量子力学2波函数和薛定谔方程

合集下载

波函数与薛定谔方程

波函数与薛定谔方程

波函数与薛定谔方程引言:在量子力学中,波函数与薛定谔方程是两个核心概念。

波函数描述了粒子的量子态,而薛定谔方程则给出了波函数的时间演化规律。

本文旨在解释波函数与薛定谔方程的概念,并探讨它们在量子力学中的重要性。

一、波函数的定义与性质:波函数用符号Ψ表示,是随时间和空间变化的数学函数。

对于一个单粒子的量子系统,波函数Ψ(x,t)是描述其位置和时间依赖的函数,其中x表示位置,t表示时间。

波函数的模的平方|Ψ(x,t)|²(也称为概率密度)给出了在某个位置找到粒子的概率。

波函数的归一化要求概率密度在整个空间积分为1,即∫|Ψ(x,t)|²dx = 1。

另外,波函数是复数形式的,通过它可以得到粒子的相位和幅度信息。

二、薛定谔方程及其意义:薛定谔方程是由奥地利物理学家薛定谔于1925年提出的,用于描述量子系统的演化。

薛定谔方程的一般形式为:ih∂Ψ/∂t = HΨ其中,i是虚数单位,h是普朗克常数,Ψ是波函数,H是哈密顿算符。

薛定谔方程可以看作是一个时间演化方程,它告诉我们波函数如何随时间变化。

三、薛定谔方程的解与量子态的演化:薛定谔方程的解Ψ(x,t)给出了波函数在时间和空间上的演化规律。

解薛定谔方程有多种方法,其中最常见的是分离变量法、微扰法和数值计算法。

通过求解薛定谔方程,我们可以得到粒子在不同时间、不同位置的波函数。

薛定谔方程解的平方Ψ(x,t)²表示了在经典条件下,在某个位置x找到粒子的概率密度分布。

波函数的演化规律是通过薛定谢方程来描述的,因此它反映了量子态的演化过程。

波函数的演化可以告诉我们粒子的位置、动量和能量等重要信息。

四、波函数的物理意义:波函数不仅仅是一个数学概念,它具有重要的物理意义。

首先,波函数的平方给出了在某个位置找到粒子的概率密度分布。

这一点与经典物理中的粒子位置概念是不同的,因为在量子力学中,粒子的位置是模糊的,只能通过概率来描述。

其次,波函数还包含了粒子的相位信息。

量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程量子力学是研究微观粒子行为的物理学分支,它提供了一种描述微观粒子状态和性质的数学框架。

波函数和薛定谔方程是量子力学中最基本的概念和方程,它们对于理解量子世界起着至关重要的作用。

一、波函数的概念与性质在量子力学中,波函数是描述一个粒子状态的数学函数。

波函数通常用希腊字母Ψ表示,它的本质是由Schrödinger方程产生的解。

波函数的平方的绝对值表示了在给定的坐标和时间点上发现粒子的概率密度。

波函数具有以下几个重要的性质:1. 归一化性:波函数的归一化要求其在整个空间范围内的概率积分为1,保证了粒子存在的概率。

2. 连续性:波函数在连续性要求下需要满足薛定谔方程,保证了粒子的连续性。

3. 可复的性:波函数可复性表示波函数可以是复数形式,具有实部和虚部。

二、薛定谔方程薛定谔方程是描述量子体系中波函数随时间演化的基本方程,由奥地利物理学家艾尔温·薛定谔于1926年提出。

薛定谔方程可以用于求解各种量子力学问题,从而得到波函数。

薛定谔方程的一般形式为:HΨ = EΨ其中,H是哈密顿算符,Ψ是波函数,E是能量。

薛定谔方程可以通过对哈密顿算符作用于波函数得到,它描述了波函数随时间的变化规律。

三、波函数与薛定谔方程的应用波函数和薛定谔方程在量子力学的各个领域都有广泛的应用。

下面以几个典型的例子来说明其在实际问题中的应用。

1. 粒子在势场中的行为:通过求解薛定谔方程,可以得到粒子在给定势场中的波函数。

根据波函数的模方,可以得到粒子在势场中的概率分布,进而研究其运动规律。

2. 量子力学中的双缝实验:双缝实验是量子力学的经典实验之一。

通过薛定谔方程可以得到双缝实验中的波函数,从而解释了粒子的波粒二象性。

3. 原子与分子结构:波函数和薛定谔方程在原子与分子结构的研究中发挥了关键作用。

通过求解薛定谔方程,可以得到原子与分子的能级结构和等离子态。

四、波函数与薛定谔方程的发展与挑战自薛定谔方程提出以来,波函数与薛定谔方程的研究不断发展,并面临着一些挑战。

第二章波动方程和薛定谔方程

第二章波动方程和薛定谔方程

1 (2πh )3 / 2 1 (2πh )3 / 2
p ⋅r v h C p t e dp x dp y dp z , ( , ) ∫∫∫ ∞
i vv
− p ⋅r v h Ψ r t e dxdydz 。 ( , ) ∫∫∫
i vv
&&dinger 方程给出: 4、波函数随时间变化的规律由 Schro
ih h2 2 ∂Ψ v =− ∇ Ψ + U (r , t )Ψ 。 ∂t 2μ
据此,可以得到几率守恒律的微分形式:

v ∂ω +∇⋅J =0 , ∂t
v ih v v v 其中: ω (r , t ) = Ψ * (r , t )Ψ (r , t ) (假设 Ψ 归一化) ,J ≡ ( Ψ ∇Ψ * − Ψ * ∇Ψ ) 。 2μ

