高三综合测试数学试卷
广东省韶关市2023届高三上学期综合测试(一)数学试题含答案
韶关市2023届高三综合测试(一)数学注意事项:1.考生务必将自己的姓名、准考证号、学校和班级用黑色字迹的钢笔或签字笔写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}2,1,0,1,2U =--,集合{}2,1A =-,{}2320B x x x =-+=∣,则()UA B =( ) A.{}0,2B.{}1,0-C.{}1,2D.{}1,02.若11z i =+,21(2)z z i =+,1z 是1z 的共轭复数,则2z =( )B.2D103.下列区间中,函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是( ) A.0,2π⎛⎫⎪⎝⎭B.,2ππ⎛⎫⎪⎝⎭C.3,2ππ⎛⎫ ⎪⎝⎭D.3,22ππ⎛⎫⎪⎝⎭4.函数433()1x xf x x --=+的部分图象大致为( )A. B. C. D.5.已知(3,4)a =,(1,0)b =,c a tb =+,若b c ⊥,则向量c 在向量a 上的投影向量为( ) A.1625a -B.1625a C.45a -D.45a 6.某污水处理厂采用技术手段清除水中的污染物,同时生产出有用的肥料和清洁用水.已知在处理过程中,每小时可以清理池中残留污染物10%,若要使池中污染物不超过原来的12,至少需要的时间为(结果保留整数,参考数据:lg 20.30≈,lg30.48≈)( ) A .6小时B .7小时C .8小时D .9小时7.已知点O 为坐标原点,点F 是双曲线2222:1x y C a b-=(0a >,0b >)的右焦点,以OF为直径的圆与双曲线C 的一条渐近线交于点P ,线段PF 交双曲线C 于点Q .若Q 为PF 的中点,则双曲线的离心率为( )C.2D.38.已知函数()2lne xf x x e ex-=-+,若2202120222023202320232023e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1011()a b =-+,其中0b >,则1||2||a a b+的最小值为( )A.34C.54D.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某电视传媒机构为了解某地区电视观众对某类体育节目的收视情况,随机抽取了200名观众进行调查,其中女性占40%.根据调查结果分别绘制出男、女观众两周时间收看该类体育节目时长的频率分布直方图,则A.0.08m =B .女观众收看节目时长的中位数为6.5小时 C.女观众收看节目的平均时长小于男观众的平均时长D .收看节目不少于9小时观众中的女观众人数是男观众人数的1310.已知正方体1111ABCD A B C D -,设E 是棱BC 的中点,则 A .1BD ∥平面1C DE B.1BC AC ⊥C .平面11A BC 与平面ABCD D .三棱锥1D ACD -与三棱锥1B ACD -体积相等11.设A 是抛物线2:4C x y =上一点,F 是C 的焦点,A 在C 的准线l 上的射影为M ,M 关于点A 的对称点为N ,曲线C 在A 处的切线与准线l 交于点P ,直线NF 交直线l 于点Q ,则A .F 到l 距离等于4 B.FM FN ⊥C .FPQ △是等腰三角形D .||MQ 的最小值为412.以下四个不等关系,正确的是 A.ln1.5ln 41⋅<B.ln1.10.1>C.19202019<D.22ln 24ln 4e >- 三、填空题:本题共4小题,每小题5分,共20分.13.6212x x ⎛⎫- ⎪⎝⎭的展开式的中间一项的系数为________(具体数字作答).14.已知(0,)απ∈,且1cos 22sin 2αα-=-,则cos()πα-=________.15.我们知道距离是衡量两点之间的远近程度的一个概念.数学中根据不同定义有好多种距离.平面上,欧几里得距离是()11,A x y 与()22,B x y 两点间的直线距离,即AB d =切比雪夫距离是()11,A x y 与()22,B x y 两点中横坐标差的绝对值和纵坐标差的绝对值中的最大值,即{}1212max ,AB d x x y y '=--.已知P 是直线:2150l x y +-=上的动点,当P 与o (o 为坐标原点)两点之间的欧几里得距离最小时,其切比雪夫距离为________.16.已知三棱锥P ABC -中,PBC △为等边三角形,AC AB ⊥,PA BC ⊥,PA =BC =________;若M 、N 分别为该三棱锥的内切球和外接球上的动点,则线段MN 的长度的最大值为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题10分)在ABC △中,D 为AC 的中点,且sin 2sin BDC BAC ∠=∠.(1)证明:2BA BD =;(2)若22AC BC ==,求ABC △的面积. 18.(本小题12分) 已知数列{}n a 的首项145a =,且满足143n n n a a a +=+,设11n n b a =-. (1)求证:数列{}n b 为等比数列; (2)若1231111140na a a a ++++>,求满足条件的最小正整数n . 19.(本小题12分)北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高.某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如下数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40人的学校可以作为“基地学校”,现在从这10所学校中随机抽取3所,记X 为选出“基地学校”的个数,求X 的分布列和数学期望; (3)现在有一个“单板滑雪”集训营,对“滑行、转弯、停止”这3个动作技巧进行集训,且在集训中进行了多轮测试.规定:在一轮测试中,这3个动作至少有2个动作达到“优秀”,则该轮测试记为“优秀”.已知在一轮集训测试的3个动作中,甲同学每个动作达到“优秀”的概率均为23,每个动作互不影响且每轮测试互不影响.如果甲同学在集训测试中获得“优秀”次数的平均值不低于8次,那么至少要进行多少轮测试? 20.(本小题12分)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE △翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 若存在,求出λ的值;若不存在,请说明理由.21.(本小题12分)已知椭圆22:142x y C +=的左、右顶点分别为A ,B ,点D (不在x 轴上)为直线6x =上一点,直线AD 交曲线C 于另一点P . (1)证明:PB BC ⊥;(2)设直线BD 交曲线C 于另一点Q ,若圆O (O 是坐标原点)与直线PQ 相切,求该圆半径的最大值. 22.(本小题12分)已知函数2()1f x x =-,()ln(1)g x m x =-,m R ∈.(1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.2023届高三综合测试(一) 数学参考答案及评分标准1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、单项选择题(每小题5分)1.【解析】由题意,23201,2B x x x =-+==,所以2,1,2AB =-,所以(){} 1,0UA B =-,故选B.2.【解析】21(2)(1)(2)3z z i i i i =+=-+=-,所以,2z ==,故选C.3.【解析】函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭,由题意,322()262k x k k Z πππππ+<+<+∈,解得422()33k x k k Z ππππ+<<+∈,取0k =,可得函数()f x 的一个单调递减区间为4,33ππ⎛⎫⎪⎝⎭,故选B. 4.【解析】()f x 是奇函数且(1)0f <,所以选D.5.【解析】因为b c ⊥,所以3t =-,()0,4c =,所以向量c 在向量a 上的投影向量为1625a c a a a a ⋅⋅=,所以选B. 6.【解析】设原来池中污染物的质量为m ,依题意,经过n 小时污染物的质量0.9nm ⋅,所以,10.92nm m ⋅≤,lg 2lg 27.51lg912lg3n ≥=≈--,故选C. 7.【解析】∵以OF 为直径的圆与双曲线C 的一条渐近线交于点P ,∴OP PF ⊥,∵直线OP 的方程为b y x a =,(),0F c ,∴直线PF 的方程为()ay x c b=--,由()b y x a a y xc b ⎧=⎪⎪⎨⎪=--⎪⎩,解得2P a x c =,P ab y c =,∵12PQ PF =,∴Q 是PF 的中点,故222Q a c x c +=,2Q ab y c =,代入双曲线方程,得222222221a c ab c c a b ⎛⎫+⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=,整理,得()2222222144aca a c c+-=,222c a =,e =故选A. 法2:∵以OF 为直径的圆与双曲线C 的一条渐近线交于点P ,∴OP PF ⊥,∴PF b =,从而1122PQ PF b ==,设双曲线左焦点为1F ,连结1QF ,则由定义知11222QF a QF a b =+=+,在Rt FPO △中,cos PF bPFO OF c∠==, 在1FQF △中,由余弦定理得:2221112cos QF QF QF QF QF QFO =+-⋅⋅∠,即2221112(2)22222b a b b c b c c ⎛⎫⎛⎫+=+-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,化简得a b =,所以e =8.【解析】因为()()()2ln 2()ln 2()e x e e xf x f e x x e e x e ex e e x ---+-=-++--+=-- 由上面结论可得22021202220222023202320232023e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以2a b +=,其中0b >,则2a b =-. 当0a >时,1||121212()1525111222222224a b a b b a a b a b a b a b a b -+⎛⎫⎛⎫+=+=+-=+⋅-=++-≥ ⎪ ⎪⎝⎭⎝⎭ 当且仅当,23a =,43b =时等号成立; 当0a <时,1||112152()11222222ab a a b a b a b a b --⎛⎫⎛⎫+==+⋅++=-+++ ⎪ ⎪--⎝⎭⎝⎭1531224⎛≥-++= ⎝,当且仅当2a =-,4b =时等号成立;因为3544<,所以12a a b+的最小值为34.故选:A.二、多项选择题(全部选对的得5分,选对但不全的得2分,有选错的得0分).误;对于B ,由频率分布直方图可知,女观众收看时间的352 6.54+⨯=,故B 正确; 对于C,男性观众收看节目的平均时长为40.160.150.480.210120.158.3⨯+⨯+⨯+⨯+⨯=小时,女性观众收看节目的平均时长为40.260.40.380.110 6.6⨯+⨯+⨯+⨯=小时,故C 正确; 对于D ,由频率直方图可知,男性观众收看到达9小时人数为20060%(0.20.15)42⨯⨯+=人,女性观众收看达到9小时人数为20040%0.18⨯⨯=人,故D 错误.故选:BC. 10.【解析】对于A ,设1CD 交1C D 于F ,可得1EF BD ∥,从而得到1BD ∥平面1C DE ;所以A 正确;对于B ,可以求得1BC ,AC 所成角为3π,所以B 不正确. 对于C ,转化为求平面11A BC 与平面1111A B C D C 不正确; 对于D ,设正方体棱长为1,1116D ACD B ACD V V --==,D 正确.所以选AD. 11.【解析】对于A ,焦点到准线距离2p =,A 不正确.对于B ,因为C :24x y =的准线为l :1y =-,焦点为()0,1F ,设()00,A x y ,则()0,1M x -,()00,21N x y +,所以()()200000,2,240FM FN x x y y x ⋅=-⋅=-+=,所以90MFN ∠=︒,(或由抛物线定义知AM AN AF ==,所以90MFN ∠=︒,)故选项B 正确;对于C ,因为A 处的切线斜率,02AP x k =,而20000012242NF x y x k x x ⋅===,所以AP NF k k =, 从而AP NF ∥,又A 是线段MN 中点,所以,P 是线段MQ 的中点,又90MFN ∠=︒, 所以,PQ PF =,所以C 正确. 对于D ,因为02NFx k =,所以直线FN 的方程为012x y x -=,令1y =-,得04,1Q x ⎛⎫-- ⎪⎝⎭,所以0000444MQ x x x x -=-=+≥=,当且仅当02x =时,最小值为4,故选项D 正确;综上可知选BCD.12.【解析】对于A ,因为,2222ln1.5ln 4ln 6ln ln1.5ln 41244e+⎛⎫⋅<=<= ⎪⎝⎭,所以,A 正确;对于B ,由切线不等式()ln 11x x x <-≠,得ln1.1 1.110.1<-=,B 不正确 对于C ,由19202019<得19ln 2020ln19<,1920ln19ln 20<,设()ln x f x x=,0x >且1x ≠,()()2ln 10ln x f x x -'==,得x e =,当01x <<和1x e <<时,()0f x '<,函数()f x 单调递减,当x e >时,()0f x '>,函数()f x 单调递增,所以1920ln19ln 20<,C 正确. 对于D ,因为24ln 2ln 4=,22242222ln ln ln 422e e e e e e ==⎛⎫ ⎪⎝⎭,且()()24f f =,且2242e e <<<, 所以()222e f f ⎛⎫> ⎪⎝⎭,即224ln 4ln 2e <-,D 正确.故选ACD.二、填空题(第13、14、15题每小题5分,第16题第一空2分,第二空3分).13.【解析】依题意,展开式的中间一项是第4项,334621(2)T C x x ⎛⎫=- ⎪⎝⎭,其系数为33362(1)160C ⋅⋅-=-.14.【解析】∵21cos 22sin tan sin 22sin cos αααααα-==,∴tan 2α=-, ∵()0,απ∈,sin 5α=,cos 5α=-,∴cos()cos 5παα-=-=. 15.【解析】因为点P 是直线l :2150x y +-=上的动点,要使OP 最小,则OP l ⊥,此时2l k =-,所以12POk =,由方程组215012x y y x +-=⎧⎪⎨=⎪⎩,解得,6x =,3y = 所以,P ,Q 两点之间的比雪夫距离为6.16.【解析】由已知可证明PA ,AB ,AC 两两垂直且长度均为成正方体,如图所示三棱锥的外接球就是正方体的外接球,设外接球的半径为R ,则11322R AG ===. 设三棱锥外接球球心为1O ,内切球球心为2O ,内切球与平面PBC 的切点为K ,易知:1O ,2O ,K 三点均在AG 上,且AK ⊥平面PBC ,设内切球的半径为r ,由等体积法:()1133ACP ABP ABC BCP ABCS S S Sr S AP +++=⋅,得1r =,将几何体沿截面PAEG切开,得到如下截面图:两圆分别为外接球与内切球的大圆,注意到12AK GK =,6AG =,∴4GK =,∴M ,N 两点间距离的最大值为241)2GK r +=+=.四、解答题(第17题10分,第18-22题每题12分). 17.(本小题满分10分)(1)证明:在ABD △中,由正弦定理得:sin sin BA BDBDA BAD∠∠=即,sin sin BA BDABD BAD∠∠=2分因为()sin sin sin BDA BDC BDC ∠π∠∠=-=,所以,sin sin BA BDCBD BAD∠∠=又由已知sin 2sin BDC BAD ∠∠=所以,2BABD= 2BA BD = 4分设BD x =,则2BA x =,在BCD △中,由余弦定理得:2222cos BD BC CD BC CD BCD ∠=+-⋅即222cos x BCD ∠=-在ABC △中,由余弦定理得:2222cos AB BC AC BC AC BCA ∠=+-⋅即2454cos x BCD ∠=- 7分 解得:3cos 4BCA ∠=,sin BCA ∠∴=所以11sin 1222ABCSBC AC BCA =⋅⋅∠=⨯⨯=. 10分 18.(本小题满分12分)解:(1)11311141111n n n nnn na b a a b a a +++--==-- 2分()()313414n n a a -==- 111114b a =-=数列{}n b 为首项为114b =,公比为34等比数列 5分 (2)由(1)可得12311111111n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13144314n⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭=-314n⎛⎫=- ⎪⎝⎭8分即1231111314nn n a a a a ⎛⎫++++-=- ⎪⎝⎭∴1231111314nn n a a a a ⎛⎫++++=+- ⎪⎝⎭10分 而314nn ⎛⎫+- ⎪⎝⎭随着n 的增大而增大要使1231111140n a a a a ++++>,即311404nn ⎛⎫+-> ⎪⎝⎭,则140n ≥ ∴n 的最小值为140. 12分 19.(本小题满分12分)解:记“这10所学校中随机选取2所学校参与“单板滑雪”的人数超过30人”为事件A ,“这10所学校中随机选取2所学校参与“自由式滑雪”的人数超过30人”为事件B则()26210C P A C =,()24210C P AB C =所以,()()()25P AB P B A P A ==∣. 4分 (2)X 的所有可能取值为0,1,2,3,参与“自由式滑雪”人数在40人以上的学校共4所,所以()034631020101206C C P X C ⋅====,()124631060111202C C P X C ⋅====, ()2146310363212010C C P X C ⋅====,()304631041312030C C P X C ⋅====, 所以X 的分布列如下表:所以()23210305E X =+⨯+⨯= 8分(3)记“小小明同学在一轮测试中要想获得“优秀””为事件C , 则()2332122033327P C C b ===+=, 由题意,小明同学在集训测试中获得“优秀”的次数服从二项分布20,27B n ⎛⎫ ⎪⎝⎭, 由题意列式20827n ≥,得545n ≥,因为*n N ∈,所以n 的最小值为11,故至少要进行11轮测试 12分 20.(本小题满分12分) (1)证明:依题意ABCD 矩形,4AB =,2BC =,E 是CD 中点分别在等腰直角三角形ADE 和BCE 求得AE BE ==,又4AB =,所以, 222AE BE AB +=AE BE ⊥ 2分因为,平面BEF ⊥平面ABCD 平面BEF 平面ABCD BE = 所以,AE ⊥平面BEF ,又BF ⊂平面BEF ,所以AE BF ⊥ 5分(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,建立如图所示空间直角坐标系.则()0,0,0C ,()4,0,0D ,()0,2,0B ,()2,0,0E , 设N 是BE 的中点,FE FB =有FN BE ⊥, 又平面BEF ⊥平面ABCD .平面BEF平面ABCD BE =FN ∴⊥平面ABCD ,()1,1,2F 8分假设存在满足题意的λ,则由(01)DP DB λλ=<<. 可得,(43,12PF DB DF λλλ=-+=--. 设平面DEF 的一个法向量为(),,x y z =n ,则00DE DF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即2030x xy -=⎧⎪⎨-+=⎪⎩,令y =0x =,1z =-,即()1=-n 10分∴PF 与平面DEF 所成的角的正弦值sin cos ,||||PF PF PF θ⋅===nn n=解得34λ=(1λ=舍去) .综上,存在34λ=,使得PF 与平面ADE12分21.(本小题满分12分) 解(1)设()00,P x y ∴002AP y k x =+,直线AD 的方程为()0022y y x x =++, 令6x =,得0086,2y D x ⎛⎫⎪+⎝⎭,∴0000822622BDy x y k x +==-+, 2分 又∵002BPy k x =-,且2200142x y += ∴20002000221224BD BPy y y k k x x x ⋅=⋅==-+--, ∴PB BD ⊥, 4分(2)当直线PQ 不垂直x 轴时,设直线PQ 方程为y kx m =+,()11,P x y ,()22,Q x y 由方程组2224x y y kx m ⎧+=⎨=+⎩得()222124240k xkmx m +++-=()()222Δ(4)412240mk k m =-+⋅->,2242k m +>21212224241212km m x x x x k k --+=⋅=++ 6分由(1)可知,1BD BP k k ⋅=-1212122y yx x ⋅=--- ()121212240x x x x y y ⋅-++⋅+= 又()()()2212121212y y kx m kx m k x x km x x m ⋅=++=⋅+++,代入上式得:()()()2212121240k x x km x x m +⋅+-+++= 8分即:()()()2222222124401212m k km km m k k -+-⋅-++=++得到223840mmk k ++=23m k =-或2m k =-(舍去),10分 所以直线PQ 方程为23y k x ⎛⎫=- ⎪⎝⎭恒过2,03S ⎛⎫⎪⎝⎭,当PQ 垂直x 轴时,同样成立。
2023届高三综合测试数学答案(正式稿)
2023届高三综合测试数学参考答案一、 选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
二、 选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符0分。
三、 填空题:本题共4小题,每小题5分,共20分。
13.10x y −−= (写成1y x =−亦可) 14.421516.3(1)2n n −−四、 解答题:本题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
