流体力学综合实验报告

合集下载

流体力学实验报告(全)

流体力学实验报告(全)

工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。

实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

<0时,试根据记录数据,确定水箱内的真空区域。

2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。

水与玻璃的浸润角很小,可认为cosθ=1.0。

于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。

流体力学综合实训报告总结

流体力学综合实训报告总结

本次流体力学综合实训旨在通过实际操作和理论学习的结合,使我对流体力学的基本原理、基本方法及实验技能有更深入的理解和掌握。

通过实训,我能够提高自己的动手能力、实验技能和综合运用知识解决实际问题的能力。

二、实训内容1. 流体力学基本实验(1)流体流速分布测量实验通过实验,我学习了流速分布的测量方法,掌握了流速分布曲线的绘制技巧。

实验结果表明,流速分布曲线呈现出明显的抛物线形状,符合流体力学的基本理论。

(2)流量测量实验在流量测量实验中,我学习了流量计的使用方法,掌握了不同流量计的优缺点。

通过实验,我了解了流量测量在工程实践中的应用,提高了自己的实际操作能力。

(3)伯努利方程实验通过伯努利方程实验,我加深了对伯努利方程的理解,学会了如何运用伯努利方程解决实际问题。

实验结果表明,伯努利方程在流体力学中具有广泛的应用价值。

2. 流体力学综合实验(1)管道摩擦系数测定实验在管道摩擦系数测定实验中,我学习了管道摩擦系数的测量方法,掌握了不同管道的摩擦系数。

实验结果表明,管道摩擦系数与管道材料、粗糙度等因素有关。

(2)弯管流量测量实验弯管流量测量实验使我了解了弯管对流体流动的影响,学会了如何测量弯管流量。

实验结果表明,弯管流量与弯管角度、管道直径等因素有关。

(3)流体阻力实验流体阻力实验使我掌握了流体阻力系数的测量方法,了解了流体阻力系数与流体特性、管道形状等因素的关系。

实验结果表明,流体阻力系数在工程实践中具有重要的应用价值。

1. 实验技能提高通过本次实训,我掌握了流体力学基本实验和综合实验的操作方法,提高了自己的实验技能。

在实验过程中,我学会了如何使用实验仪器、如何观察实验现象、如何分析实验数据,为今后从事相关领域的工作奠定了基础。

2. 理论知识深化在实训过程中,我结合实验现象对流体力学的基本原理进行了深入思考,使我对流体力学的基本理论有了更深刻的理解。

同时,通过实验数据的分析,我对流体力学的基本方法有了更全面的掌握。

流体学综合实验报告

流体学综合实验报告

流体学综合实验报告1. 实验目的本实验通过流体力学实验的综合测试,旨在加深对流体学基本原理的理解,并实践流体力学实验的操作方法和数据分析技巧。

具体目标包括:1. 掌握流速测量的原理和方法;2. 学习压力测量的原理和方法;3. 熟悉状态方程的测量方法;4. 分析流体力学实验数据,得出相应结论。

2. 实验仪器与装置本次实验所使用的仪器与装置主要包括:1. 流量计:用于测量流体的流速;2. 压力计:用于测量流体的压力;3. 热敏电阻温度计:用于测量流体的温度;4. 试验台:用于固定仪器和装置。

3. 实验原理3.1 流速测量流速测量的原理基于流体通过管道的体积流量和截面积之间的关系。

通过测量单位时间内流体通过的体积,可以计算出流体的平均流速。

为了保证测量的准确性,实验中使用了流量计。

流量计根据不同的原理可分为多种类型,包括旋转式流量计、压差式流量计和超声波流量计等。

3.2 压力测量压力测量的原理基于流体对容器内壁面施加的压力与流体深度之间的关系。

通过测量所施加的压力,可以计算出流体的压强。

在实验中,为了方便测量压力,使用了压力计。

压力计主要分为摆盘式压力计和压电式压力计。

通过测量压力计的示数,可以间接地得到流体的压力。

3.3 状态方程的测量流体的状态方程描述了流体的温度、压力和体积之间的关系。

实验中,通过使用热敏电阻温度计测量流体的温度,结合压力计测得的压力和容器的体积,可以得到流体的状态方程。

4. 实验步骤与结果分析4.1 流速测量首先将流量计插入管道中,连接相关的测量仪器。

然后根据实验要求设置合适的流速,记录下每组数据,并计算平均流速。

根据实验数据,在相同的压力下,流速与管道截面积成正比例关系。

4.2 压力测量首先将压力计插入容器中,保证测量仪器的稳定性和准确性。

根据实验要求设置不同的压力值,记录下每组数据,并计算平均压力。

通过实验数据的分析,可以得出流体压力与深度成线性关系的结论。

4.3 状态方程的测量在一定的温度下,根据实验要求改变流体的压力和容器的体积,记录下每组测量数据。

流体力学综合实验实验报告

流体力学综合实验实验报告

流体力学综合实验实验报告一、实验目的1. 了解流体力学原理。

2. 学习流体力学实验的方法,掌握实验的技能。

3. 通过实验,明白流体力学中流体的各种属性及其产生的作用。

二、实验原理流体力学综合实验主要通过实验装置与实验方法,研究流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性(如阻力、压力损失率、混合性等),量化表征流体运动规律,有助于进一步深入研究流体力学的原理。

三、实验设备流体力学综合实验装置由以下部分组成:1.供水管2.压力表3.流量计4.定压调节装置5.实验室水压测试系统6.实验室水压实验系统四、实验步骤1. 打开供水管,启动实验装置,并记录初始温度和流量。