任意形状的势垒 U ( x) ,透射系数为:
D = D0 exp[−
四、典型例题
例 1、证明动量算符的属于本征值为 p' 的本征函数在动量表象中的表示是 δ ( p − p ' ) 。 证明:设 Ψ ( x, t ) 所描写的状态是具有动量 p ' 的自由粒子的状态,即
Ψ ( x, t ) = ψ p ' ( x )e
[−
h2 d2 * + U( x )]ψ * n = Enψn 2μ dx 2

(2)
即 ψ n 及 ψ* n 皆是与能量 E n 相对应的波函数。 而一维束缚定态不存在简并,于是:

ψ n = cψ * , n (c 为复常数)
* 即: ψ * n = c ψn ,
则: ψ n = cc * ψ n = c ψ n , 即: c = 1 , 所以: c = e iδ ,可以取 δ = 0 ,即: ψ n = ψ * n 。 故 ψ n 为实数(无损一般性, ψ n 可取为实函数) 。

量子力学专题二(波函数和薛定谔方程)

量子力学专题二(波函数和薛定谔方程)

量子力学专题二:波函数和薛定谔方程一、波粒二象性假设的物理意义及其主要实验事实(了解)1、波动性:物质波(matter wave )——de Broglie (1923年)p h =λ实验:黑体辐射2、粒子性:光量子(light quantum )——Einstein (1905年)hE =ν 实验:光电效应二、波函数的标准化条件(熟练掌握)1、有限性:A 、在有限空间中,找到粒子的概率是有限值,即有=⎰ψψτ*d 有限值有限空间 B 、在全空间中,找到粒子的概率是有限值,即有=⎰ψψτ*d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续;3、单值性:2ψ是单值函数(注意:不是说ψ是单值!)三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率);四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解)1、态叠加原理:设1ψ,2ψ是描述体系的态,则2211ψψψC C +=也是体系的一个态。

其中,1C 、2C 是任意复常数。

2、两种表象下的平面波的形式:A 、坐标表象中r d e p r r p i 3/2/3)()2(1)( •⎰=ϕπψ B 、动量表象中p d e r p r p i 3/2/3)()2(1)( •-⎰=ψπϕ 注意:2/3)2( π是热力学中,Maxwell速率分布的一个常数,也可以使原子物理中,一个相空间的大小!五、Schrodinger Equation (1926年)1、Schrodinger Equation 的建立过程(熟练掌握)ψψH ti ˆ=∂∂ 其中,V T H ˆˆˆ+=。

2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解)A 、定态:若某一初始时刻(0=t )体系处于某一能量本征态)()0,(r r E ψψ=,则/)(),(iEt E e r t r -=ψψ说描述的态,叫做定态(stationary state );B 、非定态:由不同能量能量本征态线性叠加而形成的态,叫做非定态(nonstationary state )。

量子力学 第二章 波函数和薛定谔方程

量子力学 第二章 波函数和薛定谔方程

x px
t E J
二.量子力学中的测量过程 1.海森伯观察实验 2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响 不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上 它们就不可能同时具有确定的值
i p
p2 2
对自由粒子:
2 E p
2

2 i 2 t 2
3.力场中运动粒子的波动方程 能量关系:
E p2 U (r , t ) 2
2 i 2 U (r , t ) t 2
4.三个算符
2 H 2 U 2
1。与宏观粒子运动不同。
2。电子位置不确定。
3。几率正比于强度,即 ( r , t )

2
结论:
波函数的统计解释:波函数在空间某一点的 强度(振幅绝对值的平方)和在该点找到粒 子的几率成正比。
2 数学表达: (r , t ) | (r , t ) |
归一化:

2 (r , t )d | (r , t ) | d 1
3 2 i ( pr Et )
e

(r ) p
1 (2)

3 2
e
i pr
(r , t )


( r ) dp dp dp x y z c( p, t ) p
其中:
而:
i Et c( p, t ) c( p) e
而在晶体表面反射后的晶电子状态
状态的迭加。
p
为各种值的

量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程量子力学是描述微观粒子行为的一门物理学科,它提出了一种新的描述方式——波函数。