17.解:(1)()1cos o 62c s 2sin 2πf x x x x x x ωωωωω⎫⎛⎫=−=−=−⎪ ⎪⎪⎝⎭⎝⎭, …1分 因为函数()f x 图象的两条相邻对称轴之间的距离为π,所以12T π=,则2πT =,所以22ππT ω==,解得1ω=, 所以()n 62si πf x x ⎛⎫=− ⎪⎝⎭.……3分 由22262k x k πππππ−+≤−≤+,k Z ∈,解得22233k x k ππππ−+≤≤+,k Z ∈ 因此()f x 的单调增区间是22,233k k ππππ⎡⎤−++⎢⎥⎣⎦,k Z ∈. ……5分 (2)由()2sin 6πf x x ω⎛⎫=− ⎪⎝⎭,函数()f x 的图象关于,02π⎛⎫⎪⎝⎭对称,所以26πππk ω−=,Z k ∈,所以123k ω=+,Z k ∈, ……7分 由,30πx ⎡⎤∈⎢⎥⎣⎦,0ω>,则,6636ππππx ωω⎡⎤−∈−−⎢⎥⎣⎦, 又函数()f x 在0,3π⎡⎤⎢⎥⎣⎦上单调,所以2036πππωω⎧−≤⎪⎨⎪>⎩,解得02ω<≤, ……9分 由10223k <+≤解得0k =,此时13ω=.……10分18.解:(1)当1n =时,1124S <<.……1分 又因为n a Z ∈,所以11a =.依题意,2(1)(1)n n n n d n <+−<+,……3分 得2(1)20(1)10d n d d n dn −+−<⎧⎨−−−<⎩恒成立 ……4分 解得1d =, ……5分 所以,n a n =.……6分(2)2n n nb =12323411232222112322222n n n n n T n T +=++++=++++①②①-②,得1231111111212222222n n n n n n T +++=++++−=−……9分 即2222n n n T +=−<……10分1,22n n n =<+时,[]0n T =;12(1)2,21122n n n n n n C C n n +≥≥++=++≥+时,[]1n T =,所以2019M =.……12分19.解:(1)70%地满足顾客需求相当于估计某类水果日销售量的70%分位数. ……1分 由表可知,把50个日需求量的数据从小到大排列,由70%5035⨯=,日需求量在24箱以下的天数为10101535++=,可知,日需求量的样本数据的第35项数据为24,第36项数据为25, 因此,可以估计日需求量的第70%分位数为242524.52+=, ……3分 所以能70%地满足顾客的需求,估计每天应该进货量为24.5箱.……4分 (2)由(1)知2424.5<25t ≤=,即024n = 设每天的进货量为24箱的利润为X ,由题设,每天的进货量为24箱,当天卖完的概率为35,当天卖不完剩余1箱的概率15,当天卖不完剩余2箱的概率15,若当天卖完24(10050)1200X =⨯−=元,若当天卖不完剩余1箱23(10050)1301120X =⨯−−⨯=元,若当天卖不完剩余2箱22(10050)2301040X =⨯−−⨯=元, ……6分所以31()1200(11201040)115255E X =⨯+⨯+=元.……7分 设每天的进货量为25箱的利润为Y ,由题设,每天的进货量为25箱,当天卖完的概率为310,当天卖不完剩余1箱的概率310,当天卖不完剩余2箱的概率15,当天卖不完剩余3箱的概率15,若当天卖完25(10050)1250Y =⨯−=元,当天卖不完剩余1箱24(10050)1301170Y =⨯−−⨯=元, 当天卖不完剩余2箱23(10050)2301090Y =⨯−−⨯=元,当天卖不完剩余3箱22(10050)3301010Y =⨯−−⨯=元, ……9分所以31()(12501170)(10901010)1146105E Y =⨯++⨯+=元, ……10分由于()()E Y E X <,显然每天的进货量25箱的期望利润小于每天的进货量为24箱的期望利润, 所以店老板应当购进24箱. ……12分20.(1)证明:连接,BD 在正方形ABCD 中BD AC ⊥, 又PA ⊥平面ABCD ,故PA BD ⊥ 而,PA AC 是平面PAC 上的两条相交直线,所以BD ⊥平面PAC ……2分 在PBD △中,EF 为中位线,故//EF BD ……3分 所以EF ⊥平面PAC . 又EF ⊂平面EFG ,所以平面EFG ⊥平面PAC ……5分 (2)以,,AB AD AP 所在直线为,,x y z 轴建立如图空间直角坐标系A xyz −, 则()()()()()()()0,0,0,2,0,0,2,2,0,0,0,2,0,2,0,1,0,1,0,1,1A B C P D E F ,()()1,0,1,0,1,1AE AF ==, ……7分设平面AEF 的一个法向量为()111,,m x y z =, 则00AE m AF m ⎧⋅=⎪⎨⋅=⎪⎩,即111100x z y z +=⎧⎨+=⎩,取()1,1,1m =−, ……8分设1(01)2PG PC λλλ=<<≠,, 则()()()0,0,22,2,22,2,22AG AP PG AP PC λλλλλ=+=+=+−=−则3sin cos ,1m AG θ===, 整理得212810λλ−+=,解得16λ=或12λ=(舍去), ……10分 故16PG PC =,故G 到平面PAB 的距离1163h BC ==,故126EBG S BE h =⋅=△因为(1,0,1)(0,1,00AE BC ⋅=⋅=),所以AE BC ⊥ 又(1,0,1)(2,0,20AE BP ⋅=⋅−=),所以AE BP ⊥, 又BPBC P =,所以EA ⊥平面PBC ,故A 到平面BEG的距离为EA =三棱锥E ABG −体积为1113369E ABG A EBG EBG V V S EA −−==⋅=⨯=△. ……12分 21.解:(1)因为12PF F ∆的周长等于22a c +为定值,所以内切圆半径最大时,即12PF F ∆的面积最大,此时点P 为椭圆的上(下)顶点……1分可得1(22)2a c bc ⋅+=; ……2分 又因为23c e a ==,222c a b =+,解得3,2,a c b ===……3分 所以椭圆E 的方程为22195x y +=;……4分(2)(法一)设点由条件可知直线l 的斜率0k ≠, 设点1122(,),(,)P x y Q x y ,由22(1)195y k x x y =−⎧⎪⎨+=⎪⎩得:2222(59)189450k x k x k +−+−=所以2212122218945,5959k k x x x x k k−+==++(*) ……5分由(*)可得21212122925(2)(2)2()459k x x x x x x k −−−=−++=+① ……6分12211221270(2)(2)(1)(2)+(1)(2)59ky x y x k x x k x x k−−+−=−−−−=+② ……7分 22121212240[()1]59k y y k x x x x k−=−++=+ ③ ……8分由对称性,不妨令点M 位于第四象限,设直线2PF 的倾斜角为α,直线2QF 的倾斜角为β,直线2F M 的倾斜角为γ, 则1212tan ,tan ,tan 22y ym x x αβγ===−−又2F M 在2PF Q ∠的角平分线所在的直线上,则tan()tan()tan()γαπγββγ−=−+=−可得出12121212221122y y m mx x y y m mx x −−−−=++−− ……9分化简得2121212121212()2(1)()=0222222y y y y y ym m x x x x x x ++−−+−−−−−−即[]2122112121221[(2)(2)]2(2)(2)[(2)(2)]0y x y x m x x y y m y x y x −+−+−−−−−+−= 将①②③式代入上式得:2235(4925)350km k m k −+−+=……10分 则(75)(57)0km m k +−+=,解得57,()75km m k =−=舍去 ……11分故直线2F M 方程为5(2)7y x k =−−,令9x =得点5(9,)M k−则5'9k k =−,故5'9kk =−为定值.……12分【法二】设线由条件可知直线l 的斜率0k ≠,设直线2PF 的斜率为1k ,直线2QF 的斜率为2k ,直线2F M 的斜率为m , 直线:(2)1l x ny −−+=,其中1k n=由22195x y +=得225[(2)2]945x y −++= 即()[][]22295220(2)(2)25(2)0y x x x ny x ny +−+−−−+−−−+=整理得222(925)70(2)40(2)0n y n x y x −+−−−=……6分即22(925)7040022y y n n x x ⎛⎫−+−= ⎪−−⎝⎭令2yk x =−,则22(925)70400n k nk −+−=,其中12k k ,为方程的根所以12270259nk k n +=−,12240259k k n =− ……8分 由对称性,不妨令点M 位于第四象限,设直线2PF 的倾斜角为α,直线2QF 的倾斜角为β,直线2F M 的倾斜角为γ,则1212tan ,tan ,tan 22y y m x x αβγ===−− 又2F M 在2PF Q ∠的角平分线所在的直线上,则tan()tan()tan()γαπγββγ−=−+=− 由121211m k k m mk mk −−=++得2121212()(22)()0k k m k k m k k ++−−+= ……9分 代入整理得2235(2549)350nm n m n +−−=, ……10分则(57)(75)0nm m n −+=故75m n =(舍去)或者57n m =− ……11分所以直线2F M 的方程为5(2)7ny x =−−,令9x =得点(9,5)M n −故5'9n k =−,则5'9k k =−为定值.……12分 22.解:(1)()f x 的定义域为(0,)+∞.……1分21(1)1(1)(1)'()(1)ax a x ax x f x ax a x x x−++−−=+−+==. ……2分 ① 0a =时,1'()xf x x−=,当01x <<时,'()0,()f x f x >单调递增;当1x >时,'()0,()f x f x <单调递减,故()(1)10f x f ≤=−<,无零点. ……3分 ② 0a <时,10ax −<,当01x <<时,'()0,()f x f x >单调递增;当1x >时,'()0,()f x f x <单调递减,故max ()(1)12af x f ==−−,且0,x x +→→+∞时,均有()f x →−∞.若102a−−>即2a <−时,()f x 有两个零点;若102a−−=即2a =−时,()f x 有一个零点;若102a−−<即20a −<<时,()f x 无零点. ……4分③ 0a >时,若01a <<,则01x <<或1x a>时,'()0,()f x f x >均单调递增;11x a <<时,'()0,()f x f x <单调递减.而(1)10,2af x =−−<→+∞时,()f x →+∞,故()f x 有一个零点. 若1a =,则'()0f x ≥,()f x 在(0,)+∞上单调递增,且0x +→时,()f x →−∞,x →+∞时,()f x →+∞,故()f x 有一个零点.若1a >,同理可得,()f x 在1(0,),(1,)a +∞上单调递增,在1(,1)a上单调递减,111()ln 102f a a a =−−<,此时()f x 有一个零点. ……6分 综上得:当20a −<≤时,()f x 无零点;当2a =−或0a >时,()f x 有一个零点;当2a <−时,()f x 有两个零点.……7分 (2)当1a >时,由(1),任取,i j x x ()i j x x <,设1jix t x =>, 先证ln ln 2j ij ij ix x x x x x −>−+. 上述不等式即为2(1)ln 01t t t −−>+,设2(1)()ln 1t g t t t −=−+, 则22214(1)'()0(1)(1)t g t t t t t −=−=>++,所以()g t 在(1,)+∞上单调递增, ()(1)0g t g >=,即ln ln 2j i j i j ix x x x x x −>−+成立.……9分由()()i j f x f x =得:22311ln (1)ln (1)22i i i j j x ax a x x ax a x +−+=+−+, 所以ln ln ()(1)02i ji j i jx x ax x a x x −++−+=−, 所以2()(1)02i j i j ax x a x x ++−+<+, 即2()(1)()202i j i j ax x a x x +−+++<, 即[()1][()2]02i j i j ax x x x +−+−<,所以22i j x x a <+<,……11分即1213232222,2,2x x x x x x a a a<+<<+<<+<, 三式相加即得12333x x x a<++<.……12分。
2024—2025学年度上学期普通高中高三第一次联合教学质量检测高三数学解析版
2024—2025学年度上学期普通高中高三第一次联合教学质量检测高三数学试卷解析版满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.若集合{}260M xx x =+−=∣,{}20,N x ax a =+=∈R ∣,且N M ⊆,则a 的取值不可以是( ).A .2B .23C .0D .1−【答案】A【详解】依题意,{3,2}M −,由N M ⊆,得N =∅或{3}N −或{2}N =, 当N =∅时,0a =;当{3}N −时,23a =;当{2}N =时,1a =−, 因此a 的取值不可以是2. 故选:A.2.已知向量()cos ,sin a θθ= ,()2,1b =−,若a b ⊥,则sin cos sin 3cos θθθθ++的值为( )A .13B .35C .45D .23【答案】B【详解】由题设2cos sin 0tan 2θθθ−=⇒=, 而sin cos tan 1213sin 3cos tan 3235θθθθθθ+++===+++.故选:B3.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,若342n n S n T n +=+,则62102a b b +( ) A .11113B .3713C .11126D .3726【答案】B【详解】因为等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T,满足342n n S n T n +=+, 所以111131143711213S T ×+==+,又11161116111111()211()2a a a Sb b T b +==+,故666210662322371a a a b b b b ===+, 故选:B4.甲、乙、丙、丁、戊共5名同学进行数学建模比赛,决出了第1名到第5名的名次(无并列情况).甲、乙、丙去询问成绩.老师对甲说:“你不是最差的.”对乙说:“很遗憾,你和甲都没有得到冠军.”对丙说:“你不是第2名.”从这三个回答分析,5名同学可能的名次排列情况种数为( ) A .44 B .46 C .48 D .54【答案】B【详解】解法一:多重限制的排列问题:甲、乙都不是第一名且甲不是最后一名,且丙不是第二名,即甲的限制最多,故以甲为优先元素分类计数,甲的排位有可能是第二、三、四3种情况:①甲排第二位,乙排第三、四、五位,包含丙的余下3人有33A 种排法,则有3313A 18××=; ②甲排第三、四位,乙排第二位,包含丙的余下3人有33A 种排法,则有3321A 12××=; ③甲排第三、四位,乙不排第一、二位,即有2种排法,丙不排第二位,有2种排法,余下2人有22A 种排法,则有22222A 16×××=; 综上,该5名同学可能的名次排情况种数为18121646++=种. 解法二:间接法:甲不排首尾,有三种情况,再排乙,也有3种情况,包含丙的余下3人有33A 种排法,共有3333A 3332154××=××××=种不同的情况;但如果丙是第二名,则甲有可能是第三、四名2种情况;再排乙,也有2种情况;余下2人有22A 种排法,故共有2222A 22218××=×××=种不同的情况;从而该5名同学可能的名次排情况种数为54846−=种. 故选:B.5.已知直线1:0l x y C ++=与直线2:0l Ax By C ++=均过点()1,1,则原点到直线2l 距离的最大值为( ) AB .1 CD .12【答案】A【详解】因为两直线交于()1,1,则110C ++=,即2C =−, 且0A B C ++=,则2A B +=;由原点到直线2l的距离d=,易知2222(1)11A A A −+=−+≥,则d ≤ 当且仅当1A =时,d 1B =. 即两直线重合时,原点到直线2l 的距离最大. 故选:A.6.已知双曲线22:13x C y −=的右焦点为F ,过点F 的直线交C 于,A B 两点,若3FA FB ⋅= ,则直线AB 的斜率为( )ABC .D .【答案】D【详解】易知()2,0F ,当直线AB的斜率为零时,得((221FA FB ⋅=×= ,不合题意;当直线AB 的斜率不为零时,设直线AB 的方程为2x my =+, 联立222,1,3x my x y =+ −=得()223410m y my −++=, 设()()1122,,,A x y B x y ,由3FA FB ⋅=得()()()21212122213x x y y m y y −−+=+=, 而12213y y m =−,即22133m m +=−,解得m=k = 故选:D7.已知函数()331f x x x =++,若关于x 的方程()()sin cos 2f x f m x ++=有实数解,则m 的取值范围为( )A . −B .[]1,1−C .[]0,1D .【答案】D【详解】令()()313g x f x x x −+,则()2330g x x ′=+>恒成立,则()g x 在R 上单调递增,且()g x 是奇函数.由()()sin cos 2f x f m x ++=,得()()sin 1cos 1f x f m x −=−+− ,即()()sin cos g x g m x =−−,从而sin cos x m x =−−,即πsin cos 4m x x x=−−+∈ 故选:D【点睛】方法点睛:设()()313g x f x x x −+,可得函数()g x 为奇函数,利用导函数分析函数()g x 的单调性,把()()sin cos 2f x f m x ++=转化成sin cos m x x =−−,再求m 的取值范围. 8.如图,在三棱锥A BCD −中,45ABC ∠=°,点P 在平面BCD 内,过P 作PQ AB ⊥于Q ,当PQ 与面BCD PQ 与平面ABC 所成角的余弦值是( )A B C D 【答案】A【详解】过点Q 作AB 的垂面QEF ,交平面ABC 于直线EF ,即,,AB QE AB QF AB EF ⊥⊥⊥, 再过AB 作平面BCD 的垂面ABM ,即平面ABM ⊥平面BCD , 过O 作QG BM ⊥,垂足为G ,如图所示,设BM EF P = ,则此点即为PQ 与平面BCD 所成角最大时,对应的P 点, 理由如下:因为PQ AB ⊥恒成立,所以P ∈平面QEF ,又因为P ∈平面BCD ,平面QEF 平面BCD EF =,所以P EF ∈,过点Q 作QG BM ⊥,因为平面ABM ⊥平面BCD ,平面ABM ∩平面BCD BM =, 且QG ⊂平面ABM ,所以QG ⊥平面BCD ,所以PQ 与平面BCD 所成角即为QPB ∠,所以sin QGQPB PQ ∠=,因为QG 为定值,所以当PQ 最小时,sin QPB ∠最大,即QPB ∠最大, 又因为EF ⊂平面BCD ,所以QG EF ⊥,因为,AB EF AB QG Q ⊥=,,AB QG ⊂平面ABM ,所以⊥EF 平面ABM , 则当P 为BM 与EF 交点时,EF PQ ⊥,此时PQ 取得最小值, 所以,当BM EF P = 时,PQ 与平面BCD 所成角最大,即为QPB ∠,所以sin QPB ∠P 作PH QE ⊥,垂足为H ,连接BH ,因为AB ⊥平面QEF ,AB ⊂平面ABC ,所以平面ABC ⊥平面QEF , 又因为QEF 平面ABC QE =,PH ⊂平面QEF ,所以PH ⊥平面ABC , 所以EQP ∠即为PQ 与平面ABC 所成角,在直角QPE △中,cos PQEQP QE∠=,因为45ABC ∠= ,且AB QE ⊥,所以BQE △为等腰直角三角形,所以QB QE =, 又因为tan PQQBP OB∠=,所以tan cos QBP EQP ∠=∠,因为sin QPB ∠tan QPB ∠因为π2QBP QPB ∠+∠=,所以1tan tan QBP QPB ∠==∠. 故选:A.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.设1z ,2z 为复数,且120z z ≠,则下列结论正确的是( )A .1212z z z z =B .1212z z z z +=+C .若12=z z ,则2212z z = D .1212z z z z ⋅=⋅【答案】ABD【详解】设1i z a b =+,2i z c d =+(,,,)a b c d ∈R ,对于选项A ,因为12(i)(i)()()i z z a b c d ac bd ad bc =++=−++,所以12z z,所以1212z z z z =,故A 正确;对于选项B ,因为12()()i z z a c b d +=+++,1i z a b =−,2i z c d =−, 则12()()z z a c b d i +=+−+,12()()i z z a c b d +=+−+, 所以1212z z z z +=+,故B 正确;对于选项C ,若12=z z ,例如11i z =+,21i z =−但221(1i)2i z =+=,222(1i)2i z =−=−,即2212z z ≠,故C 错误;对于选项D ,因为21(i)(i)()()i z a b c d ac bd c z ad b ⋅=++=−++,所以21()()i z ac bd a b z d c ⋅−−+2(i)(i)()()i z a b c d ac bd ad bc =−−=−−+, 所以1212z z z z ⋅=⋅,故D 正确. 故选:ABD.10.已知2n >,且*n ∈N ,下列关于二项分布与超几何分布的说法中,错误的有( )A .若1(,)3X B n ,则()22113E X n ++ B .若1(,)3X B n ,则()4219D X n +=C .若1(,)3X B n ,则()()11P X P X n ===−D .当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布 【答案】BC【详解】对于A ,由1(,)3X B n ,得()13E X n =,则()22113E X n ++,A 正确; 对于B ,由1(,)3X B n ,得()122339D X n n =×=,则()()82149D X D X n +==,B 错误;对于C ,由1(,)3X B n ,得11111221(1)C (),(1)C ()3333n n n n n P X P X n −−−==××=−=××,故(1)(1)P X P X n =≠=−,C 错误; 对于D ,当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布,D 正确. 