体温度:80℃干燥气体湿度:10%干燥气体流量:2m3/h实验结果:根据实验数据,我们可以绘制干燥速率曲线如下图所示:从图中可以看出,干燥速率曲线呈现出先快后慢的趋势。

在干燥初期,干燥速率较快,随着时间的推移,干燥速率逐渐降低。

在干燥后期,干燥速率趋于平稳,反映了物料中水分含量的极限状态。

通过实验测定和分析,我们得到了流化床干燥器的性能参数,如干燥速率、干燥时间等,为后续工业生产提供了基础数据支持。

化工原理流化床干燥实验报告

化工原理流化床干燥实验报告

北京化工大学实验报告流化床干燥实验一、摘要本实验通过对湿的小麦的干燥过程,要求掌握干燥的基本流程及流化床流化曲线的定,流化床床层压降与气速的关系曲线,物料含水量及床层温度随时间的变化关系,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX。

二、关键词:流化床干燥、物料干燥速率、物料含水量、流化床床层压降、临界含水量三、实验目的及任务1、熟悉流化床干燥器的基本流程及操作方法。

2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

3、测定物料含水量及床层温度随时间变化的关系曲线。

4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传值系数k H及降速阶段的比例系数K X四、实验原理1.流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。

(如图一)当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在对数坐标系中)。

当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。

当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。

当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段,D点处的流速即被称为带出速度。

在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点当气速继续降低,曲线无法按CBA继续变化,而是沿CA'变化。

C点处的流速被称为起始流化速度(umf)在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。

据此,可以通过测定床层压降来判断床层流化的优劣。

2干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。

流化床干燥 实验报告

流化床干燥 实验报告
实验名称流化床干燥实验
一、实验目的
1、了解掌握连续流化床干燥方法;
2、估算体积传热系数和热效率。
二、实验原理
1、对流传热系数的计算
气体向固体物料传热的后果是引起物料升温Q1和水分蒸发Q2。其传热速率为:
式中:
Q1一湿含量为X2的物料从θ1升温到θ2所需要的传热速率
Q2一蒸发(kg/s)水所需的传热速率。
2 4-吸干燥器内剩料用的吸管(可移动)。
图2 实验台正面板面布置及加料、加热、保温电路
1-干燥器主体设备;2-加料器;3-加料直流电机(直流电机内电路示意图);4-旋风分离器等:
5-测流量用的压差计; 6-测压计;7、8-预热器的电压、电流表; 9一用于加热(预热)器的调压器的旋钮;
10、11-干燥器保温电压、电流表: 12-用于干燥器保温的调压器的旋钮;1 3-直流电流调速旋钮:
三、仪器与试剂
设备流程图见图1,电路示意图见2。
图1 流态化干澡操作实验流程示意图
1-风机(旋涡泵): 2-旁路阀(空气流量调节阀); 3-温度计(测气体进流量计前的温度); 4-压差计(测流量);
5-孔板流量计:6-空气预热器(电加热器): 7-空气进口温度计; 8-放空阀:9-进气阀:10-出料接收瓶;
1 4-直流电机电压(可调);15-风机开关;1 6-电源总开关:R1-预热器(负载);R2-干燥器(负载)。
主要技术参数:
1、流化床干燥器 (玻璃制品,用透明膜加热新技术保温,调电压控温)
流化床层直径D:Φ80×2毫米(内径76毫米)
床层有效流化高度h:80毫米(固料出口),
总高度:530毫米
流化床气流分布器:80目不锈钢丝网(二层)
Cm2一出干燥器物料的湿比热·(KJ/kg绝干料·℃)

流化床干燥实训报告

流化床干燥实训报告

流化床干燥实训报告一、引言流化床干燥是一种常用的固体物料干燥技术,通过将气体通过固体颗粒床层,使颗粒物料呈现流化状态,从而实现高效的干燥过程。

本实训报告旨在总结流化床干燥实训的过程与结果,并对其进行分析和评价。

二、实训目的1. 理解流化床干燥的基本原理和工作过程;2. 掌握流化床干燥实验的操作流程和注意事项;3. 分析实验结果,评价流化床干燥的效果及其适用范围。

三、实训过程1. 实验准备在进行流化床干燥实验之前,我们首先需要准备好实验所需的设备和材料。

设备包括流化床干燥装置、电子天平、温湿度计等;材料则是待干燥的固体物料样品。

在准备过程中,我们需要检查设备的工作状态是否正常,确保实验能够顺利进行。

2. 实验操作流化床干燥实验包括以下几个步骤:(1)将待干燥的固体物料样品放入流化床干燥装置中,并调节床层高度和床层颗粒物料的粒径;(2)将加热介质(通常为热空气)送入流化床干燥装置,控制其温度和流速;(3)观察并记录床层的流化状态,包括床层的膨胀情况、颗粒物料的运动状态等;(4)通过电子天平实时测量固体物料样品的质量,并记录下来;(5)利用温湿度计等设备测量床层内的温度和湿度,并进行记录;(6)根据实验要求,设定一定的干燥时间,进行干燥过程;(7)干燥过程结束后,关闭加热介质,停止干燥。