波函数是量子力学的核心概念,它可以用来描述粒子的位置、能量、动量等性质。

而薛定谔方程则是描述波函数随时间演化的数学表达式。

本文将重点讨论波函数与薛定谔方程在量子力学中的重要性和应用。

一、波函数的概念与性质波函数(ψ)是量子力学中对粒子状态的描述。

它是一个复数函数,包含了粒子位置、能量等信息,并且满足归一化条件,即在整个空间内的积分平方和为1。

波函数的模的平方,即|ψ|²表示粒子在某个位置上的出现概率密度。

波函数具有叠加原理,也就是说多个波函数可以叠加形成新的波函数。

这个叠加过程可以用波函数的线性组合来表示,其中各个波函数所对应的系数表示了它们的相对贡献程度。

二、薛定谔方程的形式与意义薛定谔方程是描述波函数随时间演化的方程,它是由薛定谔于1925年提出的。

薛定谔方程的一般形式为:Ĥψ = Eψ其中Ĥ为哈密顿算符,E为能量本征值,ψ为波函数。

这个方程描述了体系中的粒子在不同的势场中的运动规律。

三、波函数与薛定谔方程的应用1. 原子结构与电子行为在原子结构研究中,波函数被用来描述电子在原子核周围的分布情况。

薛定谔方程可以求解出不同原子的能级和电子轨道分布,从而解释和预测原子光谱的性质。

2. 材料物性与波函数分析波函数可以用来研究材料的结构和物性。

通过计算材料中的波函数,可以得到材料的能带结构、电子密度分布等信息,从而揭示其导电性、磁性等特性。

3. 量子力学中的粒子碰撞在粒子碰撞研究中,波函数描述了入射粒子和出射粒子之间的相互作用。

利用薛定谔方程求解波函数,可以计算出散射截面、角分布等碰撞参数。

4. 量子计算和量子通信波函数的叠加性为量子计算和量子通信提供了基础。

量子计算利用波函数的叠加原理,利用量子态的叠加特性进行并行运算,从而加快计算速度;量子通信利用波函数的纠缠性质,实现了安全的信息传输。

2波函数和薛定谔方程

2波函数和薛定谔方程

第二章
波函数和薛定谔方程
三、波函数的归一化
由于粒子必定要在空间中的某一点出现,所以粒子 在空间各点出现的概率之和等于1,因而粒子在空间各点 出现的概率只决定于波函数在空间各点的相对强度,而 不决定于强度的绝对大小。换句话说,将波函数乘上一 个常数后,所描写的粒子的状态并不改变。
(r , t ) 与 C (r , t ) 表示同一个态。
2
概率密度
dW ( x, y, z, t ) 2 ( x, y , z , t ) C ( x, y , z , t ) d
§2.1 波函数的统计解释
第二章
2
波函数和薛定谔方程
C ( x, y, z, t ) d 1

归一化
C
1


( x, y, z , t ) d
§2.1 波函数的统计解释
第二章
波函数和薛定谔方程
自由粒子的波函数
Ae
i ( pr Et )
如果粒子受到随时间或位置变化的力场的作用,它的 动量和能量不再是常量,这时粒子就不能用平面波来描写,
而必须用较复杂的波来描写。一般记为:
(r , t )
描写粒子状态的波函数,它 通常是一个复函数。
c1 1 c2 2 cn n
cn n
n
§2.2 态迭加原理
第二章
波函数和薛定谔方程
二、波函数按平面波展开
以一个确定的动量 p 运动的自由粒子的状态用波函数
p (r , t ) Ae
i ( pr Et )
描写。按照态迭加原理,粒子的状态可表示为
波函数为
i (r , t ) A exp ( p r Et )

量子力学2波函数和薛定谔方程

量子力学2波函数和薛定谔方程
传统对波粒二象性的理解: (1)物质波包 物质波包会扩散, 电子衍射,
波包说夸大了波动性一面。 (2)大量电子分布于空间形成的疏密波。 电子双
缝衍射表明,单个粒子也有波动性。疏密波说夸大了粒 子性一面。
对波粒二象性的辨正认识:微观粒子既是粒子,也 是波,它是粒子和波动两重性矛盾的统一,这个波不再 是经典概念下的波,粒子也不再是经典概念下的粒子。 在经典概念下,粒子和波很难统一到一个客体上。
也是一个可能的波动过程。
波的干涉、衍射现象可用波的迭加原理解释。 二、量子力学的态迭加原理
如果 1 和 2 是体系的可能状态,那么它们的线性 迭加: c11 c21(c1 ,c2是复数)也是这个体系 的一个可能状态。
三、电子双缝衍射 P
设 1 表示电子穿过上面窄
缝到达屏的状态,设 2 表 示电子穿过下面窄缝到达
二、波函数的(Born)统计解释
1、几率波
1926年玻恩提出了几率波的概念: 在数学
上,用一函数表示描写粒子的波,这个函数叫波函数。波
函数在空间中某一点的强度(振幅绝对值的平方)和在该
点找到粒子的几率成正比。既描写粒子的波叫几率波。
描写粒子波动性的几率波是一种统计结果,即许多电子同 一实验或一个电子在多次相同实验中的统计结果。
dW 应正比于体积 d dxdydz 和强度 2
dW(x, y, z,t) C (x, y, z,t) 2 d
2.1 归一化条件:在整个空间找到粒子的几率为1。
2
dW (x, y, z,t) C (x, y, z,t) d 1
2.2 归一化常数
C
1
2
可由归一化条件确定
(x, y, z,t) d
的线性迭加: c11 c22 cn n cn n