故选:BC11.“曼哈顿距离”是十九世纪的赫尔曼·闵可夫斯省所创词汇,用以标明两个点在标准坐标系上的绝对轴距总和,其定义如下:在直角坐标平面上任意两点()()1122,,,A x y B x y 的曼哈顿距离()1212,d A B x x y y =−+−,则下列结论正确的是( )A .若点()()1,3,2,4P Q ,则(),2d P Q =B .若对于三点,,A BC ,则“()()(),,,d A B d A C d B C +=”当且仅当“点A 在线段BC 上” C .若点M 在圆224x y +=上,点P 在直线280x y −+=上,则(),d P M 的最小值是8−D .若点M 在圆224x y +=上,点P 在直线280x y −+=上,则(),d P M 的最小值是4 【答案】AD【详解】对于A 选项:由定义可知(),21432d P Q =−+−=,故A 选项正确; 对于B 选项:设点AA (xx 1,yy 1),BB (xx 2()33,C x y则()()121313,,d A B d A C x x y x y y +=−+−+−,()2323,d B C x x y y =−+−显然,当点A 在线段BC 上时,121323x x x x x x −+−=−,121323y y y y y y −+−=−,∴()()(),,,d A B d A C d B C +=成立,如图:过点B 作BE y ⊥轴,过点C 作EE x ⊥轴,且相交于点E ,过点A 作AD BE ⊥与D ,过点A 作AF CE ⊥与F ,由图可知121213132323x x y y x x y y BD AD AF CF BE CE x x y y −+−+−+−=+++=+=−+−显然此时点A不在线段BC 上,故B 选项不正确; 对于CD 选项:∵当0,0a b >>a b ≥+≥ ∴想要(),d P M 最小,点M 到直线距离最小时取得,∴过原点O 作OM ⊥直线280x y −+=交圆于M , 如图:设(),M a b ,则2OM bk a==−∴M设点PP (xx 0,yy 0),则(0,d P M x =又∵当0ab =,a b +≥①当00x +=时,由00442x y =+=()0,4d P M x =+①当00y =时,由00288x y =−=()0,8d P M x =+−又∵48<−∴(),d P M的最小值为:4.故C 选项错误,D 选项正确. 故选:AD三、填空题(本大题共3小题,每小题5分,共15分)12.已知12,34a b a b ≤−≤≤+≤则93a b +的取值范围为 .【答案】[]21,30【详解】假设()()93a b a b a b λµ+=−++,则93λµλµ+=−+=,解得36λµ= = , 因为12a b ≤−≤,所以()336a b ≤−≤; 又因为34a b ≤+≤,所以()18624a b ≤+≤;由上两同向不等式相加得:()()213630a b a b ≤−++≤, 整理得:219330a b ≤+≤ 故答案为:[]21,3013.已知函数()cos 2sin 2sin f x x x x ωωω=−(0ω>)在()0,2π上有最小值没有最大值,则ω的取值范围是 .【答案】11,63【详解】()()()cos 22sin 2sin cos 2cos3f x x x x x x x x ωωωωωωω=−−=+=, 当()0,2πx ∈时,()30,6πx ωω∈,若()f x 在()0,2π上有最小值没有最大值, 则π6π2πω<≤,所以1163ω<≤. 故答案为:11,6314.函数2e 12()e 21x x xh x −=++,不等式()22(2)2h ax h ax −+≤对R x ∀∈恒成立,则实数a 的取值范围是 【答案】[]2,0−【详解】因为2e 122()e ee 2121x x xx x x h x −−=+=−+++, 所以22222()()e e e e 221212121x x x x xxx x x h x h x −−−⋅+−=+−++−=+=++++, 令()()1f x h x =−,则()()0f x f x +−=,可得()f x 为奇函数, 又因为()()222ln 41ln 4()e e e e e 121e 21222x x x x xx x x x x xf x −−′ ′′=+−=+−=+− + +++, 1e 2e x x +≥,当且仅当1e ex x =,即0x =时等号成立;ln 4ln 4ln 2142222x x ≤=++,当且仅当122xx=,即0x =时等号成立;所以()0f x ′>,可得()f x 在R 上为增函数,因为()2222(2)2(2)(2)0(2)(2)h ax h ax f ax f ax f ax f ax −+≤⇔−+≤⇔−≤−,所以2220ax ax +−≤在R 上恒成立, 当0a =时,显然成立;当0a ≠,需满足2Δ480a a a < +≤,解得20a −≤<, 综上,[]2,0a ∈−, 故答案为:[]2,0−.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题13分)在锐角ABC 中,a ,b ,c 分别为内角A 、B ,C 的对边,且()2sin 2sin a A b c B =−+()2sin c b C −. (1)求A 的大小;(2)求cos 2cos B C +的取值范围. 【答案】(1)π3A =(2) 【详解】(1)由题及正弦定理得:22(2)(2)a b c b c b c =−+−,即222bc b c a =+−,则2221cos 22b c a Abc +−==,∵π0,2A ∈,∴π3A =; (2)由ABC 为锐角三角形知,π022ππ032C C<<<−<,故ππ62C <<,则π3πcos 2cos cos 2cos cos 323B C C C C C C+=−++=+, 有ππ5π236C <+<π3C<+<故cos cos B C +的取值范围为. 16.(本小题15分)已知数列{}n a ,{}n b ,(1)2n n n a =−+,1(0)n n n b a a λλ+=−>,且{}n b 为等比数列. (1)求λ的值; (2)记数列{}2n b n ⋅的前n 项和为nT .若()*2115N i i i T T T i ++⋅=∈,求i 的值.【答案】(1)2 (2)2【详解】(1)因为(1)2n n n a =−+,则11a =,25a =,37a =,417a =. 又1n n n b a a λ+=−,则1215b a a λλ=−=−,23275b a a λλ=−=−,343177b a a λλ=−=−. 因为{bb nn }为等比数列,则2213b b b =⋅,所以2(75)(5)(177)λλλ−=−−, 整理得220λλ−−=,解得1λ=−或2.因为0λ>,故2λ=.当2λ=时,1112(1)22(1)2n n n nn n n b a a +++ =−=−+−−+11(1)(1)22(1)23(1)n n n n n ++=−×−+−×−−=−×−.则113(1)13(1)n n nn b b ++−×−==−−×−,故{bb nn }为等比数列,所以2λ=符合题意. (2)223(1)nn b n n ⋅=−×−⋅,当n 为偶数时,222222223123456(1)n T n n =−×−+−+−+−−−+33(12)(1)2n n n =−×+++=−+ ;当n 为奇数时,221133(1)(1)(2)3(1)(1)22n n n T T b n n n n n n ++=−+=−++++=+. 综上,3(1),21,N 23(1),2,N 2n n n n k k T n n n k k ∗∗ +=−∈ =−+=∈ , 因为20i i T T +⋅>,又2115i i i T T T ++⋅=, 故10i T +>,所以i 为偶数.所以333(1)(2)(3)15(1)(2)222i i i i i i−+⋅−++=×++ , 整理得23100i i +−=,解得2i =或5i =−(舍),所以2i =. 17.(本小题15分)如图,棱长为2的正方体1111ABCD A B C D −中,E F 、分别是棱,AB AD 的中点,G 为棱1DD 上的动点.(1)是否存在一点G ,使得1BC ∥面EFG ?若存在,指出点G 位置,并证明你的结论,若不存在,说明理由;(2)若直线EF 与平面CFG ,求三棱锥1G EBC −的体积; (3)求三棱锥1B ACG −的外接球半径的最小值. 【答案】(1)存在点G 为1DD 的中点,证明见解析 (2)13; (3)4−【详解】(1)存在一点G ,当点G 为1DD 的中点,使得1BC ∥面EFG , 连接1AD ,如图所示:点,F G 分别是1,AD DD 的中点,FG ∴∥1AD ,又AB ∥11D C ,且11AB D C =,∴四边形11ABC D 是平行四边形,1∴AD ∥1,BC FG ∴∥1BC ,又1BC ⊄ 平面EFG ,且FG ⊂平面1,EFG BC ∴∥平面EFG .(2)以D 点为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,如图所示,连接11,,AC AB B C ,则()()()()()112,0,0,2,2,2,0,2,0,2,2,0,0,0,2,(2,1,0),(1,0,0)A B C B D E F , 设()0,0,G t (02)t ≤≤,(0,2,),(1,2,0)CG t CF =−=− ,(1,1,0)EF =−−,设平面CFG 的一个法向量是(,,)n x y z =,则2020n CG y tz n CF x y ⋅=−+=⋅=−= ,取1y =得2(2,1,)n t = ,因为直线EF 与平面CFG,所以cos ,n EF n EFn EF⋅==1t =(负值舍去), G 为1DD 中点,取1CC 中点H ,则////GH CD AB ,因此GH 在平面GEB 内,且GEB HEB S S = ,所以1111111112113323G EBC C GEB C HEB E BHC BHC V V V V S EB −−−−====⋅=××××= ; (3)11(0,2,2),(2,2,0),(2,2,2),AB AC BD ==−=−−因为111440,440,AB BD AC BD ⋅=−+=⋅=−=所以111,AB BD AC BD ⊥⊥即111,AB BD AC BD ⊥⊥因为1AB ⊂平面1,AB C AC ⊂平面1AB C ,1AB AC A = ,所以1BD ⊥平面1AB C ,又因为1ABCB B B ==,所以1BD 与平面1ACB 的交点是1ACB 的外心,所以三棱锥1B ACG −的外接球的球心在1BD 上, 设外接球球心为1O ,设()[]112,2,2,0,1BO BD λλλλλ==−−∈,则1O 的坐标为()22,22,2λλλ−−,设()[]()0,0,0,2G m m ∈, 则11O G O A =所以2484m mλ+=+,设[]848,16m t +=∈,则84t m −=, 则22841664648411616t t t t t t tλ−+ −++ +−,而811116t t +−≥=,当且仅当816t t =,即t =[]8,16t ∈,所以11,2λ ∈ ,三棱锥1B ACG −的外接球的半径1r O A ====,因为11,2λ ∈−,所以218124833λ −+∈−,所以r ∈− , 三棱锥1B ACG −的外接球半径的最小值为4. 18.(本小题17分)已知椭圆C :()222210x y a b a b+=>>经过点(M −,其右焦点为FF (cc ,0),下顶点为B ,直线BF 与椭圆C交于另一点D ,且3BF FD =.(1)求椭圆C 的方程;(2)O 为坐标原点,过点M 作x 轴的垂线1l ,垂足为A ,过点A 的直线与C 交于P ,Q 两点,直线OP 与1l 交于点H .直线OQ 与1l 交于点G ,设APH 的面积为1S ,AQG 的面积为2S ,试探究1212S S S S +是否存在最小值.若存在,求出此时直线PQ 的方程;若不存在,请说明理由.【答案】(1)22184x y +=(2))2y x + 【详解】(1)设()00,D x y ,由(),0F c ,()0,B b −,得(),BF c b = ,()00,FDx c y =−,由3BF FD = ,得()()00,3,c b x c y =−,043x c =,013y b =, 所以2222161991c b a b +=,得2212c a =,所以222212b ac a =−=,将(M −代入椭圆C 的方程得22421a b+=,即22441a a +=,则28a =,所以22142b a ==,故椭圆的方程为22184x y +=.(2)由题意可知()2,0A −,直线PQ 的斜率存在且不为0,设直线PQ 的方程为()2y k x =+,()11,P x y ,()22,Q x y , 则()221842x y y k x += =+,得()2222128880k x k x k +++−=, 因为点A 在椭圆内,则直线PQ 与椭圆必有两交点,则2122812k x x k +=−+,21228812k x x k −+=+, ()121224412k y y k x x k +=++=+,()()()2221212121224222412k y y k x x k x x x x k =++=+++=− +, 又OP 的方程为11y y x x =,与直线2x =−联立可得1122,y H x−−, 又OQ OP 的方程为22y y x x =,与直线2x =−联立可得2222,y G x−−, 所以111111121222y y S x x x x =×−×+=×+,22222222122y y S x x x x =×−×+=×则()()121212221212112212221122y k y k S S x x S S S S y x y x y y −−+=+=+=+++, 当21k ≥时,()()21212220y k y k k x x −−=≥, 所以()222121212121212122222222212121212121212122222222y y y k y k S S y k y k y y y y y y k k S S y y y y y y y y y y y y y y +−− +−−+++=+=−=−=−−, 又12121y y y y k +=−,22121124k y y k +=−, 所以()222212122221212122111242222y y y y k k k k y y y y y y k k k k ++++ −−=−−−+=−, 所以121222S S k S S k+=+≥22k =时取等号,当201k <<时,()()21212220y k y k k x x −−=<, 所以221212121212222222121212121222222y k y k S S y k y k y y y y k S S y y y y y y y y −− +−−−−=+=−=−, 又知()1212k y y y y −+=, 则1212121236S S y yS S y y +−====>, 综上可知,当22k =时,1212SS S S +存在最小值此时直线PQ 的方程为)2y x +.19.(本小题17分)设()h x ′为()h x 的导函数,若()h x ′在区间D 上单调递减,则称()h x 为D 上的“凸函数”.已知函数()2sin f x x ax ax =−++.(1)若()f x 为π0,2上的“凸函数”,求a 的取值范围;(2)证明:当1a =−时,()()()213ln 22g x f x x x x =++++++有且仅有两个零点. 【答案】(1)1,2−∞−(2)证明见解析【详解】(1)由()2sin f x x ax ax =−++,则()cos 2f x x ax a ′=−++. 由题意可知,()f x 为π0,2上的“凸函数”,则ff ′(xx )在区间π0,2上单调递减,设()()x f x ϕ′=,则()sin 2x x a ϕ′=+,所以sin 20x a +≤在π0,2恒成立, 则2sin a x ≤−在π0,2恒成立,又当π2x =时,函数sin y x =−取最小值,且最小值为1−, 所以有21a ≤−,解得12a ≤−,即a 的取值范围为1,2−∞−.(2)当1a =−时,由2(1)sin(1)(1)(1)f x x x x +=−+−+−+得 22()sin(1)(21)(1)3ln(2)2g x x x x x x x x =−+−++−++++++sin(1)ln(2)x x =−+++. 令()(1)sin ln(1),1H x g x x x x =−=−++>−,其中(0)0H =, 则1()cos 1H x x x ′=−++,其中(0)0H ′=. ①当10x −<<时,则011x <+<,11cos 1x x >≥+, 所以1()cos 01H x x x ′=−+>+,则()H x 在(1,0)−单调递增, 则()(0)0H x H <=恒成立,即()H x 在(1,0)−无零点; ②当π02x <<时,令1()()cos 1G x H x x x ′==−++,其中(0)0G =, 由21()sin (1)G x x x ′=−+在π0,2单调递增, 又ππ(0)10,sin 22G G=−=′′,故存在0π0,2x∈,使得0()0G x ′=,故当00x x <<时,()0G x ′<,()G x 在()00,x 单调递减; 当0π2x x <<时,()0G x ′>,()G x 在0π,2x单调递增; 由ππ11(0)0,cos 0ππ221122G G==−+=>++, 故存在1π0,2x∈ ,使1()0G x =,即1()0H x ′=,故当10x x <<时,()0H x ′<,()H x 在()10,x 单调递减; 当1π2x x <<时,()0H x ′>,()H x 在1π,2x单调递增; 又πππ(0)0,sin ln 11ln e 0222H H==−++<−+=,故当π0,2x ∈ 时,()0H x <,即()H x 在π0,2无零点;③当π22x ≤<时,由1cos 0,01x x −≥>+,则()0H x ′>, 故故()H x 在π,22单调递增,πππsin ln 10222H=−++<,且(2)sin 2ln 3110H =−+>−+=,故由零点存在性定理可知()H x 在π,22有且仅有一个零点;④当2x ≥时,()sin ln(1)1ln 30H x x x =−++≥−+>, 故()H x 在[)2,+∞无零点;综上所述,()H x 有且仅有两个零点,其中(0)0H =,而另一个零点在π,22内.由()(1)H x g x =−,即将()H x 图象向左移1个单位可得()g x 的图象. 故()g x 也有两个零点,一个零点为1−,另一个零点在π1,12 −内.故()()()213ln 22g x f x x x x =++++++有且仅有两个零点,命题得证.。
2024-2025学年四川省成都市高三上学期数学综合测试试题(含解析)
一、单选题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年四川省成都市高三上学期数学综合测试试题.1. 已知复数112i z =+,则z 的虚部是( )A. 2B. 2iC. 2i 5-D. 25-【答案】D 【解析】【分析】应用复数的除法计算化简,再结合复数的虚部的定义判断即可.【详解】因为()()2112i 12i 12i 12i 12i 12i 14i 55z --====-++--,所以z 的虚部为25-.故选:D.2. 一个盒子中装有5个大小相同的小球,其中3个红球,2个白球.若从中任取两个球,则恰有一个红球的概率为( )A.35B.23C.25D.13【答案】A 【解析】【分析】根据古典概型概率公式求解.【详解】根据题意,任取两球恰有一个红球的概率为112325C C 63C 105P ===.故选:A.3. 对任意的()20,,210x x mx ∞∈+-+>恒成立,则m 的取值范围为( )A. ()1,1-B. (),1-∞C. ()1,+∞D. ()(),11,-∞-⋃+∞【答案】B 【解析】【分析】分离参数,可得()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,结合基本不等式即可求得答案.【详解】对任意的()20,,210x x mx ∞∈+-+>恒成立,即对任意的()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,因为12x x +≥=,当且仅当1x x =,即1x =时取等号,故1m <,故m 的取值范围为(),1∞-.故选:B4. 已知tan 2α=,则1cos2sin2αα+=( )A. 3B.13C. 2D.12【答案】D 【解析】【分析】应用二倍角余弦公式及二倍角正弦公式计算再结合同角三角函数关系求解.【详解】21cos22cos 11sin22sin cos tan 2αααααα+===.故选:D.5. 设,a b ∈R ,则使a b >成立的一个充分不必要条件是( )A. 33a b > B. ()lg 0a b ->C. 22a b > D. a b>【答案】B 【解析】【分析】根据充分条件及必要条件定义结合不等式的性质判定各个选项即可.【详解】对于A ,33a b a b >⇔>,故33a b >是a b >的充要条件;对于B ,由()lg 0a b ->得1a b >+,能推出a b >,反之不成立,所以()lg 0a b ->是a b >的充分不必要条件;对于C ,由22a b >无法得到,a b 之间的大小关系,反之也是,所以22a b >是a b >的既不充分也不必要条件;对于D ,由a b >不能推出a b >,反之则成立,所以a b >是a b >的必要不充分条件.故选:B .6. 定义在(0,)+∞上函数()f x 的导函数为()f x ',若()()0xf x f x '-<,且(3)0f =,则不等式(2)()0x f x -<的解集为( )A. (0,2)(2,3)⋃B. (0,2)(3,)+∞C. (0,2)(2,)⋃+∞D. (0,3)(3,)+∞ 【答案】B 【解析】【分析】根据给定条件构造函数()()f x g x x=,利用导数确定单调性,结合(3)0f =求解不等式即得.【详解】依题意,令()()f x g x x =,求导得2()()()0'-'=<xf x f x g x x,则()g x 在(0,)+∞上单调递减,由(3)0f =,得(3)0g =,不等式(2)0(2)0(2)0()()()f x f x x g x x xx -<⇔-⋅<⇔-<,则20()0x g x -<⎧⎨>⎩或20()0x g x ->⎧⎨<⎩,即203x x <⎧⎨<<⎩或23x x >⎧⎨>⎩,解得02x <<或3x >,所以不等式(2)()0x f x -<解集为(0,2)(3,)+∞ .故选:B7. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,O 为坐标原点,若在C 的右支上存在关于x轴对称的两点,P Q ,使得1PF Q △为正三角形,且1OQ F P ⊥,则C 的离心率为( )A.B. 1C.D. 1+【答案】D 【解析】【分析】根据条件,利用几何关系得到12π2F PF ∠=,又21π6F F P ∠=,得到21,PF c PF ==,再结2c a -=,即可求解.【详解】设双曲线的焦距为2(0)c c >,右焦点为2F ,直线OQ 交1F P 于点M ,连接2PF ,因为1PF Q △为正三角形,1OQ F P ⊥,所以M 为1F P 的中点,所以2//OM F P ,的的故12π2F PF ∠=,易知21π6F F P ∠=,所以21,PF c PF ==,由双曲线的定义知122PF PF a -=,2c a -=,得1c e a ===+故选:D .8. 如图,在直三棱柱111ABC A B C -中,ABC V 是等边三角形,1AA =,2AB =,则点C 到直线1AB 的距离为( )A.B.C.D.【答案】C 【解析】【分析】取AC 的中点O ,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立空间坐标系,利用空间向量求解即可.【详解】解:取AC 的中点O ,则,BO AC BO ⊥=,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立如图所示的空间直角坐标系O xyz -,所以()()10,1,0,,0,1,0A B C -,所以()1,0,2,0AB CA ==-,所以CA 在1AB上的投影的长度为11||||CA AB AB ⋅==,故点C 到直线1AB的距离为d ===故选:C.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分.9. 对于函数()ln 1f x x =-,则下列判断正确的是( )A. 直线22exy =是()f x 过原点一条切线B. ()f x 关于y x =对称的函数是1e x y +=C. 过一点(),a b 可以有3条直线与()f x 相切D. ()2f x x ≤-【答案】ABD 【解析】【分析】由导数的几何意义可判定A ,由反函数的概念可判定B ,利用对数函数的图像可判定C ,利用常用的切线放缩可判定D.【详解】对于A ,设切点(),ln 1m m -,则()1ln 100m k f m m m --=='=-,∴1ln 1m m m-=⋅,∴ln 2m =,∴2e m =,切点()2e ,1所以过原点的切线方程为222e 1e ex xy y --=⇒=,∴A正确;的对于B ,由反函数的概念可得111ln ee y x y x x y +++=⇒=⇒=,故与()f x 关于y x =对称的函数为1e x y +=,∴B 正确;对于C ,当点(),a b 在()f x 上方,如下图所示,结合图象可知,最多有两条切线,如果在()f x 下方,没有切线,在曲线上,只有一条切线C 正错误;对于D ,由于x +∀∈R ,设()()1ln 1x g x x x g x x'-=--⇒=,令()01g x x >'⇒>,令()001g x x <⇒<<',∴()g x 在(1,+∞)上单调递增,在()01,上单调递减;∴()()()10ln 12g x g x x f x x ≥=⇒≤-⇒≤-,∴D 正确.故选:ABD10. 等差数列{}n a 中,10a >,则下列命题正确的是( )A. 若374a a +=,则918S =B. 若125a a +=,349a a +=,则7817a a +=C. 若150S >,250S <,则2219a a <D. 若910S S =,则110S >【答案】ABD 【解析】【分析】利用等差数列的性质,对于A ,()()193799922a a a a S ++==,计算即可;对于B ,由已知计算数列公差,再求值即可;对于C ,结合数列单调性比大小;对于D ,由10a >,100a =,得()111116111102a a S a +==>.【详解】等差数列{}n a 中,10a >,设公差为d ,若374a a +=,则()()19379991822a a a a S ++===,A 正确;若125a a +=,349a a +=,则()()3412954a a a a d +-+=-=,得1d =,27811251217a a a d a ++===++,B 正确;若()115158151502a a S a +==>,()1252513252502a a S a +==<,所以公差0d <,当90a >时,有190a a >>,则有2219a a >,当90a <时,有79820a a a +=>,得790a a >->,所以1790a a a >->>,则有2219a a >,C 错误;若910S S =,则100a =,因为10a >,所以()111116111102a a S a +==>,D 正确.故选:ABD .11. 设定义在R 上的函数()f x 与()g x 的导函数分别为()f x '和()g x '.若()()42f x g x --=,()()2g x f x ''=-,且()2f x +为奇函数,则下列说法中一定正确的是( )A. 函数()f x 的图象关于点()2,0对称B. ()()352g g +=-C.20241()2024k g k ==-∑D.20241()0k f k ==∑【答案】AD 【解析】【分析】根据给定条件,结合奇函数性质,借助赋值法探讨对称性、周期性,再逐项分析判断即得.【详解】对于A ,由(2)f x +为奇函数,得(2)(2)f x f x -+=-+,即(2)(2)0f x f x -++=,因此函数()f x 的图象关于点(2,0)对称,A 正确;由()(2)g x f x ''=-,得()(2)g x f x a =-+,则(4)(2)g x f x a -=-+,又()(4)2f x g x --=,于是()(2)2f x f x a =-++,令1x =,得2a =-,即()(2)f x f x =-,则(2)()f x f x +=-,(4)(2)()f x f x f x +=-+=,因此函数()f x 是周期函数,周期为4,对于B ,由()(2)2g x f x =--,得(3)(5)(1)2(3)24g g f f +=-+-=-,B 错误;对于C ,显然函数()g x 是周期为4的周期函数,(1)(3)(3)(5)4g g g g +=+=-,(2)(4)(0)2(2)24g g f f +=-+-=-,则2024411()506()506(8)4048k k g k g k ====⨯-=-∑∑,C 错误;对于D ,(1)(3)0f f +=,(2)(4)0f f +=,则2024411()506()0k k f k f k ====∑∑,D 正确.故选:AD【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,①存在常数a ,b 使得()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=,则函数()y f x =图象关于点(,)a b 对称.②存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.三、填空题:本题共3个小题,每小题5分,共15分.12. 在5ax ⎛ ⎝展开式中2x 的系数为270-,则a 的值为__________.【答案】3-【解析】【分析】根据二项式定理可得展开式的通项为()35255C 1r rrrxa--⋅-,令3522r -=,求得r 代入运算即可.【详解】因为展开式的通项为()()3552555C C ,0,1,2,3,,145rr r r rrrax x r a ---⎛⋅= ⎝=-,令3522r -=,解得2r =,因为2x 的系数为()5323211C 2700a a -=-=,解得3a =-.故答案为:3-.13. 函数2()ln 2f x x ax =+-在[1,2]内存在单调递增区间,则a 的取值范围是______.【答案】1(,)2-+∞【解析】【分析】根据给定条件,求出函数()f x 的导数()f x ',再利用()0f x '>在(1,2)内有解即可.【详解】函数2()ln 2f x x ax =+-,求导得1()2f x ax x'=+,由函数()f x 在[1,2]内存在单调递增区间,得不等式()0f x '>在(1,2)内有解,不等式21()02f x a x'>->⇔,而函数212y x =-在(1,2)上单调递增,当(1,2)x ∈时,21122x ->-,因此12a >-,所以a 的取值范围是1(,)2-+∞.故答案为:1(,)2-+∞14. 双曲线的离心率可以与其渐近线有关,比如函数1y x=的图象是双曲线,它的实轴在直线y x =上,虚轴在直线y x =-上,实轴顶点是()()1,1,1,1--,焦点坐标是,(,已知函数y x =+e .则其在一象限内的焦点横坐标是__________,其离心率2e =__________.【答案】 ①.②.43【解析】【分析】根据材料得到双曲线的轴和顶点的定义,根据双曲线的离心率和其渐近线的斜率之间的关系求双曲线的离心率,利用双曲线的离心率的定义求双曲线的焦点坐标.【详解】直线y x =和y 轴是双曲线的两条渐近线,由阅读材料可知,双曲线的焦点所在的对称轴是直线y =,由顶点的定义知,对称轴与双曲线的交点即顶点,联立得2y x x y ⎧⎫=+⎪⎪⎭⎨⎪=⎩,解得:1x y =⎧⎪⎨=⎪⎩1x y =-⎧⎪⎨=⎪⎩(,若将双曲线绕其中心适当旋转可使其渐近线变为直线y x =,则双曲线的离心率e ==243e =,设双曲线的位于第一象限的焦点的坐标为()00,x y ,则01x =,所以0x =,所以002y ==,所以双曲线的位于第一象限的焦点的坐标为2⎫⎪⎪⎭,.43.【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤15. 根据统计, 某蔬菜基地西红柿亩产量的增加量 y (百千克)与某种液体肥料每亩的使用量x (千克)之间 的对应数据的散点图如图所示.(1)从散点图可以看出, 可用线性回归方程拟合 y 与x 的关系, 请计算样本相关系数r 并判断它们的相关程度;(2)求 y 关于x 的线性回归方程ˆˆˆybx a =+, 并预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量.附:()()()121ˆˆˆnn i i i n i i x x y y x x y y r b ay bx x x ==----===--∑∑,.【答案】(1)r = ; y 与x 程正线性相关, 且相关程度很强. (2) 1.50.7y x =+; 9.9 百千克.【解析】【分析】(1)由图形中的数据结合相关系数公式求得相关系数r ,再由0.75r >即可求解;(2)求出线性回归方程,再取12x =代入,即可求解.【小问1详解】由题知: 24568345675555x y ++++++++====,所以()()()()55522111142010i i i i i i i x x y y x x y y ===--=-=-=∑∑∑,,所以50.75x x y y r --===>所以 y 与x 程正线性相关, 且相关程度很强.小问2详解】因为 ()()()51521140.70ˆ2i ii i i x x y y b x x ==--===-∑∑,ˆˆ50.75 1.5a y bx =-=-⨯=,所以 y 关于x 的线性回归方程为 1.507ˆ.yx =+,当 12x =时, 1.50.712ˆ9.9y=+⨯=.所以预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量为 9.9 百千克.16. 已知数列{a n }的前n 项和为n S ,且223n S n n =+,数列{b n }满足24log 1n n a b =+.(1)求,n n a b ;(2)设n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求n T .【【答案】(1)41,2n n n a n b =+=(2)()16432n n T n +=+-⋅【解析】【分析】(1)由n a 与n S 的关系,再结合24log 1n n a b =+即可求解;(2)由错位相减法即可求解.【小问1详解】由223n S n n =+,当2n ≥时,()221232(1)3141n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦.当1n =时,115a S ==,也适合41n a n =+.综上可得,41n a n =+.由24log 141n n a b n =+=+,所以2n n b =.【小问2详解】由(1)知()412nn n a b n =+⋅()125292412nn T n =⨯+⨯+++ ()()23125292432412n n n T n n +=⨯+⨯++-⋅++⋅ ①①-②得()21104242412n n n T n +-=+⨯++⨯-+⋅ ②()()()111412104412643212n n n n T n n -++--=+⨯-+⋅=---⋅-,所以()16432n n T n +=+-⋅.17. 在三棱柱111ABC A B C -中,平面11AA C C ⊥平面ABC ,11AA A C =,2AC =,AC BC ⊥,11AA AC ⊥.(1)证明:1BB ⊥平面1A BC ;(2)若异面直线11,AB CA 所成角的余弦值为13,求BC .【答案】(1)证明过程见解析(2)【解析】【分析】(1)由面面垂直得到线面垂直,进而得到BC ⊥1AA ,结合11AA A C ⊥得到1AA ⊥平面1A BC ,再由平行关系得到证明;(2)作出辅助线,证明出1A P ⊥平面ABC ,建立空间直角坐标系,设BC m =,写出各点坐标,利用异面直角夹角的余弦值列出方程,求出m =,得到答案.【小问1详解】因为平面11AA C C ⊥平面ABC ,交线为AC ,AC BC ⊥,⊂BC 平面ABC ,所以BC ⊥平面11AAC C ,因为1AA ⊂平面11AAC C ,所以BC ⊥1AA ,因为11AA A C ⊥,1A C BC C = ,1,AC BC ⊂平面1ABC ,所以1AA ⊥平面1A BC ,又1//BB 1AA ,所以1BB ⊥平面1A BC ;【小问2详解】取AC 的中点P ,连接1PA ,因为11AA A C =,所以1A P ⊥AC ,因为平面11AA C C ⊥平面ABC ,交线为AC ,1A P ⊂平面11AAC C ,所以1A P ⊥平面ABC ,取AB 的中点H ,连接PH ,则//PH BC ,因为AC BC ⊥,所以PH ⊥AC ,故以P 为坐标原点,1,,PH PC PA 所在直线分别为,,x y z 轴,建立空间直角坐标系,因为2AC =,所以1112A P AC ==,故()()()101,0,0,1,0,0,0,1A C A -,设BC m =,则(),1,0B m ,设()1,,B s t h ,由11AA BB = 得()()0,1,1,1,s m t h =--,解得,2,1s m t h ===,故()1,2,1B m ,()()11,3,1,0,1,1AB m CA ==- ,因为异面直线11,AB CA 所成角的余弦值为13,所以11cos ,3AB =,解得m =,故BC =18. 已知抛物线Γ:24y x =,在Γ上有一点A 位于第一象限,设A 的纵坐标为(0)a a >.(1)若A 到抛物线Γ准线的距离为3,求a 的值;(2)当4a =时,若x 轴上存在一点B ,使AB 的中点在抛物线Γ上,求O 到直线AB 的距离;(3)直线l :3x =-,抛物线上有一异于点A 的动点P ,P 在直线l 上的投影为点H ,直线AP 与直线l 的交点为.Q 若在P的位置变化过程中,4HQ >恒成立,求a 的取值范围.【答案】(1)a =(2(3)(]0,2【解析】【分析】(1)先求出点A 的横坐标,代入抛物线方程即可求解;(2)先通过中点在抛物线上求出点B 的坐标,进一步求出直线AB 方程,利用点到直线距离公式求解即可;(3)设22(,),(,),(3,)(0)44t a P t Aa H t t a -≠>,联立方程求出点Q 的坐标,根据4HQ >恒成立,结合基本不等式即可求解.【小问1详解】抛物线Γ:24y x =的准线为1x =-,由于A 到抛物线Γ准线的距离为3,则点A 的横坐标为2,则2428(0)a a =⨯=>,解得a =【小问2详解】当4a =时,点A 的横坐标为2444=,则()4,4A ,设(),0B b ,则AB 的中点为4,22b +⎛⎫⎪⎝⎭,由题意可得24242b +=⨯,解得2b =-,所以B (−2,0),则402423AB k -==+,由点斜式可得,直线AB 的方程为()223y x =+,即2340x y -+=,所以原点O 到直线AB =;【小问3详解】如图,设()22,,,,3,(0)44t a P t A a H t t a ⎛⎫⎛⎫-≠> ⎪ ⎪⎝⎭⎝⎭,则22444AP t a k t a t a -==+-,故直线AP 的方程为244a y a x t a ⎛⎫-=- ⎪+⎝⎭,令3x =-,可得2434a y a t a ⎛⎫=-+⋅ ⎪+⎝⎭,即243,34a Q a t a ⎛⎫⎛⎫--+⋅ ⎪ ⎪ ⎪+⎝⎭⎝⎭,则2434a HQ t a t a ⎛⎫=-++⋅ ⎪+⎝⎭,依题意,24344a t a t a⎛⎫-++⋅> ⎪+⎝⎭恒成立,又2432204a t a a a t a⎛⎫+++⋅-≥-> ⎪+⎝⎭,则最小值为24a ->,即2a >+2a >+,则221244a a a +>++,解得02a <<,又当2a =时,1624442t t ++-≥-=+,当且仅当2t =时等号成立,而a t ≠,即当2a =时,也符合题意.故实数a 的取值范围为(]0,2.19. 已知函数22()ln(1),(1,)2x f x x x x ax=+-∈-+∞++.(1)当1a =时,求曲线()y f x =在1x =处切线的方程;(2)当0a =时,试判断()f x 零点的个数,并说明理由;(3)是否存在实数a ,使(0)f 是()f x 的极大值,若存在,求出a 的取值集合;若不存在,请说明理由.【答案】(1)388ln270x y -+-=;(2)1个,理由见解析;(3)存在,1{}6a ∈-.【解析】【分析】(1)把1a =代入,求出函数的导数,利用导数的几何意义求出切线方程.(2)把0a =代入,利用导数探讨函数的单调性即可得解.(3)利用连续函数极大值意义求出a 值,再验证即可得解.【小问1详解】当1a =时,22()ln(1)2x f x x x x =+-++,求导得222142()1(2)x f x x x x -=-+++',则3(1)8f '=,而1(1)ln22f =-,于是切线方程是13ln2)(1)(28x y -=--,所以曲线()y f x =在1x =处切线的方程388ln270x y -+-=.【小问2详解】当0a =时,24()ln(1)ln(1)222x f x x x x x=+-=++-++,的求导得22214()01(2)(1)(2)x f x x x x x '=-=≥++++,函数()f x 在(1,)-+∞上单调递增,又(0)0f =,所以函数()f x 有且仅有一个零点,是0.【小问3详解】由(0)f 是()f x 的极大值,得0,0m n ∃<>,使得当(,)x m n ∈时,220x ax ++>且()(0)f x f ≤恒成立,求导得22222(461)()(1)(2)x a x ax a f x x ax x '+++=+++,因此0x =是22()461h x a x ax a =+++的变号零点,即(0)0h =,解得16a =-,经检验,当16a =-时,322(24)()(1)(612)x x f x x x x -=+--',则当(1,0)x ∈-时()0f x '>,当(0,24)x ∈时()0f x '<,于是(0)f 是()f x 的极大值,符合条件,所以a 的取值集合为1{}6-.【点睛】结论点睛:函数()y f x =是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
黑龙江绥化市2024高三冲刺(高考数学)统编版测试(综合卷)完整试卷
黑龙江绥化市2024高三冲刺(高考数学)统编版测试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题故宫角楼的屋顶是我国十字脊顶的典型代表,如图1,它是由两个完全相同的直三棱柱垂直交叉构成,将其抽象成几何体如图2所示.已知三楼柱和是两个完全相同的直三棱柱,侧棱与互相垂直平分,交于点I,,,则点到平面的距离是()A.B.C.D.第(2)题已知直线与函数,的图象分别相交于,两点.设为曲线在点处切线的斜率,为曲线在点处切线的斜率,则的最大值为()A.B.1C.D.第(3)题已知集合,集合,函数的值域为(其中),那么()A.B.C.D.第(4)题已知是定义在上的奇函数,当时,,且当时,满足,若对任意,都有,则的取值范围是()A.B.C.D.第(5)题向高为H的水瓶内注水,一直到注满为止,如果注水量V与水深h的函数图象如图所示,那么水瓶的形状大致是()A.B.C.D.第(6)题已知,则()A.B.C.D.第(7)题已知圆C:及点,则下列说法正确的是()A.直线与圆C始终有两个交点B.若M是圆C上任一点,则|MQ|的取值范围为C.若点在圆C上,则直线PQ的斜率为D.圆C与轴相切第(8)题原命题为“若,,则为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是A.真,真,真B.假,假,真C.真,真,假D.假,假,假二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题对于有如下命题,其中正确的是()A.若,则为钝角三角形B.若,则的面积为C.在锐角中,不等式恒成立D .若且有两解,则的取值范围是第(2)题平行四边形ABCD中,且,AB、CD的中点分别为E、F,将沿DE向上翻折得到,使P在面BCDE上的投影在四边形BCDE内,且P到面BCDE的距离为,连接PC、PF、EF、PB,下列结论正确的是()A.B.C.三棱锥的外接球表面积为D.点Q在线段PE上运动,则的最小值为第(3)题已知平面向量满足,,且对任意的实数,都有恒成立,则下列结论正确的是()A.与垂直B.C .的最小值为D.的最大值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题将两个形状完全相同的正三棱锥底面重合得到一个六面体,若六面体存在外接球,且正三棱锥的体积为1,则六面体外接球的体积为_____________.第(2)题已知实数满足,则的最大值为_________.第(3)题若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的_________倍;四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题等腰直角三角形中,,为的中点,正方形与三角形所在的平面互相垂直.(Ⅰ)求证:平面;(Ⅱ)若,求点到平面的距离.第(2)题设数列的前项和为,若,则称是“紧密数列”.(1)若,判断是否是“紧密数列”,并说明理由;(2)若数列前项和为,判断是否是“紧密数列”,并说明理由;(3)设数列是公比为的等比数列.若数列与都是“紧密数列”,求的取值范围.第(3)题在平面直角坐标系中,如图,已知抛物线上一点到抛物线焦点的距离为5.(1)求抛物线的方程及实数的值;(2)过点作抛物线的两条弦,,若,的倾斜角分别为,,且,求证:直线过定点,并求出这个定点的坐标.第(4)题如图,在四棱锥中,底面是直角梯形,,.(1)证明:;(2)若,设为的中点,求与平面所成角的正弦值.第(5)题如图在几何体ABCDFE中,底面ABCD为菱形,,,,.(1)判断AD是否平行于平面CEF,并证明;(2)若面面;求:(ⅰ)平面与平面CEF所成角的大小;(ⅱ)求点A到平面CEF的距离.。