3. 实验结果根据实验操作所得到的数据和观察结果,我们可以得出以下结论:(1)流化床干燥过程中,床层的流化状态较好,颗粒物料能够充分地与热空气接触,从而实现高效的传热和传质;(2)固体物料样品的质量在干燥过程中逐渐减小,说明水分得到了蒸发并排出;(3)床层内的温度和湿度变化较大,与干燥时间的增加呈现出一定的规律性。

四、实训评价1. 流化床干燥的优点流化床干燥技术具有以下优点:(1)干燥速度快,能够在短时间内完成干燥过程;(2)热量利用效率高,能够节约能源;(3)干燥效果好,能够保持固体物料的原有形态和品质。

2. 实训中存在的问题在本次实训中,我们也发现了一些问题:(1)流化床干燥操作过程中,床层的流化状态可能不够稳定,需要进一步优化设备结构和操作参数;(2)实验结果的记录和分析还不够详细,需要进一步改进实验设计和数据处理方法。

流化床干燥实验报告

流化床干燥实验报告

流化床干燥实验报告
实验名称:流化床干燥实验报告
实验目的:了解流化床干燥技术原理和特点,探究其在实际应用中的表现,并分析其优缺点。

实验器材:流化床干燥器、薯片、电子秤、测温计、计时器等。

实验原理:流化床干燥是一种新型干燥技术,与传统的批量式干燥方式不同。

在流化床干燥器中,物料通过气体的流动,使其表现出液体般的流动性,并受到强烈的剪切力,从而加速干燥过程。

实验步骤:
1.将薯片样品放入干燥器中,启动机器。

2.调节空气流量和温度,使其逐渐升高。

3.记录干燥器内部温度和时长,以便后续分析。

4.待薯片完全干燥后,关闭干燥器,取出样品并称重。

实验结果与分析:
经过实验,我们得到了如下数据:薯片样品初始重量为100克,经过2小时的干燥后,重量缩减至52克,干燥率为48%。

干燥后的薯片呈现出干燥后的金黄色,口感较之前更加脆爽。

我们还对干燥器内部温度进行了测量,结果表明随着干燥时间的延长,系统内部温度逐渐上升,最终稳定在70℃左右。

这说明在干燥过程中,温度是一个非常重要的因素,可以直接影响到干燥效果。

分析干燥结果,流化床干燥技术的优点显而易见:干燥时间短,效率高。

此外,干燥过程中对物料的损伤较小,品质更加稳定。

然而,流化床干燥的另一面是样品必须具有一定的流动性,这限制了其在某些材料的干燥中的应用领域。

结论:流化床干燥技术虽然存在一定的限制,但其优势还是明显的。

在某些物料干燥特别是粉末挥发干燥方面,流化床干燥技术拥有着不可替换的优势。

未来,随着该技术的不断改进和完善,其应用领域将会越来越广泛,成为干燥技术的重要组成部分。

流化床实验报告(1)(1)(1)

流化床实验报告(1)(1)(1)

贵州xx学院化工原理实验报告学院:xxxxx 专业:xxxxxxxxx 班级:化工xx利用床层的压降来测定干燥过程的失水量。

(1)准备0.5~1kg 的湿物料,待用。

(2)开启风机,调节风量至40~60m 3/h ,打开加热器加热。

待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,此时床层的压差将随时间减小,实验至床层压差()恒定为止。

则物料中瞬间含水率为(11-3)式中,—时刻时床层的压差。

计算出每一时刻的瞬间含水率,然后将对干燥时间作图,如图11-1,即为干燥曲线。

图11-1恒定干燥条件下的干燥曲线上述干燥曲线还可以变换得到干燥速率曲线。

由已测得的干燥曲线求出不同下的斜率,再由式11-1计算得到干燥速率,将对作图,就是干燥速率曲线,如图11-2所示。

e p ∆i X eei p p p X ∆∆-∆=p ∆τi X i X i τi X iid dX τU U X图11-2恒定干燥条件下的干燥速率曲线将床层的温度对时间作图,可得床层的温度与干燥时间的关系曲线。

3. 干燥过程分析预热段见图11-1、11-2中的AB段或A′ B段。

物料在预热段中,含水率略有下降,温度则升至湿球温度t W,干燥速率可能呈上升趋势变化,也可能呈下降趋势变化。

预热段经历的时间很短,通常在干燥计算中忽略不计,有些干燥过程甚至没有预热段。

恒速干燥阶段见图11-1、11-2中的BC段。

该段物料水分不断汽化,含水率不断下降。

但由于这一阶段去除的是物料表面附着的非结合水分,水分去除的机理与纯水的相同,故在恒定干燥条件下,物料表面始终保持为湿球温度t W,传质推动力保持不变,因而干燥速率也不变。

于是,在图11-2中,BC段为水平线。

只要物料表面保持足够湿润,物料的干燥过程中总处于恒速阶段。

而该段的干燥速率大小取决于物料表面水分的汽化速率,亦即决定于物料外部的空气干燥条件,故该阶段又称为表面汽化控制阶段。

北京化工大学_ 流化干燥实验报告_ 2015

北京化工大学_ 流化干燥实验报告_ 2015

北 京 化 工 大 学 化 工 原 理 实 验 告: : : :: :实验名称 班级 姓名 学号 同组成员 实验日期 流化干燥实验一、实验目的1、测定流化床中小麦的流化曲线2、测定湿小麦的干燥曲线和干燥速率曲线二、实验原理固体流化是利用介质流体的流动将固体颗粒悬浮起来,从而使固体具有流体的表观特征,同时使固体在传热、传质、混合、反应以及输送等方面有强化作用的操作。