量子力学chapter2-薛定谔方程解析

量子力学chapter2-薛定谔方程解析
平面波归一化以后讨论
12
§2 态叠加原理
(一)态叠加原理
微观粒子具有波动性,会产生衍射图样。而干 涉和衍射的本质在于波的叠加性,即可相加性, 两个相加波的干涉的结果产生衍射。因此,同 光学中波的叠加原理一样,量子力学中也存在 波叠加原理。因为量子力学中的波,即波函数 决定体系的状态,称波函数为状态波函数,所 以量子力学的波叠加原理称为态叠加原理。
|Ψ(r,t)|2 的意义是代表电子在 t 时刻出现在 r 点附近几率的大小, 确切的说,|Ψ(r,t)|2 Δx Δy Δz 表示在 t 时刻,在 r 点处,体 积元ΔxΔyΔz中找到粒子的概率。波函数在空间某点的强度(振幅绝 对值的平方)和在这点找到粒子的概率成比例,
Ψ(r,t)
概率波
8
(三)波函数的性质
= |C1 Ψ1|2+ |C2Ψ2|2 + [C1*C2Ψ1*Ψ2 + C1C2*Ψ1Ψ2*]
电子穿过狭缝 1出现在P点
题,以后再予以讨论。
10
(3)归一化波函数
Ψ(r,t )和CΨ(r,t )所描写状态的相对概率是相同的,这
里的 C 是常数。因为在 t 时刻,空间任意两点 r1 和 r2 处找到粒子的相对概率之比是:
2
2
C(r1 , t ) (r1 , t )
C(r2 , t )
(r2 , t )
可见,Ψ(r,t) 和 CΨ(r,t )描述的是同一概率波,所以波函 数有一常数因子不定性。
C = 1/∫∞|Ψ(r,t)|2dτ
这即是要求描写粒子量子 状态的波函数Ψ必须是
绝对值平方可积的函数。
若 ∫∞|Ψ(r,t)|2dτ∞, 则 C0, 这是没有意义的。
除了个别孤立奇点外,波函数单值,有界,连续

《量子力学》课程2

《量子力学》课程2

量子力学
通过狭缝,短时间内在感光板上就得到衍射 图样,这显示了电子的波动性。第二种实验 方式是极大地降低电子流强度,让电子几乎 一个一个地通过狭缝,感光时间较短时,感 光点的分布没有规律。一个电子打在感光板 上形成一个亮点,表示电子被接受到,显示 了电子的粒子性。当感光时间足够长时,感 光板得到与短时间内大量电子通过狭缝时的 衍射图样一样的衍射图样。因此,粒子在衍 射实验中所揭示的电子的波动性,可看作是 大量粒子在同一实验中的统计结果,也可以 认为是单个粒子在许
微观粒子的重要性质是波粒二重性,怎 样理解粒子性和波动性之间的联系,这是量 子力学首先碰到的一个根本问题。历史上为 了把二者统一起来,曾有多种说法: (1)粒子由波组成,即把粒子看成波包。这种 说法是错误的。物质波包的观点过分强调了 二重性中的波动性一面。 (2)波由粒子组成。这种观点也是错误的。事 实上单个粒子也有波动性。这种观点过分夸
根据原理一,粒子出现的波动性只是反 映微观粒子运动的一种统计规律性,因此描 述微观粒子的波为几率波。在非相对论情况 下,几率波的概念正确地把实物粒子的波动 性和粒子性统一了起来。
(r , t )
量子力学
(3)波函数满足的条件 由波函数的统计解释可得波函数满足的条件 1)由于粒子在某一时刻在空间某点出现的几 率是唯一的,因此除个别点外波函数应该单 值、有界、连续函数。 2)在非相对论量子力学中,因波函数的统计 解释中只涉及到波函数的振幅,因此存在下 列不确定性 ①常数因子不确定性:若c 为常数,则波函数 c ( r , t ) 和 ( r , t ) 描述的是同一状态。因 为它们的相对几率相同。 i ( r , t ) 与 ( r , t ) e ②相角不确定性:由于
量子力学

量子力学第二章波函数和薛定谔方程PPT课件

量子力学第二章波函数和薛定谔方程PPT课件
知道了描述微观粒子状态的波函数,就可知道粒子 在空间各点处出现的几率,以后的讨论进一步知道, 波函数给出体系的一切性质,因此说波函数描写体系 的量子状态(简称状态或态) ②波函数一般用复函数表示。
③波函数一般满足连续性、有限性、单值性。
10
3.波函数的归一化条件

