14春季-固体物理-第四章习题解答参考

合集下载

固体物理习题解答

固体物理习题解答
场假定。 绝热近似视固体中原子核(离子实)静止不动,价电子在固定不变
的离子实势场中运动。通过绝势近似将电子系统和原子核 (离子实)系统分开考虑。 平均场近似视固体中每个电子所处的势场都相同,使每个电子 所受势场只与该电子位置有关,而与其它电子位置无关。 通过平均场近似使所有电子都满足同样的薛定鄂方程。 通过绝热近似和平均场近似,将一个多粒子体系问题简化为单 电子问题。绝热近似和平均场近似也称为单电子近似。 周期势场假定则认为电子所受势场具有晶格平移周期性。 通过以上近似和假定,最终将一个多粒子体系问题变成在晶格 周期势场中的单电子的薛定鄂方程定态问题。
复式格子?
3
第一章 思考题
3、引入倒格子有什么实际意义?对于一定的布拉菲格子,基 矢选择不唯一,它所对应的倒基矢也不唯一,因而有人说 一个布拉菲格子可以对应于几个倒格子,对吗?复式格子 的倒格子也是复式格子吗?
答:
引入倒格子概念,对分析和表述有关晶格周期性的各种问题 非常有效,如:晶体X射线衍射,晶体周期函数的傅里 叶变换。
方 (110)晶面的格点面密度最大。根据
dhkl
h2
a k2 l2
,有面心立 d11方 1 a3,体心立d1方 10
a 2
因此,最大格点面密度表达式,
dh1h2h32 /G h1h2h3
面心立 11方 1a43 a343a23,体心立 11方 0a23a2a2 2
13
第一章 习题
1.7 证明体心立方格子和面心立方格子互为倒格子。
7
第一章 习题
1.1 何谓布拉菲格子?画出NaCl晶格所构成的布拉菲格子,说 明基元代表点构成的格子是面心立方晶体,每个原胞中含 几个格点?
解: 由基元代表点-格点-形成的晶格称为布拉菲格子或布拉菲点

固体物理第章固体电子论 参考答案

固体物理第章固体电子论 参考答案

第四章 固体电子论 参考答案1. 导出二维自由电子气的能态密度。

解:二维情形,自由电子的能量是:2πL x x k n =,2πL y y k n =在/k =h 到d k k +区间: 那么:2d ()d Z Sg E E =其中:22()πm g E =h2. 若二维电子气的面密度为n s ,证明它的化学势为:解:由前一题已经求得能态密度:电子气体的化学势μ由下式决定: ()()222E-/E-/001d ()d πe 1e 1B B k T k T L m E N g E L E μμ∞∞==++⎰⎰h 令()/B E k T x μ-≡,并注意到:2s N n L=那么可以求出μ:证毕。

3. He 3是费米子,液体He 3在绝对零度附近的密度为0.081 g /cm 3。

计算它的费米能E F 和费米温度T F 。

解:He 3的数密度:其中m 是单个He 3粒子的质量。

可得:代入数据,可以算得: E F =6.8x 10-16 erg = 4.3x 10-4eV.则:F F E T k ==4.97 K.4.已知银的密度为310.5/g cm ,当温度从绝对零度升到室温(300K )时,银金属中电子的费米能变化多少?解:银的原子量为108,密度为310.5/g cm ,如果1个银原子贡献一个自由电子,1摩尔物质包含有6.022x 1023个原子,则单位体积内银的自由电子数为在T=0K 时,费米能量为代如相关数据得2/3272227302812(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()F erg s cm E g erg eV -----⎛⎫⨯⋅⨯⨯= ⎪⨯⨯⨯⎝⎭≈⨯≈ 在≠T 0K 时,费米能量所以,当温度从绝对零度升到室温(300K )时, 费米能变化为代如相关数据得可见,温度改变时,费米能量的改变是微不足道的。

5. 已知锂的密度为30.534/g cm ,德拜温度为370K ,试求(1)室温(300K )下电子的摩尔比热;(2)在什么温度下,锂的电子比热等于其晶格比热?解:(1)金属中每个电子在常温下贡献的比热 2'0()2B V B F k T C k E π= (1) 式中0FE 为绝对零度下的费米能: 202/33()28F h n E m π= (2)锂的密度30.534/g cm ,原子量6.94,每立方厘米锂包含的摩尔数为0.534/6.94,1摩尔物质中包含 6.022x 1023个原子,每个锂贡献一个电子,则每立方厘米中的电子数已知将数据代入(2)得在室温(300K )下,0.026B k T eV =,由(1)式可以求得电子的摩尔比热代入相关数据得(2)电子比热只在低温下才是重要的。

固体物理-第4章-晶体中的缺陷和扩散-4

固体物理-第4章-晶体中的缺陷和扩散-4
这种空位—间隙原子对称为 弗伦克尔缺陷。
(成对出现)
4、杂质原子 在材料制备中,有控制地在晶体中引入杂质原子
A、杂质原子取代基质原子而占据格点位置,称替代式杂质。
(二者相接近或前者大一些)
B、杂质原子占据格点间的间隙位置,称填隙式杂质。
(杂质原子比基质原子小)
点缺陷的运动 1、空位的运动
空位运动势场示意图
原子结合成晶体的源动力:原子间的吸引力. 理想晶体的生长
问题4:当初如何提出位错概念?位错滑移如何理解?
Ax A d
a
x a 2
xa 2
弹性形变
范性形变 原子不能回到原来位置,易到A
即发生滑移
Ax A
d a
?有问题
最初认为: 滑移是相邻两晶面整体的相对刚性滑移
则可计算:使其滑移的最小切应力: c
第四章 晶体中的缺陷和扩散
原子绝对严格按晶格的周期性排列的晶体不存在
缺陷举例: 如晶体表面、晶粒间界、人为掺杂等
如金刚石
空位
点缺陷 填隙原子 (0维)
杂质原子
刃位错
线缺陷
晶体缺陷的基本类型 (1维)
(按维度或尺寸分类)
螺位错
大角晶界
晶粒间界
面缺陷
小角晶界
(2维) 堆垛间界(层错)
问题1:点缺陷的定义、分类、运动及其对晶体性能影响?
若某一晶面A丢失,则原子面排列: ABCABCBCABC………..
问题7:一定温度下,系统达统计平衡时,
热缺陷(空位.间隙原子)数目?
热力学平衡条件
平衡状态下晶体内的热缺陷数目
系统自由能F U TS 最小
F n T
0
热缺陷的数目
1、肖脱基缺陷(或空位)浓度

《固体物理学》房晓勇主编教材-习题解答参考04第四章 晶体结构中的缺陷

《固体物理学》房晓勇主编教材-习题解答参考04第四章 晶体结构中的缺陷

第四章 晶格结构中的缺陷4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为sB k T s n Ne μ−=其中s μ是形成一个空位所需要的能量。

证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为!()!s !s s N P N n n =− 由于s μ个空位的出现,熵的改变[]!ln lnln ()ln()ln ()!!B s B B s s s s s s N S k P k k N N N n N n n n N n n Δ===−−−−− 晶体的自由能变化为 []ln ()ln()ln s s s s B s s s F n T S n k T N N N n N n n n μμ=−Δ=−−−−−s要使晶体的自由能最小B ()ln 0s s s sT n F u k T n N ⎡⎤⎛⎞∂Δ=+=⎜⎟⎢⎥∂−⎣⎦⎝⎠n 整理得s B k T s s n e N n μ−=− 在实际晶体中,由于,s n N <<s s s n n N N n ≈−,得到 sB k T s n Ne μ−=4.2 铜中形成一个肖托基缺陷的能量为1.2eV ,若形成一个间隙原子的能量为4eV ,试分别计算1300K 时肖托基缺陷和间隙原子数目,并对二者进行比较。