2. 根据实验要求,调整定压调节装置,使实验装置持续运行。

3. 逐步记录实验装置的运行参数,如流量、压力、温度等。

4. 观察实验装置的运行状态,及时记录实验数据。

5. 根据实验结果,归纳总结实验意义,完成实验报告。

五、实验结果实验中测量的参数如下:1. 流量:1.32mL/min;2. 压力:2.45MPa;3. 温度:18℃。

六、实验分析通过实验,可以看出,流量、压力和温度是流体力学中非常重要的参数,改变这些参数,可以影响流体的运动状态,从而得出实验结论。

根据实验,我们可以得出以下结论:1. 压力的变化可以影响流体的流动状态。

随着压力的增加,流体的物理特性也发生了改变,即流量也相应增大。

2. 温度的变化也会影响流体的流动状态。

随着温度的升高,流量会增加。

七、实验总结本实验通过实验装置,和测量方法,了解流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性,我们可以从中得出流体受到压力、温度等影响而发生变化的结论。

流体力学综合实验报告

流体力学综合实验报告

流体力学综合实验报告流体力学综合实验报告引言:流体力学是研究流体运动规律和流体力学性质的学科,广泛应用于工程领域。

本实验旨在通过一系列实验,深入了解流体的性质和运动规律,加深对流体力学的理论知识的理解和应用。

实验一:流体静力学实验在这个实验中,我们使用了一个容器装满了水,并通过一个小孔使水流出。

通过测量水的高度和流量,我们可以了解到流体静力学的基本原理。

实验结果表明,当小孔的面积增大时,流出的水流量也随之增加,而当容器的高度增加时,流出的水流量也会增加。

实验二:流体动力学实验在这个实验中,我们使用了一台水泵和一段水管,通过改变水泵的转速和水管的直径,我们可以观察到水流的速度和压力的变化。

实验结果表明,当水泵的转速增加时,水流的速度也会增加,而当水管的直径增加时,水流的速度会减小。

同时,我们还发现,水流的速度和压力之间存在一定的关系,即当水流速度增加时,压力会减小。

实验三:流体粘度实验在这个实验中,我们使用了一个粘度计和一种称为甘油的液体。

通过测量液体在粘度计中的流动时间,我们可以计算出液体的粘度。

实验结果表明,甘油的粘度较大,流动时间较长,而水的粘度较小,流动时间较短。

这表明不同液体的粘度是不同的。

实验四:流体流动实验在这个实验中,我们使用了一个流量计和一段水管,通过改变水管的直径和流速,我们可以观察到水流的流量和流速的变化。

实验结果表明,当水管的直径增加时,水流的流量也会增加,而当流速增加时,水流的流量也会增加。

同时,我们还发现,水流的流量和流速之间存在一定的关系,即当流速增加时,流量也会增加。

结论:通过以上实验,我们深入了解了流体的性质和运动规律。

我们发现,流体静力学和动力学的基本原理可以通过实验来验证,并且不同液体的粘度是不同的。

此外,我们还发现,流体的流量和流速之间存在一定的关系。

这些实验结果对于工程领域的流体力学应用具有重要的意义,可以帮助我们更好地理解和应用流体力学的理论知识。

流体综合实验报告分析

流体综合实验报告分析

一、实验背景流体力学是研究流体运动规律及其与固体壁面相互作用的科学。

随着工业、交通、建筑等领域的发展,流体力学在各个领域的应用越来越广泛。

为了提高学生对流体力学知识的理解和应用能力,我们进行了流体综合实验。

二、实验目的1. 掌握流体力学基本实验方法,提高实验操作技能。

2. 验证流体力学基本理论,加深对流体运动规律的理解。

3. 分析实验数据,提高数据处理和分析能力。

4. 培养团队合作精神和创新意识。

三、实验内容1. 流体静力学实验:通过测量液体静压强,验证不可压缩流体静力学基本方程,掌握用测压管测量液体静水压强的技能。

2. 流体阻力实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。

3. 流体流动阻力测定实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。

四、实验方法与步骤1. 流体静力学实验:使用液式测压计测量液体静压强,记录数据,分析结果。

2. 流体阻力实验:通过测量不同雷诺准数下的流体阻力,绘制雷诺准数与直管摩擦系数的关系曲线。

3. 流体流动阻力测定实验:通过测量不同管件和阀门处的阻力损失,分析流体流动阻力的影响因素。

五、实验结果与分析1. 流体静力学实验:实验结果表明,液体静压强与测压管深度成正比,验证了不可压缩流体静力学基本方程。

2. 流体阻力实验:实验结果表明,在一般湍流区内,雷诺准数与直管摩擦系数呈非线性关系,验证了雷诺准数与直管摩擦系数的关系曲线。

3. 流体流动阻力测定实验:实验结果表明,管件和阀门对流体流动阻力有显著影响,其中弯头、三通等管件对阻力的影响较大。

六、讨论与心得1. 通过流体静力学实验,我们深入理解了不可压缩流体静力学基本方程,为后续学习流体动力学奠定了基础。

2. 流体阻力实验和流体流动阻力测定实验使我们认识到,在工程实践中,流体阻力对设备性能和能耗有重要影响。

因此,在设计过程中,应充分考虑流体阻力因素,以提高设备性能和降低能耗。

流动流体综合实验报告(3篇)

流动流体综合实验报告(3篇)

