一元一次不等式组的应用 PPT课件-一元一次不等式组ppt
合集下载
人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)
新课引入 展示目标 精讲精练 归纳小结 强化训练
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.
人教版七年级数学下册《一元一次不等式》PPT优质教学课件
(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.
人教版七年级数学下册第九章9.3.2应用一元一次不等式组解决六种方案问题课件(共41张PPT)
2000a3000(40a)102000
根据题意得: a40a
解得18≤a<20.
∵a为正整数,∴a=18或19.
∴一共有2种分配方案,分别为:
方案一:分配18人清理养鱼网箱、22人清理捕鱼网箱;
方案二:分配19人清理养鱼网箱、21人清理捕鱼网箱.
类型 5 调运方案
7.(中考·长沙)2016年5月6日,中国第一条具有自主知识产 权的长沙磁悬浮线正式开通运营,该线路连接了长沙火 车南站和黄花国际机场两大交通枢纽,沿线生态绿化带 走廊的建设尚在进行中,届时将给乘客带来美的享受.星 城渣土运输公司承包了某标段的土方运输任务,
(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?
型渣土运输车与3辆小型渣土运输车一次共运输土方31 t, (2)根据题意,得y=(105-80)x+(70-50)(60-x)=
(2)设该渣土运输公司决定派出大型渣土运输车m辆,则派
方案一:购买30件文化衫、15本相册;
5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方 (2)该服装厂在生产这批时装时,当生产N型号的时装多少套时,所获得的利润最大?最大利润为多少?
2.某服装厂现有A种布料70 m,B种布料52 m,现计划用这 两种布料生产M,N两种型号的时装共80套,已知做一 套M型号的时装需用A种布料0.6 m,B种布料0.9 m, 可获得利润45元;做一套N型号的时装需用A种布料1.
1 m,B种布料0.4 m,可获得利润50元.若设生产N型号的 时装套数为x套,用这些布料生产这两种型号的时装所获 得的总利润为y元.
类型 3 进货方案
5.(中考·凉山州)为了推进我州校园篮球运动的发展,2017 年四川省中小学生男子篮球赛于2月在西昌成功举办.在 此期间,某体育文化用品商店计划一次性购进篮球和排 球共60个,其进价与售价间的关系如下表:
一元一次不等式课件(共21张PPT)
随堂演练
基础巩固
1. 若代数式 2x 3 的值是非负数,则x的
7
取值范围是( B )
3
A.x≥ 2
C.x>
3 2
B.x≥ 3
2
D.x> 3
2
2.如图所示,图中阴影部分表示x的取值范 围,则下列表示中正确的是( B )
A.-3>x>2 C.-3≤x≤2
B.-3<x≤2 D.-3<x<2
3.当x或y满足什么条件时,下列关系成立?
系数化为1得:x≥8.
08
(2) 2 x ≥ 2x 1
2
3
解:去分母得:3(2+x)≥2(2x-1);
去括号得:6+3x≥4x-2; 移项得:3x-4x ≥ -2-6; 合并同类项得:-x ≥ -8;
将解集用数轴表 示,则如下图:
系数化为1得:x≤8.
0
8
小 结 解一元一次不等式的一般步骤
01
(3)未知数的次数都是1.
含有一个未知数,未知数次数是1的 不等式,叫做一元一次不等式.
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3; (2) 2 x ≥ 2x 1
2
3
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3;
解:去括号得:2+2x<3; 将解集用数轴表
移项得:2x<3-2;
03
05
通过解这两个不等式,
去 分 母
你02能归纳出移解一元0一4 次 不等式的一项般步骤吗?
系数 化为
去
合并
1
括
同类
号
项
练 习 1.解下列不等式和方程(不等式
的解集要在数轴上表示出来)
一元一次不等式组(共19张PPT)
与 1 x 1 7 3 x都成立?
2
2
15
问题探究
例2
x取哪些整数值时,1 2x 5 7
成立?
这个式子是 什么含义?
