比例线段PPT教学课件

合集下载

《比例线段》课件

《比例线段》课件

在建筑设计中的应用
在建筑设计中,比例线段的应用同样 不可忽视。建筑师需要利用比例来协 调各个部分之间的关系,以创造和谐 、平衡的建筑外观。
例如,在建筑设计图中,建筑师会使 用比例尺来表示实际建筑与设计图纸 之间的比例关系,以确保施工过程中 的准确性。
在地图绘制中的应用
在地图绘制中,比例线段的应用至关重要。地图上的比例尺可以帮助我们了解地 图上的距离与实际距离之间的比例关系。
比例线段的等比性
总结词
比例线段的等比性是指两条线段的长度比值是常数,与线段所在的位置无关。
详细描述
如果两条线段AB和CD的长度比值是常数k,即$frac{AB}{CD} = k$,那么无论这 两条线段在平面上的位置如何变化,它们的长度比值始终保持为k。这个性质在 解决几何问题时非常有用。
比例线段的传递性
02 比例线段的性质
CHAPTER
比例线段的相似性
总结词
比例线段的相似性是指两条线段在长度上成比例,且夹角相 等。
详细描述
如果两条线段AB和CD在长度上成比例,即$frac{AB}{CD} = k$(k为常数),并且它们之间的夹角相等,那么这两条线段 被称为相似的。相似线段在几何学中具有很多重要的性质和 应用。
利用代数方法计算
总结词
利用代数方法,通过建立方程式来求解比例线段问题。
详细描述
代数方法是解决比例线段问题的另一种常用方法。通过建立方程式来表示比例线段的关 系,我们可以求解未知的线段长度。这种方法适用于解决一些涉及比例线段的代数问题

05 练习与思考
CHAPTER
基础练习题
基础题目1
已知线段a=10cm,b=5cm, c=2.5cm,d=5cm,判断线段a 、b、c、d是否成比例。

《比例线段》PPT课件 (公开课获奖)2022年北京课改版 (5)

《比例线段》PPT课件 (公开课获奖)2022年北京课改版 (5)

c d


ab cd bd
设参数法 acmk
bd
n
2、认真观察图形,特别注意图形中线段的和、 差,巧妙地与合比性质结合起来.
3、要运用方程的思想来认识比例式,设出未 知数,列出比例式,化为方程求解.
在相同时刻的物高与影长成比例. 如果一古塔 在地面上的影长为50 m ,同时,高为1.5 m 的 测竿的影长为2.5 m ,那么古塔的高是多少?
2、竖直上抛物体的高度h和时间t 符合
关系式
h
v0t
1 2
gt
2,其中重力加速度g
以10米/ 秒 2 计算.爆竹点燃后以初速度v0
=20米/秒上升,问经过多少时间爆竹离
地15米?
作业
课后习题
6、7
2、比例的根本性质:
在比例式中,两个外思项考的:积由等于ad两=个b内c项的积. 还可以得到哪些
如果 a c ,那么a比d 例= 式bc?.
bd 如果 ad = bc 且(bd≠0),那么 a c .
bd
3、判断四条线段成比例的方法:
〔1〕直接计算a:b 和 c:d 是否相等;
(2) ad = bc
绿苑小区住宅设计,准备在每两幢楼房之间,开辟 面积为900平方米的一块长方形绿地,并且长比宽多 10米,那么绿地的长和宽各为多少?
解:设宽为x米,那么长为〔 x +10〕

x(x+10)=900
依题整意理得得: x2+10x-900=0
解得: x1 55 37 x2 55 37
所求的 x 1 , x
内项
内项
a、b、c
外项 a :b = c :d. 的第四比
例项
外项