干燥是将热量传递给湿物料,汽化并除去其中湿组份的单元操作。

本实验将固体流化与对流干燥结合起来,强化了干燥效果,可使小麦含水率x,在相对短的时间内降到平衡值X*附近,如图6-3,干燥过程中是否出现恒速段受物料含水量和营气携带水能力等影响。

不同空气流量下的流化床压阵如图1所示图1、流化曲线(双对数坐标系)当气速小于初始流化气速u mf时,物料处于静止状态(上行过程如AB段),当气速大于颗粒沉降速度lit时,物料被气体带出流化床干燥器(如CD段)。

在实际操作中,气速应介于两者之间,此时床层压阵相对恒定,干燥效果较好(如BC中间水平段)。

空气流速由孔板流量计测定:()0.5220.620.78540.0221000 1.25u =,/0.78540.1p V m s A⨯⨯⨯∆⨯÷=⨯孔板气p kPa ∆孔板——孔板压降,干燥曲线(如图2)和干燥速率曲线(如图3)受物料性质、全气性质、设备操作等因素影响,常用的确定方法有:1、湿物料取样法:通过取样测定每个时间点的湿小麦的干基含水率X 和物料表面温度 (床层温度)θ,确定干燥曲线X~τ和θ~τ,再根据1千克干小麦的表面积值(A/G 干)等,确定干燥速率曲线N A ~X 。

图2、 干燥曲线图3、 干燥速率曲线i 时刻湿小麦的含水量测量值:X i G G G -=干湿干(作含水量X~时间τ关系的平滑曲线)i 时刻的含水量修正值:X i 取X~τ平滑曲线上,i 时刻对应的纵坐标值 i 时刻到i+1时刻的平均含水量:+1X +X X=2i ii 时刻到i+1时刻的平均干燥速率:()+12211000X X N /,/ 1.5i i A X kg m s g m s A G ττ-----∆==⨯∆⨯∆干2、湿空气分析法:测量每个时间点进、出干燥器的全气湿度,以及空气流量,通过全气中的水分衡算和初始条件即可确定被干物料的干燥速率曲线,物料表面温度θ直接测量。

干燥实验报告

干燥实验报告

一、摘要本实验旨在通过实验室模拟干燥过程,探究干燥原理和干燥速率,掌握干燥设备的基本操作方法,并分析影响干燥效果的因素。

实验采用流化床干燥器作为干燥设备,对某物料进行干燥实验,并绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。

二、实验目的1. 了解流化床干燥器的基本流程及操作方法。

2. 掌握干燥速率曲线的测定方法,绘制干燥速率曲线。

3. 分析物料含水量与时间的关系,确定干燥过程的不同阶段。

4. 测定流化床压降与气速的关系,为干燥设备的设计提供理论依据。

三、实验原理1. 干燥原理干燥是利用热能将物料中的水分蒸发的过程。

在干燥过程中,物料表面水分蒸发形成水蒸气,水蒸气在干燥介质(如空气)中扩散,直至物料内部水分达到平衡。

干燥速率与物料表面水分蒸发速率和内部水分扩散速率有关。

2. 流化床干燥原理流化床干燥器是一种利用流化床技术进行干燥的设备。

物料在干燥器内受到热风的作用,床层产生流动,形成流化床。

物料在流化床中受到热风和物料颗粒间的碰撞,水分不断蒸发,从而实现干燥。

四、实验装置与仪器1. 实验装置:流化床干燥器、温度计、湿度计、流量计、电子秤、计时器等。

2. 实验仪器:干燥器、空气加热器、电热恒温干燥箱、恒温水浴锅、数据采集系统等。

五、实验步骤1. 准备实验材料:将物料分成若干份,每份质量相同,并记录初始含水量。

2. 调节干燥器:开启干燥器,调节热风温度和流量,使物料处于流化状态。

3. 干燥实验:将物料放入干燥器,记录干燥时间、物料温度、物料含水量等数据。

4. 数据处理:将实验数据输入计算机,绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。

六、实验结果与分析1. 干燥速率曲线根据实验数据,绘制干燥速率曲线。

干燥速率曲线呈抛物线形状,可分为三个阶段:恒速干燥阶段、降速干燥阶段和平衡干燥阶段。

在恒速干燥阶段,干燥速率基本保持不变;在降速干燥阶段,干燥速率逐渐降低;在平衡干燥阶段,干燥速率趋于零。

流化床干燥实验报告

流化床干燥实验报告

流化床干燥实验报告一、实验目的1.学习流化床干燥的基本原理和工艺流程;2.掌握流化床干燥的影响因素和优化方法;3.实践使用流化床干燥设备进行干燥实验。

二、实验原理在流化床干燥实验中,我们采用的是颗粒状物料。

物料被分散在床层中,当热风流入床层时,物料会因为气流的推动而呈现流化状态。

物料的湿度会受到热风的冲刷而逐渐减小,最终实现干燥的目的。

三、实验装置和操作步骤1.实验装置:实验主要使用的装置有流化床干燥器、热风设备、称量仪器和记录仪器等。

2.操作步骤:(1)将待干燥物料称量并分散放入流化床干燥器内;(2)调整热风设备的温度和风量,并将热风送入流化床干燥器内;(3)观察物料的流化状态和干燥速度,并记录数据;(4)根据需要,调整热风温度和风量,并重复步骤(3);(5)干燥结束后,关闭热风设备,取出干燥物料并称重。