广东省 2023 届高三综合能力测试(三)数学试卷
广东省2023届高三综合能力测试(三)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ,B 是R 的子集,且()A B =∅R ,则下面选项中一定成立的是 ( )A .AB ⊆B .A B B =C .A B A =D .A B =R2.若复数1z ,2z 在复平面内对应的点关于虚轴对称,且13i z =-,则12z z = ( )A .34i 55-- B .34i 55-+ C .43i 55-- D .43i 55-+ 3.“李白斗酒诗百篇,长安市上酒家眠”,本诗句中的“斗”的本义是指盛酒的器具,后又作为计量粮食的工具.某数学兴趣小组利用相关材料制作了一个如图所示的正四棱台来模拟“斗”,用它研究“斗”的相关几何性质.已知该四棱台的上、下底的边长分别是2、4,高为1,则该四棱台的表面积为( ) A.B .32C.20+D.20+4.在ABC △中,2AB =,AC =,45A =︒,点M 满足3BM BC =,则AM 的长度为( )A.B.C.D.5.数学家也有一些“美丽的错误”,如法国数学家费马于1640提出了以下猜想:形如221()nn F n =+∈N 的数都是质数.1732年,瑞士数学家欧拉证明了5F 不是质数,请你利用所学知识,估算5F 是( )位数.(参考数据:lg 20.3010≈) A .9B .10C .11D .126.已知奇函数()cos()(0)f x x ωϕω=+>的图象关于直线3x π=对称,且在区间0,6π⎡⎤⎢⎥⎣⎦上单调,则ω的值是( )A .23 B .34C .32D .27.已知椭圆2222:1(0)x y E a b a b+=>>,左焦点为F ,过F 作倾斜角为30︒的直线交椭圆E 于M 、N 两点,且MF FN λ=(其中1λ>),则λ的值为( )A .2B. C.D .38.某地质勘探队为研究各地区的水是否存在某种矿物质,现从不同地区采集了100个样本.勘探队中的成员甲提议用如下方式进行检测,先将100个样本分为10组,每组再选取部分样本进行混合,对混合样本进行检测,如果不含该矿物质,则检测下一组,若含有该矿物质,则逐个检测;成员乙提议将100个样本分为5组或20组等等.假设每个样本含有该矿物质的概率0.01p =,且每个样本是否含有该矿物质相互独立.则下列选项中检测次数的期望值最小的是 ( )(参考数据:50.990.951≈,100.990.904≈,200.990.818≈)A .5个一组B .10个一组C .20个一组D .逐个检验二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.下列结论正确的是 ( ) A .若a b >,则lg lg a b > B .若22a b >,则a b > C .若a b >,c d >,则22ac bd >D .若22ac bc >,则a b >10.如图,圆锥OP 的底面O 的半径2r =,母线l =,点A ,B 是O 上的两个动点,则( )A .PAB △面积的最大值为2B .PAB △周长的最大值为4+C .当AB 的长度为2时,平面PAB 与底面所成角为定值D .当AB 的长度为2时,AB 与母线l11.已知动圆Q 过点(0,1),且与直线:1l y =-相切,记动圆Q 的圆心轨迹为Γ,过l 上一动点D 作曲线Γ的两条切线,切点分别为A 、B ,直线AB 与y 轴相交于点F ,下列说法正确的是( )A .Γ的方程为24x y = B .直线AB 过定点C .AOB ∠为钝角(O 为坐标原点)D .以AB 为直径的圆与直线1y =-相交12.已知函数21()e xf x ax a -=-+,1()ln g x x x=+,当[1,)x ∈+∞时,()()f x g x ≥恒成立,则实数a 的可能取值为( )A .12-B .0C .12D .2三、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.某单位安排4名工作人员随机分到3个核酸采样点参加“核酸检测亮码”工作,且每个人只去一个采样点,每个采样点至少有一名工作人员,则安排方案的总数为 . 14.写出一个同时满足下列条件①②的函数()f x = .①()f x 的图象关于点(0,1)对称;②曲线()y f x =在点(1,(1))f 处的切线方程为41y x =-.15.若,02πα⎛⎫∈-⎪⎝⎭,sin (2cos )tan 2ααα=-,则tan α= .16.如图,ABC △是面积为1的等腰直角三角形,记AB 的中点为1A ,以1CA 为直角边第一次构造等腰11Rt A B C △,记11A B 的中点为2A ,以2CA 为直角边第二次构造等腰22Rt A B C △,…,以此类推,当第n次构造的等腰Rt n n A B C △的直角边n CB 所构成的向量n CB 与CB同向时,构造停止,则构造出的所有等腰直角三角形的面积之和为 .A12四、解答题:本大题共6小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤. 17.(10分) 已知正项数列{}n a 的前n 项和为n S ,且满足221n n n a a S =-. (1)证明:数列2{}n S 是等差数列;(2)设数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:10018T >.如图,直三棱柱111ABC A B C -的底面为等腰直角三角形,且1122AC BC AA ===,点D ,E ,F 分别是线段1AA ,AC ,11B C 的中点. (1)求点1C 到平面DEF 的距离;(2)求平面DEF 与平面CDF 夹角的余弦值.1已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,且c =.(1)若cos b C =sin 3c B =,求A ; (2)若4b =,求ABC △面积的最大值.神舟十四号,简称“神十四”,为中国载人航天工程发射的第十四艘飞船,已经于2022年6月5日上午10时44分07秒在酒泉卫星发射中心发射,3名航天员陈冬、刘洋、蔡旭哲进驻核心舱并在轨驻留6个月.“神十四”的成功发射是我国载人航天上又一个重要的里程碑,实现了“神十四”与天宫一号的快速对接,创造了新的奇迹.为了宣传这一航天盛事,某高校组织了一场航天知识竞赛,共有1000名大学生参加,经统计发现他们的成绩(满分120)全部位于区间[50,110]内.现将成绩分成6组:[50,60),[60,70),[70,80),[80,90),[90,100),[100,110],得到如图所示的频率分布直方图,根据该直方图估计该1000名大学生成绩的平均分是77分.现规定前250名在10天后进行复赛.(1)求a ,b 的值(同一组数据用该组区间的中点值为代表),并根据频率分布直方图估计进入复赛的分数线(结果保留整数);(2)复赛共分为两个环节:A 和B .经统计,通过初赛的学生在准备复赛的首日有23的学生准备项目A ,其余学生准备项目B ;在前一天准备项目A 的学生中,次日会有45的学生继续选择准备项目A ,其余选择准备项目B ;在前一天选择准备项目B 的学生中,次日会有23的学生继续选择准备项目B ,其余学生选择准备项目A ,用频率近似估计概率,记某学生在第n 天准备项目A 的概率为n P ,求10P .已知双曲线2222:1(0,0)x y C a b a b -=>>,左、右焦点分别为1F ,2F,且(0,M ,12MF F △是正三角形.(1)求C 的方程;(2)若直线l 与C 仅有一个公共点P ,且与C 的两条渐近线分别交于A ,B ,记AOP △的面积为1S ,BOP △的面积为2S (O 是坐标原点),则1211S S +是否存在最小值?若存在,求出该最小值,若不存在,请说明理由.已知函数1()e sin x f x n x +=-+,,m n ∈R . (1)若0n =,讨论()f x 的零点个数;(2)若函数()f x 有零点,证明:223e m n +>.。
2023届高三综合测试(二)数学参考答案与评分标准(最新)
2023届高三综合测试(二)数学参考答案与评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的 主要考查内容比照评分参考制订相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的 内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的 一半,如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数,选择题不给中间分。
一、单项选择题:本题共8小题,每小题5分,共40分.1. 【解析】 化简得1,1,z i z i z =+=−=选B.2. 【解析】 依题意132x x >⎧⎪⎨<⎪⎩,即312x <<,选B.3. 【解析】 13EC EB BC AB AD =+=+,所以43u λ+=,选C. 4. 【解析】 按椭圆对称轴所在直线建立直角坐标系,则椭圆方程为,令,有一个,所以有 ,选D.5. 【解析】 设棱台的上底面矩形边长分别为b a ,,则下底面矩形边长分别为b a 22,,则 棱台的体积为:63)44 (331=+⨯+⨯⨯=ab ab ab b a V ,所以9b =a ,棱台的上底面的周长为,124)2=≥+ab b a ( 当3==b a 时,上底面的周长最小值为22221(0)x y a b b a+=>>y c =−2b x a =2110244ac b a+=⎧⎪⎨=⎪⎩2211022a c a c a +=⎧⎪⇔⎨−=⎪⎩22110a c a −⇔=45c e a ⇔==12,选D.6. 【解析】 由图可知,1521433T =−=,所以4T =,π2=ω;一条对称轴为23x =,所 以π2ππ232k ϕ⨯+=+,因为π2ϕ<,所以π6ϕ=;故()ππ3sin 26f x x ⎛⎫=+ ⎪⎝⎭, 所以()π3sin 23g x x ⎛⎫=+ ⎪⎝⎭.所以()g x 的图象的最小正周期为T π=,A 正确; 因为02x π⎡⎤∈⎢⎥⎣⎦,,所以42333x πππ≤+≤,B 错误; 对于C: 令π2π+()22123k x k x k Z πππ+=⇒=+∈,所以C 正确; 对于D :令π2()3π26k x k x k Z ππ+=⇒=−∈,所以D 正确. 故选B. 7.【解析】 由方程5ln 0x x ++=和50x x e ++=,可得 ln 5x x =−−和5xe x =−−,因为方程的根分别是,且ln y x =与x y e =互为反函数,所以分别与ln y x =和x y e =的交点的横坐标为,故有5y x y x =⎧⎨=−−⎩,解得5252x y ⎧=−⎪⎪⎨⎪=−⎪⎩,所以5=-22αβ+, ,∴的单调递减区间是,故选A.8.【解析】 当时,,则;当时,,则;当时,,则; 当时,,则;,αβ5y x =−−,αβ222525()()5()24f x x x x x x αβαβαβαβ=+++=−+=−+−()f x 5(,]2−∞12n ≤≤0.5 1.5<<1f=1=36n ≤≤ 1.5 2.52f=12=712n ≤≤ 2.5 3.5<<3f=13=1320n ≤≤ 3.5 4.5<<4f=14=当,此时,包含 ,,,,共个整数,分组为,,,…,,第组有个数,且每一组中所有数之和为, )100(1)99(1)90(1)5(1)4(1)3(1)2(1)1(1f f f f f f f f +++++++++ ++++++++++++++++++++=41414141414141413131313131312121212111111111112468101218101923456910=⨯+⨯+⨯+⨯+⨯+⨯++⨯+⨯=,故选C.二、多项选择题:本题共2分,有选错的得0分.9. 【解析】对于A, 曲线C 表示双曲线,224,4a b λ== 24(1)c λ=+ ,A 正确; 对于B, 曲线C 表示椭圆, 224(),4a b λ=−= ,24(1)c λ=−−,B 不对; 对于C,1λ=−时,曲线C 表示圆224x y +=,C 不对;对于D, 曲线C 表示椭圆, 224,4a b λ==−, 24(1)c λ=+,D 正确 . 10.【解析】对于A, 由二项分布的期望公式,1()3E X n =,由期望的运算性质,(31)3()116E X E X n +=+=+=,则n=5,所以A 正确;对于B, 由正态分布曲线的性质可知,(4)10.70.3P X ≥=−=,根据对称性,(2)0.3P X ≤−=,于是(21)0.50.30.2P X −<<=−=,B 错误;对于C, 因为()()0,()0,(|)()()()()()P AB P A P B P B A P B P AB P A P B P A >>==⇒= ()212122k k k *−+<<∈N 1k =221144k k n k k −+<<++21k k −+22k k −+2k k +2k ()1,11111,,,2222⎛⎫ ⎪⎝⎭111111,,,,,333333⎛⎫ ⎪⎝⎭111,,n nn ⎛⎫⎪⎝⎭n 2n 122n n⨯=所以()(|)()()P AB P A B P A P B ==,所以C 正确; 对于D, 因为()12P A =,()14P B A =,所以()12P A =,()34P B A =,又因为()23P B A =, 由全概率公式,可得121317()()(|)()(|)232424P B P A P B A P A P B A =⋅+⋅=⨯+⨯=,故选:ACD.11. 【解析】 对于A, 由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =,故//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形,故A 不正确; 对于B, 连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',平面⊥EMFN 平面''D DBB ,故B 正确; 对于C 选项,四棱锥A MENF −的体积,11113346M AEF N AEF AEF V V V DB S −−=+=⋅==△,故C 正确; 对于D 选项,由于四边形MENF 是菱形,所以周长222244442222+=+=+=MN MN EF MN l ,所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的周长最小,此时MN EF ==,即周长的最小值为4, 故D 不正确.故选:BC .12.【解析】由()()4f x f x +=,所以()()()()()()4431F x f x f x f x f x F x +=+++=+−=, 所以()y F x =是以4为周期的周期函数,又(0)(0)(1)10F f f =+−=−≠,所以()y F x =不是是奇函数,A 错误.可求得23,211,10()21,011,12x x x y F x x x x −−−≤≤−⎧⎪−−≤≤⎪==⎨−≤≤⎪⎪≤≤⎩,所以函数()y F x =的最大值为1,B 正确.当()2022,2023x ∈时,()20242,1x −∈−−,所以()()202424045F x F x x =−=−+,单调递减,C 正确.因为()()x F x F −−=1,()F x 关于12x =−成轴对称,因为()()x F x F −=−1,()F x 关于1,02⎛⎫⎪⎝⎭成中心对称,D 正确. 选BCD. 三、填空题:本题共4小题,每小题5分,共20分. 13.21 14. 552 15.π3416.22(3)(2)16x y −++= (2分), (3分)13.【解析】所求概率 32324412A A P A == 14.【解析】由已知可得,tan 2α=,再由同角关系可得,sin 5α=,所以sin()πα−=15.【解析】设圆锥底面半径为R ,母线长为L ,则⎪⎩⎪⎨⎧==3222ππππLR RL 解得.6L 36R ==,,易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中3626===BC AC AB ,,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于334=AM ,故32433436221=⨯⨯=∆ABC S,设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△ r 212r 21⨯+⨯⨯=BC AB ,解得:33r =,其表面积:224443S r πππ===. 16.【解析】:过抛物线2:4C y x =的焦点(1,0)F 且斜率为1−的直线为1y x =−+,由241y x y x ⎧=⎨=−+⎩消去x ,得2610x x −+=,所以AB 的中点为(3,2)D −且128AB x x p =++=,所以以线段AB 为直径的圆的半径为4r =,方程为22(3)(2)16x y −++=,对圆D 内任意一点M ,必可作互相垂直的两直线与相交,故存在圆D 上两点,P Q ,使90PMQ ∠=;对圆D 外任意一点M ,,P Q 是圆D 上两点,当,MP MQ 与圆D 相切时,PMQ ∠最大,此时DPMQ 为矩形,DM ==,所以若以线段AB 为直径的圆上存在两点,P Q ,在圆22:()1T x a y −+=上存在一点M ,使得90PMQ ∠=,等价于以D 为圆心以DM ==为半径的圆与圆222:(2)(7)(0)T x y a a +++=>有公共点,所以a DT a −≤=≤,解得a ≤≤,所以填.四、解答题: 本题共 6 小题,共 70分. 17.(10分)解:(1)令{}n a 是等比数列,设公比为,,时,有当q a a a n 11211=+==………………………………………………………1分,11211+=+=≥−+n n n n S a S a n ,时,有当…………………………………………2分112n n n n na a a a a ++−==相减得:,有,,2=q 所以有 ………………………………3分………………………………………………………4分q .2,111−==n n a a 故有代入解得(2)由(1)知:()()n b n nn +−=−121 ……………………………………………………5分122222212122+−−=+=−−−n b n b n n n n , …………………………………………7分141122+=+−−n n n b b ……………………………………………………………………8分∴ n n ……………………………………………………………………………10分 18. (12分)证明:(1)连接1CB 交1BC 于点F ,连接EF ,则F 是C B 1的中点 ……………………………………………………1分由于F E 、分别是1,AC B C 的中点,所以1//EF AB ………………………………………………2分由于111,AB BEC EF BEC ⊄⊂面面,所以11//AB BEC 面 ………………………………………………4分(2)由点1B 在底面上的射影为点C ,所以ABC C B 平面⊥1 ……………………………5分在ABC ∆中5,2,1===AC BC AB BC AB ⊥∴过B 作C B 1的平行线为Z 轴易知,,AB CB Z 两两垂直,如图以B 为原点,分别以,,AB CB Z 所在直线为,,x y z 轴,建立空间直角坐标系…………………………………6分)0,1,21(220)0,2,0()0,0,1(),0,0,0(1E B C A B ),,,(,, BC C B =11,得),,(2401C ………………………………………………………7分 ),,(),,,(232101211−=−=EC AE )0,1,21(=BE ,)2,4,0(1=BC设平面E BC 1的法向量),,(z y x m =()()()()[]12123421214437(41)n n n n S b b b b b b n −−+++==+++++⋅⋅⋅++++⋅⋅⋅+−()()()[]134********(41)n n n b b b b n −−+++=++++⋅⋅⋅++++⋅⋅⋅+−21441(21)2143n n n n n n −−=++=++−0240211=+=⋅=+=⋅z y m BC y x m BE)2,1,2(−=∴m ………………………………8分设平面11A AEC 的法向量为),,(z y x n =2321211=++−=⋅=+−=⋅z y x n EC y x n AE)1,1,2(−=∴n …………………………………9分 设平面1BEC 与平面11A AEC 所成角为θ186691 cos ===n m θ………………11分183186311sin 2=⎪⎭⎫⎝⎛−=θ 所以,平面1BEC 与平面11A AEC 所成角的正弦值为18318………………………12分19.(12分)解:(1) 在APB ∆中,23==PB PA,AB =, 由余弦定理得2223cos 22AB PB PA PBA AB PB +−∠==⋅36……………………………2分 又2π=∠ABCsin 3PBC ∠=…………………………………………3分 111sin 22322PBC S PB BC PBC ∆=⨯∠=⨯⨯112232⨯=…………………5分(2)法1:设PAB θ∠=,则(0,)4πθ∈,在APB ∆中,因为34APB π∠=,所以344PBA πππθθ∠=−−=−, ………6分由正弦定理,得sin sin PB ABPAB APB=∠∠,从而2sin PB θ= ,…………………7分在CPB ∆中,()244PBC πππθθ∠=−−=+, 由余弦定理得:2222cos()4PC PB BC PB BC πθ=+−⋅+ ………………………8分24sin 22sin cos()4πθθθ=+−⨯+=22cos 224sin (cos sin )θθθθ=−+−−62(2cos 2sin 2)θθ=−+6)θϕ=−+(其中tan 2,(0,)2πϕϕ=∈), ……………………………10分 因为(0,)4πθ∈,所以2(,)2πθϕϕϕ+∈+, ………………………………………11分所以当22πθϕ+=时,222min 6211PC =−=−⨯,从而,min 1PC =。
