中考相似和全等三角形总结分类
全等三角形几种类型(总结)
![全等三角形几种类型(总结)](https://img.taocdn.com/s3/m/ef9a1eee5f0e7cd185253681.png)
全等三角形与角平分线全等图形:能够完全重合的两个图形就是全等图形. 全等多边形: 能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等.如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌"表示全等,读作“全等于”.A'B'C'D'E'EDCBA全等三角形:能够完全重合的三角形就是全等三角形.全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.判定三角形全等的基本思路:SAS HL SSS →⎧⎪→⎨⎪→⎩找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩ 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边全等三角形的图形归纳起来有以下几种典型形式:⑴平移全等型⑵对称全等型⑶旋转全等型由全等可得到的相关定理:⑴角的平分线上的点到这个角的两边的距离相等.⑵到一个角的两边的距离相同的点,在这个角的平分线上.⑶等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角).⑷等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等⑹线段垂直平分线上的点和这条线段两个端点的距离相等.⑺和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等;⑵到角的两边距离相等的点在角的平分线上.它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式:1.由角平分线上的一点向角的两边作垂线,2.过角平分线上的一点作角平分线的垂线,从而形成等腰三角形,3.OA OB,这种对称的图形应用得也较为普遍,ABOP POBA ABO P三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理:直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.板块一、全等三角形的认识与性质【例1】 在AB 、AC 上各取一点E 、D ,使AE AD =,连接BD 、CE 相交于O 再连结AO 、BC ,若12∠=∠,则图中全等三角形共有哪几对?并简单说明理由.21E ODCBA【巩固】如图所示,AB AD =,BC DC =,E F 、在AC 上,AC 与BD 相交于P .图中有几对全等三角形?请一一找出来,并简述全等的理由.板块二、三角形全等的判定与应用【例2】 (2008年巴中市高中阶段教育学校招生考试)如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.FEDCBA【例3】 (2008年宜宾市)已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.例题精讲FAE P DCBODCBA【巩固】如图,AC 、BD 相交于O 点,且AC BD =,AB CD =,求证:OA OD =.ABCDO【例4】 (哈尔滨市2008 年初中升学考试)已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.F E ODCB A【例5】 已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.F E CBA【例6】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.PFEDCBA【巩固】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.GA BC DEF【例7】 在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.M EDC B A板块三、截长补短类【例1】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?NEB M A D【巩固】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?NCDEB M A【例2】 如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB的长为 ( )A 。
(中考考点梳理)三角形及其全等-中考数学一遍过
![(中考考点梳理)三角形及其全等-中考数学一遍过](https://img.taocdn.com/s3/m/377d3703e3bd960590c69ec3d5bbfd0a7956d5ee.png)
考点14 三角形及其全等一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形1.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;学科-网(3)全等三角形对应的中线、高线、角平分线、中位线都相等.考向一三角形的三边关系在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.典例1 小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为__________的木条.A.2cm B.3cmC.12cm D.15cm【答案】C【解析】设木条的长度为x cm,则9–6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选C.1.以下列各组线段为边,能组成三角形的是A.2cm,5cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.1cm,2cm,3cm考向二三角形的内角和外角在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.典例2 如图,下列有四个说法,正确的个数是①∠B >∠ACD ;②∠B +∠ACB =180°–∠A ;③∠A +∠B =∠ACD ;④∠HEC >∠ B .A .1个B .2个C .3个D .4个【解答】解:①∠B <∠ACD ,故①错误; ②∠B +∠ACB =180°–∠A ,故②正确; ③∠A +∠B =∠ACD ,故③正确;④∠HEC =∠AED >∠ACD >∠B ,则∠HEC >∠B ,故④正确. 故选C .2.如图,CE 是△ABC 的外角ACD ∠的平分线,若3560,B ACE ∠=︒∠=︒,则A ∠=__________.3.如图,在△ABC 中,∠ACB =68°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC =__________.考向三 三角形中的重要线段三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角,由三角形的中线可得线段之间的关系,由三角形的角平分线可得角之间的关系.另外,要注意区分三角形的中线和中位线.中线:连接三角形一个顶点和它对边中点的线段;中位线:连接三角形两条边中点的线段.典例3 在△ABC 中,AB =3,BC =4,AC =2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是A .5B .7C .9D .11【答案】B典例4 如图,点G 为△ABC 的重心,则S △ABG ∶S △ACG ∶S △BCG 的值是A .1∶2∶3B .2∶1∶2C .1∶1∶1D .无法确定【答案】C【解析】如图,分别延长AG 、CG 、BG ,交BC 、AB 、AC 于点D 、F 、E ,根据三角形重心的定理得到AD 、BE 、CF 是△ABC 的中线,根据三角形的中线把三角形分为面积相等的两个三角形可得,ABD ACD BDG CDG S S S S ∆∆∆==,即可得ABG ACG S S ∆∆=,同理可得ABG BCG S S ∆∆=,所以=ABG BCG ACG S S S ∆∆∆=,即S △ABG ∶S △ACG ∶S △BCG =1∶1∶1,故选C .4.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考向四 全等三角形1.从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路:(1)已知两边SAS HLSSS ⎧⎪⎨⎪⎩找夹角→找直角→找第三边→ (2)已知一边、一角AAS SAS ASA AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩一边为角的对边→找另一角→找夹角的另一边→一边为角的邻边找夹角的另一角→找边的对角→ (3)已知两角ASAAAS ⎧⎨⎩找夹边→找其中一角的对边→ 2.若题中没有全等的三角形,则可根据题中条件合理地添加辅助线,如运用作高法、倍长中线法、截长补短法、分解图形法等来解决运动、拼接、旋转等探究性题目.典例5 如图,已知∠ADB =∠CBD ,下列所给条件不能证明△ABD ≌△CDB 的是A .∠A =∠CB .AD =BC C .∠ABD =∠CDB D .AB =CD【答案】D【解析】A .∵∠A =∠C ,∠ADB =∠CBD ,BD =BD ,∴△ABD ≌△CDB (AAS ),故正确;B .∵AD =BC ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (SAS ),故正确;C .∵∠ABD =∠CDB ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (ASA ),故正确;D .∵AB =CD ,BD =DB ,∠ADB =∠CBD,不符合全等三角形的判定方法,故不正确,故选D.【名师点睛】本题考查了全等三角形的判定方法,①三边对应相等的两个三角形全等,简记为“SSS”;②两边及其夹角对应相等的两个三角形全等,简记为“SAS”;③两角及其夹边对应相等的两个三角形全等,简记为“ASA”;④两角及其中一角的对边对应相等的两个三角形全等,简记为“AAS”;⑤斜边及一直角边对应相等的两个三角形全等,根据这几种判定方法解答即可.5.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在∠O的平分线上,其中正确的结论个数是A.0 B.1C.2 D.36.如图,在△BCE中,AC⊥BE,AB=AC,点A、点F分别在BE、CE上,BF、AC相交于点D,BD=CE.求证:AD=AE.1.如图所示,其中三角形的个数是A.2个B.3个C.4个D.5个2.下列图形不具有稳定性的是A.正方形B.等腰三角形C.直角三角形D.钝角三角形3.直角三角形中两锐角之差为20°,则较大锐角为A.45° B.55°C.65° D.50°4.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC__________的交点.A.角平分线B.高线C.中线D.边的中垂线5.如图所示,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠1=∠26.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是A .∠DAE =∠CBEB .△DEA 不全等于△CEBC .CE =DED .△EAB 是等腰三角形7.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________度.8.如图所示,AB ⊥BE 于点B ,DE ⊥BE 于点E .(1)若∠A =∠D ,AB =DE ,则△ABC 与△DEF 全等的理由是__________; (2)若∠A =∠D ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (3)若AB =DE ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (4)若AB =DE ,AC =DF ,则△ABC 与△DEF 全等的理由是__________.学-科网9.如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是中线,AF ⊥BD ,F 为垂足,过点C 作AB 的平行线交AF 的延长线于点E .求证:(1)∠ABD =∠FAD ;(2)AB =2CE .10.如图,,,于D ,于E ,且.求证:.AB AC =90BAC ∠= BD AE ⊥CE AE ⊥BD CE >BD EC ED =+11.