四、实验结果和分析通过实验观察和数据记录,我们得到了一系列实验结果。

首先,我们观察到,在热风的冲刷下,物料会逐渐呈现流化状态,流化床床层会形成一定的均匀性。

其次,在不同温度和风量的条件下,物料的干燥速度也会出现差异。

一般情况下,热风温度越高,物料的干燥速度越快;热风风量越大,物料的干燥速度也越快。

然而,当热风温度过高或风量过大时,可能会对物料质量产生不利影响。

五、实验总结和改进方向通过本次实验,我们对流化床干燥的工艺流程和影响因素有了一定的了解。

然而,由于实验条件和时间的限制,本次实验还存在一些不足之处。

首先,我们没有在不同温度和风量下对干燥速度进行详细的参数测定和分析,无法得出更准确的结论。

其次,在实验过程中,可能由于物料的细度和湿度不同,导致干燥结果有一定的误差。

为了进一步完善本次实验,可以在实验中增加不同温度和风量的组合,并记录干燥速度的具体数值。

同时,可以通过对不同物料进行干燥实验,探究不同物料在流化床干燥中的特点和优化方法。

总之,本次实验为我们提供了一次独立实践的机会,增加了我们对流化床干燥的认识。

流化床干燥器的操作及其干燥速率曲线的测定实验报告(一)

流化床干燥器的操作及其干燥速率曲线的测定实验报告(一)

流化床干燥器的操作及其干燥速率曲线的测定实验报告(一)流化床干燥器的操作及其干燥速率曲线实验报告实验目的学习流化床干燥器的操作方法,并掌握干燥速率曲线的测定方法以及对其进行分析和解释。

实验原理流化床干燥器是一种广泛应用的干燥设备,其特点是在干燥过程中物料通过气流的作用在床内进行沸腾、流化和扩散。

通过调节干燥空气的温度、速度和湿度,可以实现不同程度的物料干燥。

在干燥过程中,可以通过测定干燥速率曲线来掌握物料干燥的情况,以便对干燥过程进行优化和调整。

实验步骤1.将物料均匀分散在流化床干燥器内,注意控制物料层的厚度和均匀性。

2.设置干燥空气的温度、速度和湿度,并将干燥空气通过风机送入流化床干燥器中。

3.测定进料口和出料口的温度、湿度等参数,记录下来。

4.借助平台上的程序,记录下干燥过程中物料的质量变化,同时记录下时间,计算出干燥速率。

5.根据测定数据绘制干燥速率曲线,并进行分析和解释。

实验结果经过实验测定,我们得到了物料在流化床干燥器中的干燥速率曲线,根据曲线的变化可以了解到物料在不同时间内的干燥情况,进而进行对干燥条件的优化和调整。

同时,我们还发现,较高的干燥空气温度和速度会导致物料表面过度干燥而形成外殻,从而影响干燥速率。

实验结论流化床干燥器是一种高效、节能的干燥设备,通过调节干燥空气的温度、速度和湿度,可以实现不同程度的物料干燥。

通过测定干燥速率曲线,可以掌握物料干燥的情况,以便对干燥过程进行优化和调整。

在实际应用中需要注意控制干燥条件,避免过度干燥和对物料的损害。

实验适用范围本实验适用于化工、制药、食品等行业,对流化床干燥器进行操作、干燥速率曲线的测定和分析。

可以帮助生产管理人员掌握产品干燥的情况,及时调整干燥条件,以提高产品质量和生产效率。

实验心得流化床干燥器是广泛应用于各行业的干燥设备,本次实验让我深入了解其操作方法和测定干燥速率曲线的技术。

通过实验,我了解到了干燥过程中空气温度、速度和湿度对干燥速率的影响,更加深刻地认识到干燥条件的控制对于产品质量的重要性。

流化床干燥实验报告

流化床干燥实验报告

北方民族大学学生实验报告院(部):化学与化学工程姓名:汪远鹏学号: ********专业:过程装备与控制工程班级: 153同组人员:田友安世康虎贵全课程名称:化工原理实验实验名称:流化床干燥实验实验日期:批阅日期:成绩:教师签名:北方民族大学教务处制实验名称:流化床干燥实验一、目的及任务①了解流化床干燥器的基本流程及操作方法。

②掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

③测定物料含水量及床层温度随时间变化的关系曲线。

④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X及恒速阶段的传质系数k H及降速阶段的比例系数Kx。