《线段比例尺》比例尺PPT教学课件

《线段比例尺》比例尺PPT教学课件

1cm代表实际150m
1cm代表实际1km
返回
测量并计算学校到各场馆的实际距 离,标在图上。
返回
试一试。
要准确描述示意图上各场馆的方向和位置,还需 要知道什么?
还要测量出 角度!!
返回
练一练。
根据下面的图你能说出它们的 准确方向和位置吗?
返回
说出科技馆、电影院、体育馆和少年宫的具体位置和准 确方向。
返回
2.判断 (1)一幅地图的比例尺 米表示实际距离50千米。
图中1厘
( √)
(2)线段比例尺不应该加单位名称。 ( × )
(3)在一幅图上,要把数值比例尺和线段比例
尺都标出来。
( ×)
返回
3.在一幅比例尺为
的地图上,
量得A、B间的距离是5.7厘米,那么A、B两地的实际
距离是多少?
5.7×60=340(千米) 答:A、B两地之间的实际距离是340 千米。
(3)医院在街心公园的南偏东30°的1000米处。
· 老年活
动中心
·学校

· 50°
街心公园
答案不唯一
· 30°
0 500 1000 m
医院
返回
2.以小红家为观测点,测量并填表。
返回
实际距离=图上距离×图上1厘米表示的实际距离。
北偏东30°
1.2
东偏北30°
2.1
北偏东30°
2.9
北偏西35°
3.3
正西
2.8
南偏西45°
4.5
960 1680 2320 2640 2240 3600
返回
1.填空。 比例尺如右图示。
变式题
(1)它表示图上1厘米的距离,相当于实际距离

《22-1 比例线段》课件(共25张PPT)

《22-1 比例线段》课件(共25张PPT)

2.比例的性质
①比例的基本性质:
a c ad bc
bd
.
a b b2 ac
bc
比例式变形: a c
bd
bd
a c d b
b d c a
ac
练习1—1:
如果
PA PB
=
PC PD

那么 PA·PD= PB·PC;
如果
CD EB =
DF AD

那么 AD·CD=EB·DF;
如果
x = 12.8× 10 x = 168
答:李奶奶家上个月的水费是16元.
怎样检验这道题做得是否正确呢?
我们家上个月用了8吨 水,水费是12.8元.
我上个月的水费 是19.2元.
张大妈
李奶 奶
王大爷
王大爷家上个月用了多少吨水?
解:设王大爷家上个月用水 x 吨
12.8 = 8
19.2
x
12.8 x= 19.2× 8
练习3—5:
如图,已知
BE CF AB = AC

那么
AE AB =
AF AC

E
理由:
B
A F C
BE CF
AB = AC
AB AC BE = CF
AB–BE BE
=
AC–CF CF
AE AF
有没有简单BE方=法C?F
BE CF AE = AF
有!
AAEBEA+=EBAAEFC=
AF+ACEF AAFB =
我们家用了10吨 水.
张大妈
李奶奶
李奶奶家上个月的水费是多少元?
想 这道题中涉及哪三种量?
每吨水的价钱、水费和用水的吨数. 哪种量是一定?

比例线段课件

比例线段课件
在画比例线段之前,需要确定合适的 比例尺,以确保图纸上的线段能够准 确反映实际物体的尺寸和比例。
确定起点和终点
起点和终点是线段的两个端点,它们的位置决定了线段的方 向和长度。
在画比例线段时,需要先确定起点和终点的位置,以便于后 续的绘制工作。
使用工具进行绘制
使用工具进行绘制是画比例线段的关键步骤之一,合适的工具可以提高绘制的效 率和精度。
有AE:CF = AB:CD。
证明
由于AB = CD,根据等长线段的 性质,我们有AE = CF。因此,
AE:CF = AB:CD。
相似图形中的比例定理
1 2
总结词
相似图形中的比例定理是指,如果两个图形相似 ,则它们的对应边之间的长度之比是常数。
详细描述
设三角形ABC与三角形DEF相似,那么有AB:DE = AC:DF = BC:EF。
比例线段的性质
比例线段具有传递性
如果线段A、B、C满足比例关系A:B=B:C,那么线段A、B、 C也满足比例关系A:C=A:B*B:C。
比例线段具有交叉对应性
如果线段A、B、C满足比例关系A:B=C:D,那么线段A、B、 C、D可以按照一定的顺序交叉对应。
比例线段的分类
等比线段
线段长度相等,即A=B=C。
摄影构图
在摄影中,摄影师使用比 例线段来构图,以突出主 题并增强视觉效果。
在数学中的应用
几何学
比例线段是几何学中的基 本概念,用于描述线段之 间的长度关系。
代数方程
在代数方程中,比例线段 可以用于解决与用于表示函数的增减性和 变化率。
在工程中的应用
3
证明
由于三角形ABC与三角形DEF相似,根据相似三 角形的性质,我们有AB/DE = AC/DF = BC/EF 。因此,AB:DE = AC:DF = BC:EF。