(r,t)C (r,t)
t 时刻,在空间任意两点 r 和1
对几率是:
处r 2 找到粒子的相
((rr1 2,,tt))2 2C C((rr1 2,,tt))2 2((rr1 2,,tt))2 2
r , t 和 r ,所t 描写状态的相对几率是相同的,
这里的 是常数C 。
11
非相对论量子力学仅研究低能粒子,实物粒子不会产 生与湮灭。这样,对一个粒子而言,它在全空间出现的 几率等于一,所以粒子在空间各点出现的几率具有相对 性,只取决于波函数在空间各点强度的相对比例,而不 取决于强度的绝对大小,因而,将波函数乘上一个常数 后,所描写的粒子状态不变,即:
➢ 2.3 薛定谔方程
The Schrödinger equation
➢ 2.4 粒子流密度和粒子数守恒定律
The current density of particles and conservation
laws
➢ 2.5 定态薛定谔方程
Time independent Schrödinger equation
8
设粒子状态由波函数 (r ,描t)述,波的强度是
(r,t)2*(r,t)(r,t)
按Born提出的波函数的统计解释,粒子在空间中
某一点 r 处出现的概率与粒子的波函数在该点模的
平方成比例
则微观粒子在t 时刻出现在 r 处体积元dτ内的几

第2章 波函数与薛定谔方程

第2章 波函数与薛定谔方程


二、波函数的统计解释


电子(微观粒子)到底是什么? 它既不是经典的粒子,也不是经典的波。它是粒子 和波动两重性矛盾的统一。实际上是粒子“颗粒性” (具有一定的质量和电荷等属性的客体,但不与粒
6

子具有确定轨道相对应,这是由于位置和动量不能 同时具有确定的值,即测不准关系,后讲)与波的 “相干叠加性”(呈现干涉、衍射等现象,但不与 某种实在物理量在空间分布的周期性变化相对应) 的统一。

ˆ i p
3 ˆ 则 p * ( r ) p ( r ) d r
20

可表为
ˆ ) p (,p
动量算符

上式表明,动量平均值与波函数的梯度密切相关 (与波数 k 成正比)。 动能T=p2/2m和角动量L=r×p的平均值也可类似 求出。 一般说来,粒子的力学量A的平均值可如下求出
2
A-1/2称为归一化因子。波函数归一化与否,并 不影响几率分布。
12

注意:1)象平面波等一些理想波函数,它 们不能归一化。对此的归一化问题将在后 边介绍; 2)对于归一化的波函数仍有一个模为1的 因子不定性,即相位(phase)不定性。

e i 1
e
i
2
2
13
三、统计解释对波函数提出的要求
3
一、 波动、粒子两重性矛盾的分析



1 把电子看成是物质波包
包括波动力学的创始人薛定谔、德布罗意等人把 电子波理解为电子的某种实际结构,即看成三维 空间中连续分布的某种物质波包,因而呈现出了 干涉、衍射等现象。波包的大小即电子的大小, 波包的群速度即电子运动的速度。按经典自由粒 子能量,并利用德布罗意关系可得

第二章 波函数与薛定谔方程

第二章 波函数与薛定谔方程

W
3.5
3



( x, y, z, t ) dxdydz
2
5、状态迭加——干涉项 i1 i 2 一般,为复函数,如1 10e , 2 20e 2 2 c11 c2 2 c1 1 c2 2 c1 1 c2 2
(8)
这就是薛定谔波动方程。它揭示了微观世界中物质运动 的基本规律,是量子力学的基本假设之一。 二、薛定谔方程的讨论 1、要求
⑴、对粒子的所有状态成立,波动方程系数不能含有状 态参量,如 x, p, L ……
(2)、必须满足迭加原理,即方程对于其解而言是线 性的,当1,2各为其解,则 a1 b2也是其解

ψ(r, t)
它描写当粒子不受外力F (r , t )作用,因而E , P不变的 自由粒子运动。
Ae
i ( pr Et )
2、一般 F≠0, 在外力场中,势能 , V ( r , t )
波函数
(r , t )满足薛定谔方程和边界条件称为
• 1、经典波表示 y ( x, t ), E (r , t ), P(r , t )
2、定域的几率守恒 薛定谔方程是非相对论量子力学的基本方程。在非相对 论(低能)情况下,实物粒子(m 0 )没有产生和湮 湮灭的现象,所以在随时间演化的过程中,粒子数目保 持不变(即粒子数守恒)。 对于一个粒子来说,在全空间中找到它的几率之总和应 不随时间改变,即
d 3 (r , t ) d r 0 dt
p2 E 2m
(1)
m 是粒子质量,按照德布罗意关系,与粒子运动相联系 2 的波的角频率 和波矢 k( k ),由下式给出