第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。

2. 学习使用流体力学实验设备,如流量计、压差计等。

3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。

4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。

二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。

直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。

局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。

直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。

局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。

三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。

2. 流量计:涡轮流量计。

3. 压差计:U型管压差计。

4. 温度计:水银温度计。

5. 计时器:秒表。

6. 量筒:500mL。

7. 仪器架:实验台。

四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。

2. 连接流量计和压差计,确保仪器正常运行。

3. 在实验台上设置实验管道,调整管道长度和管件布置。

4. 开启实验台水源,调整流量计,使流体稳定流动。

5. 使用压差计测量直管和管件处的压力差,记录数据。

6. 使用温度计测量流体温度,记录数据。

7. 计算直管摩擦阻力损失和局部阻力损失。

8. 重复步骤4-7,改变流量和管件布置,进行多组实验。

五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。

2. 记录不同流量下的压力差、流体温度等数据。

3. 计算直管摩擦阻力损失和局部阻力损失。

4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。

六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。

流体实验综合实验报告

流体实验综合实验报告

实验名称:流体力学综合实验实验日期:2023年4月10日实验地点:流体力学实验室一、实验目的1. 通过实验加深对流体力学基本理论的理解和掌握。

2. 掌握流体力学实验的基本方法和步骤。

3. 培养学生的实验操作技能和数据处理能力。

4. 培养学生严谨的科学态度和团队合作精神。

二、实验原理本实验主要研究流体在管道中流动时的基本特性,包括流速分布、压力分布、流量测量等。

实验采用流体力学的基本原理,如连续性方程、伯努利方程、雷诺数等,通过实验数据验证理论公式,分析实验结果。

三、实验仪器与设备1. 实验台:包括管道、阀门、流量计、压力计等。

2. 数据采集系统:用于采集实验数据。

3. 计算机软件:用于数据处理和分析。

四、实验步骤1. 实验准备:检查实验仪器和设备是否完好,熟悉实验操作步骤。

2. 实验数据采集:a. 打开阀门,调节流量,使流体在管道中稳定流动。

b. 在管道不同位置安装压力计,测量压力值。

c. 在管道出口处安装流量计,测量流量值。

d. 记录实验数据,包括流量、压力、管道直径等。

3. 实验数据处理:a. 利用伯努利方程计算流速。

b. 利用连续性方程计算流量。

c. 分析实验数据,验证理论公式。

4. 实验结果分析:a. 分析流速分布、压力分布的特点。

b. 分析流量测量误差。

c. 总结实验结论。

五、实验结果与分析1. 实验数据:a. 管道直径:D = 0.02 mb. 流量:Q = 0.01 m³/sc. 压力:P = 1.0×10⁵ Pad. 流速:v = 0.5 m/s2. 实验结果分析:a. 流速分布:实验数据表明,管道中流速分布均匀,流速在管道中心最大,靠近管道壁面最小。

b. 压力分布:实验数据表明,管道中压力分布均匀,压力在管道中心最大,靠近管道壁面最小。

c. 流量测量误差:实验数据表明,流量测量误差较小,说明实验装置和测量方法可靠。

六、实验结论1. 实验验证了流体力学基本理论,如连续性方程、伯努利方程等。

综合流体力学实验报告

综合流体力学实验报告

实验一:综合流体力学实验一、实验目的1、掌握测定流体流经直管、管件和阀门时阻力损失的实验方法;2、测定直管摩擦系数λ与雷诺准数Re,验证在一般湍流区λ与Re的关系;3、测定流体流经阀门时的局部阻力系数ξ;4、学会流量计的使用方法;5、辨识组成管路的各种管件、阀门,并了解其作用。

二、实验原理1.直管阻力摩擦系数λ与雷诺数Re的测定原理流体流经直管时,流体阻力、流体本身的黏性以及管路的粗糙程度是产生能量损失的主要原因。

当流体在水平等径直管中稳定流动时,阻力损失为:流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在的关系为:上式相连可得:,也可为雷诺数计算公式,也可为2、流体经过截止阀门的局部阻力系数ξ的测定原理局部阻力损失测量法有:当量长度法和局部阻力系数法,本实验采取局部阻力系数法------流体通过某一管件或者阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数。

,可化为λ--- 直管阻力摩擦系数;d --- 直管内径,m;---压力降,Pa;---流体流经直管的机械能损失;P --- 流体密度,kg/m3;l --- 直管长度,m;u --- 流体在管内流动的平均速度,m/s;μ--- 流体粘度,kg/(m*s);三、实验设备及流程1、实验设备由水槽、离心泵、不同管径、材质的水管、阀门、管件、涡轮流量计和U形流量计等所组成。

实验管路部分有两段并联长直管,自上而下分别为用于粗糙管直管阻力系数和光滑管直管阻力系数。

同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力系数。

水的流量使用涡流流量计测量,管路直管阻力和局部阻力采用差压传感器测量。

2、实验流程流体由水槽流经离心泵进入排出管路,首先经过一个流量调节阀门,然后经过转子流量计,最后遇到三根平行的管路,最上方的管路是一根粗糙管,主要用于测定粗糙管的摩擦阻力系数λ与雷诺数Re之间的关系;第二根管是一根光滑管,主要用于测定光滑管的摩擦阻力系数λ与雷诺数Re之间的关系,由于光滑管是透明的,也可用它进行雷诺实验的演示;第三根管是中间安装了一个截止阀,主要用于测定流体流经阀门的局部阻力系数ξ;且这几根管路每根管路的入口处都有一个管路阀门,当测量某一跟管路时,需要将这一根管路的管路阀门打开,其余管路阀门关闭。

流体的综合实验报告

流体的综合实验报告

一、实验目的1. 了解流体力学的基本概念和基本规律;2. 掌握流体实验的基本方法和实验设备的使用;3. 通过实验验证流体力学的基本定律,提高实验技能和数据分析能力;4. 培养团队协作精神和严谨的实验态度。

二、实验原理1. 流体力学基本定律:质量守恒定律、动量守恒定律、能量守恒定律;2. 流体流动的基本方程:连续性方程、伯努利方程、动量方程;3. 流体流动的实验研究方法:量纲分析、相似理论、模型实验。

三、实验仪器与设备1. 流体力学实验台:包括管道、阀门、流量计、压力计、水槽等;2. 计算机及数据采集系统:用于实验数据采集、处理和分析;3. 实验器材:测力计、计时器、温度计等。