《比例线段》PPT课件

《比例线段》PPT课件
节水量 0.2 0.25 0.3 0.4 0.5
/m3 家庭数/
2 4 671 个
23.4 用样本估计总体
3.(4分)(2013·新疆)某校九年级420名学生参加植树活动,随机调 查了50名学生植树的数量,并根据数据绘制了如下条形统计图,请估 计该校九年级学生此次植树活动约植树_1_6_8_0____棵.
若a-a b=35,则ba=___52_____.
8.(4 分)美是一种感觉,当人体下半身与身高的比值越接近
0.618 时,越给人一种美感,如图,某女士身高 165 cm,下半身长 x
与身高 l 的比值是 0.60,为尽可能达到好的效果,她应穿的高跟鞋的
高度大约为( C )
A.4 cm
B.6 cm
23.4 用样本估计总体
(2)从优等品数量的角度看, 因A技术种植的西瓜优等品数量较多,所以A技术较好; 从平均数的角度看, 因A技术种植的西瓜质量的平均质量更接近5 kg,所以A技术较好; 从方差的角度看, 因B技术种植的西瓜质量的方差更小,所以B技术种植的西瓜质量更为 稳定; 从市场销售角度看, 因优等品更畅销,A技术种植的西瓜优等品数量较多,且平均质量更接 近5 kg,因而更适合推广A种技术
污染指数(w) 天数(天)
40 60 80 100 120 3 5 10 6 5
23.4 用样本估计总体
11.(16分)(2013·云南)近年来,中学生的身体素质普遍下降,某 校为了提高本校学生的身体素质,落实教育部门“在校学生每天体 育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼 时间进行了调查统计.以下是本次调查结果的统计表和统计图:
23.4 用样本估计总体
10.(8分)为了估计某市空气质量情况,某同学在30天里 做了如下记录:

成比例线段ppt课件

成比例线段ppt课件
∵ + − = ,
∴ + − = .
∴ = .
∴ = , = , = .

15.(2024周口期末改编)已知
+



解:∵
=
=
= ,
+
+
+
=

+
=

+
= ,则的值为多少?
∴ = + , = + , = + .
7.8
好的效果,她应穿的高跟鞋的高度大约为____.(保留一位小数)
9.在△ 和△
+
′′′中,
′′+′′
18
则△ ′′′的周长为____.

10.(2024湖南郴州期末改编)若

=
=

′′
=

.若△

的周长为12,

��
+
,则 =__.



,

∴ 线段,,,不成比例.
(2)线段,,,是否成比例?

解:∵



∴ = .


=

,



= =

,

∴ 线段,,,成比例.
比例的基本性质
5.若 =

,则


A.

=( C )

B.−


C.


D.−

6.已知四条不相等的线段,,,满足关系式 = ,则下列式子
+ = −, =

《比例线段》PPT课件 (公开课获奖)2022年沪科版 (1)

《比例线段》PPT课件 (公开课获奖)2022年沪科版 (1)

D EA,B D FBC .找出图中的一组比例
线段(用小写字母表示),并说明理由.
D bc AE
a C
d F

8 例3
如图是我国台湾省的几个城市的位置图,问基隆
市在高雄市的哪个方向?到高雄市的实际距离是
多少km?(比例尺1:9000000)
注意:求角度时要注意方位。
台北 基隆
解:从图上量出高雄市到基隆市的距离 约35mm,设实际距离为s,则
A
∠A=40°( 已知 ) ∴∠B+∠C=___1_40°
D 1
B
E 2
C
又∵∠B+ ∠C+ ∠1+ ∠2=____3_6_0° ∴ ∠1+∠2=__2_20°
通过这节课的学习活 动你有哪些收获?
你还有什么困惑吗?
两条线段的长度比是 2:4= 1