第二章 波函数和 薛定谔方程2

第二章 波函数和 薛定谔方程2

§2.5 定态薛定谔方程
一、定态薛定谔方程
条件:V(r,t)=Vf(t),
代入薛定谔方程,得两个方程:
——定态薛定谔方程
Ψ=φ(r)f(t)
特点:
定态薛定谔方程的特解:
1、 波函数由空间部分函数与时间部分函数相乘; 2、时间部分函数是确定的,为: 3、定态波函数几率密度W与t无关,几率分布不随 时间而变,能量具有确定值, 因此称为定态。 重点:要掌握如何用定态薛定谔方程求解问题。
和 均可以表示为上述两个 函数的叠加。
定理5:对于阶梯性方位势,
有限,则能量本征函数 及其导数 必定是连续的。 定理6:对于一维粒子,设 与 均为方程(1) 的属于同一能量的E的解,则:
定理7:设粒子在规则势场中运动,如存在束缚态, 则必定是不简并的。 束缚态(bound state)指粒子局限在有限空间中。
由薛定谔方程出发,讨论粒子在一定空间区域内 出现的几率将怎样随时间变化。所以可以看作对薛定 谔方程的讨论。
设粒子的波函数为:
则t时刻在r点周围单位体积内;粒子出现的几率是:
几率随时间的变化率是:
令:
此方程具有连续性方程 的形式。
等式左边的意义:单位时 间内体积V中几率的增加。 等式右边的意义:从V外部 穿过V的边界面S而流进V内 的几率。
一般 t 时刻,到达空间(x,y,z)处某体积dV内的粒子数:
的物理意义: t 时刻,出现在空间(x,y,z)点附近单位体积内的粒 子数与总粒子数之比。 t 时刻,粒子出现在空间(x,y,z)点附近单位体积内 的概率。 t 时刻,粒子在空间分布的概率密度 。
注意:
物质波的波函数不描述介质中运动 状态(相位)传播的过程。
2、态的迭加原理

量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程量子力学是一门研究微观粒子行为和性质的科学,它有着广泛的应用,涉及领域包括原子物理、凝聚态物理以及纳米技术等。

在量子力学中,波函数和薛定谔方程是两个核心概念,它们在理解和描述微观粒子的行为中起着重要的作用。

一、波函数的概念及性质波函数是描述微观粒子的状态的数学函数,通常用Ψ表示。

在三维空间中,波函数是位置矢量r和时间t的函数,即Ψ(r, t)。

波函数一般是复数,其绝对值的平方表示粒子出现在某个位置的概率密度。

根据波函数的性质,可以得出以下几点:1. 法波叠加性:如果物理系统同时存在多个可能的状态,波函数可以叠加这些状态,并通过线性组合来描述。

这是量子力学与经典力学的明显区别之一。

2. 规范化条件:波函数必须满足归一化条件,即∫Ψ*(r, t)Ψ(r, t)dV = 1,其中dV表示三维空间的体积元。

3. 相位不确定性:波函数乘以一个常数因子并不改变物理量的概率密度,因此相位的选择并不固定,只有波函数的相位差才是物理可观测的。

二、薛定谔方程的基本原理薛定谔方程是量子力学中最基本的方程之一,描述了波函数随时间演化的规律。

薛定谔方程的一般形式为:iħ∂Ψ(r, t)/∂t = -ħ²/2m∇²Ψ(r, t) + V(r)Ψ(r, t)其中ħ是普朗克常数的约化常数,m是粒子的质量,V(r)是粒子在位置r上的势能。

薛定谔方程是一个偏微分方程,通过求解薛定谔方程可以得到粒子的波函数,从而获得粒子的态信息。

薛定谔方程的解决方法有很多种,常见的包括分离变量法、变换法和数值方法等。

波函数的演化可以用薛定谔方程的解析解或数值解来描述,从而预测粒子的行为和性质。

三、波函数与量子态的关系波函数不仅仅是描述微观粒子的数学函数,它还与量子态有着密切的关系。

量子态可以看作是波函数的集合,表示了物理系统的所有可能状态。

波函数的演化过程中,量子态也相应地发生变化。

例如,一个具有确定能量的量子态会随着时间的推移而演化为多个能量本征态的叠加。

量子物理2 德波 波函数 薛定谔方程

量子物理2 德波 波函数 薛定谔方程

三、对波粒二象性的理解 怎样理解微观粒子既是粒子又是波?
根据电子双缝衍射实验 再作单电子双缝衍射实验 双缝
现代实验技术可以做到一次一个电子通过缝 为防止电子间发生作用,让电子一个 一个地入射,发现时间足够长后的干涉图 样和大量电子同时入射时完全相同。
一个一个电子依次入射双缝的衍射实验:
在 观 察 屏 上 的 图 像 一个个地出 现说明了电 子的粒子性 随着电子数 目的增多, 在屏上逐渐 形成了衍射 3000个 20000个 图样, 说明 “一 70000 个电子”就 具有的波动 性 微观粒子具有波粒二象性 概率波! 7个电子 100个电子
x i 2 π( t )
E const . h
所以与自由粒子联系的波 是单色平面波 则自由粒子波函数 Ψ ( x, t ) Ψ 0e

E 将德布罗意关系 h
h P 代入,得
( x, t ) 0
i ( Et px ) e
沿+x方向运动的自由粒子波函数. 在三维空间中运动的自由粒子的波函数
玻尔理论在人们认识原子结构的进程中有很 大的贡献---- 1922年玻尔获诺贝尔物理奖
玻尔正在讲解他的 互补原理
玻尔(左)和 海森伯(中) 泡利(右)在一起
第2章 德布罗意波
一、德布罗意假设
波函数
§1 实物粒子的波动性 从自然界的对称性出发,认为 既然光(波)具有粒子性,那么 实物粒子也应具有波动性。 1924.11.29德布罗意把题为 “量子理论的研究”的博士论 文提交给了巴黎大学。
Ψ (r , t ) Ψ 0 e
i ( E t P r ) h
物质波波函数:一维 Ψ(x, t ) , 三维 Ψ ( r , t )