如图,操场上有两根旗杆CA与BD之间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M 点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?1.(2018•柳州)如图,图中直角三角形共有A.1个B.2个C.3个D.4个2.(2018•河北)下列图形具有稳定性的是A.B.C.D.3.(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是A.中线B.角平分线C.高D.中位线4.(2018•百色)顶角为30°的等腰三角形三条中线的交点是该三角形的A.重心B.外心C.内心D.中心5.(2018•毕节市)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是A.4 B.6C.8 D.106.(2018•贵阳市)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是A.线段DE B.线段BEC.线段EF D.线段FG7.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为A.90°B.95°C.100°D.120°8.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于A.150°B.180°C.210°D.270°9.(2018•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于A.40°B.45°C.50°D.55°10.(2018•聊城市)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°–α–β11.(2018•黔西南州市)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙B.乙和丙C.甲和丙D.只有丙12.(2018•安顺市)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACDA.∠B=∠C B.AD=AEC.BD=CE D.BE=CD13.(2018•南京市)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥A D.若CE=a,BF=b,EF=c,则AD的长为A.a+c B.b+cC.a–b+c D.a+b–c14.(2018•辽阳市)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为A.5 B.24 5C.4 D.12 515.(2018•绵阳市)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=__________.16.(2018•泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__________.17.(2018•陇南市)已知a,b,c是△ABC的三边长,a,b满足|a–7|+(b–1)2=0,c为奇数,则c=__________.18.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△ED C.19.(2018•云南)如图,已知AC平分∠BAD,AB=A D.求证:△ABC≌△ADC.4.【答案】3【解析】由勾股定理知AD3=,BD平分∠ABC交AC于D点,所以PD=AD最小,PD=3,故答案为:3.5.【答案】D【解析】∵OA=OB,∠A=∠B,∠O=∠O,∴△AOD≌△BOC(ASA),故①正确;∴OD=CO,∴BD=AC,∴△ACE≌△BDE(AAS),故②正确;∴AE=BE,连接OE,∴△AOE≌△BOE(SSS),∴∠AOE =∠BOE ,∴点E 在∠O 的平分线上,故③正确, 故选D .6.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CEAB AC =⎧⎨=⎩,∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .1.【答案】D【解析】图中的三角形有:△ABC ,△BCD ,△BCE ,△ABE ,△CDE 共5个.故选D . 2.【答案】A【解析】根据三角形具有稳定性可知,只有选项A 不具有稳定性,故选A . 3.【答案】B【解析】设两个锐角分别为x 、y ,由题意得,,解得,所以最大锐角为55°.故选B . 4.【答案】A【解析】∵到角的两边的距离相等的点在角的平分线上, ∴这个点是三角形三条角平分线的交点.故选A . 5.【答案】D【解析】根据全等“SAS”判定可知,要证△ABE ≌△DBC 还需补充条件AB ,BE 与BC ,BD 的夹角相等,即∠ABE =∠CBD 或者∠1=∠2,故选D . 6.【答案】B【解析】∵∠1+∠C +∠ABC =∠2+∠D +∠DAB =180°,且∠1=∠2,∠C =∠D , ∴∠ABC =∠DAB ,∴∠ABC –∠2=∠DAB –∠1,∴∠DAE =∠CBE .故A 正确;∵∠1=∠2,∴AE =BE .在△DEA 和△CEB 中DAE CBE C D AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEA ≌△CEB (AAS ),故B 错误;由△DEA ≌△CEB 可得CE =DE .故C 正确.∵∠1=∠2,∴BE =AE ,∴△EAB 是等腰三角形故D 正确;故选B .=90=20x y x y +︒-︒⎧⎨⎩=55=35x y ︒︒⎧⎨⎩7.【答案】135 【解析】如图所示:由题意可知△ABC ≌△EDC ,∴∠3=∠BAC , 又∵∠1+∠BAC =90°,∴∠1+∠3=90°,∵DF =DC ,∴∠2=45°,∴∠1+∠2+∠3=135度, 故答案是:135.8.【答案】ASA ,AAS ,SAS ,HL【解析】(1)在△ABC 和△DEF 中,因为∠B =∠E =90°, AB =DE ,∠A =∠D ,所以△ABC ≌△DEF (ASA); (2)在△ABC 和△DEF 中,因为∠B =∠E =90°, ∠A =∠D ,BC =EF ,所以△ABC ≌△DEF (AAS); (3)在△ABC 和△DEF 中,因为AB =DE ,∠B =∠E =90°, BC =EF ,所以△ABC ≌△DEF (SAS);(4)在Rt △ABC 和Rt △DEF 中,因为AC =DF ,AB =DE , 所以Rt △ABC ≌Rt △DEF (HL). 故答案为:ASA ;AAS ;SAS ;HL.10.【解析】,,,,,, ,90BAC ∠= CE AE ⊥BD AE ⊥90ABD BAD ∠∠∴+= 90BAD DAC ∠∠+= 90ADB AEC ∠∠== ABD DAC ∠∠∴=在和中,,∴≌(AAS ),,, ,∴BD =EC +ED .11.【解析】(1)如图,∵CM 和DM 的夹角为90°,∴∠1+∠2=90°,∵∠DBA =90°,∴∠2+∠D =90°,∴∠1=∠D ,在△CAM 和△MBD 中,,∴△CAM ≌△MBD (AAS ),∴AM =DB ,AC =MB , ∵AC =3m ,∴MB =3m ,∵AB =12m ,∴AM =9m ,∴DB =9m ; (2)9÷0.5=18(s ).学_科网答:小强从M 点到达A 点还需要18秒.1.【答案】CABD CAE ABD EAC BDA E AB AC ∠=∠∠=∠=⎧⎪⎨⎪⎩ABD CAE BD AE ∴=EC AD =AE AD DE =+ 1A B D CM MD ∠=∠∠=∠=⎧⎪⎨⎪⎩【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选C.2.【答案】A【解析】三角形具有稳定性.故选A.3.【答案】A【解析】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.4.【答案】A【解析】三角形三条中线的交点是三角形的重心,故选A.5.【答案】C【解析】设第三边长为x,则8–2<x<2+8,6<x<10,故选C.6.【答案】B【解析】根据三角形中线的定义知线段BE是△ABC的中线,故选B.7.【答案】B【解析】∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选B.8.【答案】C【解析】如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°–∠C=30°+90°+180°–90°=210°,故选C . 9.【答案】C【解析】∵∠A =60°,∠B =40°,∴∠ACD =∠A +∠B =100°, ∵CE 平分∠ACD ,∴∠ECD =12∠ACD =50°,故选C . 10.【答案】A【解析】由折叠得:∠A =∠A ',∵∠BDA '=∠A +∠AFD ,∠AFD =∠A '+∠CEA ', ∵∠A =α,∠CEA ′=β,∠BDA '=γ,∴∠BDA '=γ=α+α+β=2α+β,故选.11.【答案】B【解析】乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等; 在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等; 不能判定甲与△ABC 全等;故选B .13.【答案】D【解析】∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠AFB =∠CED =90°,∠A +∠D =90°,∠C +∠D =90°,∴∠A =∠C ,∵AB =CD ,∴△ABF ≌△CDE ,∴AF =CE =a ,BF =DE =b , ∵EF =c ,∴AD =AF +DF =a +(b –c )=a +b –c ,故选D . 14.【答案】B【解析】由题意可得,OC 为∠MON 的平分线, ∵OA =OB ,OC 平分∠AOB ,∴OC ⊥AB , 设OC 与AB 交于点D ,作BE ⊥AC 于点E ,∵AB =6,OA =5,AC =OA ,OC ⊥AB ,∴AC =5,∠ADC =90°,AD =3, ∴CD =4,∵2AB CD ⋅=2AC BE ⋅,∴642⨯=52BE ⨯,解得,BE =245,故选B . 15【解析】∵AD 、BE 为BC ,AC 边上的中线,∴BD =12BC =2,AE =12AC =32,点O 为△ABC 的重心,∴AO =2OD ,OB =2OE , ∵BE ⊥AD ,∴BO 2+OD 2=BD 2=4,OE 2+AO 2=AE 2=94,∴BO 2+14AO 2=4,14BO 2+AO 2=94,∴54BO 2+54AO 2=254,∴BO 2+AO 2=5,∴AB. 16.【答案】5【解析】根据三角形的三边关系,得4<第三边<6. 又第三条边长为整数,则第三边是5.故答案为:5. 17.【答案】7【解析】∵a ,b 满足|a –7|+(b –1)2=0,∴a –7=0,b –1=0,解得a =7,b =1, ∵7–1=6,7+1=8,∴6<c <8,又∵c 为奇数,∴c =7,故答案是:7.18.【解析】∵在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ).19.【解析】∵AC 平分∠BAD ,∴∠BAC =∠DAC ,在△ABC 和△ADC 中,,∴△ABC ≌△ADC .A EAC EC ACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩AB AD BAC DAC AC AC =∠=∠=⎧⎪⎨⎪⎩。
中考数学考点专题复习 三角形与全等三角形
![中考数学考点专题复习 三角形与全等三角形](https://img.taocdn.com/s3/m/c107b7f158fb770bf68a551b.png)
剖析
先看一个事实,如图,将等腰△ABC 的底边 BC 延长线上的任一点和顶 点 A 相连,所得的△DAB 和△DAC 无疑是不全等的,由此可知,有两边及 其一边的对角对应相等的两个三角形(简称“边边角”)不一定全等.因此, 在判定三角形全等时,一定要留心“边边角”,别上当哟.
正解 证明:∵EB=EC,∴∠3=∠4.又∵∠1=∠2,∴∠1+∠3= ∠2+∠4,即∠ABC=∠ACB,∴AB=AC.在△AEB和△AEC中, ∵EB=EC,∠1=∠2,AB=AC,∴△AEB≌△AEC(SAS), ∴∠BAE=∠CAE
的长可能是下列哪个值( B )
A.11
B.5 C.2 D.1
(2)(2015·巴中)若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-
2)2=0,则第三边 c 的取值范围是 1<c<5
.
【点评】 三角形三边关系性质的实质是“两点之间,线段最 短”.根据三角形的三边关系,已知三角形的两边a,b,可确 定三角形第三边长c的取值范围|a-b|<c<a+b.