已知,铜的熔点是1360K 。

解:(王矜奉4.2.4)根据《固体物理学》4-8式和4-10式,肖托基缺陷和间隙原子数目分别为 s B k T s n Neμ−= 11B k T n Ne μ−= 得19231.21.61051.38101300 2.2510sB k T s n Ne NeN μ−−××−−−××===× 191231.2410161.381013001 3.2110B k T n Ne Ne N μ−−××−−−××===×4.3 设一个钠晶体中空位附近的一个钠原子迁移时,必须越过0.5eV 的势垒,原子振动频率为1012Hz 。

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

固体物理习题带答案

固体物理习题带答案

第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有

r
m


rn
。证明:要使两原子处于平衡状

r
m


rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2

2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m

r0
m 1
n

r0
n 1
。所以
m nm r0 。 n
0
r0



d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r


固体物理吴代鸣第四章习题答案

固体物理吴代鸣第四章习题答案

23
1300
1 . 79 10
8
二者差约
Байду номын сангаас
3 个量级。
4 2 试求产生 热容的贡献。
解:产生
n 个肖脱基缺陷后晶体体
积的变化以及对晶体
n 个肖脱基缺陷就意味着
有 n 个原子从晶体内移动 N 个增加到 N n 个,
到表面上,这样,晶格
的格点就由原来的
令原来的晶体体积为
V 0,那么每个原子所占的
4- 1铜的空位形成能约为 试估计接近熔点( 两者的数量级。
1 . 26 eV ,间隙原子的形成能约
为 4 eV ,
1300 K )时空位和间隙原子的
浓度,并比较
解:对于空位,主要由
u k BT
肖脱基缺陷引起,
n 空 Ne
空位浓度
n空 N

u k BT
e
e

1 . 26 1 . 6 10 1 . 38 10
体积为
V0 N

后来的体积
n V V0 n V0 1 N N V0
体积变化为
V V0
V0 N
n
能量变化为 nu ,
产生 n 个肖脱基缺陷,晶体的
而 CV
E T V
CV
n E nu u T T V T V
23
19
1300
1 . 32 10
5
对于间隙原子,由夫伦
1 u 2 k BT
克尔缺陷引起:
u 2 k BT
n 间 ( NN ) 2 e
'

固体物理第四章作业答案

固体物理第四章作业答案


x

na

b



x

na
i 2 n x
b e a dx

Байду номын сангаас
2V0 a
cos
n
2 b a
• 按照近自由电子模型,第一布里渊区边界的能隙
Eg 2 V1
Eg
2 V1
2 2V0 a
cos b
a

4V0 a
cos 2b
a

第一布里渊区

a
k
a
, k 的个数为:
• (2)试讨论分别同A、B两种材料组成的一维超晶格量子 阱的能带变化。*(如下图)
ECA A
B
EVA
8a a
ECB
EVB
克朗尼格-朋奈模型 (基泰尔,固体物理导论,P119)
克朗尼格-朋奈模型得到结果:
超晶格得到结果与克朗尼格-朋奈模型类似,但是不同的是上 图中每段红色的能带都会分裂成八条子能带。

r


eik r u k
r

uk r uk r Rl


2
u k
r

2
由此可知,电子密度分布具有周期性。
• 思考题
(1)对有限尺寸晶体(如量子点,量子线或量子井),你 认为其晶体能带相对于理想晶体会有什么变化?
周期性边界条件破坏,边界效应开始变得明显能带不再是准 连续的。
第四章作业
1. (1)能带论的结论是什么?
(2)这个结论是考虑了晶体内部电子运动受到了什么作用后得 出的?
(3)以一维晶体为例, 如果作自由电子近似,把上述作用看作是 微扰, 应用非简并微扰理论得出电子的能量与k的关系是:

固体物理答案第四章1

固体物理答案第四章1

化简为习惯的表示式
E0
3 5
EF0
4.8 对于单位面积的样品,二维电子气的状态密度为g 4m
h2
试求二维电子气的比热。
解: 设g(E)为单位体积样品的状态密度,当系统由0K加热直至 温度T时, 它的总能量
ET
4m
Ef (E)g(E)dE
0
h2
2m
Ef (E)dE
0
h2
E 2 f (E) dE
k 空间中,状态密度等于V,计入自旋,在波矢 k ~ k dk
的球壳内的状态数为 2V 4k 2dk , 由此得到,费密球内
电子的总能量
E0
k kF
h2k 2 2m
2V
4k 2dk
式中 kF 是费密球半径。当V比较大时,波矢 k 在 k 空间的
分布非常密集,可以看作准连续,上式的求和可用积分代替,
L 因而在波矢空间每个状态的代表点占有面积为

2

L
在k
~
k
dk 面积元
dk
dk x dk y
中含有的状态数为
L 2π
2
dk 。
每个波矢状态可容纳自旋相反的两个电子,则在面积元 dk 中
容纳电子数为
dz 2
L
2
dk
2
L
2 2 π kdk



E 2k2 2m
dE 2k dk m
所以E到E+dE之间的状态数

L 2

m 2
dE
L2m π 2
dE
(2)在E到E+dE内的电子数为dN
dN f Edz

固体物理第四章答案

固体物理第四章答案
在直角坐标系下画出倒格子基矢
y
b1+b2 b2 3 2 1 b1
2 a
-b1
2 a
-b2
x
-b1-b2
4.11设一维晶体晶格常数为a,系统的哈密顿量为 其中
H
2 d2
2m dx
2
V ( x),
V ( x) A ( x la)
l 1
N
若已知孤立原子的势和波函数为
Va A ( x la), a a e
J1 * [V ( x) Va ]a dx a
Na
* ( x na)[ A ( x na) A ( x na a )] a ( x na a )dx a
Na n 1
N
* ( x na)[ a
Na
n n1
1一维周期场中电子的波函数
满足 k ( x ) Bloch定理,若晶格常数为a的电子波函数为:
(a) k ( x) sin
x
a 3 x a
(b) k ( x) i cos (c) k ( x)

l
f ( x la)
试求电子在这些态的波失。
jka 解:根据Bloch定理 k ( x a) e k ( x) 可得:
Na N Na n 1 N
* ( x na)[ A ( x na) A ( x na)]a ( x na)dx a * ( x na)[ A ( x na) ]a ( x na)dx a
Na n n
根据 函数的性质,上式的值为0。而积分
=-U 上面计算中取 kn (
2 2 , ) ,Brayy 反射出现的第一布里渊区的四个顶点处。能隙为 2U。

固体物理第4章 固体电子论 2011 参考答案

固体物理第4章 固体电子论 2011 参考答案

第四章 固体电子论 参考答案1. 导出二维自由电子气的能态密度。

解:二维情形,自由电子的能量是:22222()()22x y k E k k mm==+k2πLx xk n =,2πLy yk n =在/k =到d k k +区间:22222d 2d 2π(2π)2ππS Lm L Z kdk dE=⋅=⋅=k那么:2d ()d Z Sg E E=其中:22()πm g E =2. 若二维电子气的面密度为n s ,证明它的化学势为:2π()ln exp 1s B B n T k T m k T μ⎡⎤⎛⎫=-⎢⎥⎪⎝⎭⎣⎦解:由前一题已经求得能态密度:22()πm g E =电子气体的化学势μ由下式决定:()()222E-/E-/01d ()d πe1e1B B k Tk TL mE N g E LE μμ∞∞==++⎰⎰令()/B E k Txμ-≡,并注意到:2s Nn L =()12/1d πB xB s k Tk T mn exμ-∞-=+⎰()2/d π1B x B xxk Tk Tm e ee μ∞-=+⎰2/lnπ1BxB xk Tk T m ee μ∞-=+()/2ln 1πB k TB k T m eμ=+那么可以求出μ:2π()ln exp 1s B B n T k T m k T μ⎡⎤⎛⎫=-⎢⎥⎪⎝⎭⎣⎦证毕。