二、基本原理1、流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。

当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。

D)。

点处流速即被称为带出速度(u在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。

若气速继续)。

降低,曲线将无法按CBA继续变化,而是沿CA’变化。

C点处流速被称为起始流化速度(umf 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。

据此,可以通过测定床层压降来判断床层流化的优劣。

2、干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。

物料含水量与时间关系曲线的斜率即为干燥速率(u)。

将干燥速率对物料含水量作图。

干燥过程可分为以下三个阶段。

(1)物料预热阶段(AB段)在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。

(2)恒速干燥阶段(BC段)由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。

流化干燥试验实验报告

流化干燥试验实验报告

一、实验目的1. 了解流化干燥的基本原理和操作方法。

2. 掌握流化干燥过程中物料干燥速率、物料含水量、床层压降与气速等参数的测定方法。

3. 确定临界含水量、恒速阶段的传值系数及降速阶段的比例系数。

二、实验原理流化干燥是一种利用流化床技术进行干燥的方法。

在流化干燥过程中,物料在床层中呈流化状态,空气在床层中流动,与物料进行热量和质量的交换,从而实现干燥。

实验中,通过测定不同气速下的床层压降,得到流化床床层压降与气速的关系曲线,从而确定临界含水量、恒速阶段的传值系数及降速阶段的比例系数。

三、实验材料与仪器1. 实验材料:湿小麦2. 实验仪器:流化床干燥器、电子天平、温度计、流量计、计时器四、实验步骤1. 准备实验装置,检查仪器是否正常工作。

2. 称取一定量的湿小麦,放入流化床干燥器中。

3. 开启干燥器,调节气速,观察床层状态。

4. 测量床层压降,记录气速、物料含水量、床层温度等数据。

5. 每隔一定时间,称量物料,记录干燥速率。

6. 绘制物料干燥速率曲线、物料含水量曲线、床层压降与气速关系曲线。

7. 分析实验数据,确定临界含水量、恒速阶段的传值系数及降速阶段的比例系数。

五、实验结果与分析1. 物料干燥速率曲线根据实验数据,绘制物料干燥速率曲线,可以看出,物料干燥速率随着时间逐渐减小,符合一般干燥过程的特点。

2. 物料含水量曲线根据实验数据,绘制物料含水量曲线,可以看出,物料含水量随着时间逐渐减小,符合一般干燥过程的特点。

3. 床层压降与气速关系曲线根据实验数据,绘制床层压降与气速关系曲线,可以看出,当气速较小时,床层压降与气速成正比;当气速继续增大时,床层压降基本保持不变,进入流化阶段。

4. 临界含水量、恒速阶段的传值系数及降速阶段的比例系数根据实验数据,可以确定临界含水量、恒速阶段的传值系数及降速阶段的比例系数,分别为X0、kH和KX。

六、实验结论1. 通过流化干燥实验,掌握了流化干燥的基本原理和操作方法。

流化床干燥实验——流化床和洞道干燥----实验报告

流化床干燥实验——流化床和洞道干燥----实验报告

流化床和洞道干燥综合实验一、实验目的1. 了解流化床、洞道干燥装置的基本结构、工艺流程和操作方法。

2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。

3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平 衡含水量的实验分析方法。

4. 实验研究干燥条件对于干燥过程特性的影响。

二、基本原理在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数,通常地,其干燥特性数据需要通过实验测定而取得。

按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。

若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度以及气流与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。

2.1. 干燥速率的定义干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即:-c G dX dwU Ad Ad ττ== kg/(m 2/s)式中,U -干燥速率,又称干燥通量,kg/(m 2s );A -干燥表面积,m 2; W -汽化的湿分量,kg ; τ -干燥时间,s ; Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料,负号表示X 随干燥时间的增加而减少。

2.2. 干燥速率的测定方法(1)将电子天平开启,待用。

(2)将快速水分测定仪开启,待用。

(3)将0.5~1kg的红豆(如取0.5~1kg的绿豆/花生放入60~70℃的热水中泡30min,取出,并用干毛巾吸干表面水分,待用。

(4)开启风机,调节风量至40~60m3/h,打开加热器加热。

待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min取出四颗红豆的物料,同时读取床层温度。

将取出的湿物料在快速水分测定仪中测定,得初始质量G i和终了质量G ic,则物料中瞬间含水率为:i iciicG-GX=G计算出每一时刻的瞬间含水量X i,然后将X i对干燥时间iτ作图,如图1,即为干燥曲线。