高三综合数学试卷及答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 02. 若复数z满足|z-1| = |z+1|,则复数z的几何意义是()A. z在复平面上的实部为0B. z在复平面上的虚部为0C. z在复平面上的轨迹为y轴D. z在复平面上的轨迹为直线x=03. 在等差数列{an}中,若a1 + a3 = 10,a2 + a4 = 18,则该数列的公差d是()A. 2B. 3C. 4D. 54. 已知函数f(x) = x^2 - 4x + 4,若函数g(x) = |x| - 2,则f(x)与g(x)的图象交点的个数是()A. 2B. 3C. 4D. 55. 若等比数列{bn}的首项b1 = 2,公比q = 3,则该数列的前5项和S5是()A. 62B. 72C. 82D. 926. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值是()A. √3/2B. 1/2C. √2/2D. 1/√27. 若函数y = ax^2 + bx + c的图象开口向上,且a > 0,b < 0,则该函数的对称轴是()A. x = -b/2aB. x = b/2aC. x = -b/aD. x = b/a8. 在直角坐标系中,点P(2,3)关于直线y=x的对称点P'的坐标是()A. (3,2)B. (2,3)C. (3,3)D. (2,2)9. 若等差数列{cn}的前n项和为Sn,公差为d,则Sn^2 - (n^2 - 1)Sn + 2(n^2 - 1) = 0的解为()A. n = 1B. n = 2C. n = 3D. n = 410. 已知函数f(x) = |x-1| + |x+1|,若x∈[-1,1],则f(x)的最大值是()A. 0B. 2C. 4D. 6二、填空题(本大题共5小题,每小题10分,共50分)11. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项a10 = ________。
高三数学综合测试卷(六)(解析版)
高三数学综合测试卷(六)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,则4334iz i +=−在复平面内对应的点为()A. ()0,iB. (),0iC. ()0,1D. ()1,0【答案】C 【解析】【分析】利用复数除法运算计算求得z i ,由此得到对应点坐标.【详解】()()()()4334432534343425i i iiz i ii i +++====−−+,z ∴对应的点为()0,1.故选:C . 【点睛】本题考查复数对应点的坐标的求解,涉及到复数的除法运算,属于基础题.2. 已知集合{}{}220,,2,Ax xx x R B x x k k Z =+−≤∈==∈,则A B 等于A. {0,1}B. {2,0}−C. {1,0}−D. {}4,2−−【答案】B 【解析】【分析】:先解A 、B 集合,再取并集.【详解】:先解{}{}220,21,2,2,0,2Ax xx x R x B x x k k Z x =+−≤∈⇔−≤≤==∈⇔=−,故选B3. 已知函数()37sin f x x x x =−−+,若()()220f a f a +−>,则实数a 的取值范围是A. (),1−∞B. (),3−∞C. ()1,2−D. ()2,1−【答案】D 【解析】【分析】先研究函数()f x 奇偶性与单调性,再根据奇偶性与单调性化简不等式()()220f a f a +−>,解得实数a 的取值范围.【详解】因为()()37sin ,f x x x x f x −=+−=−2()37cos 0f x x x =−−+<′ ,所以()f x 为奇函数,且在R 上单调递减,因为()()220f af a +−>,所以()()()2222,2,21f a f a f a a a a >−−=−<−−<<,选D.【点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.4. 直线1y kx =+与曲线()1f x a nx b =+相切于点(1,2)P ,则a b +=A. 1B. 4C. 3D. 2【答案】C 【解析】【详解】分析:求出函数()f x 的导函数,得到1f ′()的值,由直线1y kx =+与曲线()1f x a nx b =+相切于点()1,2P 列关于a b k ,,的方程组,求出a b ,的值后得答案.详解:由()1f x a nx b =+,得()af x x′=1f a ∴′=(). 再由直线1y kx =+与曲线()1f x a nx b =+相切于点()1,2P ,,得11,1,22k a k k b a b b+∴====== 3a b ∴+=.故选C.点睛:本题考查了利用导数研究曲线在某点处的切线方程,曲线在某点处的导数,就是在该点处的切线的斜率,是中档题.5. 太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数2sin4y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为() A.18B.19C.116D.118【答案】A 【解析】【分析】根据正弦型函数最小正周期可得圆O 半径,利用几何概型面积型公式计算可得结果. 【详解】2sin4y x π=的最小正周期为284T ππ==,∴圆O 半径为42T=; ∴在大圆内随机取一点,则此点取自阴影部分的概率2221148p ππ×==×.故选:A . 【点睛】本题考查几何概型面积型的概率问题的求解,关键是能够利用正弦型函数的最小正周期求得大圆半径. 6. 函数2sin ()ln2sin −=+xf x x x的部分图象可能是( )A.B.C.D.【答案】A 【解析】【分析】先由奇偶性的概念,判断()f x 是偶函数,排除C 、D ;再由0,2x π ∈,()f x的正负,排除B ,进而可得出结果.【详解】因为()()12sin 2sin 2sin ln ln ln 2sin 2sin 2sin x x x f x x x x f x x x x −+−−−=−=−==−++,所以()f x 是偶函数,图象关于y 轴对称,故排除C 、D ;当0,2x π∈时,[]sin 0,1∈x ,2sin 012sin −<<+x x ,2sin ln 02sin −<+x x , 即()0f x <,故排除B ,选A .【点睛】本题主要考查函数图像的识别,熟记函数的奇偶性,三角函数的图象及其性质,对数函数的性质等,即可,属于常考题型.7. 2020年春节期间,因新冠肺炎疫情防控工作需要,M 、N 两社区需要招募义务宣传员,现有A 、B 、C 、D 、E 、F 六位大学生和甲、乙、丙三位党员教师志愿参加,现将他们分成两个小组分别派往M 、N 两社区开展疫情防控宣传工作,要求每个社区都至少安排1位党员教师及3位大学生,且B 由于工作原因只能派往M 社区,则不同的选派方案种数为()A. 60B. 90C. 120D. 150【答案】A 【解析】【分析】将问题分为N 社区选派4人和5人两种情况,分别计算出两种情况下的选派方案种数,根据分类加法计数原理可求得结果.【详解】将选派方案分为N 社区选派4人和5人两种情况,当N 社区选派4人时,必由1名党员教师,3位大学生构成,共有:133530C C =种选派方案; 当N 社区选派5人时,必由2名党员教师,3位大学生构成,共有:233530C C =种选派方案;由分类加法计数原理可知:不同的选派方案种数有303060+=种.故选:A . 【点睛】本题考查分类加法计数原理的应用,关键是能够将所给问题进行准确分类;本题易错点是忽略每个社区大学生人数的最低要求,造成求解错误.8. 已知{}n a 的前n 项和241n S n n =−+,则1210a a a +++= A. 68B. 67C. 61D. 60【答案】B 【解析】【分析】首先运用11,1,2n n n S n a S S n −= = −≥ 求出通项n a ,判断n a 的正负情况,再运用1022S S −即可得到答案.【详解】当1n =时,112S a ==−;当2n ≥时,()()()22141141125n n n a S S nn n n n − =−=−+−−−−+=−,故2,125,2n n a n n −==−≥;所以,当2n ≤时,0n a <,当2n >时,0n a >.因此,()()()12101234101022612367a a a a a a a a S S +++=−+++++=−=−×−= .故选:B . 【点睛】本题考查了由数列的前n 项和公式求数列的通项公式,属于中档题,解题时特别注意两点,第一,要分类讨论,分1n =和2n ≥两种情形,第二要掌握()12n n n a S S n −=−≥这一数列中的重要关系,否则无法解决此类问题,最后还要注意对结果的处理,分段形式还是一个结果的形式.9. 已知抛物线C :216y x =的焦点为F ,其准线l 与x 轴交于点A ,若抛物线C 上存在一点B 使AB =,则AB =()A.B. 8C. D. 4【答案】A 【解析】【分析】过B 作准线l 的垂线,垂足为C ,结合抛物线定义、长度和平行关系可得4BAF ABC π∠=∠=,在ABF △中,利用余弦定理可构造方程求得结果.【详解】过B 作准线l 的垂线,垂足为C ,则由抛物线定义可知:BF BC =AB = AB ∴=BC l ⊥,4ABC π∴∠=,//BC x 轴,4BAF ABC π∴∠=∠=,在ABF △中,由余弦定理得:2222cos BFAF AB AF AB BAF =+−⋅∠, 由抛物线方程知:8AF =,2264216BFBF BF ∴=+−,解得:8BF =,AB ∴=故选:A .【点睛】本题考查抛物线中的线段长度的求解问题,涉及到抛物线定义和余弦定理的应用;解题关键是能够根据抛物线定义和长度关系确定角的大小.10. 已知()1f x x =+,()ln g x x =,若12()()f x g x =,则21x x −的最小值为 A. 1B. 2C. 2ln 2−D. 2ln 2+【答案】B 【解析】【分析】设()()12f x g x t ==,所以11x t =−,2t x e =,所以211t x x e t −−+,构建新函数,研究单调性与最值即可.【详解】设()()12f x g x t ==,所以11x t =−,2t x e =,所以211t x x e t −−+,令()1th t e t −+,则()'1t h t e =−,所以()h t 在(),0−∞上单调递减,在()0,+∞上单调递增,所以()()min 02h t h ==.故选B【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.11. 已知MN 是正方体内切球的一条直径,点Р在正方体表面上运动,正方体的棱长是2,则PM PN ⋅的取值范围为() A. []0,4B. []0,2C. []1,4D. []1,2【答案】B 【解析】【分析】利用向量的线性运算和数量积运算律可得21PM PN PO ⋅=− ,根据正方体的特点确定PO最大值和最小值,即可求解【详解】设正方体内切球的球心为O ,则1OMON ==, ()()()2PM PN PO OM PO ON PO PO OM ON OM ON ⋅=+⋅+=+⋅++⋅,因为MN 是正方体内切球的一条直径,所以0OM ON +=,1OM ON ⋅=−,所以21PM PN PO ⋅=− ,又点Р在正方体表面上运动,所以当P 为正方体顶点时,PO 最大,当P 为内切球与正方体的切点时,PO最小 ,且最小为1; 所以2012PO ≤−≤ ,所以PM PN ⋅的取值范围为[]0,2,故选:B11*. 在正三棱锥−P ABC 中,M 、N 分别是PC 、BC 中点,AM MN ⊥,PA =,则三棱锥−P ABC 的外接球的表面积为()A. 12πB.C. 36πD.【答案】C 【解析】【分析】由线面垂直的判定方法可证得PB ⊥平面PAC ,由线面垂直性质和正三棱锥的特点可知,,PA PB PC 两两互相垂直,由此可将三棱锥补为正方体,求解正方体的外接球表面积即为所求结果.【详解】取AC 中点D ,连接,PD BD ,,M N 分别为,PC BC 中点,//MN PB ∴,又MN AM ⊥,PB AM ∴⊥,三棱锥−P ABC 为正三棱锥,PA PC ∴=,BA BC =,又D 为AC 中点,PD AC ∴⊥,BD AC ⊥,又,PD BD ⊂平面PBD ,AC ∴⊥平面PBD ,PB ⊂ 平面PBD ,AC PB ∴⊥,,AC AM ⊂ 平面PAC ,AC AM A ∩=,PB ∴⊥平面PAC ,,PA PC ⊂ 平面PAC ,PB PA ∴⊥,PB PC ⊥,则由正三棱锥特点得PC PA ⊥,∴可将三棱锥−P ABC 补成以,,PA PB PC 为棱的正方体,则正方体的外接球即为三棱锥−P ABC 的外接球,∴外接球半径1632R =×=,∴外接球的表面积2436S R ππ=.故选:C .【点睛】本题考查三棱锥外接球表面积的求解问题,关键是能够根据垂直关系得到三棱锥顶点处的两两垂直关系,进而通过补为正方体的方式来进行求解.12. 已知定义在R 上的函数()f x ,其导函数为()f x ′,若()()2sin f x f x x =−−,且当0x ≥时,()cos 0f x x ′+<,则不等式()sin cos 2f x f x x x π+>+−的解集为()A. ,2π−∞B. ,2π +∞C. ,4π−∞−D. ,4π−+∞【答案】C 【解析】【分析】令()()sin g x f x x =+,可根据已知等式验证出()g x 为偶函数,同时根据导数得到()g x 的单调性;将所求不等式转化为()2g x g x π+>,根据单调性可得到2x x π+<,解不等式求得结果.【详解】令()()sin g x f x x =+,则()()sin g x f x x −=−−,()()2sin f x f x x =−− ,()()sin sin f x x f x x ∴+=−−,()()g x g x ∴−=,()g x ∴为定义在R 上的偶函数;当0x ≥时,()()cos 0g x f x x ′′=+<,()g x ∴在[)0,∞+上单调递减, 又()g x 为偶函数,()g x ∴在(],0−∞上单调递增.由()sin cos 2f x f x x x π+>+−得: ()cos sin sin 222f x x f x x f x x πππ +++++>+,即()2g x g x π+> ,2x x π∴+<,解得:4x π<−,即不等式的解集为,4π−∞−.故选:C . 【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到构造函数、利用导数确定函数的单调性等知识;解题关键是能够通过构造函数的方式将不等式转化为函数值的比较,再根据单调性转化为自变量之间的大小关系.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知()0,0O ,()1,2A ,()3,1B −,若向量m OA ∥,且m 与OB 的夹角为钝角,写出一个满足条件的m 的坐标为______.【答案】()1,2−−【分析】根据向量的共线和向量乘法的坐标计算公式即可求解. 【详解】根据题意可得:()1,2OA =,()3,1OB=− ,设(),m x y =,因为向量m OA∥,且m 与OB的夹角为钝角,所以123(1)03(1)y xx y y x ⋅=⋅⋅+−⋅< ⋅≠−⋅所以0x <,不妨令1,x =−所以2,y =−()1,2m =−− ,故答案为:()1,2−−.14. 在812x x−的展开式中,下列说法正确的是 (选出所有正确选项)①.常数项是1120②.第四项和第六项的系数相等 ③.各项的二项式系数之和为256④.各项的系数之和为25615. 已知函数()()()sin 0f x x ωϕω=+>满足14f π =,02f =π,且()f x 在区间,43ππ上单调,则ω取值的个数有______个.【答案】3【解析】【分析】根据最大值点和零点可确定()21T k Z k π=∈+,由此得到42k ω=+;根据单调性可知6T π>,解出012ω<<,由此得到ω所有可能的取值.【详解】()max 1f x = ,()2442T kT k Z ππ∴−=+∈,解得:()21T k Z k π=∈+, 即()221k Z k ππω=∈+,()42k k Z ω∴=+∈;()f x 在,43ππ上单调,342T ππ∴−<,即6T π>,26ππω∴>,解得:012ω<<,2ω∴=,6或10,ω∴取值的个数有3个.故答案为:3. 【点睛】本题考查根据正弦型函数的单调性、周期性求解参数值的问题;关键是能够通过最值点和零点确定周期、根据单调性确定周期所处的范围.16.设函数()f x 是定义在整数集Z 上的函数,且满足()01f =,()10f =,对任意的x ,y ∈Z 都有()()()()2f x y f x y f x f y ++−=,则()3f =______;()()()()22222122023122023f f f f 2++⋅⋅⋅+=++⋅⋅⋅+______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分17. 在ABC 中,D 是BC 中点,5AC =,2AD =,229cos 4cos 50ABD ADB ∠−∠−=. (Ⅰ)求sin sin ABDADB∠∠及AB ;(Ⅱ)求角C 的余弦值.【答案】(Ⅰ)sin 2sin 3ABD ADB ∠=∠,3AB =;(Ⅱ.【解析】【分析】(Ⅰ)利用同角三角函数平方关系可化简已知等式得到sin 2sin 3ABD ADB ∠=∠,利用正弦定理角化边可得32AD AB =,从而求得AB ;(Ⅱ)设2BC x =,在ABD △和ACD 中利用余弦定理可构造方程求得x ,在ACD 中利用余弦定理可求得结果.【详解】(Ⅰ)由题意得:()()2291sin 41sin 50ABD ADB −∠−−∠−=,229sin 4sin ABD ADB ∴∠=∠, ()0,ABD π∠∈ ,()0,ADB π∠∈,sin 0ABD ∴∠>,sin 0ADB ∠> 3sin 2sin ABD ADB ∴∠=∠,即sin 2sin 3ABD ADB ∠=∠,由正弦定理得:32AD AB =,即322AB ×=,3AB ∴=;(Ⅱ)设2BC x =,则BD DC x ==,在ABD △中,2223222cos x x ADB +−⋅⋅⋅∠…①, 在ACD 中,2225222cos x x ADC +−⋅⋅⋅∠2422cos x x ADB =++⋅⋅⋅∠…②,①+②得:()225924x +=+,解得:x =CD =,在ACD 中,cos C=. 【点睛】本题考查解三角形的相关问题的求解,涉及到余弦定理解三角形、正弦定理角化边的应用等知识,属于常考题型.18. 如图,在斜三棱柱111ABC A B C 中,AB ⊥侧面11BB C C ,2BC =,14BB =,AB =160BCC ∠=°. (Ⅰ)求证:平面11A C B ⊥平面ABC ;(Ⅱ)若E 为1CC 中点,求二面角11A EB C −−的正切值.【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】【分析】(Ⅰ)根据勾股定理、线面垂直性质和线面垂直的判定定理可证得1C B ⊥平面ABC ,由面面垂直的判定定理可证得结论;(Ⅱ)以B 为坐标原点建立空间直角坐标系,根据二面角的向量求法可求得结果.【详解】(Ⅰ)证明:2BC = ,14CC =,160BCC ∠=,由余弦定理可得:1BC =, 22211BC BC CC ∴+=,190CBC ∴∠= ,即1C B CB ⊥,又AB ⊥面11BB C C ,1C B ⊂平面11BB C C ,1C B AB ∴⊥,又AB CB B = ,,AB BC ⊂平面ABC ,1C B ∴⊥平面ABC ,1C B ⊂ 平面11A C B ,∴平面11A C B ⊥平面ABC ; (Ⅱ)由(Ⅰ)知,直线BC 、1BC 、BA 两两垂直,则以B 为坐标原点可建立如下图所示的空间直角坐标系:则()0,0,0B ,()2,0,0C,()10,C,()12,B −,()E,(00A ,,(AE →∴=,(12,AB →=−, 设平面1AEB 的一个法向量为(),,n x y z →=,则1020n AE x n AB x ⋅=+−= ⋅=−+−= ,令x =则3y =,4z =,)4n →∴,AB ⊥ 侧面11BB C C ,∴平面11EB C 的一个法向量为()0,0,1m →=,cos ,n m n m n m →→→→→→⋅∴<>==⋅tan ,n m →→∴<>= 二面角11A EB C −−为钝二面角,∴二面角11A EB C −−的正切值为. 【点睛】本题考查立体几何中面面垂直关系的证明、空间向量法求解二面角的问题,涉及到勾股定理、线面垂直的判定与性质定理、面面垂直的判定定理等知识的应用;易错点是忽略二面角为钝二面角,造成所求三角函数值的符号出现错误.19. 某市教学研究室为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三理科数学试卷的得分情况进行了调研.从全市参加考试的理科考生中随机抽取了100名考生的数学成绩(满分150分),将数据分成9组:[)60,70,[)70,80,[)80,90,[)90,100,[)100,110,[)110,120,[)120130,,[)130140,,[]140,150,并整理得到如图所示的频率分布直方图.用统计的方法得到样本标准差20σ=,以频率值作为概率估计值.(Ⅰ)根据频率分布直方图,求抽取的100名理科考生数学成绩的平均分x 及众数y ;(Ⅱ)用频率估计概率,从该市所有高三理科考生的数学成绩中随机抽取3个,记理科数学成绩位于区间[)100,120内的个数为Y ,求Y 的分布列及数学期望()E Y ;(Ⅲ)从该市高三理科数学考试成绩中任意抽取一份,记其成绩为X ,依据以下不等式评判(P 表示对应事件的概率):①()0.6827P X µσµσ−<<+≥,②()220.9545P X µσµσ−<<+≥, ③()330.9973P X µσµσ−<<+≥,其中x µ=.评判规则:若至少满足以上两个不等式,则给予这套试卷好评,否则差评.试问:这套试卷得到好评还是差评? 【答案】(Ⅰ)平均分105x =,众数105y =;(Ⅱ)分布列详见解析,6()5E Y =;(Ⅲ)得到好评. 【解析】【分析】(Ⅰ)利用频率分布直方图估计平均数和众数的方法可直接求得结果; (Ⅱ)根据频率分布直方图计算可知理科数学成绩位于[)100,120内的概率为25,则23,5Y B,由此计算出Y 的每个取值对应的概率,由此得到分布列;由二项分布数学期望计算公式计算可得()E Y ; (Ⅲ)计算每个区间取值所对应的概率与3σ原则所对应的概率之间的大小关系,从而得到结论. 【详解】(Ⅰ)650.06750.06850.1950.141050.221150.181250.16x ×+×+×+××+×=+×+1350.061450.02105+×+×=;众数:1001101052y+=;(Ⅱ)用频率估计概率,可得从该市所有高三考生的理科数学成绩中随机抽取1个,理科数学成绩位于[)100,120内的概率为20.220.180.405+==,则随机变量Y 服从二项分布23,5Y B,故3323()(0,1,2,3)55kkk P Y k C k −==××=.