16
巩固练习 练习
x取哪些正整数值时,不等式 x 3 6
与 2x 110 都成立?
17
归纳总结
(1)你怎么理解一元一次不等式组的概念, 它的解集是什么含义? (2)如何解一个一元一次不等式组?具体 步骤有哪些? (3)在用数轴确定不等式组的解集时,有 哪些需要注意的问题?
9.3 一元一次不等式组 (第1课时)
1
课件说明
学习目标: (1)了解一元一次不等式组的概念及其解集的 含义. (2)会用数轴确定一元一次不等式组的解集, 体会数形结合的思想方法.
学习重点: 求解一元一次不等式组.
2
1.探究新知 用每分钟可抽30 t水的抽水机来抽污
水管道里积存的污水,估计积存的污水超 过1 200 t而不足1 500 t,那么将污水抽完 所用时间的范围是什么?
3
探究新知
两个 等量关系
两个 不等关系
方程组
同时 满足
不等式组
4
探究新知
30x 1200 x 40
30x 1500 x 50
40
50
5
探究新知
由同一未知数的几个一元 一次不等式所组成的一组不等 式,叫做一元一次不等式组.
注意:1.几个指两个或两个以上; 2.不等式组中只有一个未知数; 3.由一元一次不等式组成;
6
考考你 下列各式哪些是一元一次不等式
组,哪些不是.
x2(x1)814xx11,; 是
X>3, (2)
X<6;
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用
解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】
分析:从跷跷板的两种状况可以得到的不等关系:
妈妈的体重+小宝的体重 <
爸爸的体重;
妈妈的体重+小宝的体重+6千克 > 爸爸的体重。
学习目标:1、会用一元一次不等式组解决实际问题
自学指导:阅读课本P139-134,例2 思考: 1、“不能完成任务”是什么意思 2、“提前完成任务”又是什么意思?
学习目标:1、会用一元一次不等式组解决实际问题
运用规律求下列不等式组的解集:
((((68(2571(3))4)))xx32xxxxxxxxxxx>>>><<<<><<><>>--37-20-5243-760.,4,-3,.4..1,4., .
学习目标:1、会用一元一次不等式组解决实际问题
1、若不等式组 x a 无解,求a的取值范围
2x -1 3
o
0
o
o
X
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (3) x<5
2 、若把以上(1)、(3)两个不等式合起来,这 个一元一次不等式组中x取值范围是多少呢?
o
o
X
X的取值范围是:2<X<5
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
我来说一说!
第九章 9.3 一元一次不等式组(1)
第7课时
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (2) x<-2 (3) x<5 (4) x<-5
2、若把以上(1)、(2)两个不等式 合起来,这个一元一次不等式组中x取 值范围是多少呢?
浙教版八年级数学上册3.4一元一次不等式组课件(共21张PPT)
2(x+70) >350 70x <7560
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3
√
2 x x 1 (2) x 8 4x 1
√
x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2
②
把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0
√
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3
√
2 x x 1 (2) x 8 4x 1
√
x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2
②
把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0
√
2021年华东师大版七年级数学下册第八章《8.3 一元一次不等式组》公开课课件(57张PPT)
-3、-2、-1.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
8.3 一元一次不等式组
第2课时 解一元一次不等式组(2)
华东师大·七年级下册
新课导入
1.什么是一元一次不等式组? 2.什么是一元一次不等式组的解集? 3.你能用什么方法确定一元一次不等式组的解
集?
推进新课
随堂演练
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这 批饮用水和蔬菜全部运往该乡中小学.已知每辆甲 种货车最多可装饮用水40件和蔬菜10件,每辆乙种 货车最多可装饮用水和蔬菜各20件,有哪几种方案 可供选择?
(3)在(2)的条件下,如果甲种货车每辆需付运费 400元,乙种货车每辆需付运费360元.运输部门应 选择哪种方案可使运费最少?最少运费是多少元?