流化床干燥实验报告

流化床干燥实验报告

流化床干燥实验报告一、实验目的。

本实验旨在通过对流化床干燥的实验研究,探究流化床干燥过程中的干燥特性及其影响因素,为流化床干燥技术的应用提供实验数据支持。

二、实验原理。

流化床干燥是一种将颗粒物料置于气体流化状态下进行干燥的技术。

在流化床干燥过程中,通过热空气或其他气体对颗粒物料进行干燥,同时颗粒物料在气流中呈现流化状态,从而实现高效的干燥作用。

三、实验装置及方法。

1. 实验装置,本实验采用了具有恒温控制功能的流化床干燥设备,以及相应的气流控制系统和数据采集系统。

2. 实验方法,首先将待干燥的颗粒物料放置于流化床干燥设备中,然后通过控制气流的温度、流速等参数,进行干燥实验并记录实验数据。

四、实验结果及分析。

通过实验得到了不同干燥条件下的干燥速率、干燥效果等数据,并进行了分析。

实验结果表明,在一定范围内,随着气流温度的升高,干燥速率呈现上升趋势,但当温度过高时,会导致颗粒物料的过度干燥,影响干燥效果。

同时,气流流速对干燥效果也有一定影响,适当增大流速可以提高干燥速率,但过大的流速也会导致颗粒物料的剧烈运动,影响干燥效果。

五、实验结论。

通过本次实验,我们得出了以下结论:1. 流化床干燥技术能够实现对颗粒物料的高效干燥,具有较好的干燥效果。

2. 在进行流化床干燥时,需要合理控制气流温度和流速,以确保干燥效果和干燥质量。

3. 实验结果为流化床干燥技术的应用提供了理论和实验基础,为进一步优化流化床干燥工艺提供了参考依据。

六、参考文献。

1. 李明,张三. 流化床干燥技术及应用[M]. 北京,化学工业出版社,2015.2. 王五,赵六. 干燥工程学[M]. 北京,化学工业出版社,2018.七、致谢。

在此,特别感谢实验室的老师和同学们对本次实验的支持与帮助,同时也感谢各位专家学者对流化床干燥技术的研究和推广所做出的贡献。

以上为本次流化床干燥实验的报告内容,希望能对相关研究和工程应用提供一定的参考价值。

流化床干燥实验报告

流化床干燥实验报告

流化床干燥实验报告
一、实验目的
1. 掌握流化床干燥的基本原理和特点;
2. 熟悉流化床干燥设备的结构和工作原理;
3. 了解流化床干燥的操作技能和注意事项。

二、实验原理
流化床干燥是将湿物料放入带有一个气流的床中,使物料悬浮在气流中流动,并通过气流带走物料表面的水分达到干燥目的的过程。

流化床干燥器通常由气流发生器、气管、气流调节器、过滤器、热源和物料桶组成。

在流化床干燥器中,物料与气流混合形成流态床,气流通过调节器调节,形成所需的物料流动速度和干燥温度。

在充分干燥后,得到干燥的物料。

三、实验步骤
1. 将待测物料称量并放入流化床干燥器中;
2. 开启流化床干燥器,调节干燥温度和气流速度;
3. 观察物料在流化床中的情况,并记录干燥时间;
4. 检查干燥后的物料是否符合规定要求。

四、实验结果
根据实验记录,干燥时间为5小时,干燥后的物料符合规定要求。

五、实验分析
1. 流化床干燥可以在短时间内实现对湿度物料的干燥,减少了生产时间,提高了工作效率;
2. 可根据需要调节干燥温度和气流速度,以满足不同物料的干燥要求;
3. 流化床干燥设备结构简单,易于维护和清洁。

六、实验总结
本次实验通过对流化床干燥的了解和操作,使我们更加深入地了解干燥操作的流程和注意事项,对于今后的学习和工作都将有很大的帮助。

流化床干燥实验报告

流化床干燥实验报告

北方民族大学学生实验报告院(部):化学与化学工程姓名:汪远鹏学号: ********专业:过程装备与控制工程班级: 153同组人员:田友安世康虎贵全课程名称:化工原理实验实验名称:流化床干燥实验实验日期:批阅日期:成绩:教师签名:北方民族大学教务处制实验名称:流化床干燥实验一、目的及任务①了解流化床干燥器的基本流程及操作方法。

②掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

③测定物料含水量及床层温度随时间变化的关系曲线。

④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X及恒速阶段的传质系数k H及降速阶段的比例系数Kx。

二、基本原理1、流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。

当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。

D点处流速即被称为带出速度(u)。

在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C 点。

若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。

C)。

点处流速被称为起始流化速度(umf在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。

据此,可以通过测定床层压降来判断床层流化的优劣。

2、干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。

物料含水量与时间关系曲线的斜率即为干燥速率(u)。

将干燥速率对物料含水量作图。

干燥过程可分为以下三个阶段。

(1)物料预热阶段(AB段)在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。

由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。

流化床干燥实验化工原理实验报告

流化床干燥实验化工原理实验报告

北京化工大学化工原理实验报告流化床干燥实验实验日期:2012年5月18日流化床干燥实验摘要:本实验通过测定不同空气流量下的床侧压降及干湿物料的质量,从而确定流化床床层压降与气速的关系曲线及流化床的干燥特性曲线。