四、实验内容1. 管道流量实验:测量不同流量下的管道流速、流量和压力损失;2. 伯努利方程实验:验证伯努利方程在流体流动中的应用;3. 动量方程实验:验证动量方程在流体流动中的应用;4. 能量守恒方程实验:验证能量守恒方程在流体流动中的应用;5. 流体阻力实验:测量不同形状、不同尺寸的物体在流体中的阻力系数。

五、实验步骤1. 管道流量实验:(1)开启阀门,调节流量,使管道内流速稳定;(2)使用流量计和压力计测量流量和压力;(3)记录实验数据,进行数据分析。

2. 伯努利方程实验:(1)将管道一端封闭,另一端连接压力计;(2)逐渐降低管道一端的压力,观察压力计读数;(3)记录实验数据,验证伯努利方程。

3. 动量方程实验:(1)使用测力计和计时器测量流体对物体的冲击力;(2)记录实验数据,验证动量方程。

4. 能量守恒方程实验:(1)使用温度计测量流体进入和流出管道的温度;(2)记录实验数据,验证能量守恒方程。

5. 流体阻力实验:(1)将不同形状、不同尺寸的物体放入流体中;(2)使用测力计测量物体在流体中的阻力;(3)记录实验数据,分析阻力系数。

六、实验结果与分析1. 管道流量实验:根据实验数据,绘制流量-流速、流量-压力损失曲线,分析管道流量与流速、压力损失的关系。

实验一 流体力学综合实验实验报告

实验一  流体力学综合实验实验报告

实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳 2.测定直管摩擦系数λ和e R 关系曲线及局部阻力系数ζ 3. 了解离心泵的构造,熟悉其操作和调节方法 4. 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力和局部阻力两种。

直管阻力是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1) 局部阻力主要是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2) 管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m ; d ——直管内径,m ;u ——管内平均流速,1s m -⋅;g ——重力加速度,9.812s m -⋅p ∆——直管阻力引起的压强降,Pa ;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ和Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。

离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。

实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。

离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5) 式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅;2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7) 式中:e N ——泵的有效功率,K w ;N ——电机的输入功率,由功率表测出,K w ; Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。