3. He 3是费米子,液体He 3在绝对零度附近的密度为0.081 g /cm 3。

计算它的费米能E F 和费米温度T F 。

解:He 3的数密度:N N M N n V M VMmρρ==⋅=⋅=其中m 是单个He 3粒子的质量。

()1123233π3πF k n m ρ⎛⎫== ⎪⎝⎭可得:2222322/33π(3)22F E n mm m ρπ⎛⎫== ⎪⎝⎭代入数据,可以算得: E F =6.8x 10-16erg = 4.3x 10-4eV .则:FF E T k ==4.97 K.4.已知银的密度为310.5/g cm ,当温度从绝对零度升到室温(300K )时,银金属中电子的费米能变化多少?解:银的原子量为108,密度为310.5/g cm ,如果1个银原子贡献一个自由电子,1摩尔物质包含有6.022x 1023个原子,则单位体积内银的自由电子数为2232310.55.910()108/6.02210n cmmρ-===⨯⨯在T=0K 时,费米能量为202/3328FhnEm π=()代如相关数据得2/3272227302812(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()Ferg s cmEg erg eV -----⎛⎫⨯⋅⨯⨯=⎪⨯⨯⨯⎝⎭≈⨯≈在≠T0K时,费米能量2020]12B F FFK TE E E π=[1-()所以,当温度从绝对零度升到室温(300K )时, 费米能变化为202012B F FFk TE E E π-=-()代如相关数据得4F FE E -⨯⨯-⨯≈⨯≈2-162-12-163.14(1.3810300)=-128.8710-1.610(erg)-10(eV )可见,温度改变时,费米能量的改变是微不足道的。

春季-固体物理-第四章习题解答参考解析PPT精品课件

春季-固体物理-第四章习题解答参考解析PPT精品课件
eika1
k 2 a n 1 ,n 0 , 1 , 2 ,
k 2 n 1 , n 0 , 1 , 2 , a
在第一布里渊区内,ka,,a得到,
0
2021/3/1
k
a
a
k
a
1
(2)
电子波函数 k(x)ico3sax
k(xa)icos3a(xa)icos3ax3
ico3sxco3sisin3xsin3
一组 (k1,k2代,k表3一) 个电子状态点,波矢点均匀分布。
b3
b2
b1 波矢空间原胞体积,
k N b 1 1 N b 2 2 N b 3 3 N 1 ( 2 ) 3 ( 2 V ) 3
波矢密度,
2021/3/1
k
V
(2 )3
9
4.4 用能带图说明导体、绝缘体、半导体的导电性质
电阻率 半导体
价带
0
T1
T2
温度 14
4.5
E (k)m 2 2 8 7 a co k)s a8 1 (co 2 ks ) a (
(1) 由极值条件找到极值点,
d d E k m 2 2 a a sikn ) a a 4 ( si2 k n ) a (0
sikn ) a ( 1 si2 k n)a (sikn ) a ( 1 2 sikn )c a (o k)a s(
i 1,2,3
7
eikNiai 1
kN ia i2h i
k1
2 h1
N1a
k2
2 h2
N2a
k3
2 h3
N3a
(h1 0, 1, 2, ) (h2 0, 1, 2, ) (h3 0, 1, 2, )

固体物理第四章

固体物理第四章

第四章半导体的导电性本章重点1. 迁移率 2. 载流子的散射 3. 电导率 4. 迁移率和电阻率与杂质浓度和温度的关系§ 4.1 载流子的漂移运动 迁移率4.1.1 欧姆定律El ES V I= = = =σ E S R ρl / S ρ欧姆定律的微分形式J =σ Eσ=1ρ为电导率,单位:西门子/米, 西门子/厘米电阻率ρ的单位Ω ⋅ m,Ω ⋅ cm4.1.2 漂移速度和迁移率载流子在电场力作用下作定向运动叫漂移运动,平均漂移 速度−vd。

电子浓度为n的导体,电子漂移运动形成电流A O E vd×1 sJ = − nq v d (2)−J =σ E , 电流密度随电场增加而增大 又J = − nq vd−vd = μ E−μ = v d / E (3)−J = nqμ Eσ = nqμ(4)μ 为电子迁移率,表示单位电场下电子的平均漂移速度。

描述载流子在电场中漂移运动的难易程度。

单位:(m2/V.s或cm2/V.s)4.1.3 半导体的电导率和迁移率 复杂性:电子和空穴两种载流子,且其浓度随温度、掺杂而变化。

电场方向电子漂移方向 电子电流 空穴电流 空穴漂移方向漂移电流示意图半导体中电流:J = J n + J p = (nqμn + pqμ p ) E = σ E半导体中电导率与载流子浓度和迁移率的关系:σ = nqμ n + pqμ p电导率主要取决于多子对N型半导体n>>pσ = nq μnσ = pq μ pσ = ni q ( μ n + μ p )对P型半导体p>>n 对本征半导体p=n=ni电子迁移率大于空穴迁移率,高速开关器件主要依靠 电子导电。

§ 4.2 载流子的散射4.2.1 载流子散射与漂移运动 1、载流子的散射——改变速度的方向和大小 散射的根本原因:周期性势场遭到破坏,产生了附加势场。

平均自由程 l :连续两次散射间自由运动的平均路程。

黄昆固体物理习题-第四章 能带理论

黄昆固体物理习题-第四章 能带理论

4.4 用紧束缚近似求出面心立方晶格和体心立方晶格s 态原子能级相对应的能带函数)(k E s先求面心立方晶格s 态原子能级相对应的能带E s (k )函数,利用公式:∑=⋅−−−=NearestR R k i s s s s seR J J k E)()(0ε解:0*01()()[()()]()}0s i s i J J R R U V d ϕξξξϕξξ==−−−>∫ 01()s s ik R ss R NearestE k J J eε−⋅==−−∑ s 原子态波函数具有球对称性,则:解:只计入最近邻格点原子的相互作用时,s 态原子能级相对应的能带函数表示为:∑=⋅−−−=NearestR R k i s s ss seR J J k E )()(0ε4.7 有一一维单原子链,原子间距a ,总长度为L =Na 1) 用紧束缚近似方法求出与原子s 态能级相对应的能带函数2) 求出其能带密度函数的表达式3) 如每个原子s 态中只有一个电子,计算T=0K 时的费密能级和处的能态密度0F E 0FE )(E N二价金属每个原子可以提供2个自由电子,内切球内只能装下每原子1.047个电子,余下的0.953个电子可填入其它状态中。

如果布里渊区边界上存在大的能量间隙,则余下的电子只能填满第一区内余下的所有状态(包括B点)。

这样,晶体将只有绝缘体性质。

然而由(2)可知,B点的能量比A点高很多,从能量上看,这种电子排列是不利的。

事实上,对于二价金属,布里渊区边界上的能隙很小,对于三维晶体,可出现一区、二区能带重迭.这样,处于第一区角顶附近的高能态的电子可以“流向”第二区中的能量较低的状态,并形成横跨一、二区的球形Fermi面。