通过实验,了解流化床的使用方法及其工作原理。

关键词:干燥,干燥速率曲线,流化床床层压降一、目的及任务1.了解流化床干燥器的基本流程及操作方法。

2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

3.测定物料含水量及床层温度随时间变化的关系曲线。

4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量及恒速阶段的传质细述及降速阶段的比例系数。

二、基本原理干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。

干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。

由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。

干燥实验的目的是用来测定干燥曲线和干燥速率曲线。

为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。

1、流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到的流化床床层压降与气速的关系曲线。

图1:流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。

当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,)。

便进入了气流输送阶段。

D点处流速即被称为带出速度(u在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。

若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。

C点处流速被称为起始流化速度(u)。

mf在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。

流化床干燥实验报告

流化床干燥实验报告
启动风机及加热器,将空气控制在某一流量下(孔板流量计压差为一定值,3kpa 左右), 控制加热器表面温度(80~100℃)或空气温度(50~70℃)稳定,打开进料口,将待干燥物 料徐徐倒入,关闭进料口。 (3)测定干燥速率曲线 ①取样,用取样管取样,每隔 2~3min 一次,取出的样品放入小器皿中,并记上编号和取样 时间,待分析用。共做 8~10 组数据,做完后,关闭加热器和风机电源。 ②记录数据,在每次取样的同时,要记录床层温度、空气干球、湿球温度、流量和床层压 降等。 3、结果分析 (1)快速水分测定仪分析法
五、数据处理
表 1 干燥实验相关计算结果表
干燥表面积 A=1.5
含水量
时间 /min
0 5 10 15 20 25 30 35
湿料质量 /g
5.73 6.30 7.26 7.38 7.57 7.97 6.40 6.80
干燥后的 质量/g
3.65 4.40 5.61 6.03 6.39 7.00 5.84 6.36
床层温度 /℃
20.70 37.40 46.30 49.00 51.10 53.00 54.80 56.40
/kg 水
/kg 绝干 物料
0.5699 0.4318 0.2941 0.2239 0.1847 0.1386 0.0959 0.0692
汽化水份 量 dW/kg
0.1380 0.1377 0.0702 0.0392 0.0461 0.0427 0.0267
北方民族大学
学生实验报告
院(部):
化学与化学工程
姓 名:
汪远鹏
学 号: ********
专 业: 过程装备与控制工程 班 级: 153
同组人员: 田友 安世康 虎贵全
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京化工大学实验报告课程名称:流化床干燥实验实验日期:2010.05.12班级:姓名:同组人:流化床干燥实验一、摘要本实验利用流化床干燥器对物料干燥速率曲线进行测定。

本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间。

以此来测定干燥速率。

利用物料的干湿重量变化计算物料的各种含水量。

关键词:干燥速率含水量干重湿重二、实验目的1、了解流化床干燥器的基本流程和操作方法。

2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

3、测定物料含水量及床层温度随时间变化的关系曲线。

4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数Kx。

三、实验原理1,流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(见下图)。

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙流过,压降与流速成正比,斜率约为1(在双对数坐标中)。

当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的将不再成比例。

当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。

当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入气体输送阶段。

D点处得流速即被称为带出速度(u0)。

在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。

若气速继续降低,曲线将无法按CBA继续变化,而沿CA’变化。

C点处得流速被称为起始流化速度(u mf)。

在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。

据此,可以通过测定床层压降来判断床层流化的优劣。

2,干燥特性曲线将湿物料置于一定的干燥条件,测定被干燥物料的质量和温度随时间变化的关系,可得湿物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见图4-16)。

物料含水量与时间关系曲线的斜率即为干燥速率(u)。

将干燥速率对物料含水量作图,即为干燥速率曲线(见图4-17)。

干燥过程可分为三个阶段。

(1)物料预热阶段(AB 段)在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。

(2)恒速干燥阶段(BC 段) 由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。

(3)降速干燥阶段(CDE 段)物料含水量减少到某一临界含水量(X O ),由于物料内部水分的扩散慢于物料表面的蒸发,不足以维持物料表面保持湿润,而形成干区,干燥速率开始降低,物料温度逐渐上升。

物料含水量越小,干燥速率越慢,直至达到平衡含水量(X *)而终止。

干燥速率为单位时间在单位面积上汽化的水分量,用微分式表示为dWu Ad τ=(4-33) 式中 u —干燥速率,kg 水/(m 2.s); A —干燥表面积,m 2;d τ—相应的干燥时间,s; dW —汽化的水分量,kg 。

图4-17中的横坐标X 为对应于某干燥速率下的物料平均含水量。

12i i X X X ++=(4-34) 式中 X —某一干燥速率下湿物料的平均含水量;1,i i X X +—Δτ时间间隔内开始和终了时的含水量,kg 水/kg 绝干物料。

si eii eiG G X G -=(4-35) 式中 si G —第i 时刻取出的湿物料的质量,kg ;G—第i时刻取出的物料的绝干质量,kg。

ei干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质结构及含水量的影响。

本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操作的流化床干燥器提供相应的设计参数。

四、实验装置和流程沸腾干燥实验装置流程如下图所示:图4-18 沸腾干燥实验装置和流程1—风机;2—湿球温度水筒;3—湿球温度计;4—空气加热器;5—空气加热器;6—空气流量调节阀;7—放净口;8—取样口;9—不锈钢筒体;10—玻璃筒体;11—气固分离段;12—加料口;13—旋风分离器;14—孔板流量计本装置的所有设备,除床身筒体一部分采用高温硬质玻璃外,其余均采用不锈钢制造。

床身筒体部分由不锈钢段(内径φ100mm,高100mm)和高温硬质玻璃段(内径φ100mm,高400mm)组成,顶部有气固分离段(内径φ150mm,高250mm)。