2

线
2、设线段AB=200cm,AC=4m, 段
两条线段的长度比是 220000::440=0= 1
单 位
2



两条线段的长度比叫做这两条线段的比
记作:
AB 1 AC 2
1
A′
1
B′
A
B
C
AB AC
=
2 5
AB
A′B′
2
=2 2
1 =2
C′
AC
A′C′
5
=2 5
1
2
怎样求n边形的内角和呢?
An A1
A2
A5
A3
A4
从n边形的一个顶点出 发,可以引 (n-3) 条 对角线,它们将n边形 分为 (n-2) 个三角形, n边形的内角和等于 180°× (n-2) .

比例线段课件

比例线段课件
应用
比例尺常用于建筑、机械制图等领域,可以帮助设计师将实际尺寸转化为图纸上的尺寸,方便 设计和加工。同时,比例尺也可以用于检测和比较图纸上不同部分之间的比例关系。
02
比例线段的计算方法
利用比例的基本性质进行计算
总结词
利用比例的基本性质,可以将一个线段与另一个线段的比例 转化为一个易于计算的数值比例,从而快速求解未知量。
实例三:地图的绘制
总结词
地图绘制中,比例线段对于准确地表示不同 地区和对象的位置和大小非常重要。
详细描述
在地图绘制中,比例线段被用于准确地表示 不同地区和对象的位置和大小。地图制作者 通常会使用比例尺来测量和比较不同地区的 大小,以确保地图的准确性和一致性。此外 ,通过使用比例线段,地图制作者可以突出 显示关键位置和特征,以便读者更容易识别 和了解地图信息。
在建筑测量中的应用
01
建筑测量的比例尺
在建筑测量中,比例尺通常用来表示图纸上的长度与实际长度的比值。
02 03
建筑测量的比例尺分类
建筑测量的比例尺可分为水平比例尺和垂直比例尺。水平比例尺表示图 纸上长度与实际长度的比值;垂直比例尺表示图纸上高度与实际高度的 比值。
比例尺在建筑测量中的应用
在建筑测量中,比例尺的应用可以帮助工程师更好地了解建筑物的尺寸 和结构பைடு நூலகம்点,从而更好地进行设计和施工操作。
详细描述
相似三角形的对应边的比值相等,因此可以利用相似三角形的性质将一个三角形的边长转化为另一个 三角形的边长。例如,已知一个三角形ABC与另一个三角形DEF相似,且AB=9cm,AC=12cm, DE=3cm,求BC的长度。根据相似三角形的性质,可以得到BC的长度为4cm。
03
比例线段的应用

初中数学课件《比例线段

初中数学课件《比例线段
初中数学课件《比 例线段》
目录
• 比例线段的定义与性质 • 比例线段的判定与性质定理 • 比例线段与相似三角形的关系 • 比例线段的综合应用
01
比例线段的定义与性 质
比例线段的定义
比例线段的定义
如果四条线段a, b, c, d满足a/b=c/d ,则称这四条线段为比例线段。
比例线段的表示方法
比例线段的性质
相似三角形性质
在三角形中,如果两个角 相等,则对应的边成比例 ,即形成比例线段。
比例线段在生活中的应用
地图绘制
在地图上,不同地区的尺寸是通 过比例尺来表示的,而比例尺就
是应用了比例线段的原理。
建筑设计
在建筑设计中,常常需要使用比 例线段来设计建筑物的各个部分
,以确保整体的美观和协调。
摄影构图
在摄影中,摄影师常常使用比例 线段来构图,以使照片更加美观 和平衡。例如,黄金分割就是一 种常见的构图方法,它利用了比
在相似三角形中,对 应边之间的比例关系 即为比例线段。
相似三角形在实际问题中的应用
01
02
03
04
测量
利用相似三角形的性质,可以 测量无法直接到达的物体的高
度或距离。
建筑设计
在建筑设计过程中,可以利用 相似三角形来计算建筑物的尺
寸和比例。
物理学
在物理学中,可以利用相似三 角形来研究光学、力学等问题