因此,一区中有空态存在,而二区中有电子存在,从而具有导电功能。

实际上,多数的二价金属具有六角密堆和面心立方结构,能带出现重达,所以可以导电。

4.8题解答完毕。

固体物理第四章习题及答案

固体物理第四章习题及答案

第四章 晶体的缺陷思 考 题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量L L /∆与X 射线衍射测定的晶格常数相对变化量a a /∆存在差异, 是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X 射线衍射测定的晶格常数相对变化量a a /Δ, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量L L /Δ不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式L L Δ>a aΔ.3.KCl 晶体生长时,在KCl 溶液中加入适量的CaCl 2溶液,生长的KCl 晶体的质量密度比理论值小,是何原因?[解答]由于+2Ca 离子的半径(0.99o A )比+K 离子的半径(1.33oA )小得不是太多, 所以+2Ca 离子难以进入KCl 晶体的间隙位置, 而只能取代+K 占据+K 离子的位置. 但+2Ca比+K 高一价, 为了保持电中性(最小能量的约束), 占据+K 离子的一个+2Ca 将引起相邻的一个+K 变成空位. 也就是说, 加入的CaCl 2越多, +K 空位就越多. 又因为Ca 的原子量(40.08)与K 的原子量(39.102)相近, 所以在KCl 溶液中加入适量的CaCl 2溶液引起+K 空位, 将导致KCl 晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道 晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, −+B A 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率μ. 设正离子空位附近的离子和填隙离子的振动频率分别为+v A ν和+i A ν, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为+v A E 和+i A E , 负离子空位附近的离子和填隙离子的振动频率分别为−v B ν和−i B ν, 负离子空位附近的离子和填隙离子跳过的势垒高度分别−v B E 为−iB E , 则由(4.47)矢可得 T k E B A A B v A v v e Tk ea /2+++−=νμ, Tk E B A A B i A i i e T k ea /2+++−=νμ,T k E B B B B v B v v e Tk ea /2−−−−=νμ, Tk E B B B B i B i i e T k ea /2−−−−=νμ.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即+v A E <+i A E , −v B E <−i B E . 由问题 1.已知, 所以有+v A ν<+i A ν, −v B ν<−i B ν. 另外, 由于+A 和−B 的离子半径不同, 质量不同, 所以一般−+≠B A E E , −+≠B A νν.也就是说, 一般−−++≠≠≠i v i vB B A A μμμμ. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数 Tk E u B ae D /)(0222221+−=ν,空位机构自扩散系数Tk E u B ae D /)(0111121+−=ν.自扩散系数主要决定于指数因子, 由问题4.和8.已知, 1u <2u ,1E <2E , 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是N n /1, 平均来说, 填隙原子要跳1/n N 步才遇到一个空位并与之复合. 所以一个填隙原子平均花费T k E u B e n N t /)(0221211+==ντ的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间T k E u u B e n n N P /)(022********++===νττ.由以上两式得2/2n Ne t T k u B ==τ>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时,它才扩散一步, 所需等待的时间是1τ. 但它相邻的一个原子成为空位的几率是N n /1, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间T k E u B e n N t /)(0111111+==ντ.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成RTN T k e a e a D B /20/2002121εενν−−==.可以看出, 自扩散系数与原子的振动频率0ν, 晶体结构(晶格常数a ), 激活能(ε0N )三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间τ后变成填隙原子, 又平均花费时间21τn N后被空位复合重新进入正常晶格位置, 其中2τ是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间21ττn N t +=.因为τ>>21τn N ,所以填隙原子自扩散系数近似反比于τ. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间τ, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.−+B A 离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. −+B A 离子晶体中有4种缺陷: +A 填隙离子, −B 填隙离子, +A 空位, −B 空位. 也就是说, −+B A 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. −+B A 离子晶体中, +A 空位附近都是负离子, −B 空位附近都是正离子. 由此可知, +A 空位的移动实际是负离子的移动, −B 空位的移动实际是正离子的移动. 因此, 在外电场作用下, +A 填隙离子和−B 空位的漂移方向与外电场方向一致, 而−B 填隙离子和+A 空位的漂移方向与外电场方向相反.。

固体物理 课后习题解答(黄昆版)第四章

固体物理 课后习题解答(黄昆版)第四章

4.1,根据 k黄昆 固体物理 习题解答第四章 能带理论= ± π 状态简并微扰结果,求出与 E − 及 E +相应的波函数ψ − 及ψ+?,并说明它 a们的特性.说明它们都代表驻波,并比较两个电子云分布 ψ2说明能隙的来源(假设V n =V n *)。

<解>令 k= + π , k ′ = − π ,简并微扰波函数为ψ=A ψk( ) + B ψk( )a*a⎡E k ( ) − E A V B n= 0( )V A n+ ⎡E k − E B =取 E E +带入上式,其中 E += E k0( )+ V nV(x)<0,V n < 0 ,从上式得到 于是A ⎡ n π− n π ⎤πψ = A ⎡ψ 0( )−ψk0′( )⎤ =ixe a − e i x a =2A sin n x+⎣k⎢ L ⎣⎥ ⎦L a 取 E E − , E −=E k0( )− V nV A n= −V B n,得到A BA ⎡ i nπx−i n πx⎤πψ = A ⎡ψ 0( )−ψk0′( )⎤ =e a − ea=2A cos n x−⎣ k⎦⎢ ⎣L a由教材可知,Ψ+及 Ψ − ν ( ) 为零.产生驻波因为电子波矢n kπ=时,电子波的波长aλ =2π=2a ,恰好满足布拉格发射条件,这kn时电子波发生全反射,并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同代入 能量。

4.2,写出一维近自由电子近似,第 n 个能带(n=1,2,3)中,简约波数 k π= 的 0 级波函数。

2a11r2π1π 2π1i2π1xi mx i x i mx(m+ )ψ* <解>( ) = ikx=eikx ae e= e2a⋅ea= e a 4k L⋅π=L*Lπ1 i2xL第一能带:m0, m = 0,ψ( ) = e a2ab b′则b′ →,k2π⋅= −L2π, m= −1,i2πx i π∴ψ *( )= 13πi xe第二能带:a a即(e a=e )2a k L2a2π2π 1 π2π 1 5π第三能带:c′ →, ⋅=aa即m =,*1,ψk( ) = Li x i xe2a⋅ea= L i xe2a解答(初稿)作者季正华- 1 -4.3 电子在周期场中的势能.黄昆 固体物理 习题解答1 2 2 2 2 m ω ⎡b − −( x na ⎤) ,当na b x na b + V x ( ) =0 ,当(n-1)a+b ≤ ≤x na b −其中 d =4b , ω 是常数.试画出此势能曲线,求其平均值及此晶体的第一个和第二个禁带 度.<解>(I)题设势能曲线如下图所示.(2)势能的平均值:由图可见, V x ( ) 是个以 a 为周期的周期函数,所以V x ( )= 1∫ V x L( )=1∫a( )=1a b( )L a ba ∫−b题设 a = 4b ,故积分上限应为 a b − = 3b ,但由于在 [b b ,3 ] 区间内[− , ] 区间内积分.这时, n = 0 ,于是V x ( ) 0=,故只需在= 1∫b= m ω2∫b22=m ω2 ⎡ 2b− 1x 3b ⎤ = 1m ωb 2V( )b − x dx )( b x ⎢ −b −b⎥ 。