量子力学第二章波函数和薛定谔方程 山东大学期末考试知识点复习

量子力学第二章波函数和薛定谔方程 山东大学期末考试知识点复习

量子力学第二章波函数和薛定谔方程山东大学期末考试知识点复习量子力学第二章波函数和薛定谔方程山东大学期末考试知识点复习山东大学期末考试知识点述评第二章波函数和薛定谔方程1.微粒运动状态描述(1)波函数波函数ψ(r,t)是描述微观粒子状态的复值函数,波函数需要满足的标准条件为单值性、连续性和有界性,实际体系的波函数满足平方可积条件,即(2)波函数的意义波函数的模平方给出t时刻粒子出现在位置r邻域单位体积内的概率,即概率密度。

因此,标准的波函数应该是归一化的,即满足归一化条件非标准化波函数可以通过乘以标准化因子进行标准化。

(3)波函数的性质波函数ψ(r,t)满足叠加原理,如果ψi(r,t),i=1,2,…为微观粒子的可能状态,则这也是一种可能的状态。

山东大学期末考试知识点复习2.微态演化(1)薛定谔方程状态ψ(r,t)随时间演化满足薛定谔方程在…之间称为哈密顿算符,u(r,t)是势能,若已知初始状态ψ(r,0),由薛定谔方程可求出任意时刻t的状态ψ(r,t)。

(2)连续性方程由薛定谔方程可以推出连续性方程在…之间称为概率流密度,即沿着给定方向单位时间通过单位截面的概率,连续性方程是概率守恒定律的定域表现。

(3)定态薛定谔方成若体系的哈密顿不显含时间,即势场u不含t时,薛定谔方程可以分离变量,得到定态波函数解其中e是能量本征值,ψe(R)是相应的本征函数,满足稳态薛定谔方程山东大学期末考试知识点复习3.一维束缚稳态问题的描述(1)一维束缚定态问题由下面的方程和边界条件组成束缚态能量满足条件e<U(±∞). (2)束缚定态解的性质束缚定态中的能量取值不连续,形成能级,同一能级只对应一个本征函数,无简并现象,第n个能级en,n∈n对应的本征函数ψn(x)有n个内部零点(不包括边界)。