分析:设需要x分钟能将污水抽完,那么总的抽 水量为30x吨,由题意可知
在这个实际问题中,未知量x应同时满足这两个不等 式,我们把这两个一元一次不等式合在一起,就得 到一个一元一次不等式组:
分别求这两个不等式的解集,得
在同一数轴上表示出这两个不等式的解集,可 知其公共部分是40和50之间的数(包括40 和50),记作 40≤x≤50.
(1)某校九年级某班课外活动小组承接了这个园艺 造型搭配方案的设计,问符合题意的搭配方案有几 种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个 B种造型的成本是360元,试说明(1)中哪种方案 成本最低,最低成本是多少元?
分析:本题的不等关系比较隐蔽,好像与不等 式没有什么关系,但仔细分析题意并结合实 际可知:A、B两种造型所需甲种花卉不能 超过349盆,乙种花卉不能超过295盆,依 此便能够建立不等式组求解.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
8.3 一元一次不等式组
第2课时 解一元一次不等式组(2)
华东师大·七年级下册
新课导入
1.什么是一元一次不等式组? 2.什么是一元一次不等式组的解集? 3.你能用什么方法确定一元一次不等式组的解
集?
推进新课
随堂演练
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这 批饮用水和蔬菜全部运往该乡中小学.已知每辆甲 种货车最多可装饮用水40件和蔬菜10件,每辆乙种 货车最多可装饮用水和蔬菜各20件,有哪几种方案 可供选择?
(3)在(2)的条件下,如果甲种货车每辆需付运费 400元,乙种货车每辆需付运费360元.运输部门应 选择哪种方案可使运费最少?最少运费是多少元?
分析:设需要x分钟能将污水抽完,那么总的抽 水量为30x吨,由题意可知
在这个实际问题中,未知量x应同时满足这两个不等 式,我们把这两个一元一次不等式合在一起,就得 到一个一元一次不等式组:
分别求这两个不等式的解集,得
在同一数轴上表示出这两个不等式的解集,可 知其公共部分是40和50之间的数(包括40 和50),记作 40≤x≤50.
(1)某校九年级某班课外活动小组承接了这个园艺 造型搭配方案的设计,问符合题意的搭配方案有几 种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个 B种造型的成本是360元,试说明(1)中哪种方案 成本最低,最低成本是多少元?
分析:本题的不等关系比较隐蔽,好像与不等 式没有什么关系,但仔细分析题意并结合实 际可知:A、B两种造型所需甲种花卉不能 超过349盆,乙种花卉不能超过295盆,依 此便能够建立不等式组求解.
一元一次不等式的应用ppt课件
5
5
探究新知
应用一元一次不等式可以刻画和解决很多实际生活
中的有关数量不等关系的问题.
6
6ห้องสมุดไป่ตู้
探究新知
列不等式解应用题的一般步骤:
审题
1
检验解的合理性
列出不等式
2
设未知数
3
4
解不等式
5
6
作答
7
7
探究新知
例1 有一家庭工厂投资2万元购进一台机器,生产某种商品.这种
商品每个的成本是3元,出售价是5元,应付的税款和其他费
>1 000
卡费,设按标价累计购物金额为x元,当x_______时,办理购
物“金卡”省钱.
解析:在办理购物“金卡”省钱时,
满足的关系式为:标价x-标价×0.9>购卡费.
即:x-0.9x>100,解得x>1 000.
14
14
探究新知
例5
一水果店进了某种水果1吨,进价是7元/千克,售价定为10元/千克.
3. 初步体会一元一次不等式的应用价值,形成严谨的学习态
度和独立思考的习惯.
2
2
新课导入
复习回顾
你还记得应用一元一次方程解实际问题的步骤吗?
审题
1
列出方程
2
设未知数
3
检验解的合理性
4
解方程
5
6
作答
我们能用列方程的方法解决一些现实生活中数量相
等关系的问题. 实际上,现实生活中还存在着许多数量
之间不相等的关系.这些问题应该如何来解决呢?
步骤类似,可概括为:“审、设、列、解、验、答”六步,
其不同点是方程是找相等关系,不等式是找不等关系.