[对应训练] 1.(1)(2014·宜昌)已知三角形两边长分别为3和8,则该三角形第 三边的长可能是( )B A.5 B.10 C.11 D.12
(2)(2014·淮安)若一个三角形三边长分别为2,3,x,则x的值可 以为___4_.(只需填一个整数)
【例2】 (1)(2014·赤峰)如图,把一块含有30°角(∠A=30°)的 直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌 面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么 ∠AFE=( ) D
A.40° B.50° C.60° D.70°
4.(2015·柳州)如图,下列条件中,不能证明△ABC≌△DCB 的是( D )
中考数学专题复习全攻略:第二节 三角形的基础知识与全等三角形
![中考数学专题复习全攻略:第二节 三角形的基础知识与全等三角形](https://img.taocdn.com/s3/m/47a17d125b8102d276a20029bd64783e09127db9.png)
第二节 三角形的基础知识与全等三角形知识点一:三角形的分类及性质 1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段(2)三条线段不在同一直线上, 三角形是封闭图形 (3)首尾顺次相接三角形用符号“∆”表示,顶点是A 、B 、C 的三角形记作“∆ABC ”,读作“三角形ABC ”。
5.三角形的分类(1)按角的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形(2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形6.三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
.变式练习1:等腰三角形两边长分别是3和6,则该三角形的周长为15.[变式练习2:已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A. 5B. 6C. 11D. 16【解析】C组成三角形的三条线段长度须满足“两边之和大于第三边,两边之差小于第三边”.此三角形的两边之和为14,两边之差为6,所以此三角形第三边的长可能是11.变式练习3:下列长度的三根小木棒能构成三角形的是( D )A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cmC.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm7.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.变式练习:在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为( C ) A.35°B.40°C.45°D.50°(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.8.三角形中的重要线段8.三角形中的重要线段四线性质角平分线(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)中线(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部中位线平行于第三边,且等于第三边的一半注意:在运用分类讨论思想计算等腰三角形周长时,必须考虑三角形三边关系注意:(1)在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
中考专题复习—三角形(相似三角形、特殊三角形、全等三角形)
![中考专题复习—三角形(相似三角形、特殊三角形、全等三角形)](https://img.taocdn.com/s3/m/1c45bd455901020207409ceb.png)
三角形(相似三角形、特殊三角形、全等三角形)三角形(一)一、知识点回顾二、错题重做如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数y=(k≠0)的图象经过点C.(1)求反比例函数的解析式;(2)若点P是反比例函数图象上的一点,△PAD的面积恰好等于正方形ABCD的面积,求点P的坐标.如图,已知直线m x y 1+=与x 轴、y 轴分别交于点A 、B 与双曲线x k y 2=(x<0)分别交于点C 、D ,且点C 的坐标为(-1,2).(1)分别求出直线AB 及双曲线的解析式;(2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,21y y >.3、(2010广州)已知反比例函数y=(m 为常数)的图象经过点A (﹣1,6). (1)求m 的值;(2)如图,过点A 作直线AC 与函数y=的图象交于点B ,与x 轴交于点C ,且AB=2BC ,求点C 的坐标.三、内容讲解(二)相交线与平行线1、同位角、内错角、同旁内角2、平行线、相交线3、平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
4、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
(三)三角形1、三角形的边、角、三边关系|b−c|<a<b+c2、三角形的角平分线、中线、高(可能在外部)3、等腰三角形性质:两腰相等,两底角相等,三线合一等边三角形判定:2个内角是60°、三边相等、1个角是60°的等腰直角三角形的性质:30°所对直角边等于斜边的一半,斜边上的中线等于斜边的一半4、外角、内角和、外角和、多边形内角和和外角和、平面镶嵌(四)全等三角形1、全等形、全等三角形的性质:对应边相等、对应角相等、面积相等、周长相等2、全等三角形的判定:SSS 、SAS 、ASA 、AAS 、HL3、角的平分线的判定和性质4、线段垂直平分线的判定和性质5、作图:角平分线、垂直平分线6、轴对称和轴对称图形(将军饮马)(五)勾股定理1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方:c b a =+222、勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系: 222c b a =+(四)相似1、比、比的前项、比的后项、比例、比例外项、比例内项、比例线段、比例的基本性质2、合比性质:如果d c b a =,那么dd c b b a +=+ 等比性质:如果n m d c b a === ,(0≠+++m d b ),那么b a n d b m c a =++++++ 3、黄金分割:215-倍、黄金分割点。
三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)
![三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)](https://img.taocdn.com/s3/m/d68d1a4554270722192e453610661ed9ad51558b.png)
三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。
特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。
直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。
模型01 与三角形有关的线段应用高(AD)中线(AD)角平分线(AD)中位线(DE)模型02 与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03 三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。
2024年中考数学几何模型归纳(全国通用):全等与相似模型-一线三等角(K字)模型(学生版)
![2024年中考数学几何模型归纳(全国通用):全等与相似模型-一线三等角(K字)模型(学生版)](https://img.taocdn.com/s3/m/9411c514302b3169a45177232f60ddccdb38e642.png)
专题14全等与相似模型-一线三等角(K 字)模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角:锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B +CE=DE证明思路:,A B C BED +任一边相等BED ACE异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:FAC ABD CED +任意一边相等证明思路:,A B C BED +任一边相等BED ACE例1.(2021·山东日照·中考真题)如图,在矩形ABCD 中,8cm AB ,12cm AD ,点P 从点B 出发,以2cm/s 的速度沿BC 边向点C 运动,到达点C 停止,同时,点Q 从点C 出发,以cm/s v 的速度沿CD 边向点D 运动,到达点D 停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v 为_____时,ABP △与PCQ △全等.例2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明∶DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC= ,其中 为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.例3.(2022·广东·汕头市潮阳区一模)(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;,OB=4,将线段AB绕(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin∠ABO=35点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x 5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.例4.(2023·湖南岳阳·统考一模)如图,在ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E .(1)当∠BDA =115°时,∠EDC =______°,∠AED =______°;(2)线段DC 的长度为何值时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,求∠BDA 的度数;若不可以,请说明理由.例5.(2022·浙江杭州·一模)老师在上课时,在黑板上写了一道题:“如图,ABCD 是正方形,点E 在BC 上,DF ⊥AE 于F ,请问图中是否存在一组全等三角形?”小杰同学经过思考发现:△ADF ≌△EAB .理由如下:因为ABCD 是正方形(已知)所以∠B =90°且AD =AB 和AD ∥BC又因为DF ⊥AE (已知)即∠DFA =90°(垂直的意义)所以∠DFA =∠B (等量代换)又AD ∥BC 所以∠1=∠2(两直线平行,内错角相等)在△ADF 和△EAB 中12DFA B AD AB所以△ADF ≌△EAB (AAS )小胖却说这题是错误的,这两个三角形根本不全等.你知道小杰的错误原因是什么吗?我们再添加一条线段,就能找到与△ADF 全等的三角形,请能说出此线段的做法吗?并说明理由.例6.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ,AC BC ,AD CE ,BE CE ,垂足分别为D ,E , 2.5cm AD , 1.7cm DE .求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN 的边AM 、AN 上,AB AC ,点E ,F 在MAN 内部的射线AD 上,且BED CFD BAC .求证:ABE CAF ≌.(3)拓展应用:如图③,在ABC 中,AB AC ,AB BC .点D 在边BC 上,2CD BD ,点E 、F 在线段AD 上,BED CFD BAC .若ABC 的面积为15,则ACF 与BDE 的面积之和为________.(直接填写结果,不需要写解答过程)例7.