工程学
在工程学中,可以利用相似三 角形来研究机械运动、流体动
力学等问题。
04
比例线段的综合应用
比例线段在几何图形中的应用
相似三角形
比例线段是判断三角形相似的重要依据,通过比较对应边长比例,可以判断两 个三角形是否相似。

4.1 比例线段(1) 课件

4.1 比例线段(1) 课件

a 0.02米 2 = = b 0.03米 3
a 20毫 米 2 = = b 30毫 米 3
2.比例的基本性质:
a c = , ad=bc (abcd都不为零) b d
例1;根据下例条件,求a:b的值. a b (1)2a=3b; (2) 5 4 a c 2.已知 = , 判断下例比例是否成立, 并说明理由. (1) a b c d
线段b叫线段a、c的比例中项。
1.线段的比
定义:在同一长度单位下,两条线段 的长度的比叫做这两条线段的比。
即 果 同 长 单 量 线 a、 如 用 一 度 位 得 段 b的 长 分 是 n, 么 度 别 m、 那 a:b=m:n或 a m = 。 b n
a 在 a:b或 中 a叫 的 , 比 b
前 , 比 项 b叫 的 后 项
已知 线段a、b
a
b
量 它 的 度 得 们 长 a=2cm,b=3cm , 么 那 a、 条 段 比 是 们 度 比 b两 线 的 就 它 长 的 。 a 2 即a:b=2:3或 = b 3 如 改 米 毫 作 线 的 度 位 果 用 、 米 为 段 长 单 , 那 a、 条 段 比 别 : 么 b两 线 的 分 是
已知四个数a、b、c、d , a c 如果 = , 或 a:b=c:d, b d 那么 a、b、c、d 叫做组成比例的项, 线段 a、d 叫做比例外项,
线段 b、c 叫做比例内项,
线段 d 叫做 a、b、c的第四比例项.
如果作为比例内项的是相同的
线段,即
a b = b c
或a:b=b:c,那么
a 2 1 = = b 30 15
对吗? 为什么? 答: 不对.根据定义, 在同一长度单位 下,两条线段的长度的比叫做这两条 线段的比
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

爱迪生成功的秘诀是什么?
• 一颗好奇的心,一种亲自试验的本能,超乎 常人的艰苦工作的无穷精力和果敢精神。
• 他的勤奋和创造性才能以及集体的力量 。 • 敏锐的观察力、丰富的想象力、活跃的创造
性思维。
“天才是1%的灵感加99%的汗水。” ——爱迪生
3、新通讯手段的发明
1892年纽约—— 芝加哥的电话线路 开通。贝尔第一个 试音:“喂,芝加 哥”,这一历史性 声音被记录下来。
莱特兄弟及其 制造的飞机
请同学们认真阅读和 独立思考
两次工业革命的相同点
背景
内容
都有许多科技创造发明
本质 影响
都是生产技术和社会关系的变革
两次工业革命的不同点
第一次工业革命 第二次工业革命
发明来源于工匠的 科学、技术和生产真正
实践经验,科学和 结合,科学在推动生产 技术尚为真正结合 力发展方面发挥了更为
1.线段的比
定义:在同一长度单位下,两条线段 的长度的比叫做这两条线段的比。
即如果用同一长度单位量得线段a、b的 am
长度分别是m、n,那么a:b=m:n或 b = n 。 a
在a:b或 b 中,a叫比的前项,b叫比的后项
已知 线段a、b
a
b
量得它们的长度a=2cm,b=3cm ,那么 a、b两条线段的比就是它们长度的比。
已知四个数a、b、c、d ,
如果
a b
=
c d