流体力学综合实训报告范文

流体力学综合实训报告范文

一、实训目的本次流体力学综合实训旨在通过实际操作和实验,加深对流体力学基本理论的理解,掌握流体力学实验的基本方法和技能,提高分析问题和解决问题的能力。

通过实训,使学生能够熟练运用流体力学原理解决实际问题,为今后的学习和工作打下坚实的基础。

二、实训内容1. 流体力学基本实验(1)流体静力学实验:通过测量不同深度下的液体压强,验证流体静力学基本公式。

(2)流体运动学实验:通过测量不同位置的流速和流线,研究流体运动规律。

(3)流体动力学实验:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。

2. 流体力学综合实验(1)流体流动可视化实验:通过实验观察流体流动状态,分析流动特点。

(2)管道流动实验:通过测量管道内流体流动参数,研究管道流动特性。

(3)湍流流动实验:通过测量湍流流动参数,研究湍流流动特性。

三、实训过程1. 流体静力学实验(1)实验原理:根据流体静力学基本公式,测量不同深度下的液体压强,验证公式。

(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同深度处测量液体压强;④记录实验数据。

(3)实验结果分析:通过对比理论值和实验值,验证流体静力学基本公式。

2. 流体运动学实验(1)实验原理:通过测量不同位置的流速和流线,研究流体运动规律。

(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同位置测量流速;④绘制流线。

(3)实验结果分析:通过对比理论值和实验值,研究流体运动规律。

3. 流体动力学实验(1)实验原理:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。

(2)实验步骤:①将实验装置组装好;②将物体放入实验装置;③测量物体在不同流速下的阻力;④记录实验数据。

(3)实验结果分析:通过对比理论值和实验值,分析流体动力学特性。

4. 流体流动可视化实验(1)实验原理:通过实验观察流体流动状态,分析流动特点。

(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③观察流体流动状态;④记录实验现象。

流体综合实训总结报告范文

流体综合实训总结报告范文

一、引言流体综合实训是高校机械、能源、化工等相关专业的重要实践环节,旨在通过实际操作,使学生掌握流体力学的基本理论、实验技能和工程应用。

本实训报告将总结我在流体综合实训过程中的收获与体会,以期为今后的学习和工作提供借鉴。

二、实训目的与内容1. 实训目的(1)加深对流体力学基本理论的理解;(2)提高实验操作技能;(3)培养工程应用能力;(4)增强团队合作意识。

2. 实训内容(1)流体力学基本理论;(2)流体力学实验;(3)流体力学工程应用;(4)流体力学课程设计。

三、实训过程与收获1. 流体力学基本理论在实训过程中,我们学习了流体力学的基本概念、基本方程、流体运动规律等理论知识。

通过对这些知识的深入学习,我对流体力学有了更全面、更系统的认识,为后续实验和工程应用奠定了基础。

2. 流体力学实验(1)实验一:流体静力学实验通过流体静力学实验,我们掌握了流体静力学基本原理,学会了如何测量流体压力、浮力等参数。

在实验过程中,我们学会了如何使用压力计、浮力计等实验仪器,提高了实验操作技能。

(2)实验二:流体动力学实验流体动力学实验主要包括流体流动阻力实验、流量测量实验等。

通过这些实验,我们掌握了流体流动阻力系数、流量计算方法等,提高了对流体动力学理论的应用能力。

3. 流体力学工程应用在实训过程中,我们学习了流体力学在工程中的应用,如管道设计、水轮机设计、喷嘴设计等。

通过学习,我们了解了流体力学在工程领域的实际应用,提高了工程应用能力。

4. 流体力学课程设计课程设计是实训过程中的重要环节,我们以流体力学基本理论为指导,设计了一个简单的流体力学工程问题。

在课程设计过程中,我们学会了如何查阅资料、分析问题、制定解决方案,提高了我们的工程实践能力。

四、实训体会与反思1. 实训体会(1)理论联系实际:通过实训,我深刻体会到理论联系实际的重要性。

只有将理论知识与实际操作相结合,才能更好地掌握流体力学知识。

(2)团队协作:实训过程中,我们分工合作,共同完成实验和课程设计。

实验一流体力学综合实验实验报告

实验一流体力学综合实验实验报告

实验一流体力学综合实验实验报告一、实验目的本实验的目的是通过对流动物体的测量,探究流体的运动规律,深入了解流体力学的相关概念。

同时,本实验也可以提高学生的实验能力,加深理论知识的理解和应用。

二、实验原理1. 基本概念流体是指能够流动的物质,包括液体和气体。

流体运动过程中,流速和压强是两个重要的物理量。

流体的流动受到斯托克斯定律的影响,该定律表明,在粘性流体中,流体的阻力与流过它的物体的速度成正比,与物体的表面积和流体的黏度成反比。

2. 流动物体的测量研究流动物体的运动规律,需要对流量、流速、压强等进行测量。

其中,流量的测量一般采用体积法、重量法、压降法等方法。

流速的测量可以采用中心角法、浮标法、液面法等方法。

压强的测量一般采用静压法和动压法。

3. 流体力学的应用流体力学在现代工程领域中有广泛的应用,如水力发电、空气动力学、航空航天工程等。

在这些领域内,流体力学的理论和实验技术都发挥着重要作用,有助于提高工程效率和安全性。

三、实验内容1. 流量计测量利用流量计对水流的流量进行测量。

流量计是一种可以对流体流量进行直接读数的设备,可以通过它来确定液体或气体的流量大小。

在本实验中,流量计采用的是内切式流量计,该流量计适用于流量较小时的情况。

四、实验结果通过测量流量计的读数,我们得到了水流的平均流量值为0.026 L/s。

3. 压力计测量结果五、实验分析在本实验中采用的是旋转翼流量计,该流量计适用于流量较大、粘度较小的情况。

通过测量流速计读数可以得到水流的流速值,该值可以帮助我们进一步分析水流的运动规律。

流体力学综合实验实验报告

流体力学综合实验实验报告

流体力学综合实验实验报告一、实验目的流体力学综合实验是为了通过实验操作,结合理论知识,提高学生对流体力学理论的理解,以及培养学生分析和解决问题的能力和实验操作技能。

二、实验原理流体力学是研究流体运动规律和相应力学问题的学科。

流体力学综合实验主要涉及流体力学的基本理论和方法,如流体静力学实验、流速测量实验和流体动力学实验等。

主要实验装置包括流量计、细管、不同形状的孔洞等。

三、实验内容流体力学综合实验包括以下几个实验内容:1.流体静力学实验:通过水柱和压力计器测量水平管道的压力,验证其与高度和流速的关系。

2.流速测量实验:通过使用流量计和测速仪器,测量不同位置和不同孔径处的流速,探究流速与孔径大小的关系。

3.流体动力学实验:通过流过不同形状的孔洞的流体,测量不同孔洞形状的流速和流量,以及分析孔形对流速的影响。

四、实验步骤1.流体静力学实验:安装水柱和压力计器,利用压力计器测量不同高度处的压力值,并记录下来。

根据实测数据,绘制压力与高度的关系曲线。

2.流速测量实验:选择不同位置和不同孔径的流量计和测速仪器,测量流体在这些位置和孔径处的流速,并记录下来。

将实测数据整理成表格,并分析不同孔径大小对流速的影响。

3.流体动力学实验:利用不同形状的孔洞,将流体流过孔洞,同时测量流体在不同孔洞处的流速和流量。

绘制不同孔洞形状的流速和流量曲线,并分析孔形对流速的影响。

五、实验结果与分析根据实验结果的分析和计算,可以得出以下结论:1.流体静力学实验表明,水平管道的压力与高度呈线性关系,压强随高度的增加而增加。

2.流速测量实验结果显示,流速随孔径的减小而增加,即孔径越小,流速越大。

3.流体动力学实验结果表明,孔洞形状对流速存在影响。

如孔洞形状为圆形时,流速较大;而孔洞形状为方形时,流速较小。

六、实验结论通过流体力学综合实验的操作与分析,得出以下结论:1.流体力学中的流体静力学理论得到了实验的验证,水平管道的压力与高度呈线性关系。

流体力学综合实验 实验报告

流体力学综合实验 实验报告

流体力学综合实验实验报告实验目的:1. 熟悉流体力学实验中的基本设备和仪器。

2. 学习和掌握流量、压力等基本物理量的测量方法及相关原理。

3. 掌握常见流体运动方式的基本规律。

4. 理解流体力学的基本概念和原理,从实验中感受流体力学的魅力。

实验内容:实验分为三个部分:1. 流量测量实验实验采用涡街流量计作为流量的测量仪器,通过调节阀门的开度来改变流量大小,同时记录涡街流量计的读数,计算得到流量与阀门开度的关系,并绘制相应的流量-阀门开度曲线。

实验中采用硅压阻式压力传感器和U型压力管作为压力测量仪器,以夹持板和压力管之间的距离和U型压力管的两侧高度差作为变量,通过调整夹持板的位置和U型压力管的高度来改变压力大小。