(2023·贵州遵义·八年级统考期末)过正方形ABCD (四边都相等,四个角都是直角)的顶点A 作一条直线MN .(1)当MN 不与正方形任何一边相交时,过点B 作BE MN 于点E ,过点D 作DF MN 于点F 如图(1),请写出EF ,BE ,DF 之间的数量关系,并证明你的结论.(2)若改变直线MN 的位置,使MN 与CD 边相交如图(2),其它条件不变,EF ,BE ,DF 的关系会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明;(3)若继续改变直线MN 的位置,使MN 与BC 边相交如图(3),其它条件不变,EF ,BE ,DF 的关系又会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明.模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.例1.(2023·山东东营·统考中考真题)如图,ABC,为等边三角形,点D,E分别在边BC,AB上,60ADE若4DE ,则AD的长为()BD DC, 2.4A.3B.5C.2例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在 ABC中,∠BAC=90°,ABAC=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在 ABC中,ABAC=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在 ABC中,沿 ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.问题探究:(1)先将问题特殊化,如图(2),当90 时,直接写出GCF 的大小;(2)再探究一般情形,如图(1),求GCF 与 的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当120 时,若12DG CG ,求BE CE 的值.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC中,90ACB,AC BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:ADC CEB△≌△.(1)探究问题:如果AC BC,其他条件不变,如图②,可得到结论;ADC CEB△∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x与直线CD交于点 2,1M,且两直线夹角为 ,且3tan2,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,3AB ,5BC ,点E为BC边上—个动点,连接AE,将线段AE绕点E顺时针旋转90 ,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若DPC△为直角三角形时,请你探究并直接写出BE的长.【观察与猜想】(1)如图1,在正方形ABCD中,E,F分别是AB,AD则DECF的值为___________;(2)如图2,在矩形ABCD中,7AD ,BD,若CE BD,则CEBD的值为___________;【类比探究】(3)如图3,在四边形ABCD中,90A B,E为线交ED的延长线于G,交AD的延长线于F,求证:DE AB CF课后专项训练1.(2022·湖南·长沙市二模)如图,等腰直角三角形ABC 的直角顶点C 与坐标原点重合,分别过点A 、B 作x 轴的垂线,垂足为D 、E ,点A 的坐标为(-2,5),则线段DE 的长为()A .4B .6C .6.5D .72.(2022·贵州·凯里一模)如图,在平面直角坐标系中 0,4A 、 6,0C ,BC x 轴,存在第一象限的一点 ,25P a a 使得PAB △是以AB 为斜边的等腰直角三角形,则点P 的坐标().A . 3,1或 3,3B . 5,5C . 3,1或 5,5D .3,3A . 9,3B . 9,24.(2023·湖南长沙·九年级专题练习)如图,在矩形CD 或延长线上运动,且∠BEF5.(2021·浙江台州·中考真题)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=_____.7.(2022·安徽·九年级专题练习)如图,矩形取BE的中点G,点G绕点E运动路径=,△CEF10.(2023·浙江·九年级期末)如图,已知ABC 和CDE 均是直角三角形,Rt ACB CED ,AC CE ,AB CD 于点F .(1)求证:ABC ≌CDE ;(2)若点B 是EC 的中点,10cm DE ,求AE 的长.11.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ,AE =BD ,则AED ≌_______;②如图2,ABC 为正三角形,,60BD CF EDF ,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l 于E ,CF l 于F .若1AE ,2CF ,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为 ,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ,AC BC ,BE CE 于E ,AD ⊥CE 于D ,4cm DE ,6cm AD ,求BE 的长.12.(2022·江苏镇江·二模)模型构建:如图1,AM MN 于点M ,BN MN 于点N ,AB 的垂直平分线交MN 于点P ,连接AP 、BP .若90APB ,求证:AM BN MN .数学应用:如图2,在ABC 中,D 是BC 上一点,AC AD BD ,90CAD ,8AB ,求ABC 的面积.实际运用:建设“交通强国”是满足人民日益增长的美好生活需要的必然要求.建设“美丽公路”是落实美丽中国建设、回应人民日益增长的美好生活对优美生态环境的需要.如图3是某地一省道与国道相交处的示意图,点Q 处是一座古亭,鹅卵石路QA 、QB 以及 AB 两旁栽有常青树,其它区域种植不同的花卉;设计要求QA QB ,QA QB , AB 是以Q 为圆心、QA 为半径的圆弧(不计路宽,下同).请在图4中画出符合条件的设计图,要求尺规作图,保留作图痕迹,标注必要的字母,写出详细的作法,不要求说明理由;13.(2022·黑龙江·桦南县九年级期中)如图1,在ABC 中,90ACB ,AC BC ,直线MN 经过点C ,且AD MN 于D ,BE MN 于E .(1)由图1,证明:DE AD BE ;(2)当直线MN 绕点C 旋转到图2的位置时,请猜想出DE ,AD ,BE 的等量关系并说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).14.(2022·黑龙江佳木斯·三模)在ABC 中,90ABC ,AB BC ,D 为直线AB 上一点,连接CD ,过点B 作BE CD 交CD 于点E ,交AC 于点F ,在直线AB 上截取AM BD ,连接FM .(1)当点D ,M 都在线段AB 上时,如图①,求证:BF MF CD ;(2)当点D 在线段AB 的延长线上,点M 在线段BA 的延长线上时,如图②;当点D 在线段BA 的延长线上,点M 在线段AB 的延长线上时,如图③,直接写出线段BF ,MF ,CD 之间的数量关系,不需要证明.15.(2022·安徽·合肥二模)(1)如图1,等腰直角ABC 中,90ACB ,CB CA ,线段ED 经过点C ,过A 作AD ED 于点D ,过B 作BE ED 于.E 求证:BEC △≌CDA .(2)如图2,已知在平面直角坐标系xOy 中,O 为坐标原点,点A 的坐标为 0,4,点C 的坐标为 3,0 ,点B 是平面直角坐标系中的一点,若ABC 是以AC 为直角边的等腰直角三角形,求点B 的坐标;(3)如图3,已知在平面直角坐标系xOy 中,O 为坐标原点,在等腰直角OAB 中,90OAB ,4OA AB ,点M 在线段OB 上从O 向B 运动(运动到点B 停止),以点M 为直角顶点向右上方做等腰直角AMN ,求点N 移动的距离.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当FEC ②如图2,当2tan 3FCE 时,求AF 的长;(2)如图3,延长CF ,DA 交于点时,求证:AE AF .18.(2023·广东深圳·九年级校考阶段练习)如图,在ABC 中6cm AB AC ,8cm BC ,点E 是线段BC 边上的一动点(不含B 、C 两端点),连接AE ,作AED B ,交线段AB 于点D .(1)求证:BDE CEA △∽△(2)设BE x ,AD y ,请求y 与x 之间的函数关系式.(3)E 点在运动的过程中,ADE V 能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由.19.(2023·浙江·九年级专题练习)在平面直角坐标系中,O 为坐标原点,直线AB 与y 轴交于点A ,与x 轴交于点B ,2OA ,AOB 的面积为2.(1)如图1,求直线AB 的解析式.(2)如图2,线段OA 上有一点C ,直线BC 为2(0)y kx k k ,AD y 轴,将BC 绕点B 顺时针旋转90 ,交AD 于点D ,求点D 的坐标.(用含k 的式子表示)(3)如图3,在(2)的条件下,连接OD ,交直线BC 于点E ,若345ABC BDO ,求点E 的坐标.20.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB ,6BC .点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM 的最小值;②当AG GM 取最小值时,求线段DE 的长.。
三角形全等相似知识点总结
![三角形全等相似知识点总结](https://img.taocdn.com/s3/m/d86d7fd9d05abe23482fb4daa58da0116c171fbf.png)
三角形全等、相似知识点比较总结 !■三角形特点及相似全靠等的概:[特点:三角形的稳定性,这一特征的本质就是“边长确定,大小、形状也就确定 :概念:1、相似三角形是指形状相同的三角形。
2、全等三角形指的是两个三角形的 形状、大小完全相同。
:结论:1、可见全等三角形要在相似三角形的基础上多加几个个条件才能确定。
2、判断三角形的全等与相似实际上是看由哪几个元素能确定一”,三角形的一个元素变化,相应的边和角都会跟着变化。
两三角形相似。
AAX SSA判V角形相似。
AA平行线分线段成比例A疋SXDX XSCBF 性 质(2) (AAA)(6) (SSA)(4) (SSA)(7)斜边和一(3) (ASA)两角和它们的夹边对应 相等的两个三角形全等。
V (5) (SAS)两边和它们的夹角对应 相等的两个三角形全等。
V(1) (SSS)三边对应成比例,V(2) (AA)两角对应相等,两三(3) (SAS)两边对应成比例且 夹角相等,两三角形相似V(4) (AAS)两角和其中一角的对边 对应相等的两个三角形全等。
V(1) (SSS 三边对应相等的两个三 角形全等。
V S A(1) 相似三角形对应角相等,对应边成比例。
(2) 相似三角形对应高的比,对应中线的比和对应角平分线的比都 等于相似比;相似三角形周长的比等于相似比。
(3) 相似三角形面积的比等于相似比的平方。
三角形全等I戒三主三爭爭E-3^/[个唯一的一个大小或形状相同的三角形。
3、要保证三角形相似(形状一样),对应角必须相等;要保证对应角相等,对应边变化必须成比例。
三角形相似。
初三《相似三角形》知识点总结
![初三《相似三角形》知识点总结](https://img.taocdn.com/s3/m/5c70cb42caaedd3382c4d312.png)
相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。
如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。
相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。
注意:(1)相似比是有顺序的。
(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。
(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。
(2)两个等边三角形一定相似,两个等腰三角形不一定相似。