a:b=c:d,
那么 a、b、c、d 叫做组成比例的项,
线段 a、d 叫做比例外项,
线段 b、c 叫做比例内项,
线段 d 叫做 a、b、c的第四比例项.
如果作为比例内项的是相同的
线段,即
ab b=c
或a:b=b:c,那么
线段b叫线段a、c的比例中项。
马车型车身
世界上第一张汽车专利证书
由德国工程师卡尔·本茨 于1886年1月29日向德国皇 家专利局申请,同年11月2 日批准。专利号为37435, 类别属于空气及气态动力机 械类,专利名为气态发动机 车。即公认的世界上第一辆 三轮汽车"奔驰1号"。
奔驰西姆皮勒克 斯旅游车—— 1907年制造,最 高时速80公里/ 小时。
4.都丰富和改善了人们日常的社会 生活内容。
首先发生在英国, 重同要时的发作生用在。几个先
其他国家的工业 进的资本主义国家,
革命发展进程相 新的技术和发明超
对缓慢
出了一国的范围,
发有展些迅资速本。主义国
家两次工业革命
请思考: 垄断组织的出现造成什么影响?
议一议:
第二次工业革命对中国产生了 什么影响?
请结合两次工业
革命的相关知识,谈 谈工业革命给你带来 的启示。
a2 1 b = 30 = 15
对吗? 为什么?
答: 不对.根据定义, 在同一长度单位 下,两条线段的长度的比叫做这两条 线段的比
练习2: 求下列各题中 a:b 的值
(1)a=2m , b=0.4m ;
(2)a=6cm , b=6m ;
(3)a=50mm , b=6cm ;
(4)a=3m , b=10mm .
在英国,1895年 6月,伊夫特·埃利斯制造了英国第一辆汽 车,这种车没有车门和车顶,车速又慢,一路飞扬的灰尘是汽 车司机最大的烦恼。
1908年,美国的福特T型(Ford-T)汽车开始在市场上出 现,由此揭开了汽车批量生产的序幕。该车型从1908-1927年 19年间,一共累计生产了1500万辆,创造了当时汽车生产的世 界纪录。正因为如此,福特T型车被汽车界认为是大众化汽车 的开端.
启示:
1.科学技术是第一生产力。 2.经济的发展需要和平稳定的社会环境。 3.政治对经济具有反作用。 4.经济的发展需要雄厚的资金。 5.在经济发展的同时要注意保护环境。
从背景看:
1.都是在政权的建立和持续稳定的 基础上开展起来的。 2.都是生产力发展的产物。 3.都有充分的自由劳动力。 4.都有必要的科技积累。 5.都具备雄厚的资金。 6.都有广阔的市场,市场的需求对科技 提出新的革新要求。
第二次工业革命对经济的影响:
1.推动了生产力的发展,但资 本主义列强之间的经济发展不 平衡加剧。 2.形成了垄断和垄断组织。 3.丰富和改善了人们的生活内容 和生活方式。
对政治的影响:
1.主要资本主义国家进入帝国主义 阶段,资本主义国家逐渐成为垄断 组织利益的代言人。
2.无产阶级队伍发展壮大,国际工 人运动和社会主义运动迎来新的 高潮。
a 20毫米 2 b = 30毫米 = 3
注意:
1.若a:b=k , 说明a是b的k倍。
2.两条线段的比与所采用的长度单位
无关,但求比时两条线段的长度单
位必须一致。
3.两条线段的比值是一个没有单位的
正数。
4.除了a=b外,a:b≠b:a,
a b