由题意知:Y 所有可能的取值为0,1,2,3,()332705125P Y ∴=== ;()2132354155125P Y C ==×=;()2232336255125P Y C ==×= ;()32835125P Y ===;Y ∴的分布列为:数学期望()26355E Y =×=; (Ⅲ)记该市高三考生的理科数学成绩为X ,由(Ⅰ)可知,105x µ==,又20σ=,则1052085µσ−=−=,10520125µσ+=+=,210522065µσ−=−×=, 2105220145µσ+=+×=,310532045µσ−=−×=,3105320165µσ+=+×=,()()0.0585120.140.220.180.085P X P X µσµσ∴−=++++<<+=<<=0.670.6827<, ()()226514510.030.010.960.9545P X P X µσµσ−<<+=<<=−−=>, ()()334516510.9973P X P X µσµσ−<<+=<<=>,符合②③,不符合①,∴这套试卷得到好评.【点睛】本题考查利用频率分布直方图估计总体数据特征、二项分布的分布列与数学期望的求解、正态分布的实际应用等知识;求解分布列和数学期望的关键是能够明确随机变量所服从的分布类型,进而计算出每个取值对应的概率.20. 如图,已知12MF F △的两顶点坐标()11,0F −,()21,0F ,圆E 是12MF F △的内切圆,在边1MF ,2MF ,12F F 上的切点分别为P ,Q ,R ,1MP =.(Ⅰ)求证:12MF MF +为定值,并求出动点M 的轨迹C 的方程; (Ⅱ)过1F 的斜率不为零直线交曲线C 于A 、B 两点,求证:11F A F BBA ⋅为定值.【答案】(Ⅰ)证明详见解析,曲线C 的方程为221(0)43x y y +=≠;(Ⅱ)详见解析. 【解析】【分析】(Ⅰ)利用切线长相等可求得124MF MF +=;根据椭圆定义可知动点M 的轨迹C 是以1F ,2F 为焦点,长轴长为4的椭圆(不含椭圆与x 轴的交点),进而求得结果;(Ⅱ)设AB 的方程为1x my =−,与椭圆方程联立得到韦达定理的形式,利用弦长公式求得AB ,根据平面向量数量积运算求得11F A F B →→⋅,进而求得1134F A F B AB ⋅=. 【详解】(Ⅰ)由题意得:MP MQ =,11F P F R =,22F Q F R =12121224MF MF MP PF M MP Q F F Q F =+∴=+++=+,2121MF MF F F +> , ∴动点M 的轨迹C 是以1F ,2F 为焦点,长轴长为4的椭圆(不含椭圆与x 轴的交点),设曲线C 方程为:()222210,0x y a b y a b+=>>≠,则24a =,解得:2a =,又1c =,b ∴=,∴曲线C 的方程为()221043x y y +=≠; (Ⅱ)证明:由(Ⅰ)得:()11,0F −,设()11,A x y ,()22,B x y , 直线AB 的斜率不为零,∴可设AB 的方程为1x my =−,联立221143x my x y =− +=消去x 并整理得:()2234690m y my +−−=, 则()()22236363414410m m m ∆=++=+>,221634y y m m ∴++=,122934y y m =−+,2AB y =−=∴()2212134m m +=+, ()()121212112111F A F B x x y y my my y y →→+++⋅+⋅()()2212291134m m y y m +=+=−+, 1193124A F A FB B →→−⋅∴==−,1134F A F B AB ⋅∴=,综上可得:11F A F B B A ⋅为定值34. 【点睛】本题考查动点轨迹方程的求解、椭圆中的定值问题的求解;求解动点轨迹方程的关键是能够确定动点满足椭圆的定义,进而得到轨迹方程;求解定值问题的常用方法是将直线与椭圆方程联立,得到韦达定理的形式,将韦达定理代入所求式中,化简得到定值.21. 已知函数()()22ln 2f x ax a x x −+++,()()1ln g x a x =−.(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)若对任意的[)1,x ∞∈+,都有()()f x g x ≥,求实数a 的取值范围. 【答案】(Ⅰ)分类讨论,详见解析;(Ⅱ)2,3 +∞.【解析】【分析】(Ⅰ)求导后,分别在02a <<、2a =和2a >三种情况下求得()f x ′的正负,由此可确定()f x 单调性;(Ⅱ)令()()()hx f x g x =−,分别在23a ≥、023a <<和0a ≤三种情况下,利用导数确定()h x 单调性和最值,进而确定符合题意的取值范围.【详解】(Ⅰ)由题意得:()f x 定义域为()0,∞+,则()()()()()2111220x ax ax a x xxf x −−=−++=>′,①当02a <<时,由()0f x '>可得:102x <<或1x a >;由()0f x ′<可得:112x a <<;()f x ∴的单调增区间为10,2 ,1,a +∞,单调递减区间为11,2a; ②当2a =时,则()()2210x f x x−′=≥,此时()f x 的单调递增区间为()0,∞+;③当2a >时,由()0f x '>可得:10x a<<或12x >;由()0f x ′<可得:112x a <<;()f x ∴的单调增区间为10,a,1,2 +∞,单调递减区间为11,2a; 综上所述:当02a <<时,()f x 在10,2 ,1,a+∞上单调递增,在11,2a上单调递减; 当2a =时,()f x 在()0,∞+上单调递增; 当2a >时,()f x 在10,a,1,2 +∞上单调递增,在11,2a上单调递减. (Ⅱ)令()()()hx f x g x =−,则()()()222ln 2h x ax a x a x −++−+,()()222ah x ax a x−′∴=−++()()()2222122ax a x ax ax a xx−++−−+−=,①当23a ≥时,令()0h x ′=,解得:11x =,222a x a −=,2231022a aa a−−−=≤,21x x ∴≤, ∴当1x ≥时,()0h x ′≥,()h x ∴在[)1,+∞上单调递增,()()10h x h ∴≥=,满足题意;②当023a <<时,由①知:21x x >, ∴当21,2a x a − ∈ 时,()0h x ′<,()h x ∴在21,2a a − 上单调递减, 则当21,2a x a −∈时,()()10h x h <=,不合题意; ③当0a ≤时,220ax x +−<,则()0h x ′<,()h x ∴在[)1,+∞上单调递减,∴当()1,x ∈+∞时,()()10h x h <=,不合题意;综上所述:实数a 的取值范围为2,3 +∞.【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过讨论导函数零点的位置确定函数在所给区间内的单调性,进而得到函数最值. (二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. 在直角坐标系xOy 中,曲线1C的参数方程为3cos 13sin x y αα=+=+ (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos 16πρθ−=. (Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设曲线1C 与曲线2C 交于M 、N 两点,点P 为曲线1C 上动点,当点P 到曲线2C 的距离最大时,求PMN 的面积.【答案】(Ⅰ)1C的普通方程为(()2219x y +−=,2C20y +−=;(Ⅱ) 【解析】【分析】(Ⅰ)根据参数方程化普通方程、极坐标化直角坐标的方法可直接化简得到结果;(Ⅱ)由垂径定理可求得MN ,根据圆上点到直线距离的最大值可求得三角形高为3d +,由此求得三角形面积.【详解】(Ⅰ)由3cos 13sin x y αα==+ 消除参数α得1C的普通方程为:(()2219x y −+−=; 由cos 16πρθ−=1cos sin 12ρθρθ+=,2C ∴20y +−=; (Ⅱ)由(Ⅰ)知:圆心)1C ,则1C 到直线2C 的距离1d,MN ∴=; 点P 到直线的最大距离为34d+=,142PMN S ∴=×=△ 【点睛】本题考查极坐标与参数方程相关知识,涉及到极坐标化直角坐标、参数方程化普通方程、圆上点到直线距离的最值的求解、直线被圆截得弦长的求解等知识,属于常考题型. 23. 已知函数()()230f x x x a a =−++>.(Ⅰ)若1a =,求不等式()3f x ≥的解集; (Ⅱ)若()232f x a a ≥−+恒成立,求实数a 的取值范围.【答案】(Ⅰ)(]5,1,3 −∞+∞;(Ⅱ)(]0,2. 【解析】【分析】(Ⅰ)分别在32x ≥、312−≤<x 和1x <−三种情况下分类讨论得到不等式,解不等式求得结果;(Ⅱ)将问题转化为()2min 32f x a a ≥−+,利用绝对值三角不等式可求得()min 32f x a =+,由此构造不等式求得结果.【详解】(Ⅰ)由题意得:()332,232314,1232,1x x f x x x x x x x−≥=−++=−+−≤<−+<−, ①当32x ≥时,由323x −≥得:53x ≥,53x ∴≥; ②当312−≤<x 时,由43x −+≥得:1x ≤,11x ∴−≤≤;③当1x <−时,由323x −+≥得:13x ≤−,1x ∴<−;综上所述:不等式()1f x ≥的解集为(]5,1,3 −∞+∞; (Ⅱ)()232f x a a ≥−+恒成立等价于()2min 32f x a a ≥−+, ()332322f x x x a x x x a =−++=−+−++ ()333222x x a x a x a≥−++≥+−−=+,等号成立条件是32x =, ()min 32f x a ∴=+,23322a a a ∴+≥−+,解得:02a ≤≤,又0a >,02a ∴<≤,∴实数a 的取值范围为(]0,2.【点睛】本题考查分类讨论求解含绝对值不等式、绝对值不等式中的恒成立问题的求解,求解恒成立问题的关键是将问题转化为变量与函数最值之间的大小关系的问题,属于常考题。
2024-2025学年北京市海淀区高三上学期统练数学检测试题
2024-2025学年北京市海淀区高三上学期统练数学检测试题一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,则( ){|13}A x x =-<<{|04}B x x =<≤A B = A. B. C. D. (0,3)(1,4)-(0,4](1,4]-2. 在复平面内,复数所对应的点的坐标为,则( )z (1,1)-z z ⋅=A. B.D. 22i-2i 3. 设a ,,且,则()b ∈R 0a b <<A.B. C.D.11a b <b a a b >2a b+>2b a a b+>4. 如图,在中,是的中点.若,,则()ABC V D BCAB a =AD b =AC = A. B. C. D.32a b- 2a b- 2a b-+ 1122a b + 5. 已知函数,则函数( )||||()x x f x e e -=-()f x A. 是偶函数,且在上单调递增(0,+∞)B. 是奇函数,且在上单调递减(0,+∞)C. 是奇函数,且在上单调递增(0,+∞)D. 是偶函数,且在上单调递减(0,+∞)6. 已知函数是定义在上的奇函数,且在区间上单调递减,.设()f x R (,0]-∞(1)1f =-,则满足的的取值范围是2()log (3)g x x =+()()f x g x ≥xA. B. C. D. (,1]-∞-[1,)-+∞(3,1]--(3,1]-7. 在△中,“”是“”的( )ABC sin cos A B =π2C =A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 记为等比数列的前n 项和.已知,,则数列( )n S {}n a 18a =41a =-{}n S A. 有最大项,有最小项 B. 有最大项,无最小项C. 无最大项,有最小项 D. 无最大项,无最小项9. 声音的等级(单位:dB )与声音强度(单位:W/m 2)满足()f x x .喷气式飞机起飞时,声音的等级约为140 dB ;一般说话时,声音的()1210lg110xf x -=⨯⨯等级约为60 dB ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的( )A .106倍B. 108倍C. 1010倍D. 1012倍10. 已知函数,是函数的一个零点,且()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭π4x =-是其图象的一条对称轴.若在区间上单调,则的最大值为( )π4x =()f x ππ,96⎛⎫ ⎪⎝⎭ωA. 18B. 17C. 14D. 13二、填空题 共5道小题,每小题5分,共25分.11. ,,三个数中最大数的是.32-1232log 512. 已知,且有,则___________.(0,)απ∈12sin 2cos2αα-=cos α=13. 已知正方形边长为2,为的中点,是正方形及其内部的点构成的ABCD E BC S ABCD 集合,设集合,则表示的曲线的长度为______.{}2T P S AP AE =∈⋅=T 14. 若实数,且,满足方程组,则______,[],π,παβ∈-αβ12cos 2cos 2sin 2sin αβαβ+=⎧⎪=α=______.(写出一组值即可)β=15. 设是由实数组成的行列的数表,其中表示位于第行第列A n n (),1,2,3,,ij a i j n = i j 的实数,且.记为所有这样的数表构成的集合.对于,记{}1,1ij a ∈-(),S n n (),A S n n ∈为的第行各数之积,为的第列各数之积,令()i r A A i ()j c A A j .给出以下四个结论:()()()11nni j i j l A r A c A ===+∑∑①存在,使得;()4,4A S ∈()0l A =②存在,使得;()9,9A S ∈()0l A =③若,则的取值范围是;()6,6A S ∈()l A {}12,8,4,0,4,8,12---④若,则满足的数表共有个.(),A S n n ∈()2l A n=-A !n 其中所有正确结论的序号是______.三、解答题 共6道小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 等差数列的前项和,其中为常数.{}n a n 2231n S n n a =+++a (1)求的通项公式及的值;{}n a a (2)设,求数列的前项和.()331,2,3,n a n n b a n =+= {}n b n nT17. 已知函数.再从条件①、条件②、条件f (x )=cos 2ωx +3sinωxcosωx +m (ω>0,m ∈R )③这三个条件中选择能确定函数的解析式的两个条件作为已知.()f x 条件①:函数的图象经过点;()f x 10,2⎛⎫ ⎪⎝⎭条件②:函数的最大值为;()f x 32条件③:函数的最小正周期为.()f x π(1)求的解析式;()f x (2)若函数在区间上有且仅有1个零点,求的取值范围.()f x [0,t ](t >0)t 18. 在中,.ABC V 222b c a bc +-=(1)求;A ∠(2)若,.求的面积.11cos 14B =12c =ABC V 19. 已知函数(其中为常数).2()x x mf x e -=m (1)若且直线与曲线相切,求实数的值;0m =y kx =()y f x =k (2)若在上的最大值为,求的值.()y f x =[]1,222e m 20. 设函数,直线是曲线在点处的()()()ln 10f x x k x k =++≠l ()y f x =()()(),0t f t t >切线.(1)求的单调区间;()f x (2)求证:不经过点;l ()0,0(3)当时,设点,,,为与轴的交点,1k =()()(),0A t f t t >()()0,C f t ()0,0O B l y 与分别表示与面积.是否存在点使得成立?ACO S ABO S ACO △ABO A 6ACOABOS S=△△若存在,这样的点有几个?(参考数据:,)A 0.69ln20.70<< 1.09ln3 1.10<<21. 设整数集合,,且满足:对于任意{}121000,,A a a a =⋅⋅⋅⋅12100012025a a a ≤<<⋅⋅⋅<≤,若,则.{},1,2,,1000i j ∈⋅⋅⋅i j A +∈i j a a A+∈(1)判断下列两个集合是否满足题设条件,若不满足,请说明理由;,()11,2,3,,1000A =⋅⋅⋅()21,2,3,,996,997,1000,2023,2024A =⋅⋅⋅(2)求证:,都有;{}1001,1002,,2000x ∀∈⋅⋅⋅x A ∉(3)若,求满足条件的集合的个数.10002025a =A。
(完整版)高三数学综合测试题试题以及答案
高三数学综合测试题一、选择题1、设集合{}U =1,2,3,4,{}25M =x U x x+p =0∈-,若{}2,3U C M =,则实数p 的值 为( B )A .4-B . 4C .6-D .6 2. 条件,1,1:>>y x p 条件1,2:>>+xy y x q ,则条件p 是条件q 的.A 充分不必要条件 .B 必要不充分条件.C 充要条件 .D 既不充分也不必要条件}2,1,0,1.{-B }3,2,0,1.{-C }3,2,1,0.{D3. 设函数()1xf x e =-的图象与x 轴相交于点P, 则曲线在点P 的切线方程为( C ) (A )1+-=x y (B )1+=x y (C )x y -= (D )x y = 4.设a =120.6,b =120.7,c =lg0.7,则 ( C )A .c <b <aB .b <a <cC .c <a <bD .a <b <c 5.函数f (x )=e x -x -2的零点所在的区间为 ( C )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)6、设函数1()7,02(),0x x f x x x ⎧-<⎪=⎨⎪≥⎩,若()1f a <,则实数a 的取值范围是( C )A 、(,3)-∞-B 、(1,)+∞C 、(3,1)-D 、(,3)(1,)-∞-+∞U 7.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( D )8.函数y =log a (x +1)+x 2-2(0<a <1)的零点的个数为( )A .0B .1C .2D .无法确定解析:选C.令log a (x +1)+x 2-2=0,方程解的个数即为所求函数零点的个数.即考查图象y 1=log a (x +1)与y 2=-x 2+2的交点个数9.若函数f (x )=-x 3+bx 在区间(0,1)上单调递增,且方程f (x )=0的根都在区间[-2,2]上,则实数b 的取值范围为 ( D )A .[0,4]B .[)3+∞,C .[2,4]D .[3,4]10.已知定义在R 上的奇函数f (x )是(]0,∞-上的增函数,且f (1)= 2,f (-2)=-4,设P ={x |f (x +t )-4<0},Q ={x |f (x )<-2}.若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是( B )A .t ≤-1B .t >3C .t ≥3D . t >-1二、填空题11.命题“若12<x ,则11<<-x ”的逆否命题为________________ 12.已知偶函数f (x )=242n n x -(n ∈Z )在(0,+∞)上是增函数,则n = 2 .13、已知函数32()(6)1f x x mx m x =++++既存在极大值又存在极小值,则实数m 的取值范围是__、6m >或3m <-_____________14.若不等式1一log )10(x a a -<0有解,则实数a 的范围是 ; 15.已知函数)(x f 定义域为[-1, 5], 部分对应值如表)(x f 的导函数)(x f '的图象如图所示, 下列关于函数)(x f 的命题① 函数)(x f 的值域为[1,2]; ② 函数)(x f 在[0,2]上是减函数; ③ 如果当],1[t x -∈时, )(x f 的最大值是2, 那么t 的最大值为4; ④ 当21<<a 时, 函数a x f y -=)(有4个零点. 其中真命题是 ② (只须填上序号).三、解答题16.已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题,(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围. 答案:(1) 124M m m ⎧⎫=-≤<⎨⎬⎩⎭(2) 94a >或 14a <-17.(本题满分12分)已知二次函数y = f (x )的图象过点(1,-4),且不等式f (x )<0的解集是(0,5).(Ⅰ)求函数f (x )的解析式;(Ⅱ)设g (x )=x 3-(4k -10)x +5,若函数h (x )=2f (x )+g (x )在[-4,-2]上单调递增,在[-2,0]上单调递减,求y =h (x )在[-3,1]上的最大值和最小值.17.解:(Ⅰ)由已知y = f (x )是二次函数,且f (x )<0的解集是(0,5), 可得f (x )=0的两根为0,5, 于是设二次函数f (x )=ax (x -5),代入点(1,-4),得-4=a×1×(1-5),解得a =1,∴ f (x )=x (x -5). ………………………………………………………………4分 (Ⅱ)h (x )=2f (x )+g (x )=2x (x -5)+x 3-(4k -10)x +5=x 3+2x 2-4kx +5, 于是2()344h x x x k '=+-,∵ h (x )在[-4,-2]上单调递增,在[-2,0]上单调递减, ∴ x =-2是h (x )的极大值点,∴ 2(2)3(2)4(2)40h k '-=⨯-+⨯--=,解得k=1. …………………………6分 ∴ h (x )=x 3+2x 2-4x +5,进而得2()344h x x x '=+-. 令22()3443(2)()03h x x x x x '=+-=+-=,得12223x x =-=,. 由下表:可知:h (-2)=(-2)3+2×(-2)2-4×(-2)+5=13,h (1)=13+2×12 -4×1+5=4, h (-3)=(-3)3+2×(-3)2-4×(-3)+5=8,h (23)=(23)3+2×(23)2-4×23+5=9527, ∴ h (x )的最大值为13,最小值为9527.……………………………………12分 18、(本题满分12分) 已知函数),(log )(1011≠>-+=a a x x x f a(1)求)(x f 的定义域,判断)(x f 的奇偶性并证明;(2)对于],[42∈x ,)()(log )(x x mx f a -->712恒成立,求m 的取值范围。