11
5
探究新知
应用一元一次不等式可以刻画和解决很多实际生活
中的有关数量不等关系的问题.
6
6ห้องสมุดไป่ตู้
探究新知
列不等式解应用题的一般步骤:
审题
1
检验解的合理性
列出不等式
2
设未知数
3
4
解不等式
5
6
作答
7
7
探究新知
例1 有一家庭工厂投资2万元购进一台机器,生产某种商品.这种
商品每个的成本是3元,出售价是5元,应付的税款和其他费
>1 000
卡费,设按标价累计购物金额为x元,当x_______时,办理购
物“金卡”省钱.
解析:在办理购物“金卡”省钱时,
满足的关系式为:标价x-标价×0.9>购卡费.
即:x-0.9x>100,解得x>1 000.
14
14
探究新知
例5
一水果店进了某种水果1吨,进价是7元/千克,售价定为10元/千克.
3. 初步体会一元一次不等式的应用价值,形成严谨的学习态
度和独立思考的习惯.
2
2
新课导入
复习回顾
你还记得应用一元一次方程解实际问题的步骤吗?
审题
1
列出方程
2
设未知数
3
检验解的合理性
4
解方程
5
6
作答
我们能用列方程的方法解决一些现实生活中数量相
等关系的问题. 实际上,现实生活中还存在着许多数量
之间不相等的关系.这些问题应该如何来解决呢?
步骤类似,可概括为:“审、设、列、解、验、答”六步,
其不同点是方程是找相等关系,不等式是找不等关系.
11
人教版初中数学七年级下册9.3.1《一元一次不等式组》课件(共19张PPT)
3、不等式组的解法:
(1)求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 (3)根据几个不等式解集的公共部分,写出这个 不等式组的解集。
五、当堂检测
独立完成课本129页练习第1、2题.
2、学生分组完成后交流展示
要求:找出下列不等式组的公共部分
动手画一画, 一起找一找。
第一组
x 3, (1)x 7.
第二组
x 3, (3) x 7.
第三组
(5)
x x
3, 7.
第四组
(7)
x x
3, 7.
(2)
x x
1, 4.
x 1, (4) x 4.
x 1, (6) x 4.
x 1, (8) x 4.
让我们一起动手共同完成…
求下列不等式组的解集:(第一小组)
(1)xx
3, 7.
0 1 2 3 45 6 7 89
解:原不等式组的解集为
x7
x 1, (2) x 4 -3 -2 -1 0 1 2 3 4 5
解:原不等式组的解集为
x4
求下列不等式组的解集:(第二小组)
下列不等式中哪些是一元一次不等式?
2 y 7 6
x 1
(1)3x 3 1 (否) (2)x 2(是)
x 2 1
(3) 1 x
1
(否)
(4)32aa
7 3
(1是)
0
{3+x(1<)每4+个2不x等式必须为一元一次不等式;
(5) 5x-(32<)不4x等-1式必(须是是)只含有同一个未知数;
在同一个数轴上表示不等式①,②的解集为
0 —45 1
2
(1)求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 (3)根据几个不等式解集的公共部分,写出这个 不等式组的解集。
五、当堂检测
独立完成课本129页练习第1、2题.
2、学生分组完成后交流展示
要求:找出下列不等式组的公共部分
动手画一画, 一起找一找。
第一组
x 3, (1)x 7.
第二组
x 3, (3) x 7.
第三组
(5)
x x
3, 7.
第四组
(7)
x x
3, 7.
(2)
x x
1, 4.
x 1, (4) x 4.
x 1, (6) x 4.
x 1, (8) x 4.
让我们一起动手共同完成…
求下列不等式组的解集:(第一小组)
(1)xx
3, 7.
0 1 2 3 45 6 7 89
解:原不等式组的解集为
x7
x 1, (2) x 4 -3 -2 -1 0 1 2 3 4 5
解:原不等式组的解集为
x4
求下列不等式组的解集:(第二小组)
下列不等式中哪些是一元一次不等式?