b a
互为倒数
练习1: 判断. 已知 线段a=2cm , b=30mm那 么a,b两条线段的比是
(1)2a=3b ;
(2)
ab 54
2.已知 a c , 判断下例比例式是否成立,并 bd
说明理由. (1) a b c d
bd
(2) a a c b bd
注意:
1.若a:b=k , 说明a是b的k倍。
2.两条线段的比与所采用的长度单位
无关,但求比时两条线段的长度单
位必须一致。
3.两条线段的比值是一个没有单位的
或a:b=b:c,那么
线段b叫线段a、c的比例中项。
已知 线段a、b
a
b
量得它们的长度a=2cm,b=3cm ,那么 a、b两条线段的比就是它们长度的比。
a2 即 a:b=2:3或 b = 3
如果改用米、毫米作为线段的长度单位, 那么a、b两条线段的比分别是:
a 0.02米 2 b = 0.03米 = 3
两个边数相同的多边形,如果他们的 对应角相等,对应边长度的比相等,那么 这两个多边形叫做形似多边形.
相似多边形对应边长度的比叫做 相似比或相似系数
1.线段的比
定义:在同一长度单位下,两条线段 的长度的比叫做这两条线段的比。
即如果用同一长度单位量得线段a、b的 am
长度分别是m、n,那么a:b=m:n或 b = nቤተ መጻሕፍቲ ባይዱ。
解: 略
答:北京到上海的实际距离大约
是1120 km
• 在平面直角坐标系中,过点(a,b) 和坐标原点的直线是一个怎样的 正比例函数?如果a,b,c,d四个数 成比例,你认为点(a,b),点(c,d) 和坐标原点在一条直线上吗?请 说明理由.
小结:让学生自已归纳总结.
• 作业: • 同步训练
相似多边形的定义:
a 在a:b或 b 中,a叫比的前项,b叫比的后项
已知四个数a、b、c、d ,
如果
a b
=
c d


a:b=c:d,
那么 a、b、c、d 叫做组成比例的项,
线段 a、d 叫做比例外项,
线段 b、c 叫做比例内项,
线段 d 叫做 a、b、c的第四比例项.
如果作为比例内项的是相同的
线段,即ab
=
b c
答:图上距离与实际距离的比是1:5000
(即该地图的比例尺是1:5000 )
说明:比例尺=
图距 实距
练习3. 已知:一张地图的比例尺1:32000000 量得北京到上海的图上距离大约 为3.5cm, 求北京到上海的实际距离大约 是多少km?
解: 略
答:北京到上海的实际距离大约
是1120 km
小结:让学生自已归纳总结.
a2 即 a:b=2:3或 b = 3
如果改用米、毫米作为线段的长度单位, 那么a、b两条线段的比分别是:
a 0.02米 2 b = 0.03米 = 3
a 20毫米 2 b = 30毫米 = 3
2.比例的基本性质:
a c ad bc(a,b, c, d都不为零) bd
例1: 1. 根据下例条件,求a:b的值.
对国际关系的影响:
1.各帝国主义国家加紧对外侵略扩张, 世界殖民体系最终形成。
2.各帝国主义国家之间的矛盾加剧 和尖锐化。
从影响来看:
1.都极大地促进了生产力的发展。
2.都使社会结构作了相应的调整。 3.都推动资本主义列强对外侵略扩张, 导致资本主义世界体系最终得以确立, 世界进一步联成一个整体。
电话、电报 为迅速传递 信
息提供了方 便
世界各地的 经济、政治 和文化联系 进一步加强
4、汽车和飞机的问世
卡尔·本茨先生是 世界汽车工业的先驱者 之一(1844-1929), 是德国奔驰汽车公司的 创始人,被称为“汽车 鼻祖”。
奔驰1号三轮汽车于 1886年1月29日获汽 车制造专利 这一天被公认为汽车 的诞生日,车速最快 为15km/h
❖ 著名发明有:留声机 、活动电 影机 、电灯、电报、电话、第 一架 实用打字机……
❖ 他最伟大的发明:电灯(1879 年研制成功耐用碳丝灯泡)
“发明大王”爱迪生
人们对爱迪生作出高度的评价:希腊神 话中说,普罗米修斯给人类偷来了天火;而 爱迪生却把光明带给了人类。
爱迪生的同事、中央电气公司的副 总监麦礼逊在与一位叫维尔的记者谈到 爱迪生的勋绩时说:“称爱迪生为一个 伟人,为一个杰出的发明家,为一个可 惊的天才,那是容易不过的事,毫无疑 义地,他是世界上一个最有用的人物— —他的功勋所影响于千万人的生活方面 的,比现在任何生着的人都要大”。
求:图上距离与实际距离的比 (即该地图的比例尺)
解:∵ AB=250m=25000cm
A'B'=5cm
A'B' 5
相关文档
最新文档