固体物理课后思考题答案

固体物理课后思考题答案

第一章晶体的结构1.以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比.[解答]设原子的半径为R, 体心立方晶胞的空间对角线为4R, 晶胞的边长为, 晶胞的体积为, 一个晶胞包含两个原子, 一个原子占的体积为,单位体积晶体中的原子数为; 面心立方晶胞的边长为, 晶胞的体积为, 一个晶胞包含四个原子, 一个原子占的体积为, 单位体积晶体中的原子数为. 因此, 同体积的体心和面心立方晶体中的原子数之比为=0.272.2.解理面是面指数低的晶面还是指数高的晶面?为什么?[解答]晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面.3.基矢为, , 的晶体为何种结构? 若+, 又为何种结构? 为什么?[解答]有已知条件, 可计算出晶体的原胞的体积.由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量,,.对应体心立方结构. 根据14题可以验证, 满足选作基矢的充分条件.可见基矢为, , 的晶体为体心立方结构.若+,则晶体的原胞的体积,该晶体仍为体心立方结构.4.若与平行, 是否是的整数倍? 以体心立方和面心立方结构证明之.[解答]若与平行, 一定是的整数倍. 对体心立方结构, 由(1.2)式可知,, ,=h+k+l=(k+l)(l+h)(h+k)=p=p(l1 +l2 +l3), 其中p是(k+l)、(l+h)和(h+k)的公约(整)数.对于面心立方结构, 由(1.3)式可知,, , ,=h+k+l=(-h+k+l)+(h-k+l)+(h+k-l)=p’= p’(l1 +l2+l3),其中p’是(-h+k+l)、(-k+h+l)和(h-k+l)的公约(整)数.5. 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基矢、和重合,除O点外,OA、OB和OC上是否有格点?若ABC面的指数为(234),情况又如何?[解答]晶面族(123)截、和分别为1、2、3等份,ABC面是离原点O最近的晶面,OA的长度等于的长度,OB的长度等于的长度的1/2,OC的长度等于的长度的1/3,所以只有A点是格点. 若ABC面的指数为(234)的晶面族, 则A、B和C都不是格点.6.验证晶面(),()和(012)是否属于同一晶带. 若是同一晶带, 其带轴方向的晶列指数是什么?[解答]由习题12可知,若(),()和(012)属于同一晶带, 则由它们构成的行列式的值必定为0.可以验证=0,说明(),()和(012)属于同一晶带.晶带中任两晶面的交线的方向即是带轴的方向. 由习题13可知, 带轴方向晶列[l1l2l3]的取值为l1==1, l2==2, l3==1.7.带轴为[001]的晶带各晶面,其面指数有何特点?[解答]带轴为[001]的晶带各晶面平行于[001]方向,即各晶面平行于晶胞坐标系的轴或原胞坐标系的轴,各晶面的面指数形为(hk0)或(h1h20), 即第三个数字一定为0.8.与晶列[l1l2l3]垂直的倒格面的面指数是什么?[解答]正格子与倒格子互为倒格子. 正格子晶面(h1h2h3)与倒格式h1 +h2+h3 垂直, 则倒格晶面(l1l2l3)与正格矢l1 +l2 +l3 正交. 即晶列[l1l2l3]与倒格面(l1l2l3) 垂直.9.在结晶学中, 晶胞是按晶体的什么特性选取的?[解答]在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.10.六角密积属何种晶系? 一个晶胞包含几个原子?[解答]六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子.11.体心立方元素晶体, [111]方向上的结晶学周期为多大? 实际周期为多大?[解答]结晶学的晶胞,其基矢为,只考虑由格矢h+k+l构成的格点.因此, 体心立方元素晶体[111]方向上的结晶学周期为, 但实际周期为/2.12.面心立方元素晶体中最小的晶列周期为多大? 该晶列在哪些晶面内?[解答]周期最小的晶列一定在原子面密度最大的晶面内. 若以密堆积模型, 则原子面密度最大的晶面就是密排面. 由图1.9可知密勒指数(111)[可以证明原胞坐标系中的面指数也为(111)]是一个密排面晶面族, 最小的晶列周期为. 根据同族晶面族的性质, 周期最小的晶列处于{111}面内.13. 在晶体衍射中,为什么不能用可见光?[解答]晶体中原子间距的数量级为米,要使原子晶格成为光波的衍射光栅,光波的波长应小于米. 但可见光的波长为7.6 4.0米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光.14. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么?[解答]对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式可知, 面间距大的晶面, 对应一个小的光的掠射角. 面间距小的晶面,对应一个大的光的掠射角. 越大, 光的透射能力就越强, 反射能力就越弱.15. 温度升高时, 衍射角如何变化? X光波长变化时, 衍射角如何变化?[解答]温度升高时, 由于热膨胀, 面间距逐渐变大. 由布拉格反射公式可知, 对应同一级衍射, 当X光波长不变时, 面间距逐渐变大, 衍射角逐渐变小.所以温度升高, 衍射角变小.当温度不变, X光波长变大时, 对于同一晶面族, 衍射角随之变大.16. 面心立方元素晶体, 密勒指数(100)和(110)面, 原胞坐标系中的一级衍射,分别对应晶胞坐标系中的几级衍射?[解答]对于面心立方元素晶体, 对应密勒指数(100)的原胞坐标系的面指数可由(1.34)式求得为(), p’=1. 由(1.33)式可知, ; 由(1.16)和(1.18)两式可知,; 再由(1.26)和(1.27)两式可知, n’=2n. 即对于面心立方元素晶体, 对应密勒指数(100)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的二级衍射.对于面心立方元素晶体, 对应密勒指数(110)的原胞坐标系的面指数可由(1.34)式求得为(001), p’=2. 由(1.33)式可知, ; 由(1.16)和(1.18)两式可知,; 再由(1.26)和(1.27)两式可知, n’=n, 即对于面心立方元素晶体, 对应密勒指数(110)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的一级衍射.17.由KCl的衍射强度与衍射面的关系, 说明KCl的衍射条件与简立方元素晶体的衍射条件等效.[解答]Cl 与K是原子序数相邻的两个元素, 当Cl原子俘获K原子最外层的一个电子结合成典型的离子晶体后, 与的最外壳层都为满壳层, 原子核外的电子数和壳层数都相同, 它们的离子散射因子都相同. 因此, 对X光衍射来说, 可把与看成同一种原子. KCl与NaCl结构相同, 因此, 对X光衍射来说, KCl的衍射条件与简立方元素晶体等效.由KCl的衍射强度与衍射面的关系也能说明KCl的衍射条件与简立方元素晶体的衍射条件等效. 一个KCl晶胞包含4个离子和4个离子,它们的坐标:(000)()()():()()()()由(1.45)式可求得衍射强度I hkl与衍射面(hkl)的关系I hkl={1+cos由于等于, 所以由上式可得出衍射面指数全为偶数时, 衍射强度才极大. 衍射面指数的平方和: 4, 8, 12, 16, 20, 24…. 以上诸式中的n由决定. 如果从X光衍射的角度把KCl看成简立方元素晶体, 则其晶格常数为, 布拉格反射公式化为显然, 衍射面指数平方和: 1, 2, 3, 4, 5, 6…. 这正是简立方元素晶体的衍射规律.18. 金刚石和硅、锗的几何结构因子有何异同?[解答]取几何结构因子的(1.44)表达式,其中u j,v j,w j是任一个晶胞内,第j个原子的位置矢量在轴上投影的系数.金刚石和硅、锗具有相同的结构, 尽管它们的大小不相同, 但第j个原子的位置矢量在轴上投影的系数相同. 如果认为晶胞内各个原子的散射因子都一样, 则几何结构因子化为.在这种情况下金刚石和硅、锗的几何结构因子的求和部分相同. 由于金刚石和硅、锗原子中的电子数和分布不同, 几何结构因子中的原子散射因子不会相同.19. 旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 胶片上的感光线是否等间距?[解答]旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 衍射线构成了一个个圆锥面. 如果胶片上的感光线如图所示是等间距, 则应有关系式tg.其中R是圆筒半径, d是假设等间距的感光线间距, 是各个圆锥面与垂直于转轴的平面的夹角. 由该关系式可得sin,即与整数m不成正比. 但可以证明.即与整数m成正比(参见本章习题23). 也就是说, 旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 胶片上的感光线不是等间距的.20. 如图1.33所示, 哪一个衍射环感光最重? 为什么?[解答]最小衍射环感光最重. 由布拉格反射公式可知, 对应掠射角最小的晶面族具有最大的面间距. 面间距最大的晶面上的原子密度最大, 这样的晶面对射线的反射(衍射)作用最强. 最小衍射环对应最小的掠射角,它的感光最重.第二章晶体的结合1.是否有与库仑力无关的晶体结合类型?[解答]共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间, 通过库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力. 金属结合中, 原子实依靠原子实与电子云间的库仑力紧紧地吸引着. 分子结合中, 是电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力. 氢键结合中, 氢先与电负性大的原子形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合. 可见, 所有晶体结合类型都与库仑力有关.2.如何理解库仑力是原子结合的动力?[解答]晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力.3.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?