山东省济南四校2024年高三4月综合练习(一模)数学试题试卷
山东省济南四校2024年高三4月综合练习(一模)数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(722+πB .(1022+πC .(1042+πD .(1142+π2.若函数()sin()f x A x ωϕ=+(其中0A >,||)2πϕ<图象的一个对称中心为(3π,0),其相邻一条对称轴方程为712x π=,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( ) A .向右平移6π个单位长度 B .向左平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移12π个单位长度3.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭4.已知函数()ln f x x =,()()23g x m x n =++,若对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( )A .1B .1eC .21e D .1e5.在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x 轴正半轴,终边与单位圆交于点5,5P m ⎛⎫⎪ ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( )A .210B .1010C .7210D .310106.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±7.函数()()sin f x A x =+ωϕ(其中0A >,0>ω,2πϕ<)的图象如图,则此函数表达式为( )A .()3sin 24f x x π⎛⎫=+⎪⎝⎭B .()13sin 24f x x π⎛⎫=+⎪⎝⎭C .()3sin 24f x x π⎛⎫=-⎪⎝⎭D .()13sin 24πf x x ⎛⎫=- ⎪⎝⎭8.设x ∈R ,则“|1|2x -< “是“2x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必条件9.设ln 2m =,lg 2n =,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .m n mn m n +>>-D .m n m n mn +>-> 10.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )A .4383π+B .2383π+C .4343π+D .8343π+11.如图,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )A .22B .32C .212+ D .312+ 12.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D 53二、填空题:本题共4小题,每小题5分,共20分。
浙江省宁波市2024高三冲刺(高考数学)统编版能力评测(综合卷)完整试卷
浙江省宁波市2024高三冲刺(高考数学)统编版能力评测(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在平面直角坐标系中,点,向量,且.若为椭圆上一点,则的最小值为()A.B.C.D.第(2)题设实数,已知函数f(x)=,若函数在区间上有两个零点,则的取值范围是()A.B.C.D.第(3)题在平面直角坐标系中,曲线与坐标轴的交点都在圆上,为圆的直径,点是直线上任意一点;则的最小值为()A.4B.12C.16D.18第(4)题已知等差数列的前项和为,若,当时,有,则()A.B.C.D.第(5)题如图,某几何体的正视图和俯视图是两个全等的矩形,则该几何体不可能是()A.三棱柱B.四棱柱C.五棱柱D.圆柱第(6)题若双曲线C:过点,则双曲线C的离心率为()A.2B.4C.D.第(7)题若实数,满足,且,则下列选项正确的是()A.B.C.D.第(8)题已知集合,集合,则集合()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知正数满足等式,则下列不等式中可能成立的有()A.B.C.D.第(2)题已知是单位向量,且,则下列说法正确的是()A.B.若,则C.的最大值为D.的最小值是第(3)题已知双曲线经过点,则()A.的实轴长为B.的焦距为C.的离心率为D.的渐近线方程是三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若,则______第(2)题在中,,则_________,_________.第(3)题设是等差数列{}的前n项和,, ,则_______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知数列是正项等比数列,是等差数列,且.(1)求数列和的通项公式;(2)设,数列的前项和为,求证:;(3)表示不超过的最大整数,,求①;②.第(2)题有甲、乙两个盒子,甲盒子中装有2个小球,乙盒子中装有4个小球,每次随机取一个盒子并从中取一个球.(1)求甲盒子中的球被取完时,乙盒子中恰剩下2个球的概率:(2)当其中一个盒子中的球被取完时,记另一个盒子恰剩下个球,则求的分布列与数学期望.第(3)题设,记的解集为.(1)求集合;(2)已知,比较与的大小.第(4)题已知椭圆的离心率为经过点P(0,1)与椭圆C的右顶点的直线斜率为(1)求椭圆C的方程;(2)过点P且与x轴不垂直的直线l与椭圆C交于A,B两点,在y轴上是否存在定点N,使得恒成立?若存在,求出点N的坐标;若不存在,请说明理由.第(5)题已知椭圆的离心率是,分别是椭圆C的左、右焦点,以线段为直径的圆的内接正三角形的边长为.(1)求椭圆C的标准方程;(2)已知点,直线与椭圆C交于A、B两点,求面积的最大值.。
湖北省武汉市汉铁高级中学2024学年高三年毕业班第一次综合质量检查数学试题试卷
湖北省武汉市汉铁高级中学2024学年高三年毕业班第一次综合质量检查数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数12iz i-=-(i 为虚数单位)在复平面内对应的点的坐标是( ) A .31,55⎛⎫- ⎪⎝⎭B .31,55⎛⎫-- ⎪⎝⎭C .31,55⎛⎫ ⎪⎝⎭D .31,55⎛⎫- ⎪⎝⎭2.已知抛物线2()20C x py p :=>的焦点为1(0)F ,,若抛物线C 上的点A 关于直线22l y x +:=对称的点B 恰好在射线()113y x ≤=上,则直线AF 被C 截得的弦长为( ) A .919B .1009C .1189D .12793.已知直线2:0l x m y +=与直线:0n x y m ++=则“//l n ”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知圆22670x y x +--=与抛物线()220y px p =>的准线相切,则p 的值为()A .1B .2C .12D .45.把函数2()sin f x x =的图象向右平移12π个单位,得到函数()g x 的图象.给出下列四个命题①()g x 的值域为(0,1] ②()g x 的一个对称轴是12x π=③()g x 的一个对称中心是1,32π⎛⎫⎪⎝⎭④()g x 存在两条互相垂直的切线 其中正确的命题个数是( ) A .1B .2C .3D .46.已知函数()2sin()(0,0)3f x x A ωωπ=->>,将函数()f x 的图象向左平移3π个单位长度,得到函数()g x 的图象,若函数()g x 的图象的一条对称轴是6x π=,则ω的最小值为A .16B .23 C .53D .567.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺8.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .329.已知集合{}2|320M x x x =-+≤,{}|N x y x a ==-若M N M ⋂=,则实数a 的取值范围为( )A .(,1]-∞B .(,1)-∞C .(1,)+∞D .[1,)+∞10.若2332a b a b +=+,则下列关系式正确的个数是( ) ①0b a << ②a b = ③01a b <<< ④1b a << A .1B .2C .3D .411.已知平面α,β,直线l 满足l α⊂,则“l β⊥”是“αβ⊥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件12.已知命题P :x R ∀∈,sin 1x ≤,则p ⌝为( ) A .0x R ∃∈,0sin 1x ≥ B .x R ∀∈,sin 1x ≥ C .0x R ∃∈,0sin 1x >D .x R ∀∈,sin 1x >二、填空题:本题共4小题,每小题5分,共20分。
高三数学综合测试题(含答案)
高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面内的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,则点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<17.若(n∈N*),且,则() A.81 B.16 C.8 D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A. B. C. D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值范围是()A.323⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.133⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=37+i44是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. (本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x 1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x 1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x 1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x 1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S △BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=+i是方程的根,则x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x 1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x 1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。
北京市东城区2023届高三综合练习数学试题(含解析)
A. a b
B. 2a 2b
C. a b
D. log2 a2 log2 b2
5.已知
(x3
2 x2
)n
的展开式中各项系数和为
243,则展开式中常数项为(
)
A.60
B.80
C.
D.
6.过抛物线 y2 4x 的焦点 F 的直线交抛物线于 A、B 两点,若 F 是线段 AB 的中点,则
AB ( )
C.1, 2
2.已知向量
a
1,
m,b
3,
2
,且
(a
b)
b
,则
m=
D. 2,
A.−8
B.−6
C.6
D.8
3.下列函数中,是奇函数且在定义域内单调递减的是( )
A. f x sin x
B. f x 2 x
C. f x x3 x
D. f x 1 ex ex 2
4.若实数 a 、 b 满足 a2 b2 0 ,则下列不等式中成立的是( )
评分 9.6 9.5 9.6 8.9 9.7
(1)求 a 的值,并用频率估计概率,估计某场外观众评
分不小于 9 的概率; (2)从 5 名专家中随机选取 3 人,X 表示评分不小于 9 分的人数;从场外观众中随机 选取 3 人,用频率估计概率,Y 表示评分不小于 9 分的人数;试求 E(X)与 E(Y)的 值; (3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分
六、填空题
15.在数列an 中,对任意的 n N*
都有 an
0
,且
an
2 1
an1
an
,给出下列四个结论:
①对于任意的 n 3 ,都有 an 2 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省余杭高级中学高三上学期第二次阶段性检测数学(理)试题考生须知:1. 本卷满分150分, 考试时间120分钟.2. 答题前, 在答题卷密封区内填写学校、班级和姓名.3. 所有答案必须写在答题卷上, 写在试题卷上无效.4. 考试结束, 只需上交答题卷.选择题部分一、选择题: 本大题共10小题, 每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知i z i -=⋅+)1(,那么复数z 对应的点位于复平面内的( ▲ ) A .第一象限 B .第二象限C .第三象限D .第四象限2.设集合{}{}1log ,0122<=>-=x x B x x A ,则B A 等于(▲ ) A .{|1}x x <-B .{}20<<x x C .{}21<<x x D .{|11}x x x ><-或3.如果对于任意实数,<>表示不小于的最小整数,例如<1.1>2=,< 1.1->1=-,那么“||1x y -<”是“x y <>=<>”的 ( ▲ )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设数列的前n 项和,则的值为( ▲ )A .15B . 16C .49D . 645.8月在北京召开了国际数学家大会, 会标如图示, 它是由四个直角三角形与中间的小正方形拼成的一个大正方形, 若直角三角形中较小的锐角为θ, 大正方形面积是1, 小正方形面积是251, 则θθ22cos sin -的值是( ▲ ) A .2524- B .257- C .2524 D .2576.已知非零向量a ,b 满足|a + b | =|a –b |=23|a |,则a + b 与a –b 的夹角为( ▲ ) A . 30︒ B .60︒ C .120︒ D .150︒7.设函数2)()(x x g x f +=,曲线)(x g y =在点))1(,1(g 处的切线方程为12+=x y ,则曲线)(x f y =在点))1(,1(f 处的切线的斜率为( ▲ ){}n a 2n S n =8aA . 4B . 41-C . 2D . 21- 8.已知函数)0,0,0)(cos()(πϕωϕω<<>>+=A x A x f 为奇函数,该函数的部分图象如图所示,EFG ∆是边长为2的等边三角形,则)1(f 的值为 ( ▲ )A .23-B .26-C .3D . 3- 9.定义一种运算⎩⎨⎧>≤=⊗ba b b a a b a ,,,令45)sin (cos )(2⊗+=x x x f ,且]2,0[π∈x ,则函数)2(π-x f 的最大值是 ( ▲ )A .45 B . 45-C . 1D . 1- 10.已知2*11()2,()(),()(())(2,)n n f x x x c f x f x f x f f x n n N -=-+==≥∈,若函数()n y f x x =-不存在零点,则c 的取值范围是( ▲ ) A .14c < B .34c ≥ C .94c > D .94c ≤非选择题部分二、填空题:本大题共7小题,每小题4分,共28分.11.已知向量,,,若∥,则= ▲ . 12.若函数x x f x2log 12)(-+=,则)4(f = ▲ . 13.设)cos 1(22cos )(x x x f +-=的最小值为 ▲ .14.已知数列满足:则=2012a ▲ .15.已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+=- ▲ .16.当一个非空数集F 满足条件“如果F b a ∈,,则F b a b a b a ∈⋅-+,,,并且当0≠b 时,F ba ∈”时,我们就称F 为一个数域。
以下四个关于数域命题:①0是任何数域的元素;②若数域F 中有非零元素,则F ∈2011;③集合{}Z k k x x p ∈==,3是一个数域;④有理数是一个数域。
其中正确命题的序号为 ▲ .17.给定两个长度为1的平面向量OA 和,它们的夹角为 120.(3,1)a =(1,3)b =(,7)c k =()a c -b k {}n a 434121,0,,N ,n n n n a a a a n *--===∈OB如图所示,点C 在以O 为圆心的圆弧上变动.若其中,则的最大值是 ▲ .AB ,OC xOA yOB =+,x y R ∈x y +三、解答题: 本大题共5小题, 共72分.解答应写出文字说明, 证明过程或演算步骤. 18. (本小题满分14分)在ABC ∆中,角C B A ,,所对的边为c b a ,,,已知4102sin =C 。
(1)求C cos 的值; (2)若ABC ∆的面积为4153,且C B A 222sin 1613sin sin =+,求c b a ,,的值。
19.(本小题满分14分)设首项为1a ,公差为d 的等差数列{}n a 的前项和为n S ,已知30,257=-=S a 。
(1)求1a 及d ; (2)若数列{}n b 满足)(32321*∈++++=N n nnb b b b a nn ,求数列{}n b 的通项公式。
20.(本小题满分14分)已知函数)(x f 满足)()2(x f x f =+,当01≤<-x 时, xex f -=)(;当10≤<x 时,144)(2+-=x x x f 。
(1)求函数)(x f 的单调区间;(2)若)0()()(>-=k kx x f x g ,求函数)(x g 在]5,0[∈x 时的零点个数。
21.(本小题满分15分)已知向量x f x x x x ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos 2(令πππ。
(1)求当)32,2(ππ∈x 时函数)(x f 的值域;(2)是否存在实数?))()((0)()(],,0[的导函数是其中使x f x f x f x f x '='+∈π若存在,则求出x 的值;若不存在,则证明之。
22.(本小题满分15分)设函数x b x x f ln )1()(2+-=,其中b 为常数。
(1)当1-=b 时,求函数)(x f 的单调区间;(2)若函数)(x f 有极值点,求b 的取值范围及)(x f 的极值点; (3)证明:对任意不小于3的正整数,不等式n n n n 1ln )1ln(12<-+<都成立。
余杭高级中学高三第二次阶段性检测 数 学(参考答案及评分标准)三、解答题18.解:(1)41451)410(212sin21cos 22-=-=⨯-=-=C C ………… 6分 (2)C B A 222sin 1613sin sin =+ ,由正弦定理可得:2221613c b a =+由(1)可知415cos 1sin 0,41cos 2=-=∴<<-=C C C C π …………8分4153sin 21==∆C ab S ABC ,得到6=ab由余弦定理C ab b a c cos 2222-+=可得3161322+=c c 4,0,162=∴>=c c c ………12分由⎩⎨⎧==+61322ab b a 可得⎩⎨⎧==23b a 或⎩⎨⎧==32b a , 所以⎪⎩⎪⎨⎧===423c b a 或⎪⎩⎪⎨⎧===432c b a …………14分19.解:(1)因为{}n a 是首项为1a ,公差为d 的等差数列⎩⎨⎧=+=-=+=30105261517d a S d a a 解得⎩⎨⎧-==2101d a …………6分 (2)由题可知: n n na nb b b b =++++ 32132 ①11321)1()1(32---=-++++n n a n b n b b b )2(≥n ②① - ② 可得 1)1(---=n n n a n na nb )2(≥n …………9分 由(1)可知n a n 212-= …………11分所以 )2(414)]1(212)[1()212(≥-=-----=n n nn n n n n b n …………13分1011==a b 符合,所以nnb n 414-=…………14分20. 解:(1)由题可知⎪⎩⎪⎨⎧≤<+-≤<-=-10,14401,)(2x x x x e x f x由)()1(x f x f -=+可知)()2(x f x f =+,即函数)(x f 是以2为最小正周期的周期函数由图可知,函数)(x f 的单调递减区间为)](212.12(Z k k k ∈+-,递增区间为)](12.212[Z k k k ∈++…………6分21.解:(1))42tan()42tan()42sin(22cos 2)(πππ-+++⋅=⋅=x x x xb a x f )4sin(2cos sin 1)2cos 2(sin2cos 2π+=+=-+=x x x x x x ……… 5分由)1211,43(4),32,2(πππππ∈+∈x x ,所以 )22,426()4sin(-∈+πx ……………… 8分 所以函数)(x f 的值域为)1,213(- ……………… 10分 (2)0sin cos cos sin )()(=-++='+x x x x x f x f ,即0cos =x ,],0[π∈x ,所以2π=x 。
………… 13分因为22ππ+≠k x ,且)(,232Z k k x ∈+≠ππ ,所以不存在。
………… 15分22.解:(1)当1-=b 时,函数x x x f ln )1()(2--=,)0(21221)1(2)(2>--=--='x x x x x x f 此时)(x f 有惟一极小值点2312211+=-+=b x , ……………… 3分则当)231,0(+∈x 时,0)('<x f ,所以)(x f 在)231,0(+上为减函数, 当),231(+∞+∈x 时,0)('>x f ,所以)(x f 在),231(+∞+上为增函数。
……………… 5分 (2)由题意得,)(x f 的定义域为()∞+,0,xb x x b x x f 21)21(222)(2'-+-=+-=, …… 6分①当21>b 时,0)('>x f ,函数)(x f 在定义域()∞+,0上单调递增。