束缚态本征函数ψN(x)可以归一化,且归一化本征函数满足正交归一化本征函数集合具有完备性,任何平方可积函数ψ(x)都可以展开为归一化本征函数的线性组合,即其中膨胀系数为(3)典型实例:一维简谐振子一般的解析势阱在其极小值附近都可以近似为简谐振子势,其标准形式为在上述势场中,粒子作束缚运动,能级为山东大学期末考试知识点复习相应的本征函数为简谐振子的本征函数满足递推关系4.一维散射问题(1)问题描述以能量e>u(±∞)自左边向势场u(x)入射的粒子满足下面的方程和边界条件(2)问题的重要性(3)典型实例:粒子对方势垒的透射山东大学期末考试知识点述评能量为e的粒子入射到一个宽度为a,高度为u0的方形势垒反射系数和透射系数分别为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传统对波粒二象性的理解: (1)物质波包 物质波包会扩散, 电子衍射,
波包说夸大了波动性一面。 (2)大量电子分布于空间形成的疏密波。 电子双
缝衍射表明,单个粒子也有波动性。疏密波说夸大了粒 子性一面。
对波粒二象性的辨正认识:微观粒子既是粒子,也 是波,它是粒子和波动两重性矛盾的统一,这个波不再 是经典概念下的波,粒子也不再是经典概念下的粒子。 在经典概念下,粒子和波很难统一到一个客体上。
几率波的概念将微观粒子的波动性和粒子性统一起来。微 观客体的粒子性反映微观客体具有质量,电荷等属性。而 微观客体的波动性,也只反映了波动性最本质的东西:波 的叠加性(相干性)。
描述经典粒子:坐标、动量,其他力学量随之确定。
描述微观粒子:波函数,各力学的可能值以一定几率出现。
2 波函数的基本性质
设波函数 (x,y,z,t)描写粒子的状态,波的强度 2
(1) 线性方程,迭加原理的要求; (2) 方程系数不含状态参量(动量、能量),各种可 能的状态都要满足方程。
建立过程:自由粒子波函数所的波函数所满足的微分方程
平面波:(r,t)Aei(prE)t 对坐标求二次偏导:
对时间求偏导: t i E
2 x2
px2 2
2 y2
,则在时刻t、在坐标x到x+dx、y到y+dy、z到z+dz的无 穷小区域内找到粒子的几率表示为 dW (x,y,z,t)
dW 应正比于体积 d dxdydz和强度 2
d(W x,y,z,t)C (x,y,z,t)2d
2.1 归一化条件:在整个空间找到粒子的几率为1。
d(W x,y,z,t)C (x,y,z,t)2d1
py2 2
2 z2
pz2 2
将以上三式相加 : 2 x 2 2 y 2 2 z 2 2 p 2 2
利用自由粒子的能量和动量的关系,我们可得到自由粒 子波函数所满足的微分方程:
p2 E
2
i2 2 (2.3-5)
t
2
3、粒子在势场中所满足的方程
粒子在势场U(r)
中,能量和动量的关系是:E
三、量子力学的态迭加原理一般表述
如果 1, 2, n,是体系的可能状态,那么它们
的线性迭加: c 1 1 c 2 2 c n n c n n
n
(c1 ,c2 ,cn 是复数)也是这个体系的一个可能状态。
§2.3 薛定谔方程
一、 薛定谔方程引入
经典力学质点运动: 初始状态(位置、速度) 牛顿方程 任意时刻质点的状态。 量子力学波函数: 初始状态波函数 薛定谔方程 任意时刻波函数的状态。 薛定谔在1926年建立了薛定谔方程 1、对波函数所满足的方程的要求
也是一个可能的波动过程。
波的干涉、衍射现象可用波的迭加原理解释。 二、量子力学的态迭加原理
如果 1 和 2 是体系的可能状态,那么它们的线性 迭加:c1 1c2 1(c1 ,c2是复数)也是这个体系
的一个可能状态。
三、电子双缝衍射 P
设 1 表示电子穿过上面窄
缝到达屏的状态,设 2 表 示电子穿过下面窄缝到达
p2
2
U(r)
波函数所满足的微分方程
i t 2 2 2U(r)
(2.3-10)
§2.7 一维线性谐振子 §2.8 势垒贯穿 第二章 小结
§2.5 定态薛定谔方程
例题:
§2.1 波函数的统计解释
一、波动-粒子二重性矛盾的分析
物质粒子既然是波,为什么长期把它看成经典粒子, 没犯错误?
实物粒子波长很短,一般宏观条件下,波动性不会表 现出来。到了原子世界(原子大小约1A),物质波的波长与 原子尺寸可比,物质微粒的波动性就明显的表现出来。
第二章 波函数和薛定谔方程
【教学目的】 正确了解波粒二象性的本质及波函数的统计解 释,了解薛定谔的建立过程,了解态迭加原理,掌握几种 典型一维定态问题的求解方法(一维无限深势阱、一维线 性谐振子)。
§2.1 波函数的统计解释 §2.6 一维无限深势阱
§2.2 态迭加原理
§2.3 薛定谔方程
§2.4 粒子流密度和粒子 数守恒定律
2
2、只有 d 有限时才能归一化为1。
自由粒子波函数就是一例。
3、经典波和微观粒子几率波的区别 1、 经典波描述某物理量在空间分布的周期变化,而几 率波描述微观粒子某力学量的几率分布;
2、 经典波的波幅增大一倍,相应波动能量为原来四倍, 就变成另一状态了;而微观粒子在空间出现的几率只决定 于波函数在空间各点的相对强度,将几率波的波幅增大一 倍并不影响粒子在空间各点出现的几率,即将波函数乘上 一个常数,所描述的粒子的状态并不改变;
s1 S
屏的状态。
1 表示电子穿过两个窄缝
s2
到达屏的状态,则有
c1 1c2 2
电子在屏上某点出现的 几率可表示为
电子双缝衍射实验
2 c 1 1 c 2 2 2 c 1 1 2 c 2 2 2 c 1 c 2 1 2 c 1 c 2 1 2
正是干涉项的存在,才有了衍射条纹。
二、波函数的(Born)统计解释
1、几率波
1926年玻恩提出了几率波的概念: 在数学
上,用一函数表示描写粒子的波,这个函数叫波函数。波
函数在空间中某一点的强度(振幅绝对值的平方)和在该
点找到粒子的几率成正比。既描写粒子的波叫几率波。
描写粒子波动性的几率波是一种统计结果,即许多电子同 一实验或一个电子在多次相同实验中的统计结果。
3、 对经典波,加一相因子e i ,状态会改变,而对几率 波,加一相因子e i 不会引起状态改变。
§2.2 态迭加原理
波函数的统计解释是波粒二象性的一个表现。微观粒子 的波粒二象性还可以通过量子力学的一个基本原理:态迭 加原理表现。 一、经典的波遵从的迭加原理
两个可能的波动过程 1 与 2 的线性迭加 a1b2
2.2 归一化常数
C
1
2
可由归一化条件确定
(x, y, z,t) d
2.3 归一化的波函数
(x,y,z,t)C (x,y,z,t)
在时刻t、在坐标 (x,y,z)点附近单位体积内找到粒子的几 率称为几率密度 。
w (x ,y ,z,t) d(W x ,y ,z,t) (x ,y ,z,t)2 d 注意: 1、归一化的波函数还有一不确定的相因子e i
相关文档
最新文档