(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。
知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
相似三角形复习(较全)
![相似三角形复习(较全)](https://img.taocdn.com/s3/m/74e07a6cddccda38376bafca.png)
相似三角形知识点汇总【知识要点】1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ²BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b c dad bc =⇔= ②合比性质:±±a b c d a b b c dd =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
二、有关知识点:1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
中考数学一轮复习专题解析—相似三角形
![中考数学一轮复习专题解析—相似三角形](https://img.taocdn.com/s3/m/4d52c9f8b04e852458fb770bf78a6529647d35fc.png)
中考数学一轮复习专题解析—相似三角形复习目标1.了解相似图形和相似三角形的概念。
2.掌握三角形相似的判定方法和性质并学会运用。
考点梳理一、相似图形1.形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.2.比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 3. 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b ad b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. 等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.4.比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.5.黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB 例1.如果0ab cd =≠,则下列正确的是( )A .::a c b d =B .::a d c b =C .::a b c d =D .::d c b a = 【答案】B【分析】根据比例的基本性质,列出比例式即可.【详解】解:∵0ab cd =≠,∵::a d c b =,故选:B .例2.两个相似多边形的一组对应边的长分别为6cm ,9cm ,那么它们的相似比为( )A .23B C .49 D .94【答案】A【分析】根据相似多边形的性质求解即可;【详解】两个相似多边形一组对应边的长分别为6cm ,9cm ,∵它们的相似比为:6293=.故选A .二、相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∵”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:∵对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.∵顺序性:相似三角形的相似比是有顺序的.∵两个三角形形状一样,但大小不一定一样.∵全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∵ABC ∆.(2)对称性:若ABC ∆∵'''C B A ∆,则'''C B A ∆∵ABC ∆.(3)传递性:若ABC ∆∵C B A '∆'',且C B A '∆''∵C B A ''''''∆,则ABC ∆∵C B A ''''''∆.四、相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:五、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
初中等角三角形综合知识归纳
![初中等角三角形综合知识归纳](https://img.taocdn.com/s3/m/b141c0d9f12d2af90342e692.png)
初中等角三角形综合知识归纳导读:我根据大家的需要整理了一份关于《初中等角三角形综合知识归纳》的内容,具体内容:几何可以说占了初中数学的半壁江山,囊括了包括等角三角形在内的无数重点知识、难点知识、无数的中考考点。
为此,以下是我分享给大家的初中等角三角形综合知识,希望可以帮到你!初中等角三...几何可以说占了初中数学的半壁江山,囊括了包括等角三角形在内的无数重点知识、难点知识、无数的中考考点。
为此,以下是我分享给大家的初中等角三角形综合知识,希望可以帮到你!初中等角三角形综合知识第一章图形的初步认识考点一、线段垂直平分线,角的平分线,垂线1、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
3垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
考点二、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
同一平面内,两条直线的位置关系只有两种:相交或平行。
4、平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补。
考点三、投影与视图1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。
2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
三角形相似的判定方法6种
![三角形相似的判定方法6种](https://img.taocdn.com/s3/m/bebd62e8db38376baf1ffc4ffe4733687f21fc53.png)
三角形相似的判定方法6种相似三角形是初中数学中的一个非常重要的知识点,它也是历年中考的热点内容,通常考查以下三个部分:一是考查相似三角形的判定;二是考查利用相似三角形的性质解题;三是考查与相似三角形有关的综合内容。
以上试题的考查既能体现开放探究性,又能注重知识之间的综合性。
首先我们帮助学生突破相似三角形判定这个难点。
三角形相似的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形比值与比的概念比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1判定方法证两个相似三角形应该把表示对应顶点的`字母写在对应的位置上。
如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
知道了定义那么我们接下来就看看,三角形相似的判定的6种方法。
方法一(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(这是相似三角形判定的定理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线与线段成比例的证明)方法二如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
方法三如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似方法四如果两个三角形的三组对应边成比例,那么这两个三角形相似方法五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形三个基本型Z型A型反A型方法六两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
一定相似的三角形1、两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)2、两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。
)3、两个等边三角形(两个等边三角形,三角都是60度,且边边相等,所以相似)4、直角三角形中由斜边的高形成的三个三角形(母子三角形)。
全等与相似模型-手拉手模型(解析版)
![全等与相似模型-手拉手模型(解析版)](https://img.taocdn.com/s3/m/f32bfe4491c69ec3d5bbfd0a79563c1ec5dad786.png)
全等与相似模型-手拉手模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。
本专题就手拉手模型进行梳理及对应试题分析,方便掌握。
模型1.手拉手模型【模型解读】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
1)双等边三角形型条件:如图1,△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。
图1图22)双等腰直角三角形型条件:如图2,△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。
结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BFD。
3)双等腰三角形型条件:△ABC和△DCE均为等腰三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠ACM=∠BFM;④CF平分∠BFD。
图3图44)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。
结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM =90°;④CN 平分∠BNE 。
1(2022·北京东城·九年级期末)如图,在等边三角形ABC 中,点P 为△ABC 内一点,连接AP ,BP ,CP ,将线段AP 绕点A 顺时针旋转60°得到AP ,连接PP ,BP .(1)用等式表示BP 与CP 的数量关系,并证明;(2)当∠BPC =120°时, ①直接写出∠P BP 的度数为;②若M 为BC 的中点,连接PM ,请用等式表示PM 与AP 的数量关系,并证明.【答案】(1)BP =CP ,理由见解析;(2)①60°;②PM =12AP ,见解析【分析】(1)根据等边三角形的性质,可得AB =AC ,∠BAC =60°,再由由旋转可知:AP =AP ,∠PAP =60°,从而得到∠BAP =∠CAP ,可证得△ABP ≌△ACP ,即可求解;(2)①由∠BPC =120°,可得∠PBC +∠PCB =60°.根据等边三角形的性质,可得∠BAC =60°,从而得到∠ABC +∠ACB =120°,进而得到∠ABP +∠ACP =60°.再由△ABP ≌△ACP ,可得∠ABP =∠ACP ,即可求解;②延长PM 到N ,使得NM =PM ,连接BN .可先证得△PCM ≌△NBM .从而得到CP =BN ,∠PCM =∠NBM .进而得到BN =BP .根据①可得∠P BP =60°,可证得△PNB ≌△PP B ,从而得到PN =PP .再由△PAP 为等边三角形,可得P P =AP .从而得到PN =AP ,即可求解.【详解】解:(1)BP =CP .理由如下:在等边三角形ABC 中,AB =AC ,∠BAC =60°,由旋转可知:AP =AP ,∠PAP =60°, ∴∠PAP -∠BAP =∠BAC -∠BAP 即∠BAP =∠CAP在△ABP 和△ACP 中AB =AC∠BAP =∠CAP AP =AP∴△ABP ≌△ACP (SAS ).∴BP =CP .(2)①∵∠BPC =120°,∴∠PBC +∠PCB =60°.∵在等边三角形ABC 中,∠BAC =60°,∴∠ABC +∠ACB =120°,∴∠ABP +∠ACP =60°.∵△ABP ≌△ACP .∴∠ABP =∠ACP ,∴∠ABP +∠ABP '=60°.即∠P BP =60°;②PM =12AP .理由如下:如图,延长PM 到N ,使得NM =PM ,连接BN .∵M 为BC 的中点,∴BM =CM .在△PCM 和△NBM 中PM =NM∠PMC =∠NMB CM =BM∴△PCM ≌△NBM (SAS ).∴CP =BN ,∠PCM =∠NBM .∴BN =BP .∵∠BPC =120°,∴∠PBC +∠PCB =60°.∴∠PBC +∠NBM =60°.