2 y 7 6
x 1
(1)3x 3 1 (否) (2)x 2(是)
x 2 1
(3) 1 x
1
(否)
(4)32aa
7 3
(1是)
0
{3+x(1<)每4+个2不x等式必须为一元一次不等式;
(5) 5x-(32<)不4x等-1式必(须是是)只含有同一个未知数;
在同一个数轴上表示不等式①,②的解集为
0 —45 1
2
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品PPT
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
在数学的天地里,重 要的不是我们知道什么 ,而是我们怎么知道什 么。
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
——毕达哥拉斯
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
练习一 1、关于x的不等式组
x<8 x>m
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
解不等式组:
5x 10 3x 12 0
① ②
解 解不等式①,得
x 2
解不等式②,得
x4
在数轴上表示不等式①、②的解集
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
2
所以,这个不等式组的解集是
4x
2 x4
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
2.利用数轴求出这些不等式的解集的公 共部分。
3.写出不等式组的解集。
大大取最大,小小取最小, 大小小大取中间,大大小小解不了。
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件 湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
不等式组
x>-1 x>2 x<-1 x<2 x>-1 x<2
数轴表示
-1 0 1 2 3
解集
解集的确定规律
x 2 同大取大
-1 0 1 2 3 -1 0 1 2 3
x 1 同小取小
1 x 2 “大”小“小” 大 中间找
x>2 x<-1
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
一元一次不等式(组)的解法课件(共22张PPT)
我们在初中已经知道,在上述问题情境列出的不 等式中,未知数的个数是1,且它的次数为1,这样的 整式不等式称为一元一次不等式.使不等式成立的未 知数的值的集合,通常称为这个不等式的解集. 试一试:利用一元一次不等式解答本章导语中提到的 问题(2).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、把价格为每千克20元的甲种糖果8千克和价 格为每千克18元的乙种糖果若干千克混合,要 使总价不超过400元,且糖果不少于15千克, 所混合的乙种糖果最多是多少?最少是多少?
返 回
一元一次不等式组的应用
1、一个两位数的十位数比个位数小2,若这个 两位数大于21而小于36,求这个两位数。
解:设十位上的 数字 为x, 则个位上的数字为位上 x + 2) 10x ( x 2) 21 10x ( x 2) 36
2、水果店进了某中水果1t,进价是7元/kg。售 价定为10元/kg,销售一半以后,为了尽快售完, 准备打折出售。如果要使总利润不低于2000元, 那么余下的水果可以按原定价的几折出售?
一元一次不等式组的应用
1、某工程队要招聘甲、乙两种工种的工人150 人,甲、乙两种工种的工人月工资分别为600 元和1000元.现要求乙种工种的人数不少于甲 种工种人数的2倍,问甲、乙两种工种各招聘多 少人时,可使得每月所付的工资最少?
3、用每分钟抽1.1吨水的A型抽水机来抽池水, 半小时可以抽完;如果改用B型抽水机,估计 20分钟到22分可以抽完。B型抽水机比A型抽水 机每分钟约多抽多少吨水?
返 回
一元一次不等式组的应用
1、中秋节”期间苹果很热销,一商家进了一 批苹果,进价为每千克1.5元,销售中有6%的 苹果损耗,商家把售价至少定为每kg多少元, 才能避免亏本?
一元一次不等式组的应用
2、抗洪抢险,向险段运送物资,共有 120公里原路程,需要1小时送到,前半 小时已经走了50公里后,后半小时速度 多大才能保证及时送到?
返 回
一元一次不等式组的应用
1、一个工程队原定6天至少挖300立方米的 泥土。第一天完成了60立方米,根据工程 的进展情况,需要提前2天完成,问以后几 天内,平均每天至少要完成多少立方米的 挖掘任务?
4、一次知识竞赛共有15道题。竞赛规则是: 答对1题记8分,答错1题扣4分,不答记0分。 结果神箭队有2道题没答,飞艇队答了所有的 题,两队的成绩都超过了90分,两队分别至少 答对了几道题?