[解答]自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.原子的动能与原子间的相互作用势能之和为晶体的内能.在0K时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能.4.原子间的排斥作用取决于什么原因?[解答]相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠.5.原子间的排斥作用和吸引作用有何关系? 起主导的范围是什么?[解答]在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态,吸引力与排斥力缺一不可. 设此时相邻原子间的距离为, 当相邻原子间的距离>时, 吸引力起主导作用; 当相邻原子间的距离<时, 排斥力起主导作用.6.共价结合为什么有“饱和性”和“方向性”?[解答]设N为一个原子的价电子数目, 对于IV A、V A、VI A、VII A族元素,价电子壳层一共有8个量子态, 最多能接纳(8- N)个电子, 形成(8- N)个共价键. 这就是共价结合的“饱和性”.共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的“方向性”.7.共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释?[解答]共价结合, 形成共价键的配对电子, 它们的自旋方向相反, 这两个电子的电子云交迭使得体系的能量降低, 结构稳定. 但当原子靠得很近时, 原子内部满壳层电子的电子云交迭, 量子态相同的电子产生巨大的排斥力, 使得系统的能量急剧增大.8.试解释一个中性原子吸收一个电子一定要放出能量的现象.[解答]当一个中性原子吸收一个电子变成负离子, 这个电子能稳定的进入原子的壳层中, 这个电子与原子核的库仑吸引能的绝对值一定大于它与其它电子的排斥能. 但这个电子与原子核的库仑吸引能是一负值. 也就是说, 当中性原子吸收一个电子变成负离子后, 这个离子的能量要低于中性原子原子的能量. 因此, 一个中性原子吸收一个电子一定要放出能量.9.如何理解电负性可用电离能加亲和能来表征?[解答]使原子失去一个电子所需要的能量称为原子的电离能, 电离能的大小可用来度量原子对价电子的束缚强弱. 一个中性原子获得一个电子成为负离子所释放出来的能量称为电子亲和能. 放出来的能量越多, 这个负离子的能量越低, 说明中性原子与这个电子的结合越稳定. 也就是说, 亲和能的大小也可用来度量原子对电子的束缚强弱. 原子的电负性大小是原子吸引电子的能力大小的度量. 用电离能加亲和能来表征原子的电负性是符合电负性的定义的.10.为什么许多金属为密积结构?[解答]金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大). 原子实越紧凑, 原子实与共有电子电子云靠得就越紧密, 库仑能就越低. 所以, 许多金属的结构为密积结构.11.何为杂化轨道?[解答]为了解释金刚石中碳原子具有4个等同的共价键, 1931年泡林(Pauling)和斯莱特(Slater)提出了杂化轨道理论. 碳原子有4个价电子, 它们分别对应、、、量子态, 在构成共价键时, 它们组成了4个新的量子态,4个电子分别占据、、、新轨道,在四面体顶角方向(参见图1.18)形成4个共价键.12.你认为固体的弹性强弱主要由排斥作用决定呢, 还是吸引作用决定?[解答]如上图所示, 附近的力曲线越陡, 当施加一定外力, 固体的形变就越小.附近力曲线的斜率决定了固体的弹性性质. 而附近力曲线的斜率主要取决于排斥力. 因此, 固体的弹性强弱主要由排斥作用决定.13.固体呈现宏观弹性的微观本质是什么?[解答]固体受到外力作用时发生形变, 外力撤消后形变消失的性质称为固体的弹性. 设无外力时相邻原子间的距离为, 当相邻原子间的距离>时, 吸引力起主导作用;当相邻原子间的距离<时, 排斥力起主导作用. 当固体受挤压时, <, 原子间的排斥力抗击着这一形变. 当固体受拉伸时, >, 原子间的吸引力抗击着这一形变.因此, 固体呈现宏观弹性的微观本质是原子间存在着相互作用力, 这种作用力既包含着吸引力, 又包含着排斥力.14.你是如何理解弹性的, 当施加一定力, 形变大的弹性强呢, 还是形变小的强?[解答]对于弹性形变, 相邻原子间的距离在附近变化. 令, 则有因为是相对形变, 弹性力学称为应变, 并计作S, 所以原子间的作用力再令,.可见, 当施加一定力, 形变S大的固体c小, 形变S小的固体c大. 固体的弹性是固体的属性, 它与外力和形变无关. 弹性常数c是固体的属性, 它的大小可作为固体弹性强弱的度量. 因此, 当施加一定力, 形变大的弹性弱, 形变小的强. 从这种意义上说, 金刚石的弹性最强.15.拉伸一长棒, 任一横截面上的应力是什么方向? 压缩时, 又是什么方向?[解答]如上图所示, 在长棒中取一横截面, 长棒被拉伸时, 从截面的右边看, 应力向右, 但从截面的左边看, 应力向左. 压缩时, 如下图所示, 应力方向与拉伸时正相反. 可见, 应力方向依赖于所取截面的外法线矢量的方向.16.固体中某一面积元两边的应力有何关系?[解答以上题为例, 在长棒中平行于横截面取一很薄的体积元, 拉伸时体积元两边受的应力如图所示.压缩时体积元两边受的应力如下图所示.当体积元无限薄, 体积元将变成面积元. 从以上两图可以看出, 面积元两边的应力大小相等方向相反.17.沿某立方晶体一晶轴取一细长棒做拉伸实验, 忽略宽度和厚度的形变, 由此能否测出弹性劲度常数?[解答]立方晶体轴是等价的, 设长棒方向为x(, 或, 或)轴方向, 做拉伸实验时若忽略宽度和厚度的形变, 则只有应力应变不为0, 其它应力应变分量都为0. 由(2.55)可得. 设长棒的横截面积为A, 长度为L, 拉伸力为F, 伸长量为, 则有: . 于是, .18.若把上题等价成弹簧的形变, 弹簧受的力, 与有何关系?[解答]上题中长棒受的力,长棒的伸长量即是弹簧的伸长量x. 因此,可见, 弹簧的弹性系数与弹性劲度常数的量纲是不同的.19.固体中的应力与理想流体中的压强有何关系?[解答]固体受挤压时, 固体中的正应力与理想流体中的压强是等价的, 但不同于理想流体中的压强概念. 因为压强的作用力与所考虑截面垂直, 而与所考虑截面平行. 也就是说, 理想流体中不存在与所考虑截面平行的作用力. 这是因为理想流体分子间的距离比固体原子间距大得多, 流层与流层分子间不存在切向作用力.20.固体中的弹性波与理想流体中的传播的波有何差异? 为什么?[解答]理想流体中只能传播纵波. 固体中不仅能传播纵波, 还能传播切变波. 这是因为理想流体分子间距离大, 分子间不存在切向作用力, 只存在纵向作用力;而固体原子间距离小, 原子间不仅存在纵向作用力, 还存在切向作用力.第三章晶格振动与晶体热学性质1. 相距为不是晶格常数倍数的两个同种原子, 其最大振幅是否相同?[解答]以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由本教科书的(3.16)可得两原子振幅之比(1)其中m原子的质量. 由本教科书的(3.20)和(3.21)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得, . 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.2. 引入玻恩卡门条件的理由是什么?[解答](1)方便于求解原子运动方程.由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?[解答]为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成3N个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N.4.长光学支格波与长声学支格波本质上有何差别?[解答]长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.5. 晶体中声子数目是否守恒?[解答]频率为的格波的(平均) 声子数为,即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量.按照德拜模型, 晶体中的声子数目N’为.作变量代换,.其中是德拜温度. 高温时,,即高温时, 晶体中的声子数目与温度成正比.低温时, ,, 即低温时, 晶体中的声子数目与T 3成正比.6.温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多?[解答]频率为的格波的(平均) 声子数为.因为光学波的频率比声学波的频率高, ()大于(), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目.7.对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多?[解答]设温度T H>T L, 由于()小于(), 所以温度高时的声子数目多于温度低时的声子数目.8.高温时, 频率为的格波的声子数目与温度有何关系?[解答]温度很高时, , 频率为的格波的(平均) 声子数为.可见高温时, 格波的声子数目与温度近似成正比.9. 从图3.6所示实验曲线, 你能否判断哪一支格波的模式密度大? 是光学纵波呢, 还是声学纵波?[解答]从图3.6所示实验曲线可以看出, 在波矢空间内, 光学纵波振动谱线平缓, 声学纵波振动谱线较陡. 单位频率区间内光学纵波对应的波矢空间大, 声学纵波对应的波矢空间小. 格波数目与波矢空间成正比, 所以单位频率区间内光学纵波的格波数目大. 而模式密度是单位频率区间内的格波数目, 因此光学纵波的模式密度大于声学纵波的模式密度.10.喇曼散射方法中,光子会不会产生倒逆散射?[解答]晶格振动谱的测定中, 光波的波长与格波的波长越接近, 光波与声波的相互作用才越显著. 喇曼散射中所用的红外光,对晶格振动谱来说, 该波长属于长波长范围. 因此, 喇曼散射是光子与长光学波声子的相互作用. 长光学波声子的波矢很小, 相应的动量不大. 而能产生倒逆散射的条件是光的入射波矢与散射波矢要大, 散射角也要大.与大要求波长小, 散射角大要求大(参见下图), . 但对喇曼散射来说, 这两点都不满足. 即喇曼散射中,光子不会产生倒逆散射.11.长声学格波能否导致离子晶体的宏观极化?[解答]长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离子晶体的宏观极化.12.金刚石中的长光学纵波频率与同波矢的长光学格横波频率是否相等? 对KCl 晶体, 结论又是什么?。