记录压力传感器的读数和U型压力管的高度差,计算得到压力与位置的关系,并绘制相应的压力-位置曲线。

3. 静态悬浮实验实验中利用气垫板和气源设备,在气垫板下方形成一定压力的气垫,使实验物体处于气垫板上方的空气层中,产生静态悬浮状态。

通过调节气源设备的压力和方向来控制实验物体在空气中的移动方向和速度,并记录相应的压力和速度数据。

实验结果:1. 流量测量实验结果显示,涡街流量计的流量-阀门开度曲线为一条斜率为正数的直线,符合实验预期。

在实验中通过对涡街流量计的使用和测试,更加深入地了解了涡街流量计的结构、原理和应用。

2. 压力测量实验结果显示,硅压阻式压力传感器的输出电压与位置、压力之间存在高度线性的关系,并且在U型压力管的示意图中可以很清楚地观察到压力变化和位移的规律。

通过本次实验,我们学习了压力传感器的工作原理和测量方法,更好地理解了流体静力学的相关知识。

3. 静态悬浮实验结果显示,可以通过调节气源设备的压力和方向来控制实验物体在空气中的移动方向和速度,达到类似飞行器的悬浮效果。

这个实验不仅让我们学习了新的流体力学知识,而且也很有趣。

通过流量测量、压力测量、静态悬浮等实验,我们深入地了解了流体力学基本概念和原理,掌握了常见流体运动方式的基本规律,从实验中感受到了流体力学的魅力和实验的乐趣。

流体力学综合实验报告

流体力学综合实验报告

流体力学综合实验报告一、实验目的本次实验旨在通过对流体力学的实验操作,掌握流速、流量、压力、阻力和流体力学定律等内容的研究方法和实验技巧,进一步加深对流体力学的理解,培养实验设计和数据分析的能力。

二、实验仪器与材料1.流量计2.压力计3.流速计4.直管段5.U型管6.PVC水管三、实验原理1.流速的测量流速是单位时间内流体通过其中一截面的速度,可以采用流速计进行测量。

2.流量的测量流量是单位时间内通过其中一截面的流体量,可以通过流速计算得出。

3.压力的测量压力是单位面积上受到的力的大小,可以通过压力计进行测量。

4.阻力的测量阻力是流体通过管道时受到的阻力,可以通过流速和流量的测量计算得出。

5.流体力学定律通过实验可以验证贝尔劳定律和弗侖定律,贝尔劳定律:流体通过管道时速度越大,压力越低;弗侖定律:流体通过管道时流量与压力成反比。

四、实验步骤1.测量直管段内的流速:在直管段上安装流速计,流量计读数固定,在一分钟内记录流速读数,取平均值。

2.测量U型管的压力:将U型管一个端口与直管段相连,另一个端口与压力计相连,调整高度使液面平衡,记录液面高度差。

3.测量不同液面高度下的流量:调整U型管液面高度,记录流量计读数,计算流量。

4.计算阻力:根据流速、流量和压力计算出阻力。

五、实验结果与分析1.流速的测量结果表明,流体在直管段内的速度是均匀的,流速测量值较为接近,说明测量结果准确可靠。

2.U型管的压力测量结果表明,压力与液面高度呈线性关系,验证了贝尔劳定律的准确性。

3.不同液面高度下的流量测量结果表明,流量随着液面高度的增加而减小,验证了弗侖定律的准确性。

4.阻力的计算结果表明,阻力与流速、流量和压力成正比,符合阻力的定义。

六、实验结论通过本次综合实验,我们掌握了流速、流量、压力、阻力和流体力学定律的测量方法和计算方法,进一步加深了对流体力学的理解。

实验结果验证了贝尔劳定律和弗侖定律的准确性。

流速、流量和压力之间存在一定的关系,阻力与流速、流量和压力成正比。

流体静力学综合实验报告

流体静力学综合实验报告

流体静力学综合实验报告一、实验目的本实验旨在深入研究流体静力学的基本原理,通过实际测量和分析,掌握流体静压强的分布规律,验证等压面原理,以及测量液体的重度等重要参数。

二、实验原理1、静止流体中,任意一点的压强大小与该点在流体中的位置及流体的密度有关。

在重力作用下,静止流体中同一水平面上各点的压强相等,此水平面称为等压面。

2、流体静压强的计算公式为:$p = p_0 +\rho gh$,其中$p$为某点的压强,$p_0$为液面压强,$\rho$为流体密度,$g$为重力加速度,$h$为该点到液面的垂直距离。

三、实验设备1、静压强测定实验仪,包括水箱、测压管、U 形管压差计等。

2、直尺、温度计。

四、实验步骤1、熟悉实验设备,了解各部件的作用和测量方法。

2、向水箱中缓慢注入水,直至水位达到一定高度,保持水箱内的水处于静止状态。

3、测量水箱液面到测压管各测点的垂直距离,并记录。

4、读取各测压管中的液面高度,记录相应的数据。

5、改变水箱中的水位高度,重复上述测量步骤。

6、测量实验用水的温度,根据温度查取水的密度。

五、实验数据记录与处理|实验次数|水箱液面高度(cm)|测压点 1 高度(cm)|测压点1 压强(Pa)|测压点 2 高度(cm)|测压点 2 压强(Pa)||水温(℃)|水的密度(kg/m³)||||||||||||1|_____|_____|_____|_____|_____||_____|_____||2|_____|_____|_____|_____|_____||_____|_____||3|_____|_____|_____|_____|_____||_____|_____|根据实验数据,计算各测压点的压强:$p =\rho gh$其中,$g$取 98 N/kg 。

通过计算得到的压强数据,绘制压强随深度的变化曲线,分析压强分布规律。

六、实验结果分析1、压强分布规律从实验数据可以看出,随着深度的增加,压强逐渐增大,且呈线性关系,符合流体静压强的计算公式。

流体力学综合实验报告

流体力学综合实验报告

流体力学综合实验报告引言流体力学是一个涉及流体运动的物理学科,其应用广泛。

流体力学综合实验旨在通过实验手段了解流体的一些基本性质,例如流体的速度、流量、压强等,熟悉流体力学中的基本定律和实验方法。

实验一:流量计测量流量计是一种测量流体性质的仪器,主要用于测量泵站、水箱等液体的流量。

本实验中使用的流量计为硬质异形喉流量计。

实验步骤:1. 装置实验装置:将异形喉流量计、水泵、水箱依次安装,并用软管把它们连接。

2. 调整水泵流量:根据实验要求将水泵的流量调整到合适的大小。

3. 开始测量:打开水泵,记录下从流量计出口处流出的水的体积以及流量计的读数,再根据流量计的刻度推算出水流的流速和流量。

实验数据:开度(mm)流量计读数(L/min)流量(L/s)流速(m/s)2.5 13 0.22 0.00585 26 0.43 0.01157.5 38 0.63 0.016810 51 0.85 0.022712.5 63 1.05 0.02815 76 1.27 0.034图1:异形喉流量计的流量-开度关系图分析与讨论:根据图1和实验数据可以得出,流量计的读数与开度呈现一定的线性关系。