即∠NBP =60°.∵∠ABC +∠ACB =120°,∴∠ABP +∠ACP =60°.∴∠ABP +∠ABP '=60°.即∠P BP =60°.∴∠P BP =∠NBP .在△PNB 和△PP B 中BN =BP∠NBP =∠P BP BP =BP∴△PNB ≌△PP B (SAS ).∴PN =PP .∵AP =AP ,∠PAP =60°, ∴△PAP 为等边三角形,∴P P =AP .∴PN =AP ,∴PM =12AP .【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.2(2022·黑龙江·中考真题)△ABC 和△ADE 都是等边三角形.(1)将△ADE 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA +PB =PC (或PA +PC =PB )成立;请证明.(2)将△ADE 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析(2)图②结论:PB =PA +PC ,证明见解析(3)图③结论:PA +PB =PC【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF =CP ,连接AF ,证明△BAD ≌△CAE (SAS ),得∠ABD =∠ACE ,再证明△CAP ≌△BAF (SAS ),得∠CAP =∠BAF ,AF =AP ,然后证明△AFP 是等边三角形,得PF =AP ,即可得出结论;(3)在CP 上截取CF =BP ,连接AF ,证明△BAD ≌△CAE (SAS ),得∠ABD =∠ACE ,再证明△BAP ≌△CAF (SAS ),得出∠CAF =∠BAP ,AP =AF ,然后证明△AFP 是等边三角形,得PF =AP ,即可得出结论:PA +PB =PF +CF =PC .(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA +PB =PC 或PA +PC =PB ;(2)解:图②结论:PB =PA +PC证明:在BP 上截取BF =CP ,连接AF ,∵△ABC 和△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°∴∠BAC +∠CAD =∠DAE +∠CAD ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴∠ABD =∠ACE ,∵AC =AB ,CP =BF , ∴△CAP ≌△BAF (SAS ),∴∠CAP =∠BAF ,AF =AP ,∴∠CAP +∠CAF =∠BAF +∠CAF ,∴∠FAP =∠BAC =60°,∴△AFP 是等边三角形,∴PF =AP ,∴PA +PC =PF +BF =PB ;(3)解:图③结论:PA +PB =PC ,理由:在CP 上截取CF =BP ,连接AF ,∵△ABC 和△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°∴∠BAC +∠BAE =∠DAE +∠BAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴∠ABD =∠ACE ,∵AB =AC ,BP =CF ,∴△BAP ≌△CAF (SAS ),∴∠CAF =∠BAP ,AP =AF ,∴∠BAF +∠BAP =∠BAF +∠CAF ,∴∠FAP =∠BAC =60°,∴△AFP 是等边三角形,∴PF =AP ,∴PA +PB =PF +CF =PC ,即PA +PB =PC .【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.3(2022·湖北·襄阳市九年级阶段练习)如图,已知△AOB 和△MON 都是等腰直角三角形22OA <OM =ON ,∠AOB =∠MON =90°.(1)如图①,连接AM ,BN ,求证:△AOM ≌△BON ;(2)若将△MON 绕点O 顺时针旋转,①如图②,当点N 恰好在AB 边上时,求证:BN 2+AN 2=20N 2;②当点A ,M ,N 在同一条直线上时,若OB =4,ON =3,请直接写出线段BN 的长.【答案】(1)见解析;(2)①见解析;②46+322或46-322.【分析】(1)利用SAS 定理证明△AOM ≌△BON 即可;(2)①连接AM ,证明△AOM ≌△BON ,即可证BN 2+AN 2=2ON 2;②当点N 在线段AM 上时,连接BN ,在Rt △ANB 中构造勾股定理的等量关系;当点M 在线段AN 上时,同理即可求得.(1)证明:∵∠AOB =∠MON =90°,∴∠MON +∠AON =∠AOB +∠AON ,即∠AOM =∠BON .∵△MON 和△AOB 是等腰直角三角形,∴OM =ON ,OA =OB ,∴△AOM ≌△BON (SAS ).(2)解:①证明:如图,连接AM .∵∠AOB =∠MON =90°,∴∠MON -∠AON =∠AOB -∠AON ,即∠AOM =∠BON .∵△MON 和△AOB 是等腰直角三角形,∴OM =ON ,OA =OB ,∠OAB =∠OBA =45°,∴△AOM ≌△BON .(SAS )∴∠MAO =∠OBA =45°,AM =BN ,∴∠MAN =90°,∴AM 2+AN 2=MN 2.∵△MON 是等腰直角三角形,∴MN 2=2ON 2,∴BN 2+AN 2=2ON 2.②46+322或46-322.∵△AOB 和△MON 都是等腰直角三角形,OB =4,ON =3,∴AB =42,MN =32.当点N 在线段AM 上时,如图,连接BN ,设BN =x ,由(1)可知△AOM ≌△BON .∴∠OAM =∠OBN ,AM =BN =x .∴∠NAB +∠ABN =∠OAM +∠OAB +∠ABN =∠OBN +∠ABN +∠OAB =∠OBA +∠OAB =180°-∠AOB =90°,∴∠ANB =180°-∠NAB +∠ABN =90°,∴△ANB 是直角三角形,AN 2+BN 2=AB 2.又∵AN =AM -MN =BN -MN =x -32,∴(x -32)2+x 2=(42)2,解得:x 1=46+322,x 2=-46+322(舍去)∴BN =46+322;当点M 在线段AN 上时,如图,连接BN ,设BN =x ,由(2)①可知△AOM ≌△BON .∴∠OAM =∠OBN ,AM =BN =x .∴∠NAB +∠ABN =∠OAM +∠OAB +∠ABN =∠OBN +∠ABN +∠OAB =∠OBA +∠OAB =180°-∠AOB =90°,∴∠ANB =180°-∠NAB +∠ABN =90°,∴△ANB 是直角三角形,AN 2+BN 2=AB 2.又∵AN =AM +MN =BN +MN =x +32,∴(x +32)2+x 2=(42)2,解得:x 1=46-322,x 2=-46-322(舍去)∴BN =46-322综上所述:BN 的长为46+322或46-322.【点睛】本题主要考查全等三角形的判定与性质、等腰直角三角形的性质,三点共线分类讨论,对几何题目的综合把握是解题关键.4(2022·重庆忠县·九年级期末)已知等腰直角△ABC 与△ADE 有公共顶点A ,∠BAC =∠DAE =90°,AB =AC =4,AD =AE =6.(1)如图①,当点B ,A ,E 在同一直线上时,点F 为DE 的中点,求BF 的长;(2)如图②,将△ADE 绕点A 旋转α0°<α≤360° ,点G 、H 分别是AB 、AD 的中点,CE 交GH 于M ,交AD 于N .①猜想GH 与CE 的数量关系和位置关系,并证明你猜想的结论;②参考图③,若K 为AC 的中点,连接KM ,在△ADE 旋转过程中,线段KM 的最小值是多少(直接写出结果).【答案】(1)BF =58;(2)①GH =12CE ,GH ⊥CE ;证明见解析;②线段KM 的最小值是5-1.【分析】(1)如图:过点F 作FQ ⊥AE 于点Q ,先说明FQ 是△ADE 的中位线,然后再求得FQ 、BQ ,最后再运用勾股定理解答即可;(2)①连接BD 交CE 于P ,先证明△ABD ≌△ACE 可得AB =AC ,∠BAD =∠CAE ,AD =AE ,然后再说明GM 是△ABD 的中位线可得GH =12CE ,然后再根据角的关系证明GH ⊥CE ﹔②如图:连接CG ,取中点O ,连接OK 、OM ,再根据勾股定理和三角形中位线的性质求得CG 和OK ,进而求得OM ,最后根据三角形的三边关系即可解答.【详解】解:(1)过点F 作FQ ⊥AE 于点Q ,∵点F 是DE 的中点,∴FQ 是△ADE 的中位线∴FQ =12AD =3,AQ =12AE =3,∴BQ =AB +AQ =7∴BF =FQ 2+BQ 2=32+72=58;(2)①GH =12CE ,GH ⊥CE ﹔证明:连接BD 交CE 于P .∵∠ABC =∠DAE =90°,∴∠ABC +∠CAD =∠DAE +∠CAD .即∠BAD =∠CAE ;在△ABD 和△ACE 中,∵AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠ADB =∠AEC∵G ,H 分别是AB ,AD 的中点,∴GM 是△ABD 的中位线∴GH =12BD =12CE 且GH ⎳BD ∵∠AEN +∠ANE =90°,∠ANE =∠DNP ,∴∠ADP +∠DNP =90°∴∠DPN =90°∴∠HMN =∠DPN =90°,∴GH ⊥CE ﹔②如图:连接CG ,取中点O ,连接OK 、OM ∴CG =AG 2+AC 2=22+42=25,OK =12AG =1∵∠CMG =90°,O 为CG 的中点∴OM =12CG =5∵MK >OM -OK ∴当O 、K 、M 共线时,MK 取最小值OM -OK =5-1.【点睛】本题主要考查了三角形的中线、勾股定理、全等三角形的判定与性质等知识点,灵活运用相关知识点成为解答本题的关键.5(2022·山西大同·九年级期中)综合与实践:已知△ABC 是等腰三角形,AB =AC .(1)特殊情形:如图1,当DE ∥BC 时,DB EC .(填“>”“<”或“=”);(2)发现结论:若将图1中的△ADE 绕点A 顺时针旋转α(0°<α<180°)到图2所示的位置,则(1)中的结论还成立吗?请说明理由.(3)拓展运用:某学习小组在解答问题:“如图3,点P 是等腰直角三角形ABC 内一点,∠BAC =90°,且BP =1,AP =2,CP =3,求∠BPA 的度数”时,小明发现可以利用旋转的知识,将△BAP 绕点A 顺时针旋转90°得到△CAE ,连接PE ,构造新图形解决问题.请你根据小明的发现直接写出∠BPA 的度数.【答案】(1)=;(2)成立,理由见解析;(3)∠BPA =135°.【分析】(1)由DE ∥BC ,得到∠ADE =∠B ,∠AED =∠C ,结合AB =AC ,得到DB =EC ;(2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB =CE ;(3)由旋转构造出△APB ≌△AEC ,再用勾股定理计算出PE ,然后用勾股定理逆定理判断出△PEC 是直角三角形,在简单计算即可.【详解】解:(1)∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∵AB =AC ,∴∠B =∠C ,∴∠ADE =∠AED ,∴AD =AE ,∴DB =EC ,故答案为:=;(2)成立.证明:由①易知AD =AE ,∴由旋转性质可知∠DAB =∠EAC ,在△DAB 和△EAC 中AD =AE∠DAB =∠EAC AB =AC,∴△DAB ≌△EAC (SAS ),∴DB =CE ;(3)如图,将△APB绕点A旋转90°得△AEC,连接PE,∴△APB≌△AEC,∴AE=AP=2,EC=BP=1,∠PAE=90°,∴∠AEP=∠APE=45°,在Rt△PAE中,由勾股定理可得,PE=22,在△PEC中,PE2=(22)2=8,CE2=12=1,PC2=32=9,∵PE2+CE2=PA2,∴△PEC是直角三角形,∴∠PEC=90°,∴∠AEC=135°,又∵△APB≌△AEC,∴∠BPA=∠CEA=135°.【点睛】本题主要考查了旋转的性质,平行线的性质,全等三角形的性质和判定,勾股定理及其逆定理,解本题的关键是构造全等三角形,也是本题的难点.6(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BD= CE;(2)解决问题:如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.