固体物理学课后题答案

固体物理学课后题答案

第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

黄昆固体物理习题-第四章 能带理论

黄昆固体物理习题-第四章 能带理论

4.1 根据状态简并微扰结果,求出与及相应的波函数及,并说明它们的特性,说明它们都代表驻波,并比较两个电子云分布说明能隙的来源(假设).2ψ*=nnV V 解:令,简并微扰波函数取带入上式,其中()n V k E E +=+0第四章习题参考解答, 从上式得到,于是取得到由教材可知, 及均为驻波。

电子波矢时,电子波的波长恰好满足布拉格发射条件,这时电子波发生全反射,并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同能量。

4.1题解答完毕4.2写出一维近自由电子近似,第n个能带(n=1,2,3)中简约波矢的零级波函数解:一维近自由电子近似中,用简约波矢表示的波函数( 为简约波矢)代入得到对于第一个能带第n个能带零级波函数:简约波矢:则有对于第二个能带:对于第三个能带4.2题解答完毕4.3电子在周期场中的势能函数且a=4b, 是常数。

(1)画出此势能曲线,并计算势能的平均值;(2) 用近自由电子模型计算晶体的第一个和第二个带隙宽度。

解:由已知条件画出势能曲线(1)势能曲线势能的平均值为:令(2)带隙宽度第一个带隙宽度第二个带隙宽度4.3题解答完毕4.4 用紧束缚近似求出面心立方晶格和体心立方晶格s态原子能级相对应的能带函数先求面心立方晶格s态原子能级相对应的能带E s(k )函数,利用公式:解:s原子态波函数具有球对称性,则:取任选取一个格点为原点,最近邻格点有12个代入能量公式类似的表示共有12项,归并化简后,得到面心立方s态原子能级相对应的能带为:对于体心立方格子,任选取一个格点为原点有8个最邻近格点,最近邻格点的位置为:类似的表示共有8项,归并化简后得到体心立方s态原子能级相对应的能带代入能量公式()01s ik k ss E k J J eε-⋅=--∑ ()()1,nik k at n sn nk r er k Nφϕ⋅=-∑ M 点的布洛赫波为:()()1,mik k at msm mk r er k Nφϕ⋅=-∑ 4.5 题略p582在只考虑S 态电子的情下,由一维简单晶格的布洛赫波为:解:S 态原子对应的能带函数其中矩阵元:所以此时久期方程变为:其中由于原子波函数满足薛氏方程:晶体的哈密顿量写成H ,所以矩阵元即库仑积分交叠积分由于晶体不同原子的电子波函数很少相互交迭,所以上式中只有当是相邻原子是相同原子时才不为零(2)解:(1)= 4.6 题略解:只计入最近邻格点原子的相互作用时,s态原子能级相对应的能带函数表示为:4.7有一一维单原子链,原子间距a ,总长度为L =Na1)用紧束缚近似方法求出与原子s 态能级相对应的能带函数2)求出其能带密度函数的表达式3)如每个原子s 态中只有一个电子,计算T=0K 时的费密能级和处的能态密度对于一维情形,任意选取一个格点为原点,有两个最近邻的格点,坐标为:a和-a能带密度函数的计算对于一维格子,波矢为具有相同的能量此外考虑到电子自旋有2种取向,在dk区间的状态数为:能带密度T=0K的费密能级计算:总的电子数其中T=0K的费密能级T=0K费密能级处的能态密度4.7题解答完毕4.8 (1)证明一个简单正方晶格在第一布里渊区顶角上的一个自由电子动能比该区一边中点大2倍。

固体物理 第四章(1)Bloch定理

固体物理 第四章(1)Bloch定理



i

ˆ H i i r i Ei i r i


(4-9)
所有电子都满足薛定谔方程,可略去下标。只要解得 i r i , Ei ,便可得
到晶体电子体系的电子状态和能量,使一个多电子体系的问题简化成一 个单电子问题,所以上述近似也称为单电子近似。

周期势场假设
而并不考虑其它电子的具体运动情况
单电子近似并非所研究的系统只有一个电子。系统可以有多个 电子,但是波函数十单电子的波函数,多个单电子方程。但所 有单电子都满足同样的方程,因此这个单电子方程的解对所有 电子都适用,是所有电子的解。 如果该近似用到不满足这个近似的体系——强关联体系,会出 现反常现象。
4.2 能带理论的基本假设
假设在体积V=L3中有N个带正电荷Ze的离子实,相应地有NZ个价电 子,那么该系统的哈密顿量为:
2 2 1 / e2 ˆ H i 2 i , j 4 0 r i r j i 1 2m
NZ NZ N 2 2 1 ( Ne) 2 Ze 2 / n 2 i , j 4 0 R n R m i 1 n 1 4 0 r i R n i 1 2 M ˆ ˆ Te U ee r i r j Tn U nm R n R m U en r i R n N