开度越大,流量计的读数越大,流速也越大。

在实验过程中,当我们把开度从2.5mm变为15mm,流量增加了大约6倍。

通过流量计的读数,我们可以得知水流的流量以及流速等重要参数。

同时,我们还可以发现,开度最小值并不是0,这意味着即使在开口部分受到一定阻碍,流量计的测量结果仍然是准确的。

实验二:伯努利实验伯努利实验是流体力学中的一个经典实验,它通过测量流体流经不同断面时的压力,探究了液体压强、流速、密度之间的关系。

2. 调整水平和仪器位置:调整U型水槽、压力计以及水箱等位置,使之处于同一水平面上,并调整压力计的刻度。

3. 开始测量:打开水箱的水龙头,让水从U型水槽中流过,通过测量不同位置的压力差,计算出该处的流速和流量。

高度(cm)压强(pa)流速(m/s)动压(pa)静压(pa)通过实验二,我们可以得到以下结论:1. 伯努利定理得到了证实,流速与压力之间确实成线性关系。

实验一 流体力学综合实验实验报告

实验一  流体力学综合实验实验报告

实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳2.测定直管摩擦系数λ与e R 关系曲线及局部阻力系数ζ 3、 了解离心泵的构造,熟悉其操作与调节方法 4、 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力与局部阻力两种。

直管阻力就是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1)局部阻力主要就是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2)管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m; d ——直管内径,m;u ——管内平均流速,1s m -⋅;g ——重力加速度,9、812s m -⋅p ∆——直管阻力引起的压强降,Pa;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ与Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。

离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。

实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。

离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5)式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅; 2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头与流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7)式中:e N ——泵的有效功率,K w;N ——电机的输入功率,由功率表测出,K w ;Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

式中:
; ——离心泵出、进口表压(Pa);
——离心泵进、出口管内流速(m/s);
——离心泵进、出口压力表处离基准面的高度(m);
——离心泵扬程( );
——流体密度( )
③轴功率 N:离心泵的轴功率 N(kW)是指泵轴所消耗的电功率,实验采用
功率表测定电机输入功率后,按下式进行计算
式中:N——离心泵轴功率(kW); ——机械传动效率,近似取为; ——电动机的输入有效功率,由功率表测定。
四川大学
化工原理实验报告
学院 化学工程学院 专业 化学工程与工艺 班号
学号
实验日期 年 月 日
姓名 指导老师
一.实验名称
流体力学综合实验
二.实验目的
测定流体在管道内流动时的直管阻力损失,作出 与 Re 的关系曲线。 观察水在管道内的流动类型。 测定在一定转速下离心泵的特性曲线。 标定孔板流量计,绘制 Co 与 Re 的关系曲线。 熟悉流量、压差、温度等化够不够仪表的使用。
, 轴功
率与流量
,效率与流量
三条曲线形式表示。若将扬程
H、轴功率 N 和效率 对流量 之间的关系分别绘制在同一直角坐标上所得的
三条曲线,即为离心泵的特性曲线,如图二所示。
①流量 :离心泵输送的流量 由涡轮流量计测定。
②扬程 H:扬程是指离心泵对单位重量的液体所提供的外加能量。以离心
泵入口管中心线的水平面为基准面,离心泵入口真空压力表处为 1-1 截面,出 口压力表处为 2-2 截面,在 1-1 截面和 2-2 截面之间列出伯努利方程式,确定 流体经离心泵所增加的能量( )此能量称为扬程 H,其计算式为
查得 24 时水的物性参数:
,
入口压力 ,出口压力
扬程 H:
其中:
;
;
轴功率 N: 效率 :
八.实验结果与分析(含计算结果列表和作图)
a管 B管 C管
序号
(1)
(2) (3)
(4) (1) (2) (3) (4) (1) (2) (3) (4) (5)
Re 2574 2316 2059 1801
125768 119542 113316 107089
2769 ⑽ 2481 ⑾
1488 1313