图1 图2【答案】(1)见解析(2)∠DCE=90°;AE=AD+DE=BE+2CM【分析】(1)先判断出∠BAD=∠CAE,进而利用SAS判断出△BAD≌△CAE,即可得出结论;(2)同(1)的方法判断出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出结论.【解析】(1)证明:∵△ABC和△ADE是顶角相等的等腰三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAC-∠CAD=∠DAE-∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,AB=AC∠BAD=∠CAEAD=AE,∴△BAD≌△CAE SAS ,∴BD=CE.(2)解:∠AEB=90°,AE=BE+2CM,理由如下:由(1)的方法得,△ACD≌△BCE,∴AD=BE,∠ADC=∠BEC,∵△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∴∠ADC=180°-∠CDE=135°,∴∠BEC=∠ADC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴DE=2CM.∴AE=AD+DE=BE+2CM.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD≌△BCE是解本题的关键.7(2022·广东广州市·八年级期中)如图,两个正方形ABCD与DEFG,连结AG,CE,二者相交于点H.(1)证明:△ADG≌△CDE;(2)请说明AG和CE的位置和数量关系,并给予证明;(3)连结AE和CG,请问△ADE的面积和△CDG的面积有怎样的数量关系?并说明理由.【答案】(1)答案见解析;(2)AG=CE,AG⊥CE;(3)△ADE的面积=△CDG的面积【分析】(1)利用SAS证明△ADG≌△CDE;(2)利用△ADG≌△CDE得到AG=CE,∠DAG=∠DCE,利用∠DAG+∠AMD=90°得到∠DCE+∠CMG=90°,即可推出AG⊥CE;(3)△ADE的面积=△CDG的面积,作GP⊥CD于P,EN⊥AD交AD的延长线于N,证明△DPG≌△DNE,得到PG= EN,再利用三角形的面积公式分别表示出△ADE的面积,△CDG的面积,即可得到结论△ADE的面积=△CDG的面积.【详解】(1)∵四边形ABCD与DEFG都是正方形,∴AD=CD,DG=DE,∠ADC=∠EDG=90°,∴∠ADC+∠CDG=∠EDG+∠CDG,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),(2)AG=CE,AG⊥CE,∵△ADG≌△CDE,∴AG=CE,∠DAG=∠DCE,∵∠DAG+∠AMD=90°,∠AMD=∠CMG,∴∠DCE+∠CMG=90°,∴∠CHA=90°,∴AG⊥CE;(3)△ADE的面积=△CDG的面积,作GP⊥CD于P,EN⊥AD交AD的延长线于N,则∠DPG=∠DNE=90°,∵∠GDE=90°,∴∠EDN+∠GDN=90°,∵∠PDG+∠GDN=90°,∴∠EDN=∠PDG,∵DE=DG,∴△DPG≌△DNE,∴PG=EN,∵△ADE的面积=12AD⋅EN,△CDG的面积=12CD⋅GP,∴△ADE的面积=△CDG的面积.【点睛】此题考查正方形的性质,三角形全等的判定及性质,利用三角形面积公式求解,根据图形得到三角形全等的条件是解题的关键.8(2023·福建福州市·九年级月考)如图,和均为等边三角形,连接BE、CD.(1)请判断:线段BE与CD的大小关系是;(2)观察图,当和分别绕点A旋转时,BE、CD之间的大小关系是否会改变?(3)观察如图和4,若四边形ABCD、DEFG都是正方形,猜想类似的结论是,在如图中证明你的猜想.(4)这些结论可否推广到任意正多边形(不必证明),如图,BB1与EE1的关系是;它们分别在哪两个全等三角形中;请在如图中标出较小的正六边形AB1C1D1E1F1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?【答案】(1)BE=CD(2)线段BE与CD的大小关系不会改变(3)AE=CG,证明见解析(4)这些结论可以推广到任意正多边形.如图5,BB1=EE1,它们分别在△AE1E和△AB1B中,如图6,连接FF1,可证△AB1B≌△AF1F.图形见解析.【分析】本题是变式拓展题,图形由简单到复杂,需要从简单图形中探讨解题方法,并借鉴用到复杂图形中;证明三角形全等时,用旋转变换寻找三角形全等的条件.【详解】(1)线段BE与CD的大小关系是BE=CD;(2)线段BE与CD的大小关系不会改变;(3)AE=CG.证明:如图4,正方形ABCD与正方形DEFG中,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG,∴AE=CG.(4)这些结论可以推广到任意正多边形.如图5,BB1=EE1,它们分别在△AE1E和△AB1B中,如图6,连接FF1,可证△AB1B≌△AF1F.【点睛】本题综合考查全等三角形、等边三角形和多边形有关知识.注意对三角形全等的证明方法的发散.模型2.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。
2023年中考数学常见几何模型全归纳之模型 对角互补模型(从全等到相似)(解析版)
![2023年中考数学常见几何模型全归纳之模型 对角互补模型(从全等到相似)(解析版)](https://img.taocdn.com/s3/m/1eec955f178884868762caaedd3383c4ba4cb44d.png)
专题04 对角互补模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就对角互补模型进行梳理及对应试题分析,方便掌握。
模型1.对角互补模型(全等模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。
常见含90°、120°(60°)及任意角度的三种对角互补类型。
该题型常用到的辅助线主要是顶定点向两边做垂线,从而证明两个三角形全等. 【常见模型及结论】1)全等型—60º和120º:如图1,已知∠AOB =2∠DCE =120º,OC 平分∠AOB . 则可得到如下几个结论:∠CD =CE ,∠OD +OE =OC ,∠234CODCOESS+=. 2)全等型—90º:如图2,已知∠AOB =∠DCE =90º,OC 平分∠AOB . 则可以得到如下几个结论:∠CD =CE ,∠OD +OE =OC ,∠212ODCE OCDCOES SSOC =+=. 3)全等型—2α和1802α︒-:如图3,已知∠AOB =2α,∠DCE =1802α︒-,OC 平分∠AOB . 则可以得到以下结论:∠CD =CE ,∠OD +OE =2OC ·cos ,∠2sin cos OCDCOESSOC αα+=⋅⋅.1.(2021·贵州黔东南·中考真题)在四边形ABCD 中,对角线AC 平分∠BAD .(探究发现)(1)如图①,若∠BAD =120︒,∠ABC =∠ADC =90︒.求证:AD +AB =AC ;(拓展迁移)(2)如图②,若∠BAD =120︒,∠ABC +∠ADC =180︒.①猜想AB 、AD 、AC 三条线段的数量关系,并说明理由;②若AC =10,求四边形ABCD 的面积.【答案】(1)见解析;(2)①AD +AB =AC ,见解析;②【分析】(1)根据角平分线的性质得到∠DAC =∠BAC =60o ,然后根据直角三角形中30o 是斜边的一半即可写出数量关系;(2)①根据第一问中的思路,过点C 分别作CE ∠AD 于E ,CF ∠AB 于F ,构造AAS 证明∠CFB ≅∠CED ,根据全等的性质得到FB =DE ,结合第一问结论即可写出数量关系; ②根据题意应用60o 的正弦值求得CE 的长,然后根据()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+的数量关系即可求解四边形ABCD 的面积.【详解】(1)证明:∠AC 平分∠BAD ,∠BAD =120o ,∠∠DAC =∠BAC =60o , ∠∠ADC =∠ABC =90o ,,∠∠ACD =∠ACB =30o ,∠AD =1122AC AB AC ,=.∠AD +AB =AC , (2)①AD +AB =AC ,理由:过点C 分别作CE ∠AD 于E ,CF ∠AB 于F .∠AC 平分∠BAD ,∠CF =CE ,∠∠ABC +∠ADC =180o ,∠EDC +∠ADC =180o ,∠∠FBC =∠EDC , 又∠CFB =∠CED =90o ,∠∠CFB ≅∠CED ()AAS ,∠FB =DE , ∠AD +AB =AD +FB +AF =AD +DE +AF =AE +AF ,在四边形AFCE 中,由∠题知:AE +AF =AC ,∠AD +AB =AC ; ②在Rt ∠ACE 中,∠AC 平分∠BAD ,∠BAD =120o ∠∠DAC =∠BAC =60o ,又∠AC =10,∠CE =A sin 10sin 60o DAC ∠==∠CF =CE ,AD +AB =AC ,∠()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+=111022AC CE ⨯⨯⨯=. 【点睛】本题考查了全等三角形的判定和性质,角平分线的性质和应用,解直角三角形,关键是辨认出本题属于角平分线类题型,作垂直类辅助线.2.(2022·广东深圳·一模)【问题提出】如图1,在四边形ABCD 中,AD CD =,120ABC ∠=︒,60ADC ∠=︒,2AB =,1BC =,求四边形ABCD 的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD ,由于AD CD =,所以可将DCB 绕点D 顺时针方向旋转60︒,得到'DAB △,则'BDB △的形状是 .(2)在(1)的基础上,求四边形ABCD 的面积.(3)如图3,等边ABC 的边长为2,BDC 是顶角为120BDC ∠=︒的等腰三角形,以D 为顶点作一个60︒的角,角的两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长. )将BDM 绕点,得到DCP ,则DCP =∠,NPD ≅△,证得AMN 的周长【详解】解:(1)将DCB 绕点顺时针方向旋转60︒,得到'DAB , ∠DCB ∠'DAB △,'BD B D =,60BDB ∠=︒, 'BDB △是等边三角形; 故答案为:等边三角形; (2)过B ′于E ,2224)解:将BDM 绕点,得到DCP , CDP △,,CP BM =PDC ∠, ∠BDC 是等腰三角形,且BD CD =DBC ∠=∠又∠ABC 等边三角形,ABC ACB ∠=∠MBD ACB ∠=∠同理可得NCD ∠PCD NCD =∠DCN NCP +∠在NMD △和NPD 中,MD PD MDN PDN DN DN =⎧⎪∠=⎨⎪=⎩∠()NMD NPD SAS ≅△△, ∠MN PN NC CP NC BM ==+=+,∠AMN 的周长224AM AN MN AM AN NC BM AB AC =++=+++=+=+=.故AMN 的周长为4.【点睛】本题考查三角形全等变换,等边三角形判定,四边形面积转化为三角形面积,图形旋转,直角三角形判定,三点共线,三角形的周长转化为两边之和,特殊角锐角三角函数,掌握三角形全等变换,等边三角形判定,四边形面积转化为三角形面积,图形旋转,直角三角形判定,三点共线,三角形的周长转化为两边之和,特别是利用图形旋转进行图形的转化特殊角锐角三角函数,是解题关键. 3.(2022·河南安阳·二模)【阅读】通过构造恰当的图形,可以对线段长度大小进行比较,直观地得到线段之间的数量关系,这是“数形结合”思想的典型应用.【理解】(1)如图1,120MAN ∠=︒,AC 平分,,MAN CD AM CB AN ∠⊥⊥,求证:AB AD AC +=. 【拓展】(2)如图2,其他条件不变,将图1中的DCB ∠绕点C 逆时针旋转,CD 交MA 的延长线于点D ,CB 交射线AN 于点B ,写出线段AD ,AB ,AC 之间的数量关系,并就图2的情形说明理由.【应用】(3)如图3,ABC 为等边三角形,4AB =,P 为BC 边的中点,120MPN ∠=︒,将MPN ∠绕点P 转动使射线PM 交直线AC 于点M ,射线PN 交直线AB 于点N ,当8AM =时,请直接写出AN 的长. 的结论可得PEM PFN ≌,根据含FN AF EM AF =+=) AC 平分MAN ∠,60DAC BAC ∠=∠=1AC =,∴AB AD +∠MAN ∠=BAD ∠+∠CED ∠=CED CFB ∴≌,ED ∴,AE ED AD AF =-AE AF ED AD ∴+=-又AE AF AC +=,∴(3)①如图,当M P 是BC 的中点,ABC 是等边三角形,∠B =∠C =60°)可得PEM PFN ≌,EM ∴AB 1122CP BC AB ∴===FPB =90°-60°=30°,1,3AE AF ∴==,AM AN AF FN AF ∴=+=模型2.对角互补模型(相似模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。