不锈钢筒体上没有物料取样器、放净口和温度计接口等,分别用于取样、放净和测温。

床身顶部气固分离段设有加料口和测压口,分别用于物料加料和测压。

空气加热装置由加热器和控制器组成,加热器为不锈钢盘管式加热器,加热管外壁设有1mm铠装热电偶,其与人工智能仪表、固态继电器等,实现空气介质的温度控制。

空气加热装置底部设有测量空气干球温度和湿球温度的接口,以测定空气的干、湿球温度。

本装置空气流量采用孔板流量计计算,气流量Vs可通过式(4-24)求取。

本装置的旋风分离器,可除去干燥物料的粉尘。

五、实验操作1、启动风机、加热器,最大风量预热5分钟后全部关停;2、拔出取样器并旋转清空里面多余物料;3、进料口加入湿小麦601.14g,干基含水量kg/kg干麦4、再次启动风机、加热器,固定风量(如有变化请注意手动调整),记录孔板压降3.5kPa,干球温度50.9℃,湿球温度24.7℃,时间点为0;5、空气温度达到70℃,小麦处于流化状态,开始取样。

记录时间点,称重G 湿,装盒,放入烘箱,1h 后记录G 干;6、间隔2~5分钟去一次样品,45分钟取15个点左右,记录数据,注意清空取样器残余小麦;7、实验完成后可得到X~τ曲线,在曲线上取至少10个(ΔX/1.5Δτ)值,作u~τ曲线; 8、小麦在含水量40%以上可能存在非结合水,才有可能出现恒速段,取点注意时间分配; 9、关加热器、风机,加入300g 干小麦,做流化试验; 10、只开风机,找到临界流化点风量,记录;11、床层固定状态做5个点,流化态做4个点,记录;12、实际生产中,设备通常是不透明的,床层压降反映了流体的运动状况,是重要的操作参数。

六、实验数据处理1、干燥速率曲线测定空气温度:70℃ 孔板压降:3.5 kPa 干球温度:50.9℃ 湿球温度:27.4℃ 序号 时间 τ/min 湿小麦质量 G 湿/kg 干小麦质量 G 干/kg 物料温度 t 物/℃ 含水量 X i 平均 含水率 干燥速率 u 水/g.m -2.s -1 1 0.00 10.33 7.15 0.4448 2 1.20 14.89 11.59 69.9 0.2847 0.3647 0.0889 3 3.20 14.41 11.47 70.0 0.2563 0.2705 0.0095 4 5.20 15.37 12.80 70.0 0.2008 0.2286 0.0185 5 7.20 8.19 6.69 70.1 0.2242 0.2125 -0.0078 6 9.20 8.70 7.21 70.1 0.2067 0.2154 0.0059 7 12.20 12.28 10.55 70.0 0.1640 0.1853 0.0095 8 15.20 9.89 8.70 70.0 0.1368 0.1504 0.0060 9 19.20 10.43 9.33 70.0 0.1179 0.1273 0.0031 10 22.20 8.48 7.66 70.0 0.1070 0.1125 0.0024 11 26.20 10.75 9.93 70.0 0.0826 0.0948 0.0041 12 30.40 8.33 7.80 70.0 0.0679 0.0753 0.0023 13 34.40 11.33 10.82 69.9 0.0471 0.0575 0.0035 1438.407.376.80 70.0 0.0838 0.0655 -0.0061 15 43.40 8.928.5070.00.0494 0.06660.0046以第四组数据为例计算: 含水量:415.37-12.80==0.200812.80G G X G -=干湿干平均含水率:340.25630.2008=0.228622X X X ++==—干燥速率:340.25630.2008=0.01851.5 1.5(15.3714.41)X X u τ--==⨯∆⨯-水2、流化曲线测定序号床层压降ΔP床/kPa孔板压降ΔP孔/kPa空气流速U气/m·s-110.310.280.501620.490.590.728130.650.880.889240.7 1.2 1.038350.69 1.45 1.141460.7 1.6 1.199070.69 1.9 1.306580.68 2.23 1.415590.67 2.53 1.5077100.663 1.6417 110.63 3.59 1.7959以第三组数据为例计算:空气流速:0.5226.8PV==0.8892A3600/40.1uπ⨯∆=⨯⨯孔气七、实验结果作图及分析:流化床床层压降与气速的关系曲线:流化曲线和理论符合的很好,当气速较小时,操作过程处于固定床阶段,床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比。

当气速逐渐增加,床层开始膨胀,孔隙率增大,压降与气速的关系将不再成正比。

当气速继续增大,进入流化阶段,固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本上保持不变,如曲线的后半段,成一条水平直线。

物料含水量,物料温度与时间的关系:干燥速率曲线:由于本组作图偏差过大,所以借由他人作图进行分析,如下:u 水/g .m -2.s-1X/kg 水.kg -1绝干物料此图应从右往左进行分析。

从图中右边3个点可知,在干燥前期,干燥速率基本维持定值(即恒速很俗阶段),因为此时物料表面被非结合水覆盖。

由于结合水占大部分,所以小麦的恒速阶段很短。

干燥一段时间后,干燥速率总体上在不断下降(即进入降速阶段),这是由于小麦表面的非结合水被不断除去,实际汽化表面减少,内部水分扩散较慢造成的。

降速阶段干燥速率出现较大波动,分析原因,可能有: 1、流化床本身的性能不稳定。

2、烘干时,未能准确把握时间,以致有些样品并未完全烘干,引起实验结果的较大偏差。

3、用差分代替微分求取的干燥速率与实际状况有一定的偏离。

八、 思考题1,本实验所得的流化床压降与气速曲线有何特征?答:当气速较小时,操作过程处于固定床阶段,床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比。

相关文档
最新文档