3729 ⑺
2197

3370 ⑻
1921
c 管管长:
流量 压差
流量 压差
序号
序号
c 管管径:31mm
( ) (Pa)
( ) (Pa)
序号

3996 ⑾
1874
流量 压差 ⑹
( ) (Pa)
3539 ⑿
1572

5949 ⑺
3253 ⒀
1276

5329 ⑻
五.实验步骤
1) 理清实验装置,检查设备和仪表是否完好,先启动总电源,再启动仪表电 源,然后观察仪表工作是否正常。
2) 关闭调节阀 1 和调节阀 2,检查水箱里的水液位是否到指定液位(高于离 心泵出口至少 100mm)。
3) 测定离心泵特性曲线时应设定离心泵频率,再启动离心泵。 4) 调节阀 2(逆时针为开启,顺时针为关闭)开到最大开度,流量最大,稳
88628 (7)
102242 (5)
81405 (8)
95435 (6)
74876
孔板流量计的标定数据处理表
Red 67791 61123
九.实验思考题
(1)答:流体在管道内流动时,由于实际流体有粘性,其在管内流动时会产生 剪应力,即内摩擦力,摩擦力做负功,必然会引起流体能量损耗。流体在直管 内流动时的能量损耗为直管阻力。测定:直管阻力可由伯努利方程求得,由差 压变送器测定一定流量下其流经一段管路所产生的压降 ,通过双金属温度计
14) 调节调节阀 1 改变流量,每次调节稳定 3min 后,记录相应的流量和压 差。
15) 重复操作步骤(14)8-10 次,使流量从最大到 4 ,完成流体在 b 铜管 路内湍流时的直管阻力测定。
16) 开启 c 钢管路切换阀和三通阀后,再开所测管路 1-1 截面和 2-2 截面的测 压阀,检查并关闭其余管路的切换阀和测压阀,排除测压管内的气体。
40
(4) (5)
Hz (6)
(7)
(8)
(9)
) H(m) N(W)
序号 (
(9)
) H(m) N(W)
(10)
(11)
(12)
(13)
(14)
(15)
0
0
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
0
0
测定离心泵特性曲线数据处理表
编号
(1) (2) (3)
Red
Red
109605 (4)
三.实验原理
1 求 与 Re 的关系曲线 流体在管道内流动时,由于实际流体有粘性,其在管内流动时存在摩擦阻
力,必然会引起流体能量损耗,此损耗能量分为直管阻力损失和局部阻力损 失。流体在水平直管内作稳态流动(如图 1 所示)时的阻力损失可根据伯努利 方程求得。
以管中心线为基准面,在 1、2 截面间列伯努利方程:
孔板流量计的标定。 24) 实验完毕后,开启调节阀 2,关闭调节阀 1、所有的切换阀和测压阀。 25) 依次关闭离心泵、仪表和总电源。 注意事项 1) 检查水箱液位 2) 调节流量时,观测压差不要超过量程范围。 3) 记录水箱中水的温度,严禁丢东西到水箱。 4) 注意用电安全
六.实验原始数据记录列表
2781 ⒁
1093

4787 ⑼
2466

4376 ⑽
2091
测定直管阻力及局部阻力数据记录
备注
序号
流量
真空表
MPa
压力表
MPa
功率 W
(8)
35Hz (1)
(9)
(2)
(10)
(3) r/min (4)
(11) (12)
(5)
(13)
24
(6)
0
(14)
(7)
(15) 0
备注 40Hz 26
序号
129504 123277 117051 110825 104599
λ 序号
Re λ
(5)
1544
(6)
1287
(7)
1029
(8)
772
(5)
100863
(6)
94637
(7)
88411
(8)
82185
(6) (7) (8) (9) (10)
98373 92147 85921 79694
73468
测定流体的温度,确定其密度 和黏度 ,则直管阻力 (2)答:管内是否混入气泡,流体流动是否稳定。排尽管内气泡,改变流速后 等待 2-3min,待流体流动稳定后记录数据。 (3)离心泵的工作点是离心泵特性曲线与管路特性曲线的交点,此时泵给出的
能量(H)与管路输送液体所消耗的能量(Hm)相等。将两特性曲线方程联立求 解,即能确定离心泵的工作点。 (4)不同,根据伯努利方程可知,垂直管高度差将影响阻力损失。 作图如下
定 2-3min 后,记录流量、离心泵进口和出口表压、功率。 5) 逐渐调节调节阀 2,使流量从最大到零,重复操作 8-10 次,每次稳定 2-
3min 后,记录流量、离心泵进出口表压、功率,完成离心泵特性曲线的测 定。 6) 改变离心泵频率,重复操作实验步骤(4)、(5),完成不同频率时离心泵 特性曲线测定。 7) 开启调节阀 1,全开管路的切换阀,关闭调节阀 2,排除管路系统内空 气。 8) 开启所测管路的三通阀后,再开启所测管路 1-1 截面和 2-2 截面的测压 阀,排除测压管内的气体。 9) 测定 a 钢管时,全开切换阀 2 开启转子流量计计流量,观察测压管内的气 体是否排尽,确定排尽后,关闭三通阀,稳定 3min,记录流量和压差。 10) 改变转子流量计流量,流量从小到大,每次调节后稳定 3min,记录相应的 流量和压差。 11) 重复操作实验步骤(10)5-6 次,完成流体在 a 管内层流时的直管阻力测 定。 12) 测定 b 铜管路流体在湍流时的直管阻力,全开切换阀 3,开启 b 铜管路的 三通阀后,再开此管路 1-1 截面和 2-2 截面的测压阀,检查并关闭其余管 路的切换阀和测压阀,排尽测压管内的气体,使测压管内充满流体。 13) 关闭此管路的三通阀,全开调节阀 1 使流量到最大,稳定 3min 后,记录 其流量和压差。
产生的压降,即可算得 。两截面压差由差压传感器测得;流量由涡轮流量计
测得,其值除以管道截面积即可求得流体平均流速 。在已知管径 和平均流速
的情况下,测定流体温度,确定流体的密度 和黏度 ,则可求出雷诺数
,从而关联出流体流过水平直管的摩擦系数 与雷诺数 的关系曲线图。
2 求离心泵的特性曲线
离心泵的特性,可用该泵在一定转速下,扬程与流量
l.d ----------直管长度和管内径,m; P ---------流体流经直管的压降,Pa; -----------流体的密度, ; -----------流体黏度,Pa·s; u -----------流体在管内的流速,m/s;
流体在一段水平等管径管内流动时,测出一定流量下流体流经这段管路所
阀,检查并关闭其余管路的切换阀和测压阀,排除测压管内的气体。 21) 关闭三通阀,通过调节阀 1 调节流量,观察并注意差压变送器的显示读数
不要超过其量程,记录流量和压差,此时流量为最大。 22) 改变流量,每次调节后稳定 3min,记录相应的流量和压差。 23) 重复操作实验步骤(22)8-10 次,流量从大到小,完成局部阻力的测定和
序号
流量
相关文档
最新文档