相似三角形中考复习(知识点+题型分类练习)
![相似三角形中考复习(知识点+题型分类练习)](https://img.taocdn.com/s3/m/8104b0d8f12d2af90342e6d4.png)
相似三角形一、知识概述1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。
2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
3.相似三角形的定义对应边成比例、对应角相等的两个三角形叫做相似三角形.4.相似三角形的基本性质①相似三角形的对应边成比例、对应角相等.②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
③相似三角形的周长比等于相似比④面积比等于相似比的平方温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.5. 相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。
温馨提示:(1)判定三角形相似的几条思路:①条件中若有平行,可采用判定定理1;②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例;③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.④条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。
(2)在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。
(3)运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养当数学建模的思想。
2024年中考数学几何模型归纳(全国通用)16 全等与相似模型-半角模型(学生版)
![2024年中考数学几何模型归纳(全国通用)16 全等与相似模型-半角模型(学生版)](https://img.taocdn.com/s3/m/28abc4e8b1717fd5360cba1aa8114431b90d8ece.png)
专题16全等与相似模型-半角模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。
本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半。
思想方法:通过旋转(或截长补短)构造全等三角形,实现线段的转化。
解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论。
【模型展示】1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④ AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。
2)等腰直角三角形半角模型条件: ABC是等腰直角三角形,∠DAE=45°;结论:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG=90°;④DE2=BD2+EC2;3)等边三角形半角模型(120°-60°型)条件: ABC 是等边三角形, BDC 是等腰三角形,且BD =CD ,∠BDC =120°,∠EDF =60°;结论:①△BDE ≌△CDG ;②△EDF ≌△GDF ;③EF =BE +FC ;④ AEF 的周长=2AB ;⑤DE 、DF 分别平分∠BEF 和∠EFC 。
4)等边三角形半角模型(60°-30°型)条件: ABC 是等边三角形,∠EAD =30°;结论:①△BDA ≌△CFA ;②△DAE ≌△FAE ;③∠ECF =120°;④DE 2=(12BD +EC)2+2;5)半角模型(2 - 型)条件:∠BAC =2 ,AB =AC ,∠DAE = ;结论:①△BAD≌△CAF;②△EAD≌△EAF;③∠ECF=180°-2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级 相似三角形和全等三角形分类
相似三角形证明方法 方法一:直接寻求相似三角形
只要根据题目给定的条件寻找出线段成比例,或者角相等利用判定定理直接找出来.
例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽△EGC ∽△EAB 。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,
求证:△ABC ∽△BCD
方法二:利用中间线段代换
当要证明的结论中的一条线段与其他线段之间的关系难以确定时我们可以利用等线段代换,从而容易找到相应的关系。
例1、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF •AC=BC •FE
例2:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的
延长线于点D 。
求证:(1)MA 2=MD •ME ;(2)MD ME
AD
AE =2
2
(2)本例的关键是证明△MAE ∽△MDA ,这种具有特殊关系(有一个公共角和一条公共边)的三角形
的相似,在解题中应用很多,应从下面两个方面深刻理解:
命题1 如图,如果∠1=∠2,那么△ABD ∽△ACB ,AB 2=AD •AC 。
命题2 如图,如果AB 2=AD •
AC ,那么△ABD ∽△ACB ,∠1=∠2。
例3:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。
A B C D
E
F G 12
34A
B
C
D
E
M
12A
B
C
D
E
F
K
A
B
C
D
1
方法三:
证明比例式或等积式的主要方法有“三点定形法”.1.横向定型法
欲证AB BC
BE BF
=,横向观察,比例式中的分子的两条线段是AB和BC,三个字母找到一幕中BEF
△的三个顶
点.因此只需证ABC EBF
△∽△.2.纵向定型法
欲证AB DE
BC EF
=,纵向观察,比例式左边的比AB和BC中的三个字母A B C
,,恰为ABC
△的顶点;右边的比
两条线段是DE和EF中的三个字母D E F
,,恰为DEF
△的三个顶点.因此只需证ABC DEF
△∽△.3.中间比法
由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
这类问题的典型模型是射影定理模型,模型的特征和结论要熟练掌握和透彻理解.
倒数式的证明,往往需要先进行变形,将等式的一边化为1,另一边化为几个比值和的形式,然后对比值进行等量代换,进而证明之.
复合式的证明比较复杂.通常需要进行等线代换(对线段进行等量代换),等比代换,等积代换,将复合式转化为基本的比例式或等积式,然后进行证明.
【例题】
“三点定型”法
一类:直接利用“左看、右看、上看、下看”加“三点定型”
分析(第一种题型主要是通过观察就用三点定型中横向定形法找出对应线段成比例的)
例1,已知:∠ACB=900,CD⊥AB。
求证:AC2=AD•AB
例2,已知:等边三角形ABC中,P为BC上任一点,AP的垂直平分线交AB、AC于M、N两点。
求证:BP•PC=BM •CN
二类:当不能直接用“左看、右看、上看、下看”加“三点定形”时,如果有相等的线段时,可用相等的线段去替换。
例1,已知;AD平分∠BAC,EF垂直平分AD与BC的延长线交于F。
求证:DF2=BF•CF
例2,已知;在Rt△ABC中,∠A=900,四边形DEFG为正方形。
求证:EF2=BE•FC
三类:既不能直接用“三点定形”,又没有相等的线段可以替换时,可以找中间比或中间量来转化搭桥,充分体现了转化的思想在数学中的应用。
例1,已知:梯形ABCD中,AD//BC,AC与BD相交于O点,作BE//CD,交CA的延长线于点E.求证:OC2=OA.OE
例2,已知:BD、CE是△ABC的两个高,DG⊥BC,与CE交于F,GD的延长线与BA的延
长线交于H。
求证:GD2=GF•GH
一、等积式、比例式的证明:
等积式、比例式的证明是相似形一章中常见题型。
因为这种问题变化很多,同学们常常感到困难。
但是,如果我们掌握了解决这类问题的基本规律,就能找到解题的思路。
(一)遇到等积式(或比例式)时,先看是否能找到相似三角形。
等积式可根据比例的基本性质改写成比例式,在比例式各边的四个字母中如有三个不重复的字母,就可找出相似三角形。
例1、已知:如图,△ABC中,∠ACB=900,AB的垂直平分线交AB于D,交BC延长线于F。
求证:CD2=DE·DF。
(二)若由求证的等积式或比例式中找不到三角形或找到的三角形不相似,
则需要进行等线段代换或等比代换。
有时还需添加适当的辅助线,构造平行线或
相似三角形。
例2.如图,已知△ABC中,AB=AC,AD是BC边上的中线,CF∥BA,BF交
AD于P点,交AC于E点。
求证:BP2=PE·PF。
例3.如图,已知:在△ABC中,∠BAC=900,AD⊥BC,E是AC的中点,ED交AB的延长线于F。
求证:。
全等三角形证明方法中辅助线做法
一、截长补短
通过添加辅助线利用截长补短,从而达到改变线段之间的长短,达到构造全等三角形的条件
1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则
只要证明CF=CD.
二、倍长中线(线段)造全等
利用三角形的中位线,在很多题目中我们很能直接找出全等三角形,所以要通过画中位线可以很清楚的构造出来。
2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.
三、作平行线
在遇到角平分线的时,可按照以下两种方式构造平行线,(1)过三角形的一个顶点作角平分线的平行线与另一边的延长线相交,(2)过三角形的一个顶点作一边的平行线的角的平行线。
3.如图3,在等腰△ABC中,AB=AC,在AB上截取BD,在AC延长线上截取CE,且使CE=BD.连接DE交BC 于F.求证:DF=EF.
四、补全图形
4.如图4,在△ABC中,AC=BC,∠B=90°,BD为∠ABC的平分线.若A点到直线BD的距离AD为a,求BE 的长.
证明:延长AD、BC相交于F.
五、利用角的平分线对称构造全等
5.如图5,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°.证明:AD=CD.
证明:在BC上截取BE=BA,连接DE.
20.(8分)(2014年浙江绍兴)课本中有一道作业题:
有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?
小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.
(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
23.(12分)(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.
(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.
(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.
23.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C l,∠C=∠C l.求证:△ABC≌△A1B1C1.
(请你将下列证明过程补充完整.)
证明:分别过点B,B1作BD⊥CA于D,
B1 D1⊥C1 A1于D1.则∠BDC=∠B1D1C1=900,∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1,∴BD=B1D1.
(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.。