(4-12)
的本征函数是按布拉菲格子周期性调幅的平面波,即
k



ik r r e uk r

(4-13)
在周期势场中运动的单电子的波函数不再 是平面波,而是调幅平面波,其振幅不再
uk r R n uk r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ec
另一个能带有很少电子,导电性比
导体差。 禁带 典型:Bi、As、Sb
E
绝缘体
原子含偶数个价电子,能量最高的满
Ec
禁带
带和能量最低的空带之间的禁带宽度很
E
Eg
大。在一般的温度下,满带电子不能激 发到空带中,导电性很差。
半导体
Ec E
原子含偶数个价电子,能量最高的满带(导带) 绝对零度下,满带电子不能激发到导带,导电性 为零。当温度高于绝对零度时,随温度提高,价 带空穴和导带电子大量增加,导电性急剧提高。 电阻率 导带
2 1 dE 2 1 1 sin(ka) sin(2ka) [sin(ka) sin(ka) cos(ka) dk m 4 2 m 2 1 sin(ka)[1 cos(ka)] m 2
(3)能带底部和顶部的电子有效质量
m
k 0
2 2 2m d E (k ) dk 2 k 0
导体 1、原子含奇数个价电子的导体具有不满带、外场下导电良好
Ec
禁带
E
典型:Na、Cu、K、Li、Ag、Au
2、原子含偶数个价电子的导体,价电子填满一个或几个能
带,但满带与空带重叠,外场下具有较好的导电性。
Ec
禁带
E
典型:Be、Mg、Zn
半金属
原子含偶数个价电子,满带与空 带少量重叠,一个能带几乎填满,
2n 1 k ,
a
n 0,1,2,
k 在第一布里渊区内, , ,得到, a a
0 a a

k
k

a
3 x (2) 电子波函数 k ( x) i cos a 3 3 k ( x a ) i cos ( x a ) i cos x 3 a a 3x 3x i cos cos3 i sin sin 3 a a 3x i cos k ( x) a
2 2 m 2 m 3 d E (k ) dk 2 k
a
(4)若此一维晶格长度为 Na ,N 为原胞数,求电子能态密度 一维晶格波矢密度,
L k 2
考虑电子自旋后,一维晶格第n个能带电子能态密度,
1 gn E dEn k / dk
2 h2 k2 N2a k3 2 h3 N3a
, ,得到, 若第一布里渊区为 a a


a
ki

a
Ni Ni hi 2 2
一组
k
取值个数 N
N1 N2 N3
(k1 , k2 , k3 )
代表一个电子状态点,波矢点均匀分布。
b3
b2
b1
波矢空间原胞体积,
b3 1 (2 )3 (2 )3 b1 b2 k N1 N 2 N 3 N V
波矢密度,
V k (2 )3
4.4 用能带图说明导体、绝缘体、半导体的导电性质 基本原理:
满带中的电子不能导电
没有电子的空带不能导电(因为没有电子) 不满的能带中的电子参与导电
k 0
(n 0,1,2,......)
4.2 (1)能带论的基本假设及其物理意义
答:能带论的基本假设 ① 绝热近似——假设相对于共有化运动电子的运动速度,离子实近似固定在
格点上不动,电子系统和离子实系统没有能量交换。
② 平均场近似(单电子势近似)——假设每个电子所处的周期势相同,与其 它电子、离子实的库仑相互作用只与该电子位置有关。
k 0,k a
当 k 0, 电子能量取到极小值,
Emin Ek 0 0
当 k , 电子能量取到极大值,

a
2 2 Emax E k a m a2
得到能带宽度,
2 2 E m a2
(2)电子在波矢量 k 状态下的速度
由共有化运动电子波函数的周期性边界条件,
kn r kn r Ni ai
得到,
u (r )e
n k
ik r
u (r Ni ai )e
n k
ik r Ni ai
i 1, 2, 3
eik Ni ai 1
k Ni ai 2 hi
k1 2 h1 N1a (h1 0, 1, 2, (h2 0, 1, 2, (h3 0, 1, 2, ) ) )
和能量最低的空带(价带)之间的禁带宽度较小。
禁带
Eg
激发
激发 价带
0
半导体
T1
T2
温度
4.5
2 E (k ) m a2
1 7 cos( ka ) cos( 2 ka ) 8 8
(1) 由极值条件找到极值点,
dE 2 dk m a2
a a sin( ka ) sin( 2 ka ) 0 4



将波矢 k 的取值限制在第一布里渊区内;
4.3 试证明三维布拉菲晶格的电子波矢分布密度为
V
2
3
证明
设三维布拉菲晶格的原胞基矢为
ai
i 1, 2, 3
Ni 为ai 方向原胞数, ai a
对应的倒格子基矢为 b1 b2 b3 ,则电子波矢,
k 1 由于 sin ka sin 2 ka dk ma 4
L
Lma g E 1 2 sin ka sin 2 ka 4
Nma 2 1 2 sin ka sin 2 ka 4
eika 1
ka 2n 1 , n 0,1,2,
在第一布里渊区内, k a a
,得到, ,
k

a
( 3) k ( x )
l
f ( x la)
l

k ( x a)
f ( x a la) f ( x (l 1)a)
③ 周期势场近似——单电子势具有晶格平移周期性
(2)能带论的要点
构成晶体的原子的价电子不再束缚于其原子,而是在晶体中共有化运动。
在单电子近似下,求解共有化电子所满足的薛定谔方程,得到: 1、共有化运动电子的本征波函数是调幅平面波(布洛赫波),本征波函数 的振幅具有与晶格相同的周期性,电子在晶体不同原胞中的对应点上出现的几 率相等。 2、共有化运动电子允许存在的本征能量态(电子量子态)不再是原子能级, 而是一系列允许的能带(允带)。允带之间是共有化电子不可具有的能量状态,
简约布里渊区表示法
En k
En k
n3
n2
n 1
3 2 2 3 0 a a a a a a
k
a
a
k
扩展布里渊区将不同的能带描绘在波矢空间中的不同的布里渊区内;
简约布里渊区依据波矢具有以倒格矢为周期的平移对称性 En k Gh En k ,
称为禁带。
3、一般情况下,每个允带中包含等于晶体原胞数N、间隔非常小的能级 (准连续)。每个能级是共有化电子波矢 k 的函数,在波矢空间中,这种函数
关系以倒格矢为周期。
4、允带每个能级容纳自旋相反的两个电子,一个能带可容纳2N个电子。
4.2 (3)简约布里渊区表示的能带图和扩展布里渊表示的能带图有什么区别? 扩展布里渊区表示法
4.1
( 1)
电子波函数 k ( x) sin
a
x
根据布洛赫定理,一维周期势场中的电子波函数,
k ( x a) eikx k ( x)
得到,
x x k ( x a) sin ( x a) sin x sin cos cos sin a a a a x sin k ( x) a E k eika 1 ka 2n 1 , n 0,1,2,
1 1 sin(ka) sin(2ka) sin(ka) 2 sin(ka) cos(ka) 4 4 1 sin(ka) 1 cos(ka) 0 sin(ka) 0 ka n 2 (n 0,1,2,......) 在第一布里渊区内, k , ,得到, a a
l



令 l ' l 1,得到,
k ( x a)
l '
f ( x l ' a) f ( x l ' a) ( x)
l ' k

2n a k , 在第一布里渊区, a a eika 1,ka 2n,k
相关文档
最新文档