返 回
一元一次不等式组的应用
1.某厂有甲、乙两种原料配制成某种饮料,已 知这两种原料的维生素C含量及购买这两种原料 的价格如下表:
返 回
一元一次不等式组的应用
1、王凯家到学校2.1千米,现在需要在18 分钟内走完这段路。已知王凯步行速度为 90米/ 分,跑步速度为210米/分,问王凯 至少需要跑几分钟?
数量关系:18分钟走的路程》2.1千米
解:设王凯血药跑 分钟,由题意得:
x
18分钟走的路程
跑的路程= 210 x 走的路程= 90(18 x)
原料 维生素C及价格 甲种原 料 600 8 乙种原料
维生素C/(单位/千 克)
原料价格/(元/千克)
100 4
现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求 购买甲、乙两种原料的费用不超过72元, (1)设需用 x 千克甲种原料,写出 x 应满足的不等式组。 (2)按上述的条件购买甲种原料应在什么范围之内?
2、考试共有25道选择题,做对一题得4分,做 错一题减2分,不做得0分,若小明想确保考试 成绩在60分以上,那么,他至少做对X题,应满 足的不等式是什么?
一元一次不等式组的应用
3、有红、白颜色的球若干个,已知白球的个 数比红球少,但白球的两倍比红球多,若把每 一个白球都记作数2,每一个红球都记作数3, 则总数为60,求白球和红球各几个?
解:设以后几天内,平均每天至少要完成x立方米的挖掘 任务,根据题意,得
60+(6-1-2) x≥300
解得
x≥80
答:以后几天内,平均每天至少要完成80立方米的挖掘任务
一元一次不等式组的应用
2、一本英语书98页,张力读了7天(一周) 还没读完,而李永不到一周就读完了.李永 平均每天比张力多读3页,张力每天读多少 页?
一元一次不等式组的应用
例2、某中学为八年级寄宿学生安排宿舍, 如果每间4人,那么有20人无法安排,如果 每间8人,那么有一间不空也不满,求宿舍 间数和寄宿学生人数。
解:设宿舍有x间,则有学生( 4 x 20)人 (4 x 20) 8( x 1) 1 3 解得: 5 x6 4 (4 x 20) 8( x 1) 8 x为整数 x 6 人数为 4 x 20 44 答:宿舍有6间,学生有44人。
思路点拨:解题时注意抓住题设中的关 键字眼,“至少”、“余”、“缺”。
则根据题意得
123 3x 10 8 x 276 8
(1) (2)
方法点评:利用列不等式组解决实际问题的步骤与列一次方程组解应用题的 步骤大体相同,不同的是后者寻求的是等量关系,列出的是等式,前者寻求 的是不等量关系,并且解不等式组所得的结果通常为一解集,需从解集中找 出符合题意的答案.
一元一次不等式组的应用
列一元一次不等式组 解应用题
一元一次不等式组的应用
列一元一次不等式组解应用题的一般步骤 是: (1)审:审题,分析题目中已知什么,求 什么,明确各数量之间的关系 (2)设:设适当的未知数 (3)找:找出题目中的所有不等关系 (4)列:列不等式 (5)解:求出不等式的解集 (6)答:写出符合题意的答案
一元一次不等式组的应用
几种常见类型:
一、分配问题 二、速度、时间问题
三、工程问题
四、价格问题
五、其他问题
六、方案选择与设计
结 束
一元一次不等式组的应用
例1、在一次晚会上,将123个苹8颗,则至少缺1人的 份。问参加晚会的有多少个学生?
一元一次不等式组的应用
你也试一试吧:
1、将不足40只鸡放入若干个笼中,若每个笼 里放4只,则有一只鸡无笼可放;若每个笼里 放5只,则有一笼无鸡可放,且最后一笼不足3 只。问有笼多少个?有鸡多少只? 2、用若干辆载重量为8吨的汽车运一批货物, 若每辆汽车只装4吨,则剩下20吨货物;若 每辆汽车装满8吨,则最后一辆汽车不满也 不空